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Abstract

In this paper we examine implications of model uncertainty due to robustness (RB) for con-

sumption and saving and the market price of uncertainty under limited information-processing

capacity (rational inattention or RI). We first solve the robust permanent income models with

inattentive consumers and show that RI by itself creates an additional demand for robustness

that leads to higher “induced uncertainty” facing consumers. Second, we explore how the in-

duced uncertainty composed of (i) model uncertainty due to RB and (ii) state uncertainty due

to RI, affects consumption-saving decisions and the market price of uncertainty. We find that

induced uncertainty can better explain the observed market price of uncertainty – low atten-

tion increases the effect of model misspecification. We also show the observational equivalence

between RB and risk-sensitivity (RS) in environment.
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1 Introduction

Hansen and Sargent (1995) first introduced robustness (RB, a concern for model misspecification)

into linear-quadratic (LQ) economic models.1 In robust control problems, agents do not know the

true data-generating process and are concerned about the possibility that their model (denoted

the approximating model) is misspecified; consequently, they choose optimal decisions as if the

subjective distribution over shocks was chosen by an evil nature in order to minimize their expected

utility.2 Robustness (RB) models produce precautionary savings but remain within the class

of LQ models, which leads to analytical simplicity. A second class of models that produces

precautionary savings but remains within the class of LQ models is the risk-sensitive (RS) model

of Hansen and Sargent (1995) and Hansen, Sargent, and Tallarini (1999). In the RS model agents

effectively compute expectations through a distorted lens, increasing their effective risk aversion by

overweighting negative outcomes. The resulting decision rules depend explicitly on the variance of

the shocks, producing precautionary savings, but the value functions are still quadratic functions

of the states. As shown in Hansen and Sargent (2007), the risk-sensitivity preference can be used

to interpret the desire for robustness as they lead to the same consumption-saving decisions, and

similar asset pricing implications.3

Sims (2003) first introduce rational inattention into economics and argued that it is a plau-

sible method for introducing sluggishness, randomness, and delay into economic models. In his

formulation agents have finite Shannon channel capacity, limiting their ability to process signals

about the true state of the world. As a result, an impulse to the economy induces only gradual

responses by individuals, as their limited capacity requires many periods to discover just how

much the state has moved. Since RI introduces additional uncertainty, the endogenous noise due

to finite capacity, into economic models, RI by itself creates an additional demand for robustness.

In addition, agents with finite capacity need to use a filter to update their perceived state upon

receiving noisy signals, which may lead to another demand for robustness, the robust Kalman

1See Hansen and Sargent (2007) for a textbook treatment on robustness and Hansen and Sargent (2010) for

a recent survey. For decision-theoretic foundations of the robustness preference, see Maccheroni, Marinacci, and

Rustichini (2006) and Strzalecki (2011) for detailed discussions.
2The solution to a robust decision-maker’s problem is the equilibrium of a max-min game between the decision-

maker and nature.
3It is worth noting that although both RB (or RS) and CARA preferences (i.e., Caballero 1990 and Wang

2003) increase the precautionary savings premium via the intercept terms in the consumption functions, they have

distinct implications for the marginal propensity to consume out of permanent income (MPC). Specifically, CARA

preferences do not alter the MPC relative to the LQ case, whereas RB or RS increases the MPC. That is, under

RB, in response to a negative wealth shock, the consumer would choose to reduce consumption more than that

predicted in the CARA model (i.e., save more to protect themselves against the negative shock).
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filter.4

In this paper we first construct a discrete-time robust permanent income model with inatten-

tive consumers who have concerns about two types of model misspecification: (i) the disturbances

to the perceived permanent income (the disturbances here include both the fundamental shock

and the RI-induced noise shock) and (ii) the Kalman gain.5 For ease of presentation, we will

refer to the first type of model misspecification as Type I and the second as Type II.6 After

solving the model explicitly, we first examine how the preference of robustness affects optimal

consumption and precautionary savings via interacting with finite capacity. Specifically, we show

that given finite capacity, concerns about the two types of model misspecification have opposing

impacts on the marginal propensity to consume out of perceived permanent income (MPC) and

precautionary savings. In the case with only Type I model misspecification, since agents with low

capacity are very concerned about the confluence of low permanent income and high consumption

(meaning they believe their permanent income is high so they consume a lot and then their new

signal indicates that in fact their permanent income was low), they take actions which reduce

the probability of this bad event – they save more.7 As for Type II misspecification, an increase

in the strength of the preference for robustness increases the Kalman gain, which leads to lower

total uncertainty about the true level of permanent income and then lower precautionary savings.

In addition, the strength of the precautionary effect is positively related to the amount of this

uncertainty that always increases as finite capacity gets smaller. Using the explicit expression

for consumption dynamics, we also show that increasing RB increases the robust Kalman filter

gain and thus leads to less relative volatility of consumption to income (smoother consumption

process) when we only consider Type II misspecification. In contrast, RB increases the relative

volatility of consumption by increasing the MPC out of changes in permanent income when we

only consider Type I misspecification.8

4The key assumption in Luo and Young (2010) is that agents with finite capacity distrust their budget constraint,

but still use an ordinary Kalman filter to estimate the true state; in this case, a distortion to the mean of permanent

income is introduced to represent possible model misspecification. However, this case ignores the effect of the RI-

induced noise on the demand for robustness.
5Anderson, Hansen, and Sargent (2003) provide a general framework to study and quantify robustness in

continuous-time. See Cagetti et al. (2002) and Maenhout (2004) for the applications of robustness in pricing,

growth, and portfolio choice in continuous-time.
6When modeling Type II misspecification, we assume that the agent faces the commitment on the part of the

minimizing agent to previous distortions.
7Luo, Nie, and Young (2012) apply Type I RB in the SOE-RBC model proposed in Aguiar and Gopinath (2007)

and show that this type of RB can help generate realistic relative volatility of consumption to income and the

current account dynamics observed in emerging and developed small-open economies.
8This mechanism is similar to that examined in Luo and Young (2010).
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Furthermore, we compare the implications of RS and RB for consumption and savings when

considering both control and filtering decisions of inattentive consumers. In the risk-sensitive

permanent income model with imperfect-state-observation due to RI, the classical Kalman filter

that extremizes the expected value of a certain quadratic objective function is still optimal. After

solving the RB and RS models with filtering, we establish the observational equivalence (OE)

conditions between RB and RS. We find that the simple and linear OE between RB and RS

established in Hansen and Sargent (2007) and Luo and Young (2010) no longer holds, we instead

have a complicated and nonlinear OE between RB and RS under RI.

We next investigate the asset pricing implications of RB and RI within the PIH setting.9 Fol-

lowing Hansen (1987) and Hansen, Sargent, and Tallarini (1999), we interpret the consumption-

saving decisions in terms of a social planning problem and these decisions are equilibrium alloca-

tions for a competitive equilibrium. We can then deduce asset prices as in the consumption-based

asset pricing literature by finding the shadow prices that clear security markets. Since these

asset prices include information about the agent’s intertemporal preferences, they measure the

risk and uncertainty aversion of the agent. Given the explicit solutions for consumption and

saving decisions, we can explicitly solve for the market prices of induced uncertainty under RB

and RI.10 We find that induced uncertainty due to RB and RI significantly increases the market

price of risk. The mechanism is straightforward to describe. Under RB, the market price of

uncertainty is related to the norm of the worst-case shock (that is, the size of the pessimistic

distortion to the underlying stochastic process for income); adding rational inattention increases

the size of these distortions and therefore amplifies the effect on asset prices. We find that our

model, under plausible calibrations of the fear of model misspecification based on detection error

probabilities (as in Hansen and Sargent 2007), produces stochastic discount factors that satisfy

the Hansen-Jagannathan bounds.

The remainder of the paper is organized as follows. Section 2 presents the robustness versions

of the RI permanent income model with filtering, and examines how the preference for robustness

affects individual consumption and saving decisions. Section 3 explores how these two infor-

mational frictions affect individual consumption and saving dynamics. Section 4 compares the

risk-sensitive and robust filtering problem under RI. Section 5 computes how induced uncertainty

due to RB and RI affects the market prices of risk. Section 6 concludes.

9See Epstein and Wang (1994), Chen and Epstein (2002), and Ju and Miao (2012) for ambiguity, risk aversion,

and asset returns.
10To explore how induced uncertainty due to RB and RI affects market prices of uncertainty, we follow the

procedure adopted in Epstein and Wang (1994) and Hansen, Sargent, and Tallarini (1999).
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2 Robust Control and Filtering under Rational Inattention

2.1 A Rational Inattention Version of the Standard Permanent Income Model

In this section we consider a rational inattention (RI) version of the standard permanent in-

come model. In the standard permanent income model (Hall 1978, Sargent 1978, Flavin 1981),

households solve the dynamic consumption-savings problem

v(s0) = max
{ct}

E0

[
∞∑

t=0

βtu(ct)

]

subject to

st+1 = Rst − ct + ζt+1, (1)

where u(ct) = −1
2 (c− ct)

2 is the period utility function, c > 0 is the bliss point, ct is consumption,

st = bt +
1

R

∞∑

j=0

R−jEt [yt+j ] (2)

is permanent income, i.e., the expected present value of lifetime resources, consisting of financial

wealth (bt) plus human wealth (i.e., the discounted expected present value of current and future

labor income: 1
R

∑∞
j=0R

−jEt [yt+j ]),

ζt+1 ≡
1

R

∞∑

j=t+1

(
1

R

)j−(t+1)

(Et+1 − Et) [yj ] , (3)

is the time (t+ 1) innovation to permanent income, bt is financial wealth (or cash-on-hand), yt

is a labor income process with Gaussian white noise innovations, β is the discount factor, and

R > 1 is the constant gross interest rate at which the consumer can borrow and lend freely.11

In this paper, we assume that income yt takes the following AR(1) process with the persistence

coefficient ρ ∈ [0, 1],

yt+1 = ρyt + xt + εt+1, (4)

where xt ≡ (g − ρ) gty0 is the growth component, g is the constant gross growth rate of income,

y0 is defined as the initial level of income, and εt+1 is iid with mean 0 and variance ω2.12 Given

this income specification, we have st ≡ bt+
1

R−ρyt+
1

(R−g)(R−ρ)xt and ζt+1 = εt+1/ (R− ρ), where

and ω2
ζ ≡ var (ζt+1) = ω2/ (R− ρ)2.13 Finally, financial wealth (b) follows the process

bt+1 = Rbt + yt − ct. (5)

11We only require that yt and R are such that permanent income is finite.
12Note that when g = 1, this specification reduces to yt+1 = ρyt + (1− ρ) y0 + εt+1, one of the most popular

income specifications in the consumption literature.
13For the rest of the paper we will restrict attention to points where ct < c, so that utility is increasing and

concave.
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This specification follows that in Hall (1978) and Flavin (1981) and implies that optimal con-

sumption is determined by permanent income:

ct =

(
R− 1

βR

)
st −

1

R− 1

(
1− 1

βR

)
c. (6)

We assume for the remainder of this section that βR = 1, since this setting is the only one

that implies zero drift in consumption under rational expectations. Under this assumption the

model leads to the well-known random walk result of Hall (1978):

∆ct+1 = (R− 1) ζt+1; (7)

the change in consumption depends neither on the past history of labor income nor on anticipated

changes in labor income. We also point out the well-known result that the standard PIH model

with quadratic utility implies the certainty equivalence property holds: uncertainty has no effect

on consumption, so that there is no precautionary saving.

To motivate what follows, we now remind readers why (7) is inadequate as an empirical

representation of consumption. There are many routes we could take here; we choose to follow

Campbell and Deaton (1989) and run a simple bivariate VAR of (demeaned) labor income growth

and the (demeaned) saving rate out of labor income, obtaining

[
∆ log (yt)− µy

st
yt

− µs

]
=

[
0.0357 0.02

−0.072 0.9947

][
∆ log (yt−1)− µy

st−1

yt−1
− µs

]
+

[
u1,t

u2,t

]
.

The data we use is quarterly NIPA data on total compensation of employees and gross saving

deflated using the PCE deflator (defined as labor income minus consumption of nondurables and

services), from 1947Q1-2014Q1. Campbell and Deaton (1989) show that the PIH implies the

autocorrelation matrix should take the form
[
δ 0

δ τ−1

]
(8)

where δ is a unrestricted coefficient and τ 6= 0 is the effective discount rate for future cash

flows (the growth-adjusted interest rate); this matrix embodies both a test of “excess sensitivity”

(that consumption responds to predictable changes in income) and a test of “excess smoothness”

(consumption growth does not vary enough with income growth).14 Our estimated matrix does

not satisfy the restrictions embodied in (8) – we can reject the equality of the elements in the

first column and our estimate of τ is economically nonsensical (including durables makes these

14In fact, Campbell and Deaton (1989) show that the two excesses are the same – if consumption responds

excessively to anticipated income changes it necessarily must respond insufficiently to unanticipated ones.
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rejections more pronounced). One method for attacking these rejections is to assume that the

information set of the agents differs systematically from that of the econometrician. It is common

to assume that agents have more information than the econometrician about their individual

situation; rational inattention implies that, for some variables, agents may actually have less

information.

To this end we follow Sims (2003, 2010) and incorporate rational inattention (RI) due to finite

information-processing capacity into the model. Under RI, consumers have only finite Shannon

channel capacity to observe the state of the world. Specifically, we use the concept of entropy

from information theory to characterize the uncertainty about a random variable; the reduction

in entropy is thus a natural measure of information flow.15 With finite capacity κ ∈ (0,∞) ,

a variable s following a continuous distribution cannot be observed without error and thus the

information set at time t + 1, It+1, is generated by the entire history of noisy signals
{
s∗j

}t+1

j=0
.

Following the literature, we assume the noisy signal takes the additive form s∗t+1 = st+1 + ξt+1,

where ξt+1 is the endogenous noise caused by finite capacity. We further assume that ξt+1 is an

iid idiosyncratic shock and is independent of the fundamental shock. Agents with finite capacity

will choose a new signal s∗t+1 ∈ It+1 =
{
s∗1, s

∗
2, · · ·, s∗t+1

}
that reduces their uncertainty about the

state variable st+1 as much as possible. Formally, this idea can be described by the information

constraint

H (st+1|It)−H (st+1|It+1)≤ κ, (9)

where κ is the consumer’s information channel capacity, H (st+1| It) denotes the entropy of the

state prior to observing the new signal at t+ 1, and H (st+1| It+1) is the entropy after observing

the new signal. κ imposes an upper bound on the amount of information – that is, the change in

the entropy – that can be transmitted in any given period. Finally, following the literature, we

suppose that the prior distribution of st+1 is Gaussian.

Under the linear-quadratic-Gaussian (LQG) setting, as has been shown in Sims (2003, 2010),

the true state under RI also follows a normal distribution st|It ∼ N (E [st|It] ,Σt), where Σt =

Et

[
(st − ŝt)

2
]
.16 In addition, given that the noisy signal takes the additive form s∗t+1 = st+1+ξt+1

and the noise ξt+1 is an iid Gaussian variable, the posterior variance of st+1 is also Gaussian within

15Formally, entropy is defined as the expectation of the negative of the (natural) log of the density function,

−E [ln (f (s))]. For example, the entropy of a discrete distribution with equal weight on two points is simply

E [ln2 (f (s))] = −0.5 ln (0.5)− 0.5 ln (0.5) = 0.69, and the unit of information contained in this distribution is 0.69

“nats”. In this case, an agent can remove all uncertainty about s if the capacity devoted to monitoring s is κ = 0.69

nats.
16Shafieepoorfard and Raginsky (2013) derive the result formally, as opposed to the heuristic approach from Sims

(2003).
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the LQG structure.17 The information-processing constraint, (9), can then be reduced to

ln
(
R2Σt + ω2

ζ

)
− ln (Σt+1) ≤ 2κ; (10)

Since this constraint is always binding, we can compute the value of the steady state conditional

variance Σ: Σ = ω2
ζ/
(
exp (2κ)−R2

)
. Given this Σ, we can use the usual formula for updating

the conditional variance of a Gaussian distribution Σ to recover the variance of the endogenous

noise (Λ):

Λ =
(
Σ−1 −Ψ−1

)−1
, (11)

where Ψ = R2Σ+ω2
ζ is the posterior variance of the state. Finally, ŝt is governed by the following

Kalman filtering equation:

ŝt+1 = (1− θ) (Rŝt − ct) + θ (st+1 + ξt+1) , (12)

given s0 ∼ N (ŝ0,Σ), where θ = ΣΛ−1 = 1− exp (−2κ) is the Kalman gain.18

Note that after substituting (1) into (12), we have an alternative expression of the regular

Kalman filter:

ŝt+1 = Rŝt − ct + ηt+1, (13)

where

ηt+1 = θR (st − ŝt) + θ (ζt+1 + ξt+1) (14)

is the innovation to the mean of the distribution of perceived permanent income,

st − ŝt =
(1− θ) ζt

1− (1− θ)R · L − θξt
1− (1− θ)R · L, (15)

and Et [ηt+1] = 0 because the expectation is conditional on the perceived signals and inattentive

agents cannot perceive the lagged shocks perfectly.19 The variance of the innovation to the

perceived state is:

ω2
η = var (ηt+1) =

θ

1− (1− θ)R2
ω2
ζ , (16)

17This result is often assumed as a matter of convenience in signal extraction models with exogenous noises, and

RI can rationalize this assumption.
18As argued in Sims (2010), instead of using fixed finite channel capacity to model limited information-processing

ability, one could assume that the marginal cost of information processing (i.e., the shadow price of information-

processing ability) is constant. That is, the Lagrange multiplier on (10) is constant. Luo and Young (2014) show

that in the univariate case these two RI modeling strategies are observationally equivalent in the sense that they

lead to the same conditional variance. Under the observational equivalence, we can construct a mapping between

fixed information-processing cost and fixed channel capacity.
19In order that the variance of η be finite we need κ > ln (R) ≈ R − 1. For short time periods this requirement

is obviously not very restrictive. Since R > 1, some minimum level of capacity is needed to control the conditional

mean of permanent income.
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which means that ω2
η reflects two sources of uncertainty facing the consumer: (i) fundamental

uncertainty, ω2
ζ and (ii) induced uncertainty, i.e., state uncertainty due to RI,

[
θ

1−(1−θ)R2 − 1
]
ω2
ζ .

Therefore, as κ decreases, the relative importance of induced uncertainty to fundamental uncer-

tainty increases.

In the next section, we will discuss alternative ways to robustify this RI-PIH model and their

different implications for consumption, precautionary savings, and the welfare costs of uncertainty.

The RB-RI model proposed here encompasses the hidden state (HS) model discussed in Hansen,

Sargent, and Wang (2002, henceforth, HSW) and Hansen and Sargent (2005); the main difference

is that agents in the RB-RI model cannot observe the entire state vector perfectly, whereas agents

in the RB-hidden state model can observe some part of the state vector (in particular, the part

they control).

2.2 Concerns about the Fundamental Shock and the Noise Shock

As shown in Hansen and Sargent (2007), we can robustify the permanent income model by

assuming agents with finite capacity distrust their model of the data-generating process (i.e.,

their income process), but still use an ordinary Kalman filter to estimate the true state. Note

that without the concern for model misspecification, the consumer has no doubts about the

probability model used to form the conditional expectation of permanent income (s). It is clear

that the Kalman filter under RI, (13), is not only affected by the fundamental shock (ζt+1), but

also affected by the endogenous noise (ξt+1) induced by finite capacity; these noise shocks could

be another source of the demand for robustness. We therefore need to consider this demand for

robustness in the RB-RI model. By adding the additional concern for robustness developed here,

we are able to strengthen the effects of robustness on decisions.20 Specifically, we assume that

the agent thinks that (13) is the approximating model.

A simple version of robust optimal control considers the question of how to make decisions

when the agent does not know the probability model that generates the data. Specifically, an agent

with a preference for robustness considers a range of models surrounding the given approximating

model, (13):

ŝt+1 = Rŝt − ct + ωηwt + ηt+1. (17)

where wt distorts the mean of the innovation, and makes decisions that maximize lifetime expected

utility given this worst possible model (i.e., the distorted model).21 To make that model (13) is a

20Luo, Nie, and Young (2012) use this approach to study the joint dynamics of consumption, income, and the

current account in emerging and developed countries.
21Formally, this setup is a game between the decision-maker and a malevolent nature that chooses the distortion

process wt.
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good approximation when (17) generates the data, we constrain the approximation errors by an

upper bound ψ0:

E0

[
∞∑

t=0

βt+1w2
t

]
≤ ψ0, (18)

where E0 [·] denotes conditional expectations evaluated with model, and the left side of this

inequality is a statistical measure of the discrepancy between the distorted and approximating

models. Note that the standard full-information RE case corresponds to ψ0 = 0. In the general

case in which ψ0 > 0, the evil agent is given an intertemporal entropy budget ψ0 > 0 which

defines the set of models that the agent is considering. Following Hansen and Sargent (2007), we

compute robust decision rules by solving the following two-player zero-sum game: a minimizing

decision maker chooses the optimal consumption process {ct} and a maximizing evil agent chooses

the model distortion process {wt}.
Following Hansen and Sargent (2007a), a simple robustness version of the PIH model proposed

above can be written as

v (ŝt) = max
ct

min
wt

{
−1

2
(c− ct)

2 + β

(
1

2
ϑw2

t + Et [v (ŝt+1)]

)}
(19)

subject to the distorted transition equation (i.e., the worst-case model), (17), where ϑ > 0 is the

Lagrange multiplier on the constraint specified in (18) and controls how bad the error can be.

(19) is a standard dynamic programming problem and can be easily solved using the standard

procedure.22 The following proposition summarizes the solution to the RB-RI model.

Proposition 1 Given ϑ and κ, the consumption function under RB and RI is

ct =
R− 1

1−Π
ŝt −

Πc

1−Π
(20)

with Π < 1, the mean of the worst-case shock is

ωηwt =
(R− 1)Π

1−Π
ŝt −

Πc̄

1−Π
, (21)

and ŝt is governed by

ŝt+1 = ρsŝt +
Πc

1−Π
+ ηt+1 (22)

under the approximation model, where ρs =
1−RΠ
1−Π ∈ (0, 1),

Π =
Rω2

η

ϑ
∈ (0, 1) , (23)

ηt+1 and ω2
η are defined in (14) and (14), and θ = 1− 1/ exp(2κ).

22There is a one-to-one correspondence between ψ0 in (18) and ϑ in (19).

9



Proof. See Appendix 7.1. Π < 1 can be obtained because the second-order condition for the

optimization problem is
R (R− 1)

2
(
1−Rω2

η/ϑ
) > 0, i.e., Π < 1.

It is worth noting that (20) can also be obtained using multiplier preferences to represent a

fear of model misspecification:

v̂ (ŝt) = max
ct

{
−1

2
(ct − c)2 + β min

mt+1

Et [mt+1v̂ (ŝt+1) + ϑmt+1 ln (mt+1)]

}
, (24)

where mt+1 is the likelihood ratio, Et [mt+1 ln (mt+1)] is defined as the relative entropy of the

distribution of the distorted model with respect to that of the approximating model, and ϑ > 0

is the shadow price of capacity that can reduce the distance between the two distributions, i.e.,

the Lagrange multiplier on the constraint:

Et [mt+1 ln (mt+1)] ≤ η,

where η ≥ 0 defines an entropy ball of the distribution of the distorted model with respect to

that of the approximating model. Following the same procedure adopted in Hansen and Sargent

(2007), we can also obtain the corresponding value function:

v̂ (ŝt) = Ω

(
ŝt −

c

R− 1

)2

+Ω0, (25)

where Ω = −R(R−1)
2(1−Π) and Ω0 = ϑ

2(R−1) ln
(
1− (R−1)Π

1−Π

)
. Although the two-player minmax game

and multiplier preferences lead to the same consumption-saving decisions, they have different

asset pricing implications. (See Section 5 for a detailed discussion.)

Equations (20) and (23) determine the effects of model uncertainty due to RB and state un-

certainty due to RI on the marginal propensity to consume out of perceived permanent income

(MPCη ≡ R−1
1−Π) and the constant precautionary saving premium (PS ≡ Πc

1−Π). These two ex-

pressions show that Π governs how RB and RI interact and then affect the consumption function

and precautionary savings. Since Π is increasing with the degrees of both RB (smaller ϑ) and

RI (smaller κ and θ), it is straightforward to show that either RB or RI leads to more constant

precautionary savings and higher marginal propensity to consume, holding other factors constant

and given that Π < 1:
∂ (MPCη)

∂ϑ
< 0 and

∂ (PS)

∂ϑ
< 0.

We now present the intuition about the effects of robustness (ϑ) on precautionary savings. Since

agents with low capacity are very concerned about the confluence of low permanent income and
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high consumption (meaning they believe their permanent income is high so they consume a lot

and then their new signal indicates that in fact their permanent income was low), they take

actions which reduce the probability of this bad event – they save more. The strength of the

precautionary effect is positively related to the amount of uncertainty regarding the true level of

permanent income, and this uncertainty increases as θ gets smaller.

However, RB and RI affect consumption and precautionary savings through distinct channels.

RI affects Π by increasing the variance of the innovation to the perceived state, ω2
η, whereas RB af-

fects Π via changing the structure of the response of consumption to income shocks. Furthermore,

if we consider the marginal propensity to consume out of true permanent income,

MPCζ ≡
R− 1

1−Rθ/ [ϑ (1− (1− θ)R2)]ω2
ζ

θ, (26)

we can immediately see that

∂ (MPCζ)

∂ϑ
< 0,

∂ (MPCζ)

∂θ
> 0.

That is, both an increase in the demand for robustness and an increase in inattention increases

the marginal propensity to consume out of true (but unobserved) permanent income.

To examine the relative importance of the two informational frictions in determining the

consumption function and precautionary savings, we compare the effects from proportionate shifts

in ϑ governing RB and κ governing RI. Specifically, the marginal effects on Π from an increase in

ϑ and κ are given by

∂Π

∂κ
=
R
(
1−R2

)
exp (−2κ)

ϑ [1− exp (−2κ)R2]2
ω2
ζ ,
∂Π

∂ϑ
= −

Rω2
η

ϑ2
,

respectively. Therefore, the marginal rate of transformation between proportionate changes in ϑ

and changes in κ can be written as

MRT = − ∂Π/∂κ

(∂Π/∂ϑ)ϑ
=

2
(
R2 − 1

)
exp (−2κ)

(1− exp (−2κ)) (1− exp (−2κ)R2)
> 0. (27)

This expression gives the proportionate reduction in ϑ (i.e., a stronger preference for RB) that

compensates, at the margin, for a decrease in κ (i.e., more inattentive) — in the sense of preserv-

ing the same effect on the consumption function for a given ŝt. Equation (27) shows that this

compensating change depends on the interest rate (R) and the degree of inattention (κ). Figure 1

clearly shows that MRT is decreasing with κ for any given R. Since ∂ (MRT) /∂κ < 0, consumers

with lower capacity will ask for higher compensation in an proportionate increase in model uncer-

tainty facing them for an increase in capacity. For example, when R = 1.03, MRT = 0.256 when

11



κ = 0.5 bits, while MRT = 0.054 when κ = 1 bit. In other words, to maintain the same effect

on the consumption function, a decrease in κ by 50 percent (from 1 bit to 0.5 bits) matches up

approximately with a proportional decline in ϑ of 2.7 percent. We will show later that there is

a model-independent procedure for estimating ϑ; the tradeoff here could in principle be used to

discipline the choice for κ.23

It is also instructive to examine exactly what agents “fear” – that is, what are the dynamics

of permanent income under the worst-case model? Substituting (20) and (21) into (17) yields the

law of motion for ŝt under the worst-case model:

ŝt+1 = ŝt + ηt+1 = (1− θR) ŝt + θRst + θ (ζt+1 + ξt+1)

as compared to the actual process

ŝt+1 =

(
1−R2ω2

η/ϑ

1−Rω2
η/ϑ

− θR

)
ŝt +

(
Rω2

η/ϑ
)
c

1−Rω2
η/ϑ

+ θRst + θ (ζt+1 + ξt+1) . (28)

The key difference between the two processes is the autocorrelation parameter; since
1−R2ω2

η/ϑ

1−Rω2
η/ϑ

< 1,

the worst case model is more persistent than the true process. As noted in Kasa (2006), the most

destructive distortions are low-frequency ones, so naturally the agents in the model design their

decision rules to be robust against precisely those kinds of processes. ϑ does not appear in (??),

as it only determines the size of the distortion process {wt} needed to achieve the worst-case

model.24

2.3 Robust Kalman Filter Gain

Another source of robustness could arise from the Kalman filter gain. In Section 2.2, we assumed

that the agent distrusts the innovation to the perceived state but trusts the regular Kalman filter

gain. Following Hansen and Sargent (2005) and Hansen and Sargent (Chapter 17, 2007), in this

section we consider a situation in which the agent pursues a robust Kalman gain and faces the

commitment on the part of the minimizing agent to previous distortions. Specifically, assume

that at t the agent observes the noisy signal

s∗t = st + ξt, (29)

23κ (or θ) are difficult to estimate outside the model; the literature on processing information provides estimates

of the total ability of humans, but little guidance on how much of that ability would be dedicated to monitoring

economic data. Obviously it would not be feasible to model all the competing demands for attention.
24If θ = 1 (so that ŝt = st) then the worst-case model is a random walk.
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where st is the true state and ξt is the iid endogenous noise. The variance of the noise term,

Λ = var (ξt), is determined by:

Λ =

(
ω2
ζ +R2Σ

)
Σ

ω2
ζ + (R2 − 1)Σ

,

and Σ = ω2
ζ/
(
exp (2κ)−R2

)
is the steady state conditional variance. Given the budget constraint,

st+1 = Rst − ct + ζt+1, (30)

we consider the following time-invariant robust Kalman filter equation,

ŝt+1 = (1− θ) (Rŝt − ct) + θ (st+1 + ξt+1) , (31)

where ŝt+1 is the estimate of the state using the history of the noisy signals,
{
s∗j

}t+1

j=0
. We want

θ to be robust to unstructured misspecifications of Equations (29) and (30). To obtain a robust

Kalman filter gain, the agent considers the following distorted model:

st+1 = Rst − ct + ζt+1 + ων1,t+1, (32)

s∗t+1 = st+1 + ξt+1 + ̺ν2,t+1, (33)

where ω = ωζ , ̺ =
√
Λ, and ν1,t+1 and ν2,t+1 are distortions to the conditional means of the two

shocks, ζt+1 and ξt+1, respectively.

Combining (30), (31), (32) with (33) gives the following dynamic equation for the estimation

error:

et+1 = (1− θ)Ret + (1− θ) ζt+1 − θξt+1 + (1− θ)ων1,t+1 − θ̺ν2,t+1, (34)

where et = st − ŝt.
25 We can then solve for the robust Kalman filter gain corresponding to this

problem by solving the following deterministic optimal linear regulator problem:

eT0 Pe0 = max
{νt+1}

∞∑

t=0

(
eTt et − ϑνTt+1νt+1

)
, (35)

subject to

et+1 = (1− θ)Ret +Dνt+1, (36)

where D =
[
(1− θ)ω −θ̺

]
and νt+1 =

[
ν1,t+1 ν2,t+1

]T
. We can compute the worst-case

shock by solving the corresponding Bellman equation and obtain

ν∗t+1 = Qet, (37)

25Note that control variable, c, does not affect the estimation error equation.
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where

Q =
(
ϑI −DTPD

)−1
DTP (1− θ)R. (38)

Here I is the identity matrix, P is the value function matrix, and Q depends on robustness (ϑ)

and channel capacity (κ).

For arbitrary Kalman filter gain θ and (37), the error in reconstructing the state s can be

written as

et+1 = {(1− θ)R+ [(1− θ)ω − θ̺]Q} et + (1− θ) ζt+1 − θξt+1. (39)

Taking unconditional mean on both sides of (39) gives

Σt+1 = {(1− θ)R+ [(1− θ)ω − θ̺]Q}Σt + (1− θ)2 ω2
ζ + θ2ω2

ξ , (40)

where Σt+1 = E
[
e2t+1

]
. From (40), it follows directly that in the steady state

Σ (θ;Q) =
(1− θ)2 ω2

ζ + θ2ω2
ξ

1− χ2
,

where χ = (1− θ)R+[(1− θ)ω − θ̺]Q, and the robust Kalman filter gain θ (ϑ, κ) minimizes the

variance of et, Σ (θ;Q):

θ (ϑ, κ) = argmin (Σ (θ;Q (ϑ, κ))) . (41)

Figure 2 illustrates how robustness (measured by ϑ) and inattention (measured by κ) affect the

robust Kalman gain when R = 1.02 and ωζ = 1.26 It clearly shows that holding the degree of

attention (i.e., channel capacity κ) fixed, increasing robustness (reducing ϑ) increases the Kalman

gain (θ). In addition, for given robustness (ϑ), the Kalman gain is increasing with capacity. For

example, when log (ϑ) = 3, the robust Kalman gain will increase from 60.17 percent to 77.35

percent when capacity κ increases from 0.6 bits to 1 bit; when κ = 0.6 bits, the robust Kalman

gain will increase from 58.31 percent to 60.17 percent if ϑ falls from log (ϑ) = 4 to 3.27

After obtaining the robust Kalman gain θ (ϑ, κ), we can solve the Bellman equation proposed

in Section 2.2 using the Kalman filtering equation with robust θ. The following proposition

summarizes the solution to this problem:

Proposition 2 Given ϑ and κ, the consumption function is

ct =
R− 1

1−Π
ŝt −

Πc

1−Π
, (42)

26We use the program rfilter.m provided in Hansen and Sargent (2007) to compute the robust Kalman filter

gain θ (ϑ, κ).
27This result is consistent with that obtained in a continuous-time filtering problem discussed in Kasa (2006).
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where Π =
Rω2

η

ϑ ∈ (0, 1),

ω2
η = var (ηt+1) =

θ (ϑ, κ)

1− (1− θ (ϑ, κ))R2
ω2
ζ , (43)

and ŝt is governed by

ŝt+1 = ρsŝt + ηt+1, (44)

where ρs =
1−RΠ
1−Π ∈ (0, 1).

Proof. The proof is the similar to that provided in Appendix 7.1. Here we just need to replace

θ (κ) = 1− exp (−2κ) with θ (ϑ, κ).

Note that here θ is a function of both ϑ (concerns about Kalman gain) and κ (channel capacity),

rather than simply 1 − 1/ exp (2κ) as obtained in Section 2.2. In this case the agent is not only

concerned about disturbances to the perceived permanent income, but also concerned about the

Kalman gain. It is clear from (42) and (43) that the preference for robustness has opposing effects

on both the marginal propensity to consume out of permanent income, i.e., the responsiveness

of ct to ŝt

(
MPCη = R−1

1−Π

)
and precautionary savings, i.e., the intercept of the consumption

profile
(
PS = Πc

1−Π

)
.28 Specifically, if we temporarily shut down the concern about disturbances

to perceived permanent income, we can see from (42) that the smaller the value of ϑ the lower

the MPC and the smaller the precautionary saving increment

∂ (MPCη)

∂ϑ
> 0 and

∂ (PS)

∂ϑ
> 0

because
∂ω2

η

∂ϑ > 0,
∂ω2

η

∂θ < 0,
∂ω2

η

∂κ < 0, and ∂θ
∂ϑ < 0. From (42), we can see that the precautionary

savings increment in the RB-RI model is determined by the interaction of three factors: labor

income uncertainty, preferences for robustness (RB), and finite information-processing capacity

(RI). Figure 2 also illustrates how robustness (ϑ) and channel capacity (κ) affect ω2
η. We now

provide some intuition about the effects of robustness (ϑ) on precautionary savings in this case.

An increase in robustness (a reduction in ϑ) will increase the Kalman gain θ, which leads to

lower ω2
η and then low precautionary savings. We can see that under certain conditions a greater

reaction to the shock can either be interpreted as an increased concern for robustness in the

presence of model misspecification, or an increase in information-processing ability when agents

only have finite channel capacity.

We now discuss the concern about disturbances to perceived permanent income. Figure 3

illustrates Π as functions of ϑ for different values of κ in this case, and shows that increasing the

28Note that given the consumption function Π has the same effect on the marginal propensity to consume and

precautionary savings.
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robustness preference for the shock to the perceived state (decreasing ϑ) increases Π and thus

the effects of robustness on consumption and precautionary savings. In addition, we can also see

from the figure that the effect of RB (ϑ) on Π dominates the effect of RI (κ). The main reason

for this result is that RB has a strong direct effect on Π via the ratio Rω2
η/ϑ.

3 Consumption and Wealth Dynamics

3.1 Sensitivity and Smoothness of Consumption Process

We will now discuss the effect of RI-RB on the dynamics of consumption, in particular the excess

smoothness and sensitivity puzzles noted earlier. Since the deterministic growth component

does not affect the stochastic properties of the model, for simplicity, here we assume that there

is no growth component (g = 1). Combining (42) with (44) yields an expression for individual

consumption in the RI-RB economy:

ct =
1−RΠ

1−Π
ct−1 +

(R− 1)Π

1−Π
c+

R− 1

1−Π

[
θζt

1− (1− θ)R · L + θ

(
ξt −

θRξt−1

1− (1− θ)R · L

)]
, (45)

where L is the lag operator and we assume that (1− θ)R < 1. This expression implies that

consumption growth is a weighted average of all past permanent income and noise shocks. In

addition, it is also clear from (45) that the propagation mechanism of the model is determined

by the robust Kalman filter gain, θ (ϑ, κ). Figure 4 illustrates that consumption in the RB-RI

model reacts gradually to income shocks, with monotone adjustments to the corresponding RB

asymptote. Note that when log (ϑ) = 2, the robust Kalman gain is θ = 0.6688. This case is

illustrated by the dash-dotted line in Figure 4. Similarly, the dotted line corresponds to the case

in which log (ϑ) = 5 (θ = 0.5824). With a stronger preference for robustness, the precautionary

savings increment is larger and thus an income shock that is initially undetected would have larger

impacts on consumption during the adjustment process.29

Using (45), we can obtain the expression for the relative volatility of consumption growth

relative to income growth.30 The following proposition provides the expression of this relative

volatility.

29Estimating the process (45) on quarterly real nondurable and service consumption, logged and linearly detrended

with R = 1.01, produces a nonstationary process (the autoregressive roots are 1.3038 and −0.3027), so we do not

pursue this direction further. We note in passing that the estimate for θ is close to 0 and the estimate for Π is close

to 1. Lower values for R move these values closer to 0 and 1.
30Here we follow the consumption literature and use sd(∆ct)

sd(∆yt)
instead of sd(ct)

sd(yt)
to measure the relative volatility of

the consumption process. Note when ρ = 1 in the income process or ϑ = ∞ (no RB), sd (yt) or sd (ct) are not well

defined.
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Proposition 3 The relative volatility of consumption growth relative to income growth is

µ ≡ sd (∆ct)

sd (∆yt)
=

θ

1−Π

√√√√
∞∑

j=0

Υ2
j +

ρθ
θR (1− ρθR)

∞∑

j=0

(Υj −RΥj−1)
2, (46)

where we use the fact that ω2
ξ = var (ξt) =

1−θ
θ(1−(1−θ)R2)

ω2
ζ , ρs = 1−RΠ

1−Π ∈ (0, 1), ρθ = (1− θ)R ∈
(0, 1), and Υj =

∑j
k=0

(
ρj−k
s ρkθ

)
−
∑j−1

k=0

(
ρj−1−k
s ρkθ

)
, for j ≥ 1, and Υ0 = 1.

Proof. See Online Appendix.

The upper panel of Figure 5 illustrates how RB (ϑ) affects the relative volatility of consumption

growth to income growth for different values of κ. It clearly shows that for any given value of ϑ,

the relative volatility µ is decreasing with κ. The intuition is that less capacity leads to higher

total induced uncertainty
(
ω2
η

)
for given values of RB. Furthermore, when κ is relatively low

(e.g., 0.3 bits), the relative volatility µ is increasing with ϑ. The reason is that reducing ϑ has

opposing effects on µ (or Π) for the two types of model misspecification: µ (Π) is decreasing

(increasing) with ϑ for Type I misspecification and is increasing (decreasing) with ϑ for Type II

misspecification. Note that here the effect due to Type I misspecification is direct and the effect

due to the impact of ϑ on the robust Kalman gain θ and ω2
η is indirect. When κ is relatively low,

the indirect channel dominates the direct channel because low κ amplifies the effect of ϑ on θ and

thus µ. In contrast, when κ is relatively high (e.g., 0.5 bits), the relative volatility µ is decreasing

with ϑ. The reason for this result is that in this case the direct effect dominates the indirect

effect. To explore the intuition behind this result, we consider the perfect-state-observation case

in which κ = ∞. In this case, the relative volatility of consumption growth to income growth

reduces to

µ =
1

1−Π

√
2

1 + ρs
, (47)

which clearly shows that ϑ increases the relative volatility via two channels. First, a higher ϑ

increases the marginal propensity to consume out of permanent income
(
R−1
1−Π

)
, and second, it

increases consumption volatility by reducing the persistence of permanent income measured by

ρs:
∂ρs
∂Π < 0.

In the presence of robustness, rational inattention measured by κ affects consumption volatility

via two channels: (i) the gradual and smooth responses to income shocks (i.e., the 1− ρθ ·L term

in (45) and (ii) the RI-induced noises (ξt). Specifically, a reduction in capacity κ decreases

the Kalman gain θ, which strengthens the smooth responses to income shock and increases the

volatility of the RI-induced noise. Luo (2008) shows that the noise effect dominates the smooth

response effect, and the volatility of consumption growth decreases with κ. The lower panel of

Figure 5 illustrates how ϑ affects the relative volatility of consumption growth to income growth for
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different values of κ and there is no noise term. In this case, ∆ct =
(1−R)Π
1−Π (ct−1 − c)+ R−1

1−Π
θζt

1−ρθ·L
.

The reason is that reducing ϑ increases the robust Kalman gain θ, which leads to a more volatile

consumption process because the smooth response effect completely dominates the noise effect.

When ρ 6= 1, we can also compute the relative volatility of consumption to income:

µ0 ≡
sd (ct)

sd (yt)
=
θ (R− 1)

√
1− ρ2

(1−Π) (R− ρ)

√√√√ (1 + ρsρθ)

(1− ρsρθ)
[
(1 + ρsρθ)

2 − (ρs + ρθ)
2
]
[
1 +

ρθ (1 +R2)

θR (1− ρθR)

]
,

(48)

which implies that ∂µ0

∂κ < 0 and ∂µ0

∂ϑ > 0. That is, the relative volatility of consumption to income is

increasing with the degree of inattention holding ϑ fixed because RI introduces endogenous noises.

This result is the same as that for the relative volatility of consumption growth to income growth.

In contrast, the relative volatility of consumption to income is increasing with the degree of RB

holding κ fixed. The main reason is that robustness reduces the autocorrelation of consumption;

for example, under FI-RE consumption is a random walk but RB makes it a stationary AR(1).

It is worth noting that from the expressions of µ or µ0, we can obtain an interesting testable

implication of our RB-RI model. Specifically, if we allow capacity to elastic as in Sims (2010),

κ and θ are increasing functions of the fundamental uncertainty
(
ω2
ζ

)
.31 In this case, for given

ϑ, consumption will be smoother when income becomes more volatile because greater income

uncertainty makes consumers devote more attention to monitoring the state. On the other hand,

if we use the detection error probabilities (DEP) as the deep RB parameter as in Hansen and

Sargent (2007), ϑ will adjust in response to changes in income uncertainty to maintain the same

level of DEP.32 In this case, for given values of κ, greater income uncertainty leads to less values of

ϑ to maintain the same value of DEP. (Here we follow Hansen and Sargent 2007 and assume that

DEP is stable over time and across regions.) These theoretical results might provide a potential

explanation for the empirical evidence documented in Blundell, Pistaferri, and Preston (2008)

that income and consumption inequality diverged over the sampling period they study.33

3.2 Saving Process

Combining the original budget constraint, bt+1 = Rbt + yt − ct, with the consumption function

(42), we can obtain the following expression for individual saving dt:

dt ≡ bt+1 − bt =
−Π(R− 1)

1−Π

(
bt − b

)
+

(
1− R− 1

(1−Π) (R− ρ)

)
(yt − y) + ςt+1, (49)

31See Luo and Young (2014) for a proof.
32See Section 5 for a detailed discussion on the DEP calibration procedure.
33They create a new panel series of consumption that combines information from PSID and CEX, focusing on

the period when some of the largest changes in income inequality occurred.
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where the evolution of individual financial wealth (bt) follows

bt+1 = ρsbt +
Π

1−Π
(c− y) +

(
1− R− 1

(1−Π) (R− ρ)

)
(yt − y) + ςt+1, (50)

where ςt+1 =
R−1
1−Π (st − ŝt) is determined by the estimation error, st− ŝt = (1−θ)ζt

1−(1−θ)R·L− θξt
1−(1−θ)R·L

and b = c−y
R−1 is the steady state value of bt. From (49), we have the following proposition for

unconditional mean of individual saving:

Proposition 4 E [dt] = 0. That is, induced uncertainty due to the interaction of RB and RI

does not affect the amount of individual saving on average.

Proof. The proof is straightforward.

Furthermore, using (49), we can compute the relative volatility of individual savings to income.

The following proposition provides the expression of this ratio.

Proposition 5 The relative volatility of individual savings is

µd ≡ sd (∆b)

sd (∆y)
=

√
(1 + ρ) (R− ρ)2

2

√√√√√
1−ρ
1+ρ + Γ2

1−ρ2s
+
(
R−1
1−Π

)2
1−θ

1−R2(1−θ)

+2(1−ρ)Γ
1−ρρs

+
(
R−1
1−Π

)
2(1−ρ)(1−θ)

1−ρρθ
+
(
R−1
1−Π

)
2Γ(1−θ)
1−ρsρθ

, (51)

where Γ = − (R−1)Π
1−Π < 0, ρs =

1−RΠ
1−Π , and Π = θ(ϑ,κ)

1−(1−θ(ϑ,κ))R2Rω
2
ζ/ϑ.

Proof. See Online Appendix.

The complexity of this expression prevents us from obtaining clear results about how RI and

RB affect the variance of individual savings. Figure 6 illustrates the effects of RB (ϑ) on the

relative volatility for different values of κ, when ω2
ζ = 1 and ρ = 0.9. We can see from the figure

that µd is increasing with channel capacity (κ) and is decreasing with robustness (ϑ). The main

reason for this result is that consumers are more information-constrained or are less concerned

about model specification, and saving is treated as a residual in the consumption-saving problem

with a given income process.34 If we now consider an aggregate economy with a continuum of ex

ante identical inattentive consumers with the same preference for robustness and each of them

has the consumption function (42), then the total saving demand in the economy is equal to zero.

The intuition is simple. The saving function can be expressed as a combination of different types

of income and noise shocks: ς, ε or ζ, and ξ, and all of these shocks are idiosyncratic. These

idiosyncratic shocks cancel out after aggregating across consumers and therefore have no effect

on aggregate savings.

34Note that from (48), we have ∂µ0

∂κ
< 0 and ∂µ0

∂ϑ
> 0.
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4 Comparison with Risk-sensitive Control and Filtering

Risk-sensitivity (RS) was first introduced into the LQ-Gaussian framework by Jacobson (1973)

and extended by Whittle (1990). Exploiting the recursive utility framework of Epstein and Zin

(1989), Hansen and Sargent (1995) introduce discounting into the RS specification and show that

the resulting decision rules are time-invariant. In the RS model agents effectively compute expec-

tations through a distorted lens, increasing their effective risk aversion by overweighting negative

outcomes. The resulting decision rules depend explicitly on the variance of the shocks, produc-

ing precautionary savings, but the value functions are still quadratic functions of the states.35

Hansen, Sargent, and Tallarini (1999, henceforth, HST) and Hansen and Sargent (2007) interpret

RS preferences in terms of a concern about model uncertainty (robustness or RB) and argue that

RS introduces precautionary savings because RS consumers want to protect themselves against

model specification errors. In the corresponding risk-sensitive filtering LQ problem, the problem

is that when the state cannot be observed perfectly, is the classical Kalman filter that minimizes

the expected loss function still optimal? In our LQ-PIH model setting, we can easily see that the

regular Kalman filter is still optimal given the quadratic forms of the utility function and the value

function.36 In this section we will explore how the RS filtering affects consumption dynamics and

precautionary savings and show that the OE between RB and RS is no longer linear, but takes

a more complicated non-linear form. The RI version of risk-sensitive control based on recursive

preferences with an exponential certainty equivalence function can be formulated as

v̂ (ŝt) = max
ct

{
−1

2
(ct − c)2 + βRt [v̂ (ŝt+1)]

}
(52)

subject to the Kalman filter equation (13).37 The distorted expectation operator is now given by

Rt [v̂ (ŝt+1)] = − 1

α
logEt [exp (−αv̂ (ŝt+1))] ,

35Formally, one can view risk-sensitive agents as ones who have non-state-separable preferences, as in Epstein

and Zin (1989), but with a value for the intertemporal elasticity of substitution equal to one.
36As shown in Moore, Elliott, and Dey (1997), even if the agent has risk-sensitive preferences when filtering,

min lnEt

{
exp

[
−ϑ

(
st − ŝ

RS
t

)2
]}

,

the risk-sensitive estimate ŝRS
t is identical to the minimum variance estimate ŝ obtained from solving

minEt

[
(st − ŝt)

2]
.

37Given the quadratic form of the value function, introducing risk-sensitivity does not change the optimality of

the ex post Gaussianity of the true state and the induced noise; see Luo and Young (2010) for more discussion.
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where s0| I0 ∼ N
(
ŝ0, σ

2
)
, ŝt = Et [st] is the perceived state variable, θ is the optimal weight

on the new observation of the state, and ξt+1 is the endogenous noise. The optimal choice of

the weight θ is given by θ (κ) = 1 − 1/ exp(2κ) ∈ [0, 1]. It is worth noting that given that the

value function in the RS model is quadratic, the regular Kalman filter is still optimal because the

objective function in the filtering problem is the square of the estimation error.

Following the same procedure used in Hansen and Sargent (1995) and Luo and Young (2010),

we can solve this risk-sensitive control problem explicitly. The following proposition summarizes

the solution to the RI-RS model when βR = 1:

Proposition 6 Given finite channel capacity κ and the degree of risk-sensitivity α, the consump-

tion function of a risk-sensitive consumer under RI is

ct =
R− 1

1−Π
ŝt −

Πc

1−Π
, (53)

where

Π = Rαω2
η ∈ (0, 1) , (54)

ω2
η is defined in (16), and θ (κ) = 1− 1/ exp(2κ).

Proof. See Online Appendix.

Comparing (20) obtained from the model with only concerns about the innovation to the

perceived state (i.e., without robust Kalman filtering) in Section 2.2 and (53), it is straightforward

to show that RB and RS under RI are indistinguishable using only consumption-savings decisions

if

α =
1

ϑ
. (55)

Note that (55) is exactly the same as the observational equivalence condition obtained in the

full-information RE model (see Backus, Routledge, and Zin 2004). That is, under the assumption

that the agent trusts the Kalman filter equation, the OE result obtained under full-information

RE still holds under RI.38

Hansen, Sargent, and Tallarini (1999) show that as far as the quantity observations on con-

sumption and savings are concerned, the robustness version (ϑ > 0 or α > 0, β̃) of the PIH model

is observationally equivalent to the standard version (ϑ = ∞ or α = 0, β = 1/R) of the PIH

model for a unique pair of discount factors.39 The intuition is that introducing a preference for

risk-sensitivity (RS) or a concern about robustness (RB) increases savings in the same way as

38The states are different, of course – st vs. ŝt.
39HST (1999) derive the observational equivalence result by fixing all parameters, including R, except for the

pair (α, β).
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increasing the discount factor, so that the discount factor can be changed to offset the effect of

a change in RS or RB on consumption and investment.40 Alternatively, holding all parameters

constant except the pair (α, β), the RI version of the PIH model with RB consumers (ϑ > 0

and βR = 1) is observationally equivalent to the standard RI version of the model (ϑ0 = ∞
and β̃ > 1/R). To do so, we compare the consumption function obtained from the RI model

(ϑ = ∞ and β̃ > 1/R), ct =
(
R− 1

βR

)
ŝt − 1

R−1

(
1− 1

βR

)
c, with (42) and (53), and find that

when β̃ = 1
R

1−Rω2
η/ϑ

1−R2ω2
η/ϑ

= 1
R

1−Rαω2
η

1−R2αω2
η
> 1

R , consumption and savings are identical in the RI, RB-RI,

and RS-RI models.

However, if we compare (42) obtained from the model with both concerns about the inno-

vation to the perceived state and concerns about Kalman gain with (53), it is obvious that the

observational equivalence between RB and RS under RI, (55), no longer holds. Given the same

value of κ, the Kalman gain only depends on κ in the RS model, whereas it depends on both

κ and ϑ (the preference for robust Kalman gain) in the RB model. The two Kalman gains are

therefore different for any finite value of ϑ. If we allow for different values of κ, the models are

observationally equivalent when α = ϑ−1 and

θ (ϑ, κRB) = 1− 1

exp(2κRS)
.

Figure 7 illustrates how κRS varies with ϑ and κRB when the OE between RB and RS holds under

RI. It clearly shows that given the level of ϑ, κRS is increasing with κRB.

5 Market Price of Induced Uncertainty

The PIH model presented in Section 2.2 is usually regarded as a partial equilibrium model.

However, as noted in Hansen (1987) and HST (1999), it can be interpreted as a general equilibrium

model with a linear production technology and an exogenous income process. Given the expression

of optimal consumption in terms of the state variables derived from the robust version of the

PIH model with inattentive agents, we can price assets by treating the process of aggregate

consumption that solves the model as though it were an endowment process. In this setup,

equilibrium prices are shadow prices that leave the agent content with that endowment process.

HST (1999) study how robustness and risk-sensitivity affect the predicted market price of risk

within a PIH model with shocks to both labor income and preferences, and find that RB or

RS significantly alter the model’s predictions on the market price of risk and thus provides an

alternative explanation for the equity premium puzzle.

40As shown in HST (1999), the two models have different implications for asset prices because continuation

valuations change as one varies (α, β) within the observationally-equivalent set of parameters.
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In this section, using the optimal consumption and saving decisions derived in the previous

sections, we will explore how induced uncertainty due to the interactions of RB and RI with

income shocks affect the market price of uncertainty. We first consider the single-period asset

pricing case. In this case, we assume that the agent purchases a security at period t at a price qt,

holds it for one period, and then sells it at t+1 for a total payoff φt+1 in terms of the consumption

good after collecting the dividend. Under this assumption, the following Euler equation holds:

qt = Ẽt

[(
β
u′ (ŝt+1)

u′ (ŝt)

)
φt+1

]
, (56)

where β u′(ŝt+1)
u′(ŝt)

is the stochastic discount factor (SDF) and Ẽt [·] is the distorted conditional

expectations operator. Note that here SDF depends on the perceived states because optimal

consumption is a linear function of perceived permanent income; because ŝt+1 is a function of

the true state st+1, st will also affect the SDF. The corresponding formula for qt in terms of the

original conditional expectations operator can be written as

qt = Et [mt,t+1φt+1] , (57)

where mt,t+1 depends not only on the usual SDF but also on robustness. As has been shown

in Hansen, Sargent, and Tallarini (1999), RB or RS are reflected in the usual measure of the

SDF being scaled by a random variable with conditional mean 1. They also show that this

multiplicative adjustment to the SDF increases the volatility of the SDF and thus drives up the

risk premium. To explore the effects of induced uncertainty on the market price of uncertainty,

we write (57) as

qt = Et [φt+1]Et [mt,t+1] + cov t (mt,t+1, φt+1) ,

which leads to the following price bound:

qt ≥ Et [φt+1]Et [mt,t+1]− sd t (mt,t+1) sd t (φt+1) ,

where sd t (·) denotes the conditional standard deviation. If we define the market price of un-

certainty (MPU) as MPU ≡ sd t(mt,t+1)
Et[mt,t+1]

, the Hansen-Jagannathan (HJ) bound can be rewritten

as

MPU ≥ Et [φt+1/qt]

sd t (φt+1/qt)
,

where the RHS is the Sharpe ratio and is above 0.2 for most industrial countries.41 In the

standard full-information state- and time-separable utility model, the value of MPU is an order

41In the U.S. data presented in Campbell (2002), the Sharpe ratio is about 0.52 (annualized) during 1947− 1998.

Using a longer annual U.S. time series put together by Shiller yields a similar value of the Sharpe ratio.
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of magnitude lower than what is required for this inequality to be satisfied, which is just another

manifestation of the equity premium puzzle: consumption growth is smooth, uncorrelated with

returns, and has near zero autocorrelation, leading to a small cost of bearing uncertainty.42

5.1 MPU under RB and RI

The SDF, mt,t+1, can be decomposed into

mt,t+1 = mf
t,t+1m

rb
t,t+1,

where mf
t,t+1 ≡ β u′(ŝt+1)

u′(ŝt)
is the “familiar” stochastic discount factor (ϑ = ∞) and mrb

t,t+1 is

the Radon-Nikodym derivative, or the likelihood ratio of the distorted conditional probability

of ŝt+1 with respect to the approximating conditional probability. Under the two-player game

specification of RB, (19), asset prices are computed using the pessimistic view of the next period’s

shock: η̃t+1 = ωη ǫ̃t+1 = ωη (ǫt+1 + wt), where ǫ̃t+1 is a normally distributed variable with mean

ωηwt and variance ω2
η. In this case, the Radon-Nikodym derivative can be written as

mrb
t,t+1 ≡

exp
(
− (ǫ̃t+1 − wt)

2 /2
)

exp
(
−ǫ̃2t+1/2

) = exp
(
ǫ̃t+1wt − w2

t /2
)
.

By construction, we obtain Et

[
mrb

t,t+1

]
= 1. By straightforward calculations, we obtain the

following conditional second moment of mrb
t,t+1 as a means for computing its conditional variance:

Et

[(
mrb

t,t+1

)2]
= exp

(
w2
t

)
. (58)

The following proposition summarizes the result on how induced uncertainty affects the market

price of uncertainty.

Proposition 7 The expression for the market price of induced uncertainty is

sd t

(
mrb

t,t+1

)
=
√

exp
(
w2
t

)
− 1 ∼= |wt| (59)

for small distortions, where wt is the mean of the worse-case shock:

wt = Θ [(R− 1) ŝt − c] (60)

and Θ =
Π/ωη

1−Π .

42The standard deviation of aggregate consumption growth is 0.84 percent, the correlation with real returns on

the S&P500 Index is 0.22, and the autocorrelation is 0.08, using nondurables and services deflated by the PCE

deflator.
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Proof. Given Et

[
mrb

t,t+1

]
= 1, we can obtain (59) using (58). It is also straightfoward to derive

(60) using (21).

Expression (59) clearly shows that the amount of market price of uncertainty contributed by

the Radon-Nikodym derivative is approximately equal to the norm of the mean of the worse-case

shock (w).43 Note that Θ can be used to measure the importance of RB and RI in determining

the market price of uncertainty for given ŝt and ∂Θ/∂Π > 0. Specifically, both ϑ and κ influence

mrb
t,t+1 through their effects on Π.44 Lowering ϑ strengthens the preference for robustness and

then drive mrb
t,t+1 away from 1 by increasing Π. Lowering κ reduces the Kalman gain, and then

increases ωη and Π. However, since the evolution of ŝt is also affected by ωη and Π, we have to

take both the Θ term and the (R− 1) ŝt − c term in (60) into account when evaluating how the

interaction of RB and RI affects the market price of uncertainty.

To fully explore how induced uncertainty due to RB and RI affects the market price of uncer-

tainty, we adopt the calibration procedure outlined in HSW (2002), AHS (2003), and Hansen and

Sargent (Chapter 9, 2007) to calibrate the value of Π that summarizes the interaction between

RB and RI. Specifically, we calibrate Π by using the notion of a model detection error probability

that is based on a statistical theory of model selection. We can then infer what values of the

RB parameter imply reasonable fears of model misspecification for empirically-plausible approxi-

mating models. The model detection error probability denoted by p is a measure of how far the

distorted model can deviate from the approximating model without being discarded; low values

for this probability mean that agents are unwilling to discard very many models, implying that

the cloud of models surrounding the approximating model is large (since agents want errors to

be rare, they push the two models very far apart). The value of p is determined by the following

procedure. Let model A denote the approximating model, (13), and model B be the distorted

model, (17). Define pA as

pA = Prob

(
ln

(
LA

LB

)
< 0

∣∣∣∣A
)
, (61)

where ln
(
LA
LB

)
is the log-likelihood ratio. When model A generates the data, pA measures the

probability that a likelihood ratio test selects model B. In this case, we call pA the probability of

the model detection error. Similarly, when model B generates the data, we can define pB as

pB = Prob

(
log

(
LA

LB

)
> 0

∣∣∣∣B
)
. (62)

43In other words, |wt| is an upper bound on the approximate enhancement to the market price of uncertainty

caused by the interaction of RB and RI.
44When κ = ∞, i.e., no RI, (60) reduces to wt =

Π/ωη

1−Π
[(R− 1) st − c]. Without RB, wt = 0.
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The detection error probability, p, is defined as the average of pA and pB:

p (ϑ; Π) =
1

2
(pA + pB) , (63)

where ϑ is the robustness parameter used to generate model B. Given this definition, we can see

that 1−p measures the probability that econometricians can distinguish the approximating model

from the distorted model. Now we show how to compute the model detection error probability

in the RB model. The general idea of the calibration exercise is to find a value of (or Π) such

that p (ϑ0; Π) equals a given value (for example, 5 percent or 10 percent) after simulating model

A, (13), and model B, (17).45

Following the consumption and saving literature, we set R = 1.02, ω/y0 = 0.15, ρ = 0.8,

and c = 3.5y0. Using these parameter values, Figures 8 shows how p affects the mean of MPU

under RB and RI.46 Using either the data set documented in Campbell (2002) or that provided

by Shiller, the estimated Sharpe ratio for the postwar U.S. time series is greater than 50 percent

a year. Figure 9 plots the Hansen-Jagannathan (HJ) bound under RB and RI when θ = 0.1 using

the Shiller data set. It is clear from this figure that the model’s predicted MPU can enter the

HJ bound when both the preference for RB and the degree of RI are strong, i.e., when p = 0.05

or p = 0.1 and θ = 0.1. If we consider the international developed-country data set in Campbell

(2002), the Sharpe ratio is between 15 percent and 20 percent for Australia and Italy, between 20

percent and 30 percent for Canada and Japan, and above 30 percent for all the other countries.

In the long-run annual data sets the lower bound on the standard deviation exceeds 30% for all

three countries. From Figure 9, we can see that the theoretical MPU satisfies the HJ bound for

higher values of p. Figure 10 clearly shows that our results about how the interaction of RB and

RI with income uncertainty affects the market price of uncertainty are robust to the changes in

the values of R, ω/y0, ρ, and c.

Since θ is a critical parameter, we show explicitly in Figure 11 how the predictions for each

value of p vary with θ. It is clear that a low value of θ is important for satisfying the HJ bounds;

as we reduce θ we reduce the required level of p, so that the worst-case model can move closer to

the approximating model (that is, we can reduce the required fear of model misspecification).

45The number of periods used in the simulation, T , is set to be the actual length of the data we study. For

example, if we consider the post-war U.S. annual time series data provided by Shiller from 1946− 2010, T = 65.
46Because the effects of RB and RI on the mean and median of MPU are quite similar, we focus on the mean of

MPU in our subsequent analysis.
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5.2 MPU under RS and RI

Under the risk-sensitivity specification of RB, (24), we can also compute the corresponding market

price of uncertainty. The intertemporal marginal rate of substitution between t and t+ 1 can be

written as

mt,t+1 = mf
t,t+1m

rs
t,t+1,

where mf
t,t+1 ≡ β u′(ŝt+1)

u′(ŝt)
and mrs

t,t+1 ≡
exp(−vt+1/ϑ)

Et[exp(−vt+1/ϑ)]
=

exp(−(Ωŝ2t+1+ρ)/ϑ)
exp(−(Ω̂ŝ2t+ρ̂)/ϑ)

. Using a formula found

in Jacobson (1973) and used in HST (1999), we have Et

[(
mrs

t,t+1

)2]
= exp

(
−2
[(

Ω̃− Ω̂
)
ŝ2t + (ρ̃− ρ̂)

]
/ϑ
)
,

because Et

[
exp

(
−2
(
Ωŝ2t+1 + ρ

)
/ϑ
)]

= exp
(
−2
(
Ω̃ŝ2t + ρ̃

)
/ϑ
)
. The following proposition sum-

marizes the result on how induced uncertainty affects the amount of market price of uncertainty

under the RS specification of RB.

Proposition 8 Under RS-RI, the Radon-Nikodym derivative is

Et

[(
mrs

t,t+1

)2]
= exp

(
Ξrs [(R− 1) ŝt − c]2

)
Υ, (64)

where Ξrs ≡ RΠ(1−RΠ)

ϑ0(1−Π)2[1−(2R−1)Π]
and Υ ≡ 1−(R−1)Π/(1−Π)√

1−2(R−1)Π/(1−Π)
. The market price of induced uncer-

tainty is

sd t

(
mrs

t,t+1

)
=

√
exp

(
Ξrs ((R− 1) ŝt − c)2

)
Υ− 1 ∼= |

√
Ξrs ((R− 1) ŝt − c) | (65)

Proof. See Appendix 7.2.

Denote Ξrb = Θ2, we have

∆ ≡
√

Ξrs

Ξrb
=

√
1−RΠ

1− (2R− 1)Π
, (66)

which is close 1 when R is close 1 and Π is not too large. Using (66), it is straightforward to

show that ∂∆
∂Π > 0 and ∂∆

∂θ < 0, i.e., the stronger the degree of RI, the larger the difference of

the market price of uncertainty under the RB and RS specifications. Figure 12 illustrates how

∆ varies with Π for given values of R. It is clear that theoretically the difference of the market

price of uncertainty between RB and RS under RI can be very significant. For example, when

R = 1.02, ∆ = 1.25 when Π = 0.93. In other words, the MPU under the RS-RI specification is 25

percent higher than that under the RB-RI specification when the two models are observationally

equivalent. However, after calibrating empirically-plausible ϑ (and Π) using the DEP, sdt
(
mrb

t,t+1

)

and sdt
(
mrs

t,t+1

)
are very close because R is close to 1 and the calibrated values of Π are between

0.1 and 0.2 for p = 0.05.47 Figure 13 clearly shows that the two specifications have similar effects

47The calibrated values of Π are lower for higher values of p.
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on the mean of for MPU different values of p and θ. In addition, Figure 14 plots the HJ bound

under RS and RI when θ = 0.1 using the same data set as in the above RB-RI specification, and

it is clear that this HJ bound is similar to that shown in Figure 9.

6 Conclusion

This paper has provided a characterization of the consumption-savings behavior of agents who

have a preference for robustness (worries about model misspecification) and limited information-

processing ability. After obtaining the optimal individual decisions, we explore how two types

of induced uncertainty, state uncertainty due to RI and model uncertainty due to RB, affect

consumption and saving decisions as well as the market prices of uncertainty. Specifically, we show

that concerns about different types of model misspecification – (i) disturbances to the perceived

permanent income and (ii) the Kalman gain – can have opposite effects on consumption, savings,

and asset prices via interacting with finite capacity in the control and filtering problems. In

addition, we show that once allowing RB consumers to use the robust Kalman filter to update the

perceived state, the simple observational equivalence (OE) between RB and RS obtained in HST

(1999) no longer holds; instead, we find a more complicated OE between RB and RS. Finally,

we explore how the two types of informational frictions affect the market price of risk in general

equilibrium.

7 Appendix (For Online Publication)

7.1 Solving the Two-Player Game Version of the Robust Model

To solve the Bellman equation (19) subject to (17), ŝt+1 = Rŝt − ct + ωηwt + ηt+1, we conjecture

that

v (ŝt) = −C −Bŝt −Aŝ2t , (67)

where A, B, and C are constants to be determined. Substituting this guessed value function into

the Bellman equation (19) gives

−C −Bŝt −Aŝ2t = max
ct

min
wt

{
−1

2
(ct − c)2 + βEt

[
ϑ̃0w

2
t − C −Bŝt+1 −Aŝ2t+1

]}
, (68)

where ϑ̃0 = ϑ0/2. We can do the min and max operations in any order, so we choose to do the

minimization first. The first-order condition for wt is

2ϑνt − 2AEt (ωηwt +Rŝt − ct)ωη −Bωη = 0,
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which means that

wt =
B + 2A (Rŝt − ct)

2
(
ϑ̃0 −Aω2

η

) ωη. (69)

Substituting (69) back into (68) gives

−Aŝ2t−Bŝt−C = max
ct



−1

2
(c− ct)

2 + βEt


ϑ̃0

[
B + 2A (Rst − ct)

2
(
ϑ−Aω2

η

) ωη

]2
−As2t+1 −Bst+1 − C





 ,

where ŝt+1 = Rŝt − ct + ωηwt + ηt+1. The first-order condition for ct is

(c− ct)−2βϑ̃0
Aωη

ϑ−Aω2
η

wt+2βA

(
1 +

Aω2
η

ϑ̃0 −Aω2
η

)
(Rŝt − ct + ωηwt)+βB

(
1 +

Aω2
η

ϑ̃0 −Aω2
η

)
= 0.

Using the solution for νt the solution for consumption is

ct =
2AβR

1−Aω2
η/ϑ̃0 + 2βA

ŝt +
c
(
1−Aω2

η/ϑ̃0

)
+ βB

1−Aω2
η/ϑ̃0 + 2βA

.

Substituting the above expressions into the Bellman equation gives

−Aŝ2t −Bŝt − C

= −1

2

(
2AβR

1−Aω2
η/ϑ̃0 + 2βA

ŝt +
−2βAc+ βB

1−Aω2
η/ϑ̃0 + 2βA

)2

+
βϑ̃0ω

2
η(

2
(
ϑ̃0 −Aω2

η

))2



2AR

(
1−Aω2

η/ϑ̃0

)

1−Aω2
η/ϑ̃0 + 2βA

ŝt +B −
2c
(
1−Aω2

η/ϑ̃0

)
A+ 2βAB

1−Aω2
η/ϑ̃0 + 2βA



2

− βA






 R

1−Aω2
η/ϑ̃0 + 2βA

ŝt −
−Bω2

η/ϑ̃0 + 2c+ 2Bβ

2
(
1−Aω2

η/ϑ̃0 + 2βA
)



2

+ ω2
η





− βB


 R

1−Aω2
η/ϑ̃0 + 2βA

ŝt −
−Bω2

η/ϑ̃0 + 2c+ 2Bβ

2
(
1−Aω2

η/ϑ̃0 + 2βA
)


− βC.

Collecting and matching terms, the constant coefficients turn out to be

A =
βR2 − 1

2β − ω2
η/ϑ̃0

, B =

(
βR2 − 1

)
c

(R− 1)
(
ω2
η/
(
ϑ̃0

)
− β

) , C =
R
(
βR2 − 1

)

2
(
βR−Rω2

η/ϑ̃0

)
(R− 1)2

(
(R− 1)ω2

η + c2
)
,

where ϑ̃0 = ϑ0/2. When βR = 1, we obtain the consumption function (20) in the text.
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7.2 Computing the Market Price of Uncertainty

Given the value function we obtained in Section (2.2),

v (ŝt) = Ω

(
ŝt −

c

R− 1

)2

+ ρ, (70)

where Ω = −R(R−1)
2(1−Π) and ρ = ϑ0

2(R−1) ln
(
1− (R−1)Π

1−Π

)
, it follows from Jacobson (1973) and HST

(1999) that the risk-sensitivity operator can be written as

Rt [v̂ (ŝt+1)] = −ϑ0 logEt [exp (−v̂ (ŝt+1) /ϑ0)] = Ω̂

(
ŝt −

c

R− 1

)2

+ ρ̂,

where

Ω̂ = ρ2sΩ

(
1− 2

ϑ0
Ωω2

η

(
1 +

2

ϑ0
Ωω2

η

)−1
)

= −R (R− 1) (1−RΠ)

2 (1−Π)2

and

ρ̂ = ρ+
ϑ0
2

ln

(
1 +

2

ϑ0
Ωω2

η

)
=

ϑ0
2 (R− 1)

ln

(
1− 2 (R− 1)Π

1−Π

)
+
ϑ0
2

ln

(
1− (R− 1)Π

(1−Π)

)
,

where we assume that 2(R−1)Π
1−Π < 1.

Given that

mrs
t,t+1 ≡

exp (−vt+1/ϑ0)

Et [exp (−vt+1/ϑ0)]
=

exp
(
−
(
Ωŝ2t+1 + ρ

)
/ϑ0
)

exp
(
−
(
Ω̂ŝ2t + ρ̂

)
/ϑ0

) ,

we have
(
mrs

t,t+1

)2
=

exp
(
−2
(
Ωŝ2t+1 + ρ

)
/ϑ0
)

exp
(
−2
(
Ω̂ŝ2t + ρ̂

)
/ϑ0

) .

Multiplying the numerator and denominator by the time t conditional mean of the exponential

term in the numerator, Et

[
exp

(
−2
(
Ωŝ2t+1 + ρ

)
/ϑ0
)]
, gives

(
mrs

t,t+1

)2
=
Et

[
exp

(
−2
(
Ωŝ2t+1 + ρ

)
/ϑ0
)]

exp
(
−2
(
Ω̂ŝ2t + ρ̂

)
/ϑ0

) exp
(
−2
(
Ωŝ2t+1 + ρ

)
/ϑ0
)

Et

[
exp

(
−2
(
Ωŝ2t+1 + ρ

)
/ϑ0
)] ,

where the exponential term, Et

[
exp

(
σ
(
Ωŝ2t+1 + ρ

))]
, can be computed using a formula found in

Jacobson (1973):

Et

[
exp

(
−2
(
Ωŝ2t+1 + ρ

)
/ϑ0
)]

= exp
(
−2
(
Ω̃ŝ2t + ρ̃

)
/ϑ0

)
,

where Ω̃ = ρ2sΩ

(
1− 4

ϑ0
Ωω2

η

(
1 + 4

ϑ0
Ωω2

η

)−1
)

= Rρ2sΩ
R+4ΩΠ and ρ̃ = ρ + ϑ0

4 ln
(
1 + 1

ϑ0
Ωω2

η

)
= ρ +

ϑ0
4 ln

(
1− 2(R−1)Π

(1−Π)

)
. Therefore, we obtain

Et

[(
mrs

t,t+1

)2]
= exp

(
−2
((

Ω̃− Ω̂
)
ŝ2t + (ρ̃− ρ̂)

)
/ϑ0

)
,

which yields (64) in the main text.
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Figure 1: MRT between RB and RI
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