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Abstract

An assignment of students to schools displays zero-segregation if
all schools have the same distribution of the different types (ethnic, ge-
ographical, gender, ..) of students. We axiomatize the choice of an op-
timally desegregated assignment under arbitrary capacity constraints.
The celebrated Consistency axiom, together with standard rational
choice requirements, identify the choice rule minimizing a canonical
index of proportional fairness: the entropy of the assignment matrix.
This is an alternative vindication of the Mutual Information index of
segregation ([20]), related to its characterization in [11].
A similar result holds in the capacity-constrained extension of the

bipartite rationing model ([17]): there we must minimize the entropy
of the rationing matrix augmented by individual deficits.
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1 Introduction

1.1 Proportional assignment and rationing

We consider two related resource allocation models. In the proportional as-
signment problem balls of different colors must be placed in bins of different
sizes, and the total number of balls equals the total capacity of the bins.
The goal is to achieve a representation of the colors in each bin as equal as
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possible across bins. The ideal assignment is proportional : the proportions of
the different colors are the same in each bin. However we impose exogenous
capacity constraints on the entries of the realized assignment: the number
of color a balls in bin i is bounded from above and below. How to best
approximate the ideal proportional assignment under such constraints?
The proportional rationing problem asks the same question but assumes

that the total number of balls is smaller than the total capacity of the bins.
We avoid rounding problems by setting all variables as real numbers, and

we characterize in both models a unique approximation rule that minimizes
the entropy of the realized assignment (or a variant of this entropy in the
rationing model) under the capacity constraints.
These results apply to, and connect, two disjoint literatures respectively

on the measurement of segregation and on the rationing problem, a bench-
mark fair division model. We discuss these connections in turn.
Reducing segregation is an important issue of public policy (see e. g.,

[10]). Two paramount examples are the assignment of students of various
types (ethinicity, gender, academic status, etc..) in th public schools of a cer-
tain district; and the distribution of jobs of different social status by gender,
ethnicity, or in socio-economic groups more finely tuned by education, health,
and so on. The zero-segregation ideal is proportional: in any two schools, or
job types, the proportions of the different types are identical. Examples of
exogenous capacity constraints include: there are not enough women qual-
ified for a certain type of jobs; each school must enroll a certain amount
of earmarked students; busing students is limited by geographic constraints;
and so on.
An segregation index assigns zero to a perfectly proportional assignment,

and only then; it increases to 1 or ∞ for maximally segregated assignments
(e.g., a single type of student per school). Two good surveys are [13] and [11].
Choosing such an index provides an answer to our approximation challenge:
given the capacity constraints, pick the feasible assignment with the smallest
index. This is well defined if the index is a strictly convex function of the
assignment matrices (once we fix the number of balls of each color and the
size of each bin), which is the case for many indices discussed in the literature:
the Dissimilarity and Gini indices, the family of Atkinson’s indices, and the
Mutual Information index.
Our proportional assignment model approaches the desegregation prob-

lem from the choice function perspective: instead of deciding which of any
two assignment matrices is more segregated, we select one such matrix for any
capacity-constrained problem. We impose two familiar rationality properties
(explained in the next subsection) on this choice function, and character-
ize the rule choosing the feasible matrix minimizing the Mutual Information
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index due to Theil ([20]) and axiomatized by Frankel and Volij ([11]). We
stress that our result is not a proper characterization of this index because
the choice sets have the particular rectangular shape implied by the capacity
contraints.
In the classic rationing problem (see e. g., Chapter 2 in [15]), balls of a

single color (the resource) are distributed to bins, each with its own capacity
(demand), and total capacity exceeds the number of balls (there is excess
demand of balls). A rationing rule is a systematic way to distribute the
resource, i.e., an interpretation of distributive justice in this simple model.
The proportional rule is by far the oldest and most natural interpretation
(more on this in section 2).
Here we introduces the bipartite version with capacity constraints of the

rationing problem (it generalizes the model of [17], [18], see Section 2) and
we look for the right interpretation of “proportional fairness”with the same
choice approach. Examples include the distribution of goods of different
quality to the retail stores of the chain, of jobs of different diffi culty to com-
pany workers, of customers of different types to salespersons, etc.. Fairness
demands that every store/worker/salesperson gets the same proportion of
high, medium and low quality goods/jobs/customers. Capacity constraints
capture the fact that some stores can only keep so much of certain goods; that
some workers are not qualified for certain jobs, or need a minimal amount of
some jobs for training purposes, and so on. The same two rationality prop-
erties on the choice function single out the rule minimizing the total entropy
of the assignment matrix, plus that of the deficits in each bin.
The next subsection explains both rules, and the axioms we use to char-

acterize them.

1.2 Capacited proportionality and the choice axioms

We replace the integer-valued balls and bins terminology by the more general
network terminology of sources and sinks. The finite set of sources is A and
ra is the total capacity of source a ∈ A; and a finite set N of sinks and sink
i ∈ N has a total capacity xi. In the assignment model, the balancedness
equality xN = rA holds1, while in the rationing model we have xN ≥ rA. In
both models we must choose a non negative matrix [yia], shipping the total
source capacity to the sinks: yNa = ra for all a and yiA ≤ xi for all i. The
proportional matrix yia = xira

xN
must be chosen when it is feasible.

The capacity constraints apply to each entry yia of y: 0 ≤ q−ia ≤ yia ≤
q+
ia ≤ +∞. Let E(z) = z ln(z) be the entropy function. If xN = rA the

1Notation xN =
∑
N xi, yNa =

∑
N yia etc.
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capacited proportional assignment y minimizes total entropy
∑

N×AEn(yia)
under these constraints. If xN ≥ rA the capacited proportional rationing
minimizes

∑
N×AEn(yia) +

∑
N En(xi − yiA): this is the entropy of y plus

that of the sink deficits xi − yiA.
Consider for comparison the Mutual Information index:

MI(y) =
∑
i,a

En(yia)−
∑
i

En(yiA)−
∑
a

En(yNa) + En(yNA) (1)

In an assignment problem all terms yiA, yNa and yNA are constant, there-
fore the capacited proportional matrix minimizes the MI index under the
constraints. This is no longer true for the capacited proportional rationing
matrix.
Our two key axioms are familiar rationality requirements.
The first one is the cornerstone of the rational choice approach: if an as-

signment/rationing matrix is optimal under certain constraints, and satisfies
tighter constraints, it should still be optimal under the latter constraints;
moreover a non binding constraint can be ignored. Both statements hold
when the chosen matrix minimizes a strictly convex function under con-
straints. They are both compelling when the exogenous capacity constraints
do not have any normative content and for this reason we call this require-
ment Constraint Neutrality.
The Consistency axiom means that if we fix the capacity constraints

and the rule selects a certain matrix y = [yia], then any submatrix of y is
still selected by the rule in the corresponding subproblem. This is a famous
separability property: “every part of a correct outcome should be correct”.2

We characterize both the capacited proportional chice rule both in the as-
signment and rationing contexts, by the combination of Constraint Neutrality
and Consistency as well as standard Symmetry and Continuity requirements.
We stress that Constraint Neutrality and Consistency are both orthogonal
to fairness, in the sense that they do not rule out very unfair rules. The only
fairness requirements in our characterization are Symmetry and the fact that
full proportionality must be chosen when feasible.
Although an assignment problem is the special case of a rationing problem

where sources and sinks capacities are balanced, the rationing characteriza-
tion does not imply the assignment one, because the axioms bear on two
nested domains of problems. But our parallel discussions of assignment and
rationing highlight their similarities.

2We modify Balinski and Young’s: “every part of a fair division should be fair” ([2])
to stress, like Thomson ([23]), that CSY is satisfied by some very unfair rules.
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1.3 Contents

Section 2 reviews the relevant literature. Section 3 introduces our model
and the most important axioms. The capacited proportional assignment and
rationing rules are defined in Section 4, where we give an intuitive multi-
plicative parametrization of these matrices (Proposition 1 and Corollary 1),
that plays a key role in the proofs and implies several natural monotonicity
properties of our rules. Section 5 states the characterization result, Theorem
1, and an open question. Section 6 contains most proofs.

2 Related work

On the Mutual Information index In addition to providing an excel-
lent survey of the main segregation indices in the literature, Frankel and
Volij ([11]) single out the Mutual Information index (1): they axiomatize
the ordering of assignment matrices defined by this index (their Theorem 2).
Statement i) in our Theorem is not an alternative characterization of this
index because our assignment rules (Definition 2) choose from special sets
of matrices with constant sums in rows and columns and a “rectangular”
shape from the capacity constraints.3 Our rules do not allow comparisons of
matrices with different sums in rows or columns, or different sizes. Nor do
they tell us what to choose from a general convex set of matrices: see the
open question in Section 5.
Despite these differences, Frankel and Volij’s combination of axioms re-

sembles ours. Both include Symmetry and Continuity requirements. Our
Constraint Neutrality is implied by, but does not imply, the existence of
an ordering of matrices that we minimize under neutral constraints, which
Frankel and Volij assume. Our critical Consistency axiom is similar in spirit
and in bite to their Independence axiom, requiring that if two assignment
matrices differ only in a submatrix, what happens in the submatrix is all we
need to compare the two matrices. Though Consistency and Independence
are not logically related, Independence is the classic assumption implying
a separably additive utility representation of the ordering, just like Consis-
tency, in rationing problems and in their bipartite generalization, forces the
minimization of such a utility (see below the discussion of bilateral assign-
ment rules).

3For instance with 2 sources and two sinks, the set of feasible matrices is an interval in
a line of R4. Then any strictly convex function on that line minimal at the proportional
assignment is an index that our capacited proportional rule minimizes under any capacity
constraints.
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Frankel and Volij need three additional requirements to capture the Mu-
tual Information index. One is the familiar Scale Invariance. Next School
Division says that when we merge the students of two schools into a single
school, segregation can only decrease; and Group Division says that segre-
gation does not change if we merge two ethnic groups with identical distri-
butions across schools. We require no similar property in our model, where
Consistency is about dropping, not merging, rows and columns.
Finally Frankel and Volij also characterize the Atkinson segregation index

(their Theorem 1), about which we have nothing to say as it does not define
a consistent choice function.

On rationing rules In the simple one-source version of the rationing
model, we must divide the amount r of resources between agents i with
demands xi. Although many rules have been proposed and axiomatized (see
the survey [21]), the proportional rule yi = xir

xN
stands out as the most popu-

lar. It appears in Aristotle’s Nicomachean Ethics (see [9], [19] for a historical
and legal discussion), and was the first rationing rule offered a modern ax-
iomatic justification ([3]). It is the compelling rule to divide the estate of a
bankrupt firm between creditors with equal status([14]).
Originally introduced for the related apportionment problem ([2]), Con-

sistency has been at the forefront of the fair division literature for the last
three decades (see [25], [22]). Young’s Theorem ([24]) providing a paramet-
ric representation of consistent rationing rules is perhaps its most successful
application.
The introduction of upper and lower capacity constraints in the one-

source rationing model is not new. Bergantions and Sanchez ([5]) and Hougaard
et al. ([12]) introduce such constraints as well, but give them normative
content: for instance a lower bound represents a status quo ex ante, and
gains are rescaled accordingly. This contradicts our Constraint Neutrality
requirement, which is critical to capture rules minimizing some measure of
segregation under constraints.

On bipartite rationing rules The model of bipartite rationing with mul-
tiple sources and sinks is first introduced by Bochet et al. ([6], [7]) in a
context where agents are endowed with single-peaked preferences over their
share and must report them truthfully. Then Moulin and Sethuraman ([17]
and [18]) develop an axiomatic, incentive-free version of the same model,
where capacity constraints are “0/∞”: we have q−ia = 0 for all ia and q+

ia is
either 0 or +∞; for instance certain workers are unable to do certain jobs.
They discuss the consistent extension of several one-source rationing meth-
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ods: proportional, uniform gains and losses in [17], and the rich family of
loss-calibrated methods in [18]. Theorem 1 in [17] is a characterization of
capacited proportional rationing similar to statement ii) in Theorem 1 here.
The Consistency requirement is weaker in that it applies to the removal of
sources, not sinks; and Constraint Neutrality has no bite under 0/∞ con-
straints. Note that this result is not a consequence of statement ii) in our
Theorem 1 because it applies to a smaller domain of problems.
On the other hand our characterization of capacited proportional assign-

ment (statement i) has no counterpart in the model with 0/∞ capacities:
indeed in that model it is an open question to understand the consequences
of Consistency.

On bilateral assignment rules In the bilateral assignment model with-
out capacity constraints, the companion paper [16] drops the assumption that
proportionality is the first best and explores the consequences of Consistency
(together with Symmetry and Continuity). Under additional monotonicity
and limit requirements, it turns out that a consistent rule selects the assign-
ment minimizing a separably additive function

∑
N×AW (yia) where W is a

smooth and strictly convex function. ThenW is the entropy function if (and
only if) the proportional assignment is the first best. A similar result for the
bipartite rationing model is described in Section 7 of [16].
In the special case where |N | = |A| and xi = ra = 1, an assignment y =

[yia] is a doubly stochastic matrix and can be interpreted as a probabilistic
assignment of rows to columns. In the unconstrained version of that model,
Chambers ([8]) uses a stronger version of Consistency to capture the uniform
assignment, a special case of the proportional one. Note that our version of
Consistency cannot be applied to the domain of doubly stochastic matrices
because it requires arbitrary sums in rows and columns.

On Fair Representation Apportioning seats in a parliament to voting
districts in proportion to their population poses an interesting rounding prob-
lem. Balinski and Young in their classic book on apportionment ([2]) argue
for a particular rounding method on the basis of the Consistency axiom it-
self (Uniformity in their terminology). In order to allocate seats to political
parties and townships, Balinski and Demange ([1]) generalize the apportion-
ment problem to two dimensions. Given an arbitrary exogenous assignment
matrix [zia], and capacity constraints on the sums of rows and of columns
(but not on the entries of the matrix), they look for a feasible assignment
[yia] “as proportional as possible”to the initial matrix z. By contrast in our
model we look for an assignment as close as possible to the ideal proportional
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matrix, given fixed sums in rows and columns and exogenous constraints on
the entries of the matrix.
Allowing for real valued assignments, Balinski and Demange combine

Consistency with Scale Invariance and Monotonicity (of z → y), to derive a
solution minimizing a weighted entropy similar to our capacited proportional
assignment. Their parametric representation of the solution is a relative of
our Proposition 1 in Section 4.

3 Model

The sets N of sinks and A of sources are both finite and non empty, with
generic elements i and a respectively.
Notation. If w ∈ RN×A+ , S is a subset of N , and T a subset of A, we write

wSa =
∑

i∈S wia, wiT =
∑

a∈T wia, and wST =
∑

i∈S,a∈T wia. Finally we write
Sc = N�S and T c = A�T when this causes no confusion.

3.1 Assignment and rationing problems

An assignment or rationing problem P = (N,A, x, r,Q) specifies

• the total capacity xi of each sink, so x ∈ RN+

• the total capacity ra of each source a, so r ∈ RA+

• for each (i, a) ∈ N × A, a closed capacity interval Qia = [q−ia, q
+
ia] or

[q−ia,∞[ ⊆ R+, so Q = ΠN×AQia ⊆ RN×A+

The budget balance equation xN = rA = b holds in an assignment problem.
In a rationing problem we have xN ≥ rA.

If Qia = R+ for all (i, a) ∈ N ×A, we speak of an unconstrained problem,
and we write simply P = (N,A, x, r).
A feasible assignment (resp. rationing) matrix is y ∈ Q such that yNa =

ra for all a ∈ A, and yiA = xi (resp. yiA ≤ xi) for all i ∈ N . Such a
matrix always exists if P is unconstrained, but in general its existence is not
guaranteed.

Lemma 1 The assignment problem P = (N,A, x, r,Q) is feasible, i.e.,
there is at least one feasible matrix y, if and only if for all S,∅ ⊆ S ⊆ N ,
and T,∅ ⊆ T ⊆ A, not both empty, we have

rT + q−ST c ≤ xS + q+
ScT (2)
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The rationing problem P = (N,A, x, r,Q) is feasible if and only if (2) holds,
and in addition

q−Na ≤ ra for all a ∈ A (3)

Proof That (2) and (3) are necesary for feasibility is obvious. Note
that if xN = rA and P is feasible, inequality (3) follows from (2) by taking
T = A�{a} and S = N .
To check that (2) is suffi cient when xN = rA, we consider the flow graph

with capacity constraints Qia on each edge from source a to sink i, one
additional source α connected to each source a by an edge with capacity ra,
and one additional sink β connected to each sink i by an edge with capacity
xi. We must show the maxflow is rA: by the max-flow min-cut theorem this
amounts to show that each cut has a capacity at least rA. Fix such a cut
C ∪ {β} where ∅ ⊆ C ⊆ N ∪ A, and define S, T as follows

C ∩N = Sc ; C ∩ A = T c

The capacity of C is γ = xS + q+
ScT − q−ST c + rT c, therefore γ ≥ rA is precisely

inequality (2) (if both S, T are empty then the capacity of C is exactly rA).
If xN ≥ rA it is enough to show there exists some x′ ∈ RN+ such that

x′N = rA, x′ ≤ x, and x′ meets (2) for all S, T . The latter means

x′S ≥ v(S) = max
T⊆A
{rT + q−ST c − q+

ScT} for all S  N

and (3) implies rA = maxT⊆A{rT + q−NT c} = v(N). Thus x′ must be in the
core of the TU game (N, v), and below x. Now (N, v) is clearly convex,
therefore such an x′ exists if ( and only if) xS ≥ v(S) for all S including N ,
which (2) and (3) guarantee.�
We write A and R respectively for the set of feasible assignment and

rationing problems, and Φ(P ) for the set of feasible matrices in the feasible
problem P . Then Au ⊂ A and Ru ⊂ R are the subsets of unconstrained
problems.
Before starting with the definition and axiomatization of choice rules, we

must address an important technical issue, namely the fact that the capacity
constraints may determine several entries yia of the (assignment or rationing)
matrix, beyond those such that q−ia = q+

ia. Here is an assignment example with
three sources a, b, c, three sinks A,B,C, and four lower or upper bounds
(there are no other capacity constraints):∣∣∣∣∣∣

xA = 2
xB = 4
xC = 6

∣∣∣∣∣∣
∣∣∣∣∣∣
· · yAc ≥ 0
· · yBc ≥ 2

yCa ≤ 3 yCb ≤ 1 ·

∣∣∣∣∣∣∣∣ra = 4 rb = 4 rc = 4
∣∣
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Together the sources a, b with capacity 8 send at most 4 to sink C, hence
at least 4 to the two sinks A,B; those two sinks get at least 2 from source
c: thus sinks A,B get exactly 4 from a, b and exactly 2 from c. In turn each
entry in {C} × {a, b} and {A,B} × {c} is determined:∣∣∣∣∣∣

(0 ≤ yAa ≤ 1) (1 ≤ yAb ≤ 2) yAc = 0
(0 ≤ yBa ≤ 1) (1 ≤ yBb ≤ 2) yBc = 2

yCa = 3 yCb = 1 (yCc = 2)

∣∣∣∣∣∣
We fix a rationing problem P ∈ R and we let τ(P ) be the set of all entries

ia such that yia is constant in Φ(P ), and σ(P ) be the set of those ia such
that |Qia| = 1, i.e., q−ia = q+

ia. Obviously σ(P ) ⊆ τ(P ), and as shown by the
example above the inclusion can be strict. Suppose that for some non empty
subsets S ⊆ N and T ⊆ A, inclusions not both equalities, inequality (2) is
in fact an equality: rT + q−ST c = xS + q+

ScT . Combining this with the two
accounting statements rT = yST + yScT and xS ≥ yST + yST c gives

yScT + q−ST c ≥ yST c + q+
ScT

Equivalently
(yST c − q−ST c) + (q+

ScT − yScT ) ≤ 0

which, together with q− ≤ y ≤ q+, implies y = q− on S × T c and y = q+ on
Sc × T .
It is critical in some proofs to restrict attention to problems where such

implied constraints do not appear.

Definition 1 A problem P in A is irreducible if (2) is a strict inequality
when at least one of S $ N and T $ A holds. A problem P in R�A is
irreducible if, in addition, inequality (3) is strict for all a. We write Air and
Rir for the sets of irreducible assignment and rationing problems.

In subsection 6.1 of the Appendix we show that any feasible problem can
be decomposed into independent irreducible problems: Lemmas 2,3. This
canonical decomposition is important for our main proofs.

3.2 Assignment and rationing rules

We restrict attention to rules treating all sinks, and all sources symmetrically.
We also require that a small change in the capacities xi, ra has only a small
influence on the solution.
If π is a bijection of N , from the new label i to the old label π(i), and

y ∈ Φ(P ) is a matrix with the old labels, the same matrix with the new
labels is yπ: yπia = yπ(i)a. Define similarly xπ, Qπ, and P π = (N,A, xπ, r, Qπ).

10



Definition 2 A assignment rule F selects a feasible matrix F (P ) = y ∈
Φ(P ) for every problem P ∈ A. Moreover the mapping F has the following
properties:

• Symmetry in N : for any P ∈ A and bijection π ofN , F (P )π = F (P π)

• Symmetry in A: same property upon exchanging the roles of N and
A

• Continuity of the mapping A 3 (x, r,Q)→ F (P ), for any fixed N,A

Upon replacing A by R the definition of a rationing rule H is identical. We
write F for the set of assignment rules, and H for that of rationing rules.

The next property, already discussed in the introduction, follows from
our assumption that the constraints Q are normatively neutral, they have no
bearing on the fairness of the outcome.
We fix an assignment rule F ∈ F or a rationing rule H ∈ H:

• Constraint Neutrality (NEUT): fix any P = (N,A, x, r,Q) ∈ A
and set y = F (P ); i) for any Q′ ⊂ Q, if y ∈ Q′ then y = F (P ′), where
P ′ = (N,A, x, r,Q′); ii) for any ia ∈ N × A such that q−ia < yia (resp.
yia < q+

ia), then y = F (P ′) where Q′ia = [0, q+
ia] (resp. [q−ia,∞[) and

P ′ = P otherwise. The definition is identical for a rationing rule H.

Both statements express a version of "independence of irrelevant con-
straints", the first one with respect to a tightening of the constraints, the
second one when we loosen a non binding constraint. Statement i) holds
whenever F (P ) or H(P ) is the unique matrix minimizing over Φ(P ) some
numerical index (or ordinal ordering), possibly depending on N,A, x and r,
but not on Q. Statement ii) holds when the numerical index (or ordering) is
convex over the set of feasible matrices for (N,A, x, r), as is the case for the
rules discussed in the next section.

The second key property is Consistency. Given a rationing rule H ∈ H, a
problem P = (N,A, x, r,Q) ∈ R, the matrix H(P ) = y, and two non empty
subsets S ⊆ N, T ⊆ A, we define the subproblem P [H;S, T ] = (S, T, x̃, r̃, Q)
where x̃i = xi − yiT c , r̃a = ra − ySca, and we abuse notation by still writing
Q for the constraints of the reduced problem (constraints outside S × T are
now irrelevant).

• Consistency (CSY) in H: for any P ∈ R and non empty S ⊆
N, T ⊆ A, H(P [H;S, T ]) is the projection of H(P ) on S × T .
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For an assignment rule F ∈ F , we can use exactly the same definition, or
an alternative, perhaps more intuitive formulation going back to [2]. Given
N,A, the constraints Q, and a matrix y ∈ Q, we say that this matrix is
F -fair for Q if the rule F chooses y in the problem (N,A, x, r,Q) defined by
xi = yiA for all i, and ra = yNa for all a.

• Consistency (CSY) in F : every submatrix of a matrix F -fair for Q
is F -fair for the restriction of Q.

Note that CSY in H has no bite if |N | = 1, and CSY in F has no bite if
|N | = 1 and/or |A| = 1, because Φ(P ) is then a singleton.
Here is a simple consequence of CSY: if xi = 0 for some i, then yia = 0 for

all a, so the submatrix obtained after deleting row i has all the same sums in
rows and columns, and CSY allows us to simply delete i altogether; similarly
if ra = 0. Thus we can always assume when convenient x, r � 0.
A simple example with three sinks and a single source gives some in-

tuition for the Consistency property. We share 40 units between the sinks
with respective capacities x1 = 21, x2 = 15, x3 = 24. In the absence of con-
straints, proportional division gives y1 = 14, y2 = 10, y3 = 16. When we add
the constraints y1 ≤ 13 and y3 ≥ 20, it is natural to propose the allocation
y′1 = 13, y′2 = 7, y′3 = 20, where the shares of agents 1 and 3 suffer the small-
est feasible correction. However this is not consistent: in the subproblem
between agents 1 and 2, they share 20 units as 13 and 7 respectively, while
the division ỹ1 = 112

3
, ỹ2 = 81

3
is feasible and proportional to their demands

21 and 15. Our rule recommends precisely ỹ1 = 112
3
, ỹ2 = 81

3
, ỹ3 = 20.

4 Capacited proportional assignment and ra-
tioning

In an unconstrained assignment problem P ∈ Au, the proportional flow yia =
xira
b
(recall b = xN = rA) is the unique minimum of a great variety of functions

W strictly convex over Φ(P ). Two examples are the Atkinson segregation
index W(y) = 1 −

∑
N ΠA(yia

ra
)
1
|A| , and its dual W(y) = 1 −

∑
A ΠN(yia

xi
)

1
|N| .

By minimizing W over Φ(P ) for any P ∈ A, we obtain a assignment rule
F ∈ F : Symmetry is clear, and Continuity follows from Berge’s Theorem.
Constraint Neutrality is equally clear.4 But only one rule constructed in this

4We can also minimize some convex, but not strictly convex, functionsW derived from
other segregation indices such as the Dissimilarity index W(y) =

∑
N×A |yia −

xira
b |, and

the Gini index W(y) =
∑
A×N×N xixj |

yia
xi
− yja

xj
|: the proportional flow is still the unique

minimum in an unconstrained problem, but in a constrained problem we need to deal with
possibly multiple minima.
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way meets Consistency, the one that minimizes the (negative of the) entropy
of the assignment matrix.
For unconstrained rationing problems P ∈ Ru, we select similarly the

proportional rationing yia = xira
xN

by minimizing many strictly convex func-

tions W, for instance W(y) =
∑

N×A
yαia

(xira)α−1 , for any parameter α > 1.5

This yields as above a rationing rule H ∈ H. Again, Consistency is not
warranted, except for the choice of W in statement ii) below.
We recall the notation En(z) = z ln(z).

Definition 3
i) The capacited proportional assignment rule F en selects for all P ∈ A the
unique solution of the following program:

min
y∈Φ(P )

∑
N×A

En(yia) (4)

ii) The capacited proportional rationing rule Hen selects for all P ∈ R the
unique solution of the following program:

min
y∈Φ(P )

∑
N×A

En(yia) +
∑
N

En(xi − yiA) (5)

The two programs minimize a strictly convex function, thus F en and Hen

meet Definition 2 and Constraint Neutrality. To check Consistency of F en

we fix N,A, a set of constraints Q, and an assignment matrix y. The latter is
fair for Q if it minimizes

∑
N×AEn(yia) when we freeze all the sums yiA and

yNa. If ỹ is a submatrix S×T of y, the corresponding sum
∑

S×T En(yia) is a
subset of the larger sum, thus ỹ is still fair.6 Checking that Hen meets CSY is
equally easy, because in the subproblem P [H;S, T ] we have x̃i−yiT = xi−yiA.
We check that the rules F en, Hen, select the proportional assignment when

there are no constraints. In an unconstrained rationing problem P ∈ Ru such
that xN > rA and x, r � 0, the KKT (Karoush Kuhn Tucker) conditions
ln(yia) − ln(xi − yiA) = ln(yja) − ln(xj − yjA) are clearly satisfied by the
proportional matrix, and by this matrix only. If P is balanced (so P ∈ Au)
and x, r � 0, we can argue by Continuity that the solution of (4) is still
proportional, or we can check directly that the solution of (4) has yia >
0 because (En)′(0) = −∞, then observe that the KKT conditions imply
ln(yia) + ln(yjb) = ln(yib) + ln(yja) ⇐⇒ yia

yja
= yib

yjb
.

5If xN > rA, the KKT conditions (
yia
xira

)α−1 = (
yja
xjra

)α−1 are satisfied by the (interior)
proportional matrix. By Continuity the minimum ofW is still proportional when xN = rA.

6For the other functions W(y) mentioned above, the minimization program solved by
ỹ is not comparable to that solved by y because the parameters xi, ra, have changed.
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Relation to the Mutual Information index Given an assignment prob-
lem P ∈ A, all column and row sums yNa and yiA, as well as yNA, are the
same for any y ∈ Φ(P ). Therefore program (4) coincides with the minimiza-
tion of the Mutual Information index MI(y) ((1)) over Φ(P ). In this sense
our Theorem in Section 5 is an additional justification of this index, different
to its axiomatic characterization by Frankel and Volij ([11]).
However in a rationing problem P ∈ R, minimizingMI(y) over Φ(P ) and

program (5) are two different things. In Φ(P ) only the terms yNa and yNA are
fixed, so minimizingMI amounts to minimize

∑
N×AEn(yia)−

∑
N En(yiA):

for instance if P ∈ Ru and the assignment yia = ra
|N | is feasible, it minimizes

MI, but Hen(P ) chooses yia = xira
xN
.

Multiplicative parametrization of F en and Hen We give a multiplica-
tive parametrization of the matrices F en(P ) and Hen(P ), critical to the ax-
iomatic characterization of these rules in the next section. It also gives an
intuitive understanding of these rules and their monotonicity properties. The
simplest statement applies only irreducible matrices.
Given any three real numbers we write u ∗ [v, w] for the projection of u

on the interval [v, w], i.e., the median of u, v, w.

Proposition 1
i) Assignment : for any P ∈ Air, the matrix y = F en(P ) is the only one in
Φ(P ) that can be written, for some strictly positive numbers λi, µa, as

yia = λiµa ∗Qia for all i ∈ N, a ∈ A (6)

ii) Rationing: for any P ∈ Rir with xN > rA, the matrix y = Hen(P ) is
the only one in Φ(P ) that can be written, for some strictly positive numbers
zi, µa, as

yia = ziµa ∗Qia for all i ∈ N, a ∈ A (7)

where for all i: zi = xi − yiA ⇐⇒ xi = zi +
∑
A

(zi · µa) ∗Qia (8)

For a possibly reducible problem, the statement is slightly less simple.
Recall that τ(P ) collects the entries ia such that yia is constant in Φ(P ),
while σ(P ) collects those such that |Qia| = 1.

Corollary 1
i) For any P ∈ A, the matrix y = F en(P ) is the only one in Φ(P ) that can
be written, for some strictly positive numbers λi, µa, as

yia = λiµa ∗Qia for all (i, a) /∈ τ(P )�σ(P )
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ii) For any P ∈ R�A, the matrix y = Hen(P ) is the only one in Φ(P ) that
can be written, for some strictly positive numbers zi, µa, as

yia = ziµa ∗Qia for all (i, a) /∈ τ(P )�σ(P )

where for all i: zi = xi − yiA
In particular statement ii) means that in a strictly rationed problem

(xN > rA) every agent incurs a positive deficit.
In the rationing example at the end of Section 3 the parametrization (7)

of the capacited proportional matrix is z1 = 91
3
, z2 = 62

3
, z3 = 4, and µ = 5

4
.

Monotonicity properties of F en and Hen To illustrate the power of the
parametrization above, we deduce three natural monotonicity properties of
the capacited proportional rules F en and Hen. The first property applies to
both assignment and rationing rules F,H. We use the notation Q[i] for the
i-th row of Q, and Q[a] for its a-column.

• Ranking for all P ∈ R all i, j ∈ N : {xi ≥ xj and Q[i] = Q[j]} =⇒
yia ≥ yja for all a ∈ A; for all a, b ∈ A: {ra ≥ rb and Q[a] = Q[b]} =⇒
yia ≥ yib for all i ∈ N .

The next two properties are for a rationing rule H. We compare two
problems P, P ′ ∈ R and the corresponding matrices y, y′:

• Sink Monotonicity: if P = P ′ except for xi < x′i then yiA < y′iA and
yjA ≥ y′jA for j 6= i.

• Source Monotonicity: if P = P ′ except for ra < r′a then yiA ≤ y′iA
for all i.

Lemma 4
i) Both rules F en and Hen meet Ranking
ii) The rule Hen meets Sink and Source Monotonicity

5 Characterization result and an open ques-
tion

Theorem 1
i) The assignment rule F en is characterized, among all rules in F , by the
combination of three properties: it picks the proportional matrix in any un-
constrained problem; Consistency; and Constraint Neutrality.
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ii) The rationing rule Hen is characterized, among all rules in H, by the
combination of the same three properties.

Note that the two statements are not logically related. If H ∈ H meets
the three properties, statement ii) implies that its restiction to A is F en.
However statement i) characterizes F en by means of axioms that only work
in F .
To see that statement i) is tight, pick any strictly convex function W

defined on R+ and check that the rule F (P ) = arg miny∈Φ(P )

∑
N×AW (yia)

meets CSY and NEUT. Clearly for most choices of W it does not pick the
proportional assignment in an unconstrained problem P ∈ Au.
Next we discussed at the beginning of Section 4 a variety of functions W

that are uniquely minimized by the proportional assignment in an uncon-
strained problem, yet the same minimization in A gives a rule failing CSY
while meeting NEUT.
Finally the rule F (P ) = arg miny∈Φ(P )

∑
N×AEn( yia

1+q−ia
) picks the propor-

tional matrix when Q = RN×A+ and meets CSY, but fails NEUT.
We omit for brevity the similar proof that statement ii) is tight as well.
A diffi cult open question. It is natural to generalize our model to allow

for more general constraints on the matrix y than the “rectangular”capacity
constraints Q. For instance geographic constraints limit total number of
some student types in two neighboring schools who share a bus system; see
Budish et al. ([4]) for several more examples in the school choice context.
The natural domain contains all convex compact subsets of matrices. In

Definition 3 we now mimimize the strictly convex total entropy over such
a set, which is well defined. The corresponding rule meets the straightfor-
ward generalizations of axioms NEUT and CSY. It is unclear whether our
characterization Theorem still holds in this more general domain.

6 Appendix: proofs

6.1 Decomposition in irreducible problems

Recall that ia ∈ τ(P ) iff yia is constant in Φ(P ), and ia ∈ σ(P ) iff q−ia = q+
ia.

In an irreducible assignment problem P ∈ Air (Definition 1) the inclusion
σ(P ) ⊂ τ(P )may still be strict: consider for instance a column a such that all
entries ja but ia are in σ(P ): then yia = ra− q−(N�i)a, so ia ∈ τ(P )�σ(P ). 7

If we then remove column a, the reduced problem P ′ = (N,A�{a}, x′, r, Q)
where x′i = xi − yia, is still in Air. Indeed if P ′ was reducible, we could

7By irreducibility we cannot have a full column or a full row contained in σ(P ).
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pick S, T , such that (2) is an equality, and check that (2) is an equality
in P for S ∪ {i}, T ∪ {a}, whether i is in S or not. A similar reduction
by removing a row i such that all entries ib but ia are in σ(P ) gives the
irreducible assignment problem P ′ = (N�{i}, A, x, r′, Q) where r′a = ra−yia.
Repeating this reduction process until its end is useful in the proofs below.
For irreducible rationing problems P ∈ Rir�A, we can drop a column

with just one entry outside σ(P ), but a row only if all entries are in σ(P ).
The proof that this preserves irreducibility is omitted for brevity.

Lemma 2
i) For any P ∈ Air there is some feasible matrix y ∈ Φ(P ) such that

for all ia : q−ia < q+
ia =⇒ q−ia < yia < q+

ia (9)

(recall q−ia < q+
ia ⇔ ia /∈ σ(P )). Moreover successive removals of columns or

rows with all but one entry in σ(P ), leave us with a problem P ∗ ∈ Air that
is either empty or has at least two entries outside σ(P ) in each row and in
each column.
ii) For any P ∈ Rir�A there is some feasible matrix y ∈ Φ(P ) meeting (9)
as well as

for all i : yiA < xi (10)

Moreover successive removals of columns with all but one entry in σ(P ) and
rows with all entries in σ(P ), leave us with a problem P ∗ ∈ Rir�A that is
either empty or has at least two entries outside σ(P ) in each column, and at
least one in each row.

Proof To check (9) for P in Air, observe that for some small enough
positive ε we can change every constraint Qia such that q−ia < q+

ia into Q
′
ia =

[q−ia+ε, q
+
ia−ε], and the resulting problem (x, r;Q′) is still inA. If P ∈ Rir�A,

we change in addition xi to xi − ε and (10) follows.�
We note that the inclusion σ(P ∗) ⊂ τ(P ∗) may still be strict. An example

is N = {1, 2, 3, 4}, A = {a, b, c, d}, x = (2, 1, 1, 1), r = (2, 1, 1, 1), Q1b =
Q2a = Q2b = Qiz = {0} for i = 3, 4 and z = c, d, and Qiz = R+ otherwise.
We have P = P ∗ ∈ Air and y1a = 1 for all y ∈ Φ(P ).
The next Lemma shows that any feasible problem can be decomposed

into finitely many irreducible problems.

Lemma 3 (decomposition in irreducible problems) Each problem P =
(N,A, x, r,Q) in A or R can be decomposed into irreducible subproblems P k,
1 ≤ k ≤ K, as follows. There are two partitions Nk of N and Ak of A,
0 ≤ k ≤ K, where N0 and/or A0 could be empty, such that
i) τ(P ) contains each ia ∈ Nk×Ak′ with k 6= k′ or k = k′ = 0, and for such
an entry we have yia = qia ∈ {q−ia, q+

ia};
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ii) for all k, 1 ≤ k ≤ K, the subproblem P k = (Nk, Ak, xk, rk;Q) where
xki = xi − qi(Ak)c and r

k
a = ra − q(Nk)ca, is irreducible.

iii) if P ∈ A, all subproblems P k are in A as well; if P ∈ R, at most one
subproblem P k is in R, all others are in A.
iv) if (2) is an equality for a pair S, T,∅ ⊆ S ⊆ N,∅ ⊆ T ⊆ A, then S is a
union of subsets Nk and T is the unions of the same subsets Ak.

Proof We prove statements i) to iii) by induction on the dimension
|N | + |A|. If P is irreducible, we set N1 = N,A1 = A, and we are done.
Assume now P is reducible. Then there exist some subsets S of N , T of A,
such that rT + q−ST c = xS + q+

ScT , and we saw just before Definition 1 that
this implies y = q− on S × T c and y = q+ on Sc × T for all y ∈ Φ(P ).
If S = ∅ then T 6= ∅, so that y = q+ on N × T and the subproblem

(N, T c, x̃, r, Q) with x̃i = xi − q+
iT is clearly feasible. By induction we can

decompose it. Note that T will be a subset of A0. Similarly if S = N
then T 6= A and we get y = q− on N × T c, so we decompose (N, T, x̃, r, Q)
defined similarly; here T c ends up in A0. The cases T = ∅, S 6= ∅, and
T = A, S 6= N , give similarly y = q− or q+ on S×A and Sc×A respectively,
and Sc or S is a subset of N0.
If ∅ 6= S 6= N and∅ 6= T 6= A we have y = q− on S×T c and q+ on Sc×T ,

which leaves us with two feasible subproblems: one balanced (S, T, x̃, r̃, Q)
with x̃i = xi − q−iT c, r̃a = ra − q+

Sca; and the other (Sc, T c, x̂, r̂, Q) with
x̂i = xi−q+

iT , r̂a = ra−q−Sa. If P is an assignment problem, both subproblems
are in A; if P is a strict rationing problem (xN > rA), only subproblem
(S, T, x̃, r̃, Q) is balanced. The induction argument is now clear.
Statement iv) establishes uniqueness of the decomposition. We omit the

proof for brevity, as it is not needed in subsequent proofs.�
Lemma 3 implies that if two consistent rules F, F ′ ∈ F , or H,H ′ ∈ H,

coincide on irreducible problems, they are the same rule.

6.2 Parametrization of capacited proportionality

We prove the Proposition in section 4. Combining this result and the canon-
ical decomposition in Lemma 3 above gives the Corollary at once.
Statement i) Step 1 Fix P ∈ Air. We show that y = F en(P ) can be written
as (6). We use statement i) in Lemma 2 to first reduce P to P ∗ on N∗ ×A∗
where every row and column has two or more entries outside σ(P ). Suppose
we have shown (6) for P ∗ = (N∗ ×A∗, x∗, r∗, Q) where x∗i = xi − yi(A∗)c, and
r∗a = ra − y(N∗)ca. Then we can choose λi on N and µa on A sequentially to
meet (6), starting from the last reduction just before reaching P ∗. Say this
last step eliminates row i in which ia is the only entry with a true interval
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Qia, and the only feasible value of yia is yia: we know yia > 0 by statement i)
in Lemma 2; also µa is determined in P

∗ by assumption, and µa = 0 would
imply r∗a = q−N∗a which is excluded by irreducibility of P

∗; therefore we can
choose λi > 0 to ensure yia = λiµa. If another row j is removed at the last
step, we can choose λj as well. If a column a is removed in the last step,
and ia is the only entry with a true interval Qia, we have similarly yia > 0
by statement i) in Lemma 2, and λi > 0 because λi = 0 implies x∗i = q−iA∗
contradicting irreducibility of P ∗. Therefore we can choose µa > 0 to get
yia = λiµa. And so on.
It remains to prove (6) when y = F en(P ) and each row and each column

of P has at least two entries outside σ(P ). Program (4) is equivalent to
minimizing

∑
(N×A)�σ(P )(En(yia) − yia). We adjust the capacities of rows

and columns accordingly by setting x∗i = xi −
∑

(iA)∩σ(P ) yia, and r
∗
a = ra −∑

(Na)∩σ(P ) yia. Then the program delivering y = F en(P ) has the following
equality and inequality constraints:

y(iA)�σ(P ) = x∗i for all i, y(Na)�σ(P ) = r∗a for all a

yia − q+
ia ≤ 0, q−ia − yia ≤ 0 for ia ∈ (N × A)�σ(P ) (11)

The Lagrangian of the problem is L(y, α, β, θ+, θ−), where α ∈ RN , β ∈ RA
and θ+, θ− ∈ R(N×A)�σ(P )

+ :

L(y, α, β, θ+, θ−) =
∑

(N×A)�σ(P )

(En(yia)−yia)−
∑
N

αi(yiA−xi)−
∑
A

βa(yNa−ra)

−
∑

(N×A)�σ(P )

θ+
ia(q

+
ia − yia)−

∑
(N×A)�σ(P )

θ−ia(yia − q−ia)

We check the qualification constraints. From |(N×A)�σ(P )| ≥ 2 max{|N |, |A|}
we see that the linear mapping R(N×A)�σ(P ) 3 y → (yiA, yNa)i∈N,a∈A ∈ RN∪A
is of maximal rank; and (9) says that there exists y ∈ Φ(P ) such that
q−ia < yia < q+

ia for all ia ∈ (N × A)�σ(P ). Therefore there exist some
KKT multipliers α, β, θ+, θ−, such that

min
y∈Φ∗(P )

∑
(N×A)�σ(P )

(En(yia)− yia) = min
y∈R(N×A)�σ(P )

L(y, α, β, θ+, θ−)

where Φ∗(P ) is the projection of Φ(P ) on R(N×A)�σ(P ). Moreover y = F en(P )
if and only if y minimizes the Lagrangian on the entire space, y is feasible,
and the complementarity properties θ+

ia(yia − q+
ia) = θ−ia(q

−
ia − yia) = 0 hold

for all ia ∈ (N × A)�σ(P ).
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The first order conditions are, for all ia ∈ (N × A)�σ(P ):

ln(yia) = αi + βa − θ+
ia + θ−ia

If q−ia < yia < q+
ia, this reduces to ln(yia) = αi + βa ⇐⇒ yia = eαieβa =

(eαieβa)∗Qia. If yia = q−ia we get ln(yia) = αi+βa+θ−ia, implying yia ≥ eαieβa

hence yia = (eαieβa) ∗Qia. Similarly yia = q+
ia gives yia ≤ eαieβa = (eαieβa) ∗

Qia. Thus (6) holds with λi = eαi , µa = eβa for all ia such that Qia is not
a singleton. And if |Qia| = 1 this equality holds trivially. This concludes
Step1.
Step 2. Conversely we take y ∈ Φ(P ) and λi, µa meeting (6). We set

αi = ln(λi), βa = ln(µa), and
θ+
ia = θ−ia = 0 if q−ia < yia < q+

ia

θ+
ia = 0 and θ−ia = ln(q−ia)− αi − βa if yia = q−ia
θ−ia = 0 and θ+

ia = − ln(q+
ia) + αi + βa if yia = q+

ia

It is then easy to check that the projection of y on R(N×A)�σ(P ) minimizes
L(y, α, β, θ+, θ−) in the entire space.
Statement ii)We sketch the parallel argument. For Step 1 we fix P ∈ Rir�A
and reduce it first to P ∗ onN∗×A∗ where each column has at least two entries
outside σ(P ) and each row has at least one. Assuming (6) holds for P ∗ we go
backward from P ∗ to P as above. If the last step eliminated a row contained
in σ(P ), then (7) holds for any choice of zi, µa, in particular for µa chosen for
P ∗ and for zi = xi−yiA∗ which is positive by (10). If the last step eliminated
a column with a single entry outside σ(P ), we mimick the argument in Step
1 taking into account zi > 0 for i ∈ N∗.
Working now with P ∗ denoted simply P , program (5) is equivalent to

minimizing
∑

(N×A)�σ(P )(En(yia)− yia) +
∑

N En(x∗i − y(iA)�σ(P )), with the
following constraints:

y(iA)�σ(P ) ≤ x∗i for all i, y(Na)�σ(P ) = r∗a for all a ; and (11)

The new Lagrangian is L(y, α, β, θ+, θ−) +
∑

N En(x∗i − y(iA)�σ(P )) where
the parameter α is now in RN− instead of RN . The qualification constraints
require, first, that the linear mapping R(N×A)�σ(P ) 3 y → (yNa)a∈A ∈ RA
be of maximal rank: this is clear from |(N × A)�σ(P )| ≥ |A| (in fact ≥
2|A|). Second, properties (9) and (10) show there exists y ∈ Φ(P ) where all
inequality constraints are strict. Therefore there exist some KKT multipliers
α, β, θ+, θ−, such that

min
y∈Φ∗(P )

∑
(N×A)�σ(P )

(En(yia)− yia) +
∑
N

En(x∗i − y(iA)�σ(P ))

= min
y∈R(N×A)�σ(P )

L(y, α, β, θ+, θ−) +
∑
N

En(x∗i − y(iA)�σ(P ))
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Now y = Hen(P ) if and only if y minimizes the Lagrangian on the en-
tire space, y is feasible, and the complementarity properties αi(yiA − xi) =
θ+
ia(yia − q+

ia) = θ−ia(q
−
ia − yia) = 0 hold for all ia ∈ (N × A)�σ(P ). The first

order conditions are, for all ia ∈ (N × A)�σ(P ):

ln(yia)− ln(x∗i −y(iA)�σ(P )) = ln(yia)− ln(xi−yiA) = αi+βa−θ+
ia+θ−ia (12)

As ln(0) is unbounded, we have yia > 0 for all ia ∈ (N × A)�σ(P ) and
zi = xi − yiA > 0 for all i, implying α = 0 and

yia = zie
βa−θ

+
ia+θ−ia

As in the previous proof, this gives yia = (zie
βa) ∗ Qia for all ia ∈ (N ×

A)�σ(P ).
Step 2. Conversely we take y ∈ Φ(P ) and zi, µa meeting (7), (8). We

have zi = xi − yiA = x∗i − y(iA)�σ(P ). We set αi = 0, βa = ln(µa), and define
θ+, θ− as above (with α = 0). The first order conditions (12) to minimize
the Lagrangian are ln(yia) − ln(y(iA)�σ(P )) = βa − θ+

ia + θ−ia, and this holds
true at y by construction of z, β, θ±.�

6.3 Lemma 4

Statement i) If Ranking holds on every irreducible component of P (Lemma
3), it clearly holds on P itself. Thus we can assume P ∈ Rir or Air. For
P ∈ Rir we can assume xi > xj (by Symmetry). If in system (7) we have
zi ≤ zj, then yiA ≤ yjA ⇐⇒ xi − zi ≤ xj − zj and we reach a contradiction.
Therefore zi > zj and (7) gives yia ≥ yja for all a. The similar proofs for two
columns, as well as for P ∈ Air, are omitted for brevity.
Statement ii) For Sink Monotonicity, note that when we move from an arbi-
trary P ∈ R by only lifting sink 1’s capacity x1, the irreducible decomposition
in Lemma 3 changes only at finitely many points. Therefore by Continuity
it is enough to prove the statement when the decomposition does not change
from x1 to x′1, and in turn this means we can assume P and P ′ are both
irreducible.
We set z, µ and z′, µ′ for the corresponding parameters in (7), (8), and

we note first zN < z′N . We assume that the set S = {i|zi > z′i} is non empty
and derive a contradiction. Indeed the set T = {a|µa < µ′a} must be non
empty, otherwise (7) implies yia ≥ y′ia for any i in S and any a; given xi ≤ x′i
this contradicts zi > z′i. Observe now that yia ≤ y′ia holds on S

c × T . As the
capacity of sources does not change, this implies yST ≥ y′ST . On the other
hand we have yia ≥ y′ia on S × T c, and zS = xS − ySA > x′S − y′SA = z′S.
Together with xS ≤ x′S this implies y

′
ST > yST , the desired contradiction.
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We have shown zi ≤ z′i for all i. Hence yiA ≥ y′iA for all i ≥ 2, as was to be
proved.
For Source Monotonicity, we can assume P, P ′ ∈ Rir for the same reason,

and this time we have zN > z′N . If the set S = {i|zi < z′i} is non empty, the
set T = {a|µa > µ′a} is non empty as well, by the same kind of argument as
above. Similarly we have yia ≥ y′ia on S

c× T , hence yST ≤ y′ST ; on the other
hand yia ≤ y′ia on S × T c, together with zS = xS − ySA < xS − y′SA = z′S
implies y′ST > yST , contradiction. We have shown zi ≥ z′i for all i. Hence
zi = xi − yiA ≥ xi − y′iA = z′i for all i and we are done.�

6.4 Characterization result

We prove statement ii) of the Theorem in steps 1 and 2. We already know
that Hen meets the three properties. So we pick H ∈ H meeting them
as well and we must show H = Hen. By Lemma 3 it is enough to show
H(P ) = Hen(P ) for P ∈ Rir.

Step 1 We prove this first for standard rationing problems, namely when
|A| = 1. As a reminder we write such a problem as P s. All rules coincide
on P s ∈ A , thus we only need to consider P s ∈ Rir�A. By Symmetry in
A, the choice of A does not matter so we can write a standard problem as
P s = (N, x, t, Q) where t ≥ 0 is the amount to share and Qi = [q−i , q

+
i ] for

all i. Irreducibility of P s means

q−N < t < q+
N and for all S,∅ 6= S 6= N : q−S < xS and t < xS + q+

Sc (13)

We show that H(P s) = y takes the form yi = µzi ∗ Qi for all i, where
µ > 0 and zi = xi − yi > 0. The proof is by induction on the number υ of
strict inequalities q−i > 0 and q+

i <∞. If υ = 0 the rule H is proportional by
assumption. Fix now a problem P s with υ + 1 strict inequalities, and single
out one of them for instance q+

1 < ∞. We let Q′ be the same as Q except
that Q′1 = [q−1 ,∞[, so the problem P s′ = (N, x, t, Q′) is still irreducible. By
the inductive assumption H(P s′) = Hen(P s′) and we call this allocation y′.
If y′1 ≤ q+

1 NEUT (part i)) implies H(P s′) = H(P s) and Hen(P s′) =
Hen(P s), so we are done. Assume now y′1 > q+

1 and note that y1 < q+
1 would

imply (by NEUT part ii)) y = y′, a contradiction. Thus y1 = q+
1 .

We use the notation y−1 for the projection of y on RN�1
+ , and P s[−1] =

(N�1, x−1, t − q+
1 , Q), still an irreducible problem. CSY applied to the

removal of sink 1 in H and Hen implies y−1 = H(P s[−1]) and y−1 =
Hen(P s[−1]). The inductive assumption says there exists µ > 0 such that
yi = µ(xi − yi) ∗ Qi and xi > yi for all i ≥ 2. On the other hand y′ =
Hen(P s′) so the Proposition in Section 4 shows there exists λ > 0 such that
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y′i = λ(xi − y′i) ∗ Qi and xi > y′i for all i ≥ 2, and y′1 = λ(x1 − y′1) ∗ [q−1 ,∞[.
As y′1 > q+

1 the latter equality gives y
′
1 = λ(x1 − y′1) = λ

λ+1
x1.

Next it is easy to check the following equivalence

yi = µ(xi − yi) ∗Qi ⇐⇒ yi =
µ

µ+ 1
xi ∗Qi for all i ≥ 2

(for instance from left to right, µ(xi − yi) ≥ q+
i =⇒ yi = q+

i =⇒ µ
µ+1

xi ≥ q+
i ,

etc.). Similarly y′i = λ
λ+1

xi ∗Qi for all i ≥ 2. From yN�1 = t− q+
1 > y′N�1 we

have µ > λ hence µ
µ+1

x1 >
λ
λ+1

x1 > q+
1 and finally y1 = q+

1 = µ(x1− y1) ∗Q1.
Thus y = H(P s) takes the parametric form (7),(8), concluding the induction
step when we single out a non trivial upper bound constraint q+

1 < ∞. We
omit the similar proof when we pick a non trivial lower bound.

Step 2 We take now a problem P ∈ Rir�A where |A| is arbitrary, and we
set y = H(P ) with a deficit vector zi = xi − yiA. By assumption zN > 0.
Removing all sources but a gives a reduced capacity xi − yi(A�a) = zi + yia
for sink i. With the notation y[a] for the a-column of y and similarly for Q,
CSY and step 1 imply

y[a] = H(N, z + y[a], ra, Q
[a]) = Hen(N, z + y[a], ra, Q

[a])

Suppose zi > 0 for all i. Then each standard problem P a = (N, z +
y[a], ra, Q

[a]) is irreducible: q−Na < ra < q+
Na follows from P ∈ Rir, and for

S 6= ∅, N , we have q−Sa ≤ ySa < zS+ySa and ra ≤ ySa+q+
Sca < zS+ySa+q+

Sca.
Therefore step 1 gives for each a a positive µa such that yia = µazi ∗Qia for
all i and we are done.
We now assume that S∗ = {i ∈ N |zi = 0} is non empty, and we derive a

contradiction. Note that (S∗)c is non empty as well (zN > 0), so the problem
P a is in R�A for each a. It cannot be irreducible: by statement ii) in the
Proposition of Section 4 such a problem has zi > 0 for all i. Thus for each a
system (13) is violated: there is some S,∅ 6= S 6= N , such that at least one
of

ra = zS + ySa + q+
Sca (14)

and/or
q−Sa = zS + ySa (15)

holds. Let B be the possibly empty subset of sources a such that yia = q+
ia

for all i ∈ (S∗)c. We claim that yia = q−ia for i ∈ S∗ and a ∈ Bc.
Indeed if (14) holds at a, we deduce from ra = ySca + ySa that zS = 0 and

yia = q+
ia for all i ∈ Sc, i. e., a ∈ B. Fixing any a outside B, equation (15)

holds for some S. This implies zS = 0⇒ S ⊆ S∗, and yia = q−ia for all i ∈ S.
If S = S∗ the claim is proven at a, so we assume S & S∗. Consider the
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reduction P̃ a of P a to Sc, where these sinks share r̃a = ra − ySa: by CSY in
P̃ a sink i still gets yia and his deficit is still zi. Therefore P̃ a is reducible (Sc

contains some i ∈ S∗ where zi = 0) so there is some R,∅ 6= R 6= Sc, such
that (14) and/or (15) holds. But (14) is r̃a = zR + yRa + q+

(S∪R)ca ⇐⇒ ra =

zS∪R + y(S∪R)a + q+
(S∪R)ca, which implies yia = q+

ia on (S ∪ R)c × {a} ⊇ S∗,
and we have excluded this possibility outside B. Thus (15) holds, implying
as above zR = 0 and yia = q−ia on R. Thus R ⊂ S∗ and the desired equality
yia = q−ia holds on S ∪ R (a is still fixed). Repeating the argument we reach
the claim.
We have shown that yia = q+

ia on (S∗)c × B, while yia = q−ia on S
∗ × Bc.

Then the accounting identity rB + yS∗Bc = xS∗ + y(S∗)cB implies rB + q−S∗Bc =
xS∗ + q+

(S∗)cB, in contradiction of the irreducibility of P .

Step 3We prove statement i). Pick F ∈ F meeting the three properties and
construct a standard rationing rule denoted h as follows. The small letter
reminds us that this rule is only defined for problems with a single source.
For each such problem P s = (N, x, t, Q) we construct an assignment problem
P = (N, {a, b}, x, r, Q̃) where ra = t, rb = xN − t, and Q̃[a] = Q, Q̃[b] = RN+ .
Then we define h(P s) to be the a-column of F (P ).
By Symmetry in A the choice of a, b, does not matter. It is equally clear

that the standard rationing rule P s → h(P s) is symmetric in N , continuous,
and satisfies NEUT and CSY because F does. Therefore by step 1 we have
h(P s) = hen(P s).
We pick now P = (N,A, x, r,Q) ∈ Air and we show F (P ) = F en(P ).

By Lemma 3 this is all we need to prove. We construct for all ε ≥ 0 an
augmented problem P [ε] = (N,A ∪ {a∗}, xε, rε, Qε) with one more source a∗

as follows:

xεi = xi +
ε

|N | for all i ; r
ε = (r, ε) ; Qε

ia∗ = R+, Qε
ia = Qia otherwise

It is easy to check that P [ε] is in Air as well. Set y = F (P ) and (yε, zε) =
F (P [ε]) where zεi is the ia

∗ coordinate of F (P [ε]) and yε is of dimensionN×A.
By Continuity we have limε→0(yε, zε) = F (P [0]) and by CSY F (P [0]) =
(y, 0). The same remarks apply to F en(P ) and F en(P [ε]), therefore it is
enough to prove F (P [ε]) = F en(P [ε]) for all ε > 0. For simplicity we write
now y, z instead of yε, zε.
For any a ∈ A we reduce P [ε] to a problem inA onN×{a, a∗} by dropping

all other sources. Sink i’s reduced capacity is xi− yi(A�a) = zi + yia. Setting
Q̃ia = Qia and Q̃ia∗ = R+ and applying CSY we have

(y[a], z) = F (N, {a, a∗}, z + y[a], (ra, ε), Q̃) =⇒ y[a] = h(N, z + y[a], ra, Q
[a])
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The proof now follows exactly the pattern of step 2. If zi > 0 for all i,
each standard problem P a = (N, z+y[a], ra, Q

[a]) is irreducible. From h = hen

we deduce, as in step 2, yia = µazi∗Qia for some µa > 0 and all i. In addition
we choose µa∗ = 1 so that (y, z) has the parametric form (6) everywhere and
this gives F (P [ε]) = F en(P [ε]) by statement i) in the Proposition.
If S∗ = {i ∈ N |zi = 0} and (S∗)c are non empty, P a is in R�A for

all a and is not irreducible for the same reasons. Thus (13) is violated for
each a: there is some S,∅ 6= S 6= N , such that ra = zS + ySa + q+

Sca and/or
q−Sa = zS + ySa. As in the previous step this yields a partition {S∗, (S∗)c}
of N (both sets non empty) and (B,Bc) of A (at least one non empty) such
that rB + q−S∗Bc = xS∗ + q+

(S∗)cB, in contradiction of the irreducibility of P .�
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