
ar
X

iv
:1

00
8.

26
32

v1
 [

m
at

h.
PR

]
 1

6
A

ug
 2

01
0

Bounded Computational Capacity Equilibrium∗

Penélope Hernández†and Eilon Solan‡

January 2, 2018

Abstract

We study repeated games played by players with bounded computational
power, where, in contrast to Abreu and Rubisntein [1], the memory is costly.
We prove a folk theorem: the limit set of equilibrium payoffs in mixed strategies,
as the cost of memory goes to 0, includes the set of feasible and individually
rational payoffs. This result stands in sharp contrast to [1], who proved that
when memory is free, the set of equilibrium payoffs in repeated games played
by players with bounded computational power is a strict subset of the set of
feasible and individually rational payoffs. Our result emphasizes the role of
memory cost and of mixing when players have bounded computational power.

Keyword: Bounded rationality, automata, complexity, infinitely repeated games,
equilibrium.

1 Introduction

In a seminal work, Simon [21], [22] recognized the impact of bounded rationality in
economic modelization of individual agents and of organizations. In the last few

∗This work was conducted while the second author was visiting Universidad de Valencia. The
first author thanks both the Spanish Ministry of Science and Technology and the European Feder
Founds for financial support under project SEJ2007-66581 and Generalitat Valenciana (PROME-
TEO/2009/068). The second author thanks the Departamento de Análisis Económico at Universidad
de Valencia for the hospitality during his visit. The authors thank Elchanan Ben Porath, Ehud Kalai
and Ehud Lehrer for their suggestions. The work of Solan was partially supported by ISF grant
212/09.

†ERI-CES and Departamento de Análisis Económico, Universidad de Valencia. Campus de Los
Naranjos s/n, 46022 Valencia, Spain.

‡Department of Statistics and Operations Research, School of Mathematical Sciences, Tel Aviv
University, Tel Aviv 69978, Israel. eilons@post.tau.ac.il

http://arxiv.org/abs/1008.2632v1

decades an expanding literature studied the implementation cost of strategies in
strategic interactions (see, e.g., Rubinstein [19], Chatterjee and Sabourian [5]). One
particular research question deals with achieving a target outcome as a collusion, co-
operation, or bargaining outcome by non-sophisticated agents (see, e.g., Chatterjee
and Sabourian [4], Sabourian [20], Gale and Sabourian [6], and Maenner [9]).

One common way to model players with bounded rationality is by restricting them
to strategies that can be implemented by finite state machines, or automata. The
game theoretic literature on repeated games played by finite automata can be roughly
divided into two categories. On the one hand, an extensive literature (e.g., Kalai [8],
Ben Porath [3], Piccione [16], Piccione and Rubinstein [17], Neyman [10], [11], [12],
Neyman and Okada [13], [14], [15], Zemel [23]) study games where the memory size
of the two players is determined exogenously, so that each player can deviate only to
strategies with the given memory size. On the other hand, Rubinstein [18], Abreu
and Rubinstein [1] and Banks and Sundaram [2] study games where the players have
lexicographic preferences: each player tries to maximize her payoff, and subject to
that she tries to minimize her memory size. Thus, it is assumed that memory is
free, and a player would deviate to significantly more complex strategy if that would
increase her profit by one cent.

In practice, the level of complexity that players can use in their strategies is not
known in advance, either because players do not know each other computational
power, because players may increase their computational power if they realize that
such an increase is beneficial, or because players may decrease their computational
power if the loss caused by this decrease is compensated by the reduced expenses due
to this decision.

In the present paper we take a more pragmatic point of view than the two ap-
proaches mentioned above, and we study repeated games played by boundedly ratio-
nal players, when the computational power is costly.

As a motivating example, consider employees’ training for a new job. The training
period enables the employee to cope with situations that he may encounter in the
future. The longer the training period, the better prepared will be the employee,
thereby increasing the employer’s profit.

Once the employee starts working, he follows the instructions that he learned,
and so we can model the employee as a finite state machine. The training period
dictates the size of the machine, that is, the number of its states, and the training
itself determines how the machine behaves in various situations. Because training is
costly, the employer will try to balance between the length of the training period and
the gains from extended training.

When employees of different employers interact, say a salesperson and a buyer,
the evolution of the interaction is dictated by their training. A salesperson, say, may
interact with buyers of different firms, who undertook different training programs,

2

and therefore follow different finite state machines. Therefore he has some uncertainty
regarding the finite state machine that the buyer will follow, so that in fact he faces
a mixed strategy.

The employers, who plan the training of their respective employees, then face a
game, where each tries to teach her employees the techniques that best cope with
the techniques taught by the other employer. As salespersons and buyers interact
repeatedly, the situation can be modelled as a repeated game played by finite state
machines, where the goal of each player is to maximize some combination of the
long-run average payoff and the cost of training.

To capture situations like the one in the example, we assume for simplicity that
the players have additive utility: the utility of a player is the sum of her long-run
average payoff and the cost of her computational power. Formally, for every positive
real number c, we say that the vector x ∈ R

2 is a c-Bounded Computational Capacity
equilibrium (hereafter, BCC for short) if it is an equilibrium when the utility of each
player is the difference between her long-run average payoff and c times the size of its
finite state machine.

A payoff vector x ∈ R
2 is a BCC equilibrium payoff if it is the limit, as c goes to

0, of payoffs that correspond to c-bounded computational capacity payoffs, and the
cost of the machines used along the sequence converges to 0.

Interestingly, the definition does not imply that the set of BCC equilibrium payoffs
is a subset, nor a super set, of the set of Nash equilibrium payoffs.

Our main result is a folk theorem: in two player games, every feasible and indi-
vidually rational (w.r.t. the min-max value in pure strategies) payoff vector is a BCC
equilibrium payoff.

Our proof is constructive: we explicitly construct equilibrium strategies. The
equilibrium play is composed of three phases. The first phase, that on the equilibrium
path is played only once, is a punishment phase; in this phase each player plays a
strategy that punishes the other player, that is, an action that attains the min-max
value in pure strategies of the opponent. As in [1], it is crucial to have the punishment
phase on the equilibrium path; otherwise, players can use smaller machines, that
cannot implement punishment and lower the cost of their machines. However, if a
machine cannot implement punishment, there is nothing that will deter the other
player from deviating. The second phase, called the babbling phase, is also played
only once on the equilibrium path. In this phase the players play a predetermined
sequence of action pairs. In the third phase, called the regular phase, the players play
repeatedly a predetermined periodic sequence of action pairs that approximates the
desired target payoff. To implement this phase, the players re-use states that were
used in the babbling phase. In fact, the role of the babbling phase is to enable one to
embed the regular phase within it, and its structure is designed to simplify complexity
calculations. It is long enough to ensure that with only low probability a player can

3

correctly guess which of the states in the other player’s machine are re-used.
One can describe the equilibrium path by imagining the following meeting between

two strangers. At first, the strangers exchange threats and vivid descriptions of what
each one will do to the other if the other does not behave as desired. After they prove
to each other that they can execute punishment, they indulge in a long small-talk.
Finally, they go to business, and implement the desired outcome.

Our paper is closely related to Abreu and Rubinstein [1], where a characterization
of the set of equilibrium payoffs is provided when the players have a lexicographic
preference: subject to maximizing her long-run average payoff each player wishes
to minimize the complexity of the finite state machine that implements her strategy.
The main result of [1] is that the set of equilibrium payoffs is the set of all feasible and
individually rational payoffs (relative to the min-max value in pure strategies) that
can be supported by coordinated play. The main message of [1] is that a folk theorem
does not obtain: the set of equilibrium payoffs may be strictly smaller than the set
of feasible and individually rational payoffs. Our result shows that two properties
of the model of [1] drive their result. First, [1] assumes that computational power
is costless, so that players will deviate to a prohibitively large automaton to gain a
cent. This is in contrast to our model, where computational power is costly. Second,
[1] restricts the players to pure strategies, whereas we allow the players to use mixed
strategies.

Abreu and Rubinstein [1] point at a difficulty in using mixed strategies in games
played by players with bounded computational power: mixing is a complex operation,
and players with bounded computational power will prefer to use a pure strategy than
a mixed strategy, thereby saving the cost of mixing. We argue that there are at least
two interpretations of the model where the use of mixed strategies is natural. First,
it may happen that the agent playing the game is limited, whereas the player who
chooses the strategy for the agent does not have limits on her computational power.
Thus, the complexity of computing the strategy played by the agent can be large,
and include mixing, while the complexity of implementing this strategy should be
low. Second, a player may not know the identity of the agent whom her own agent is
going to face, and therefore she does not know the pure simple strategy which that
agent is going to use. Alternatively, the other agents who her agent is going to face
may use different pure strategies. Thus, the player may assume that the other player
randomly chooses her simple strategy. In our construction the role of mixing is to
hide the strategy that each agent uses. Whereas in [1] the players use pure strategies
to reduce their computational power, which leads to a significantly smaller set of
equilibrium payoffs, mixing allows the players to use once again complex strategies,
and the folk theorem is restored.

The rest of the paper is organized as follows. Section 2 presents the model and
the main result. The construction of a mixed equilibrium strategy for both players

4

in the particular case of the Prisoner’s Dilemma is presented in Section 3. In Section
4 we explain how the construction is adapted for general two-player games.

2 The Model and the Main Result

In this section we define the model, including the concepts of automata, repeated
games, and strategies implementable by an automaton; we describe our solution con-
cept of Bounded Computational Capacity equilibrium, and we state the main result.

2.1 Repeated Games

A two-player repeated game is given by (1) two finite action sets A1 and A2 for the
two players, and (2) two payoff functions u1 : A1 × A2 → R and u2 : A1 × A2 → R

for the two players.
The game is played as follows. At every stage t, each player i ∈ {1, 2} chooses an

action ati ∈ Ai, and receives the stage payoff ui(a
t
1, a

t
2). The goal of each player is to

maximize its long-run average payoff limt→∞
1
t

∑t
j=1 ui(a

j
1, a

j
2), where {(a

j
1, a

j
2), j ∈ N}

is the sequence of action pairs that were chosen by the players.1 A pure strategy
of player i is a function that assigns an action in Ai to every finite history h ∈
∪∞
t=0(A1 × A2)

t. A mixed strategy of player i is a probability distribution over pure
strategies.

2.2 Automata

A common way to model a decision maker with bounded computational capacity is as
an automaton, which is a finite state machine whose output depends on the current
state, and whose evolution depends on the current state and on its input (see, e.g.,
Neyman [10] and Rubinstein [18]). Formally, an automaton P is given by (1) a finite
state space Q, (2) a finite set I of inputs, (3) a finite set O of outputs, (4) an output
function f : Q → O, (5) a transition function g : Q× I → Q, and (6) an initial state
q∗ ∈ Q.

Denote by qt the automaton’s state at stage t. The automaton starts in state
q1 = q∗, and at every stage t, as a function of the current state qt and the current
input it, the output of the automaton ot = f(qt) is determined, and the automaton
moves to a new state qt+1 = g(qt, it).

The size of an automaton P , denoted by |P |, is the number of states in Q. Below
we will use strategies that can be implemented by automata; in this case the size of
the automaton measures the complexity of the strategy.

1In general this limit need not exist. Our solution concept will take care of this issue.

5

2.3 Strategies Implemented by Automata

Fix a player i ∈ {1, 2}. An automaton P whose set of inputs is the set of actions
of player 3 − i and set of outputs is the set of actions of player i, that is, I = A3−i

and O = Ai, can implement a pure strategy of player i. Indeed, at every stage t, the
strategy plays the action f(qt), and the new state of the automaton qt+1 = g(qt, at3−i)
depends on its current state qt and on the action at3−i that the other player played at
stage t. For i = 1, 2, we denote an automaton that implements a strategy of player i
by Pi. We denote by Pm

i the set of all automata with m states that implement pure
strategies of player i.

When the players use arbitrary strategies, the long-run average payoff needs not
exist. However, when both players use strategies that can be implemented by au-
tomata, say P1 and P2 of sizes p1 and p2 respectively, the evolution of the automata
follows a Markov chain with p1 × p2 states, and therefore the long-run average payoff
exists. We denote this average payoff by γ(P1, P2) ∈ R

2.
A mixed automatonM is a probability distribution over pure automata2. A mixed

automaton corresponds to the situation in which the automaton that is used is not
known, and there is a belief over which automaton is used. A mixed automaton defines
a mixed strategy: at the outset of the game, a pure automaton is chosen according
to the probability distribution given by the mixed automaton, and the strategy that
the pure automaton defines is executed.

We will use only mixed automata whose support is pure automata of a given size
m. Denote by Mm

i the set of all mixed automata whose support is automata in
Pm

i , and by Mi = ∪m∈NM
m
i the set of all mixed automata whose support contains

automata of the same size. If Mi ∈ Mm
i , we say that m is the size of the automaton

Mi. Thus, the size of a mixed automaton refers to the size of the pure automata in
its support (and not, for example, to the number of pure automata in its support). If
we interpret each pure automaton as an agent’s type, and a mixed automaton as the
type’s distribution in the population, then the size of the mixed automaton measures
the complexity of an individual agent, and not the type diversity in the population.

When both players use mixed strategies that can be implemented by mixed au-
tomata, the expected long-run average payoff exists; it is the expectation of the
long-run average payoff of the (pure) automata that the players play:

γ(M1,M2) := EM1,M2
[γ(P1, P2)].

2To emphasize the distinction between automata and mixed automata, we call the former pure

automata.

6

2.4 Bounded Computational Capacity Equilibrium

In the present section we study games where the utility function of each player takes
into account the complexity of the strategy that she uses.

Definition 1 Let c > 0. A pair of mixed automata (M1,M2) is a c-BCC equilibrium,
if it is a Nash equilibrium for the utility functions U c

i (M1,M2) = γi(M1,M2)− c|Mi|,
i ∈ {1, 2}.

If the game has an equilibrium in pure strategies, then the pair of pure automata
(P1, P2), both with size 1, that repeatedly play the equilibrium actions of the two
players, is a c-BCC equilibrium, for every c > 0.

The min-max value of player i in pure strategies in the one-shot game is

vi := min
a3−i∈A3−i

max
ai∈Ai

ui(ai, a3−i).

An action a3−i that attains the minimum is termed a punishing action of player 3− i.
To get rid of the dependency of the constant c we define the concept of a BCC

equilibrium payoff. A payoff vector x is a BCC equilibrium payoff if it is the limit, as
c goes to 0, of the payoff that corresponds to c-BCC equilibria.

Definition 2 A payoff vector x = (x1, x2) is a BCC equilibrium payoff if for every
c > 0 there is a c-BCC equilibrium (M1(c),M2(c)) such that limc→0U

c(M1(c),M2(c)) =
x and limc→0 cMi(c) = 0.

The condition limc→0 U
c(M1(c),M2(c)) = x in the definition of a BCC-equilibrium

payoff ensures that x can be supported as an equilibrium, while the condition limc→0 cMi(c) =
0 ensure that the cost of the automata that support this equilibrium is negligi-
ble. In particular, the limit of the long-run average payoffs also converges to x:
limc→0 γ(M1(c),M2(c)) = x.

It follows from the discussion above that every pure equilibrium payoff is a BCC
equilibrium payoff. Using Abreu and Rubinstein’s [1] proof, one can show that any
individually rational payoff (relative to the min-max value in pure strategies) that
can be generated by coordinated play is a BCC equilibrium payoff. For the formal
statement, assume w.l.o.g. that |A1| ≤ |A2|.

Theorem 3 (Abreu and Rubinstein, 1988) Let σ : A1 → A2 be a one-to-one
function. Then any payoff vector x in the convex hull of {u(a1, σ(a1)), a1 ∈ Ai} that
satisfies xi > vi for i = 1, 2 is a BCC equilibrium payoff.

7

2.5 The Main Result

The set of feasible payoff vectors is

F := conv{u(a), a ∈ A1 × A2}.

The set of strictly individually rational payoff vectors (relative to the min-max value
in pure strategies) is

V :=
{
x = (x1, x2) ∈ R

2 : x1 > v1, x2 > v2
}
.

Our main result is the following folk theorem, that states that every feasible and
strictly individually rational payoff vector is a BCC equilibrium payoff.

Theorem 4 Every vector in F ∩ V is a BCC equilibrium payoff.

Observe that Theorem 4 is not a characterization of the set of BCC equilibrium
payoffs, because it does not rule out the possibility that a feasible payoff that is
not individually rational (relative to the min-max value in pure strategies) is a BCC
equilibrium payoff. That is, we do not know whether threats of punishments by a
mixed strategy in the one-shot game can be implemented in a BCC equilibrium.

Theorem 4 stands in sharp contrast to the main message of Abreu and Rubin-
stein [1], where it is proved that lexicographic preferences, which is equivalent to an
infinitesimal cost function c, implies that in equilibrium players follow coordinated
play, so that the set of equilibrium payoffs is sometimes smaller than the set of feasi-
ble and individually rational payoffs. Our study shows that the result of Abreu and
Rubinstein [1] hinges on two assumptions: (a) memory is costless, and (b) the players
use only pure automata. Once we assume that memory is costly, and that players
may use mixed automata, the set of equilibrium payoffs dramatically changes.

2.6 Comments and Discussion

2.6.1 On the definition of BCC equilibria

The definition of BCC equilibrium is analog to the definition of Nash equilibrium; in
both we ask whether a specific behavior (that is, a pair of strategies) is stable. Thus, in
a c-BCC equilibrium we assume that each player already has an automaton with which
she is going to play the game, and we ask whether playing this automaton is the best
response given the automaton that the other player is going to use. As in the definition
of Nash equilibrium, we do not ask how the players arrived at these automata, and
we do not restrict the sizes of these automata (though the memory cost does bound
the maximal size of automaton that the players will use). In principle it may well

8

be that some BCC equilibrium payoff can be supported only with prohibitively large
automata, which we would like to rule out. That is, we may want to add the size
of the automata that the players use to the definition itself. In our construction
(see the proof of Theorem 4), to support a c-BCC equilibrium payoff that is close to
some target payoff x we use two automata of similar sizes; the size of the automaton
is related to both c and to the level of approximation to the target payoff: as c

gets closer to 0, and as the c-BCC equilibrium payoff gets closer to x, we use larger
automata.

2.6.2 BCC equilibria and Nash equilibria

Theorem 4 states that every feasible and individually rational (w.r.t. the max-min
value in pure strategies) payoff vector is a BCC equilibrium payoff. This theorem does
not rule out the possibility that there would be a payoff vector that is not individually
rational that would still be a BCC equilibrium; that is, a BCC equilibrium payoff need
not be a Nash equilibrium payoff. The theorem also does not rule out the possibility
that some payoff vector that is individually rational w.r.t. the max-min value in mixed
strategies, but not individually rational w.r.t. the max-min value in pure strategies,
would not be a BCC equilibrium payoff, so that a Nash equilibrium payoff need not
be a BCC equilibrium payoff.

Moreover, in zero-sum games it is not clear whether there is a unique BCC equi-
librium payoff. If in zero-sum games there always is a unique BCC equilibrium payoff,
then this quantity can be called the BCC value of the game. However, it is possible
that in zero-sum games there will be more than one BCC equilibrium payoff, in which
case even in this class of games, the outcome will crucially depend on the relative
computational power the players have.

2.6.3 A more general definition of a BCC equilibrium

The definition of c-BCC equilibrium assumes that the utility of each player is additive,
and that the memory cost is linear in the memory size. There are applications where
the utility function Ui has a different form.

• Players may disregard the memory cost, but be bounded by the size of memory
that they use.

Ui(M1,M2) =

{
γi(M1,M2) |Mi| ≤ ki,

−∞ |Mi| > ki.

This situation occurs, e.g., when players are willing to invest huge amount of
money even if the profit is low, but the available technology does not allow

9

them to increase their memory size beyond some limit. Such situation may
occur, e.g., in the area of code breaking, where countries invest large sums of
money to be able to increase the number of codes of other countries that they
break, and they are only bounded by technological advances.

• Memory is costly, yet players do not save money be reducing their memory
size. That is, a pair of mixed automata (M1,M2) is a c-BCC equilibrium if for
each i ∈ {1, 2} and for every pure automaton Pi ∈ Mi one has γi(Mi,M3−i) ≥
γi(Pi,M3−i), and, if Pi > Mi, one has γi(Mi,M3−i) ≥ γi(Pi,M3−i) − c(|Pi| −
|Mi|). This situation occurs, e.g., when the players are organizations whose size
cannot be reduced.

It may be of interest to study the set of equilibrium payoffs for various utility
functions Ui, and to see whether and how this set depends on the shape of this
function.

2.6.4 More than two players

The concept of BCC equilibrium payoff is valid to games with any number of players.
However, Theorem 4 holds only for two-player games. One crucial point in our con-
struction is that if a deviation is detected, a player is punished for a long (yet finite)
period of time by a punishing action. When there are more than two players, the
punishing action of, say, player 1 against player 2 may be different that the punishing
action of player 1 against player 3. It is not clear how to construct an automaton that
can punish each of the other players, if necessary, and such that all these memory
cells will be used on the equilibrium path.

2.6.5 BCC equilibria in one-shot games

The concept of BCC equilibrium that we presented here applies to repeated games.
However, the concept can be naturally adapted to one-shot games as well3. For
example, consider the following game, that appears in Halpern and Pass [7]. Player
1 chooses an integer n and tells it to player 2; player 2 has to decide whether n is a
prime number or not, winning 1 if she is correct, losing 1 if she is incorrect. Plainly
the value of this game is 1: player 2 can check whether the choice of player 1 is a
prime number. However, as there is no efficient algorithm to check whether an integer
is a prime number, it is not clear whether in practice risk-neutral people would be
willing to participate in this game as player 2.

3We thank Ehud Kalai for drawing our attention to this issue.

10

The concept of BCC equilibrium can be applied in such situations, and one can
study the set of BCC equilibrium payoffs, and how this set depends on the relative
memory cost of the two players.

In the context of the Computer Science literature one could conceive of an analog
solution concept, where automata are replaced by Turing machines, and the memory
size is replaced by the length of the machine’s tape.

3 BCC Equilibria in the Prisoner’s Dilemma

In the present section we prove Theorem 4 for the Prisoner’s Dilemma. The construc-
tion in this case contains all the ingredients of the general case, yet the simplicity
of the Prisoner’s Dilemma allows one to concentrate on the main aspects of the con-
struction. In Section 4 we indicate how to generalize this basic construction to general
two-player repeated games.

The Prisoner’s Dilemma is the two-player game depicted in Figure 1, where each
player has two actions: A1 = A2 = {Cooperate,Defect}.

Player 1

Player 2

C

D

D C

0, 4

1, 1

3, 3

4, 0

Figure 1: The Prisoner’s Dilemma.

The min-max level of each player is 1, and the punishing action of each player
is D. The set of feasible and (weakly) individually rational payoffs appear in Figure
2. It is equal to the quadrilateral W with extreme points (1, 1), (1, 32

3
), (3, 3) and

(32
3
, 1).

Figure 2: The feasible and individually rational payoffs in the Prisoner’s Dilemma.

We now show that every feasible and individually rational payoff vector x is a
BCC equilibrium payoff. In the construction we do not use the special structure of
the payoff matrix; all we use is that each player has two actions, and that D is the
punishing action of both players.

Observe that each point in W can be written as a convex combination of three
vectors in the payoff matrix, (3, 3), (1, 1), and either (0, 4) or (4, 0). Assume w.l.o.g.
that the latter holds, so that

x = α1(1, 1) + α2(4, 0) + α3(3, 3), (1)

11

where α1 + α2 + α3 = 1 and α1, α2, α3 ≥ 0.
Our goal is to define two sequences of mixed automata (M1(k))k and (M2(k))k,

that support x as a BCC equilibrium payoff: the long-run average payoff under
(M1(k),M2(k)) will converge to x. The road-map of the proof is as follows. We
fix k ∈ N, and we define a play path ω∗ that depends on k and that will be the equi-
librium path under (M1(k),M2(k)) (Section 3.1). We then calculate a lower bound
to the complexity of the play path for each player (the complexity is of the order
k3, see Section 3.2). Recall that the complexity of a play path w.r.t. a player is the
size of the smallest automaton for that player that can implement this play path,
provided the other player follows her part in the play path. We then construct, for
each player, a family of pure automata with this smallest size that implement the
play path (Sections 3.3 and 3.4). We let the mixed automaton of each player choose
one of these pure automata, and finally we prove that each of these mixed automata
is a z(k)-BCC best reply against the other, where limk→∞ z(k) = 0 (see Sections 3.5
and 3.6).

3.1 The Equilibrium Play

We fix throughout a natural number k, sufficiently large to satisfy several conditions
that will be set in the sequel. Let k0 be the largest integer that satisfies (k0)

2+k0 ≤ k.
We here define a specific play path ω∗ that will be the equilibrium path.

We approximate (α1, α2, α3) by rational numbers with denominator k0; that is,
let (k1, k2, k3) be three natural numbers that satisfy (a) k1 + k2 + k3 = k0, and (b)

‖ kj
k0

− αj‖ ≤ 1√
k0

for j = 1, 2, 3. Let k be a sufficiently large integer such that there
are at least k2 prime numbers larger than k2 and smaller than k − k1. Because the
number of prime numbers smaller than k is approximately k

ln(k)
, k is of the order4 of

k2 ln(k2).
Let ω0 be the following play of length k0 that generates a payoff close to x:

ω0 = k1 × (D,D) + k2 × (D,C) + k3 × (C,C) (2)

=
(D,D), · · · , (D,D)︸ ︷︷ ︸, (D,C), · · · , (D,C)︸ ︷︷ ︸, (C,C), · · · , (C,C)︸ ︷︷ ︸ .

k1 times k2 times k3 times
(3)

Here, the notation n× a means a repetition of n times the action pair a, and ω1+ω2

means the concatenation of ω1 and ω2. Because of the choice of (k1, k2, k3), the average
payoff along ω0 is 12√

k0
-close to x.

Let ω∗ be the play path that consists of the followings three parts:

4In (b) we require that ‖ kj

k0

− αj‖ ≤ 1√
k0

rather than ‖ kj

k0

− αj‖ ≤ 1

k0

, to accommodate the case

α3 = 0. If α3 = 0, with the latter requirement we would have k3 ∈ {0, 1}, and there would not be
k2 prime numbers between k2 and k − k1.

12

• A punishment phase that consists of k3 times playing (D,D).

• A babbling phase, that consists of 2k + 1 blocks: in odd blocks (except the last
one) the players play k times (C,C), in even block they play k times (D,D),
and in the last block the players play k + 1 times (C,C).

• A regular play, in which the players repeatedly play ω0.

Formally, the play path ω∗ is:

ω∗ = k3 × (D,D)︸ ︷︷ ︸
Punishment

+
k∑

n=1

(
k × (C,C) + k × (D,D)

)
+ (k + 1)× (C,C)

︸ ︷︷ ︸
Babbling

+
∞∑

n=1

ω0

︸ ︷︷ ︸
Regular

.

The roles of the three phases are as follows.

• As in Abreu and Rubinstein [1], the punishment phase ensures that punishment
is on the equilibrium path. Because the players minimize their automaton size,
subject to maximizing their payoff, if the punishment phase was off the equi-
librium path, players could save states by not implementing it. But if a player
does not implement punishment, the other player may safely deviate, knowing
that she will not be punished. In our construction, detectable deviations of the
other player will lead the automaton to restart and re-implement ω∗, thereby
initiating a long punishment phase. The length of the punishment phase, k3, is
much longer than the babbling phase to ensure that the punishment is severe.

• The importance of the babbling phase is that it allows us to build up the mixed
strategy equilibrium. To reach any equilibrium payoff in the convex hull, players
need to implement sequences of action pairs. Some of them could be played by
means of some previously used states. Nevertheless this construction may fail
due to the possible deviation (without punishment) of the opponent. In order
to avoid this weakness, it must be concealed the position of such re-used states.
It is here where the use of the mixed strategy plays a decisive role: to hide
the chosen pure strategy. This set of pure strategies will be characterised by
the location of the re-used states within a convenient set of states. In our
construction this is implemented by the babbling phase.

The babbling phase which serves two purposes. First, because it is coordinated,
it is not difficult to calculate its complexity. Second, it is sufficiently long, so that
to implement the regular phase one does not need new states, but rather one
can re-use states that implement the babbling phase. Moreover, its long lengths
ensures that, if the states that are re-used are chosen randomly, to find which

13

states are re-used with non-negligible probability the other player must use a
very large automaton: to profit by deviating the other player needs to search
for the re-used states, a task that requires a significantly larger automaton than
the one she currently uses.

• On the equilibrium path the regular play will be played repeatedly, so that the
long-run average payoff will be the average payoff along ω0, which is close to x.

3.2 The complexity of ω∗

Let ω be a (finite or infinite) sequence of action pairs. We say that a mixed automaton
Mi of player i is compatible with the play ω if, when the other player 3−i plays her part
in ω, the automaton generates the play of player i in ω (with probability 1). Plainly,
different automata may be compatible with the same sequence ω. The complexity of
ω w.r.t. player i is the size of the smallest automaton of player i that is compatible
with ω. This concept was first defined and studied by Neyman [12], who also provided
a simple way to calculate it.

Our goal now is to calculate the complexity of ω∗ w.r.t. the two players.

Lemma 5 The complexity of ω∗ w.r.t. player 1 is k3 + 2k2 + 1, and its complexity
w.r.t. player 2 is k3 + 2k2 + k + 1.

In the rest of this subsection we prove that the complexity of ω∗ w.r.t. each of the
players is at least the quantities given in Lemma 5. In the next two subsections we
provide an automaton for player 1 (resp. for player 2) with size k3 + 2k2 + 1 (resp.
k3+2k2+ k+1) that is compatible with ω∗, thereby completing the proof of Lemma
5.

We start by recalling Neyman’s [12] characterization for the complexity of a play
w.r.t. a player.

Denote by ωt the sequence ω after deleting the first t − 1 elements from the
sequence.5 Given a sequence of action pairs ω, finite or infinite, define an equivalence
relation on the set of natural numbers N as follows: t is equivalent (for player i) to t′

if any automaton of player i that is compatible with ωt is also compatible6 with ωt′ .
Denote this equivalence relation by ∼ω,i. Neyman [12] proved that the complexity of
ω w.r.t. a player is the number of equivalence classes in this equivalence relation.

5If ω is a finite play, and t is larger than the length of ω, then ωt is an empty sequence of action
pairs.

6In particular, the empty play is equivalent to any other play.

14

3.2.1 The complexity of ω∗ w.r.t. player 1 is at least k3 + 2k2 + 1

The complexity of a sequence is at least the complexity of any of its subsequences
(Lemma 2 in Neyman [12]). To bound the complexity of ω∗ w.r.t. player 1 we
calculate the complexity w.r.t. player 1 of the following prefix ω∗(1) of ω∗:

ω∗(1) = k3 × (D,D) +

k∑

n=1

(
k × (C,C) + k × (D,D)

)
+ (k + 1)× (C,C).

In ω∗(1) the players play a coordinated play, i.e., there exists a one-to-one relationship
between the actions played by player 1 and the actions played by player 2: in every
stage either both players play C or both players play D. Therefore, for every t, any
automaton of player 1 that is compatible with ω∗

t (1) can ignore the actions of player 2.
Consequently, an automaton of player 1 generates a deterministic sequence of actions.
This implies that if t1 < t2, and t1 and t2 are equivalent (w.r.t. ∼ω∗(1),1), then ω∗

t2
(1)

is a prefix of ω∗
t1
(1).

Because a sequence of k+1 times C appears only at the end of the sequence ω∗(1),
it follows that ω∗

t2
(1) is not a prefix of ω∗

t1
(1) whenever t1 < t2 ≤ k3 + 2k2 + 1. In

particular, the complexity of ω∗ to player 1 is at least k3 + 2k2 + 1.

3.2.2 The complexity of ω∗ w.r.t. player 2 is at least k3 + 2k2 + k + 1

To bound the complexity of ω∗ w.r.t. player 2, we calculate the complexity for player
2 of the following prefix ω∗(2) of ω∗:

ω∗(2) = k3×(D,D)+
k∑

n=1

(
k×(C,C)+k×(D,D)

)
+(k+1)×(C,C)+k1×(D,D)+1×(D,C).

Apart of the last action pair, the play path ω∗(2) consists of a coordinated play.
Hence, analogously to the analysis for player 1, for every t, any automaton of player
2 that is compatible with ω∗

t (2) can ignore the actions of player 1. We now count the
number of equivalence classes of the relation ∼ω∗(2),2. The sequence 1× (C,C)+ k1×
(D,D)+1× (C,C) appears along ω∗(2) only after k3+2k2+k+1 stages in ω∗(2). It
follows that the number of equivalence classes of ∼ω∗(2),2 is at least k3 + 2k2 + k + 1.
In particular, the complexity of ω∗ to player 2 is at least k3 + 2k2 + k + 1.

3.3 An automaton M1 for player 1

In this section we define a family of pure automata for player 1, all have size k3 +
2k2 + 1. Each automaton in the family is compatible with ω∗. This will prove that
the complexity of ω∗ w.r.t. player 1 is k3 +2k2 +1, as stated in Lemma 1. In section

15

3.3.5 we define a mixed automaton for player 1 that is supported by pure automata
in this family and that will be part of the d-BCC equilibrium for a proper d > 0.

The automata in the family are parameterized by two parameters: an integer
j ∈ {1, 2, . . . , k − 1} and a set H = {h1, h2, . . . , hk2} of k2 integers. The range of
h1, h2, . . . , hk2 will be defined in step 3 below where they are used.

Given a pair (j,H) we proceed to construct a pure automaton P
j,H
1 for player 1.

For clarity of the exposition, the construction is divided into three steps. We start in
step 1 by defining transitions that implement the prefix of length k3 + 2k2 + 1 of ω∗.
In step 2 we add transitions that implement the next k + k1 action pairs in ω∗, and
in step 3 we add transitions that implement the rest of ω∗. In step 1 we will use all
the states of P j,H

1 . In step 2 and 3 we will re-use states for implementing the rest of
ω∗. The mixed automaton that we will define later will choose j and H randomly, to
conceal the states that are re-used.

The size of the automaton P
j,H
1 that we construct is k3+2k2+1. Denote its states

by the integers Q = {1, 2, . . . , k3 + 2k2 + 1}, where 1 is the initial state.

3.3.1 Step 1: Implementing the prefix of ω∗ of length k3 + 2k2 + 1.

The prefix of length k3 + 2k2 + 1 of ω∗ is:

ω1 = k3 × (D,D) +

k∑

n=1

(
k × (C,C) + k × (D,D)

)
+ (C,C).

This play consists of the punishment phase followed by k pairs of blocks, each
block is made of a C-block and a D-block (both of length k). The length of ω1 is
equal to the size of the automaton, and therefore a naive implementation is to have
one state for each action of player 1 in ω1: state q ∈ Q will implement the q’th action
pair in ω1. Formally, we divide Q to three sets:

1. QP = {1, 2, . . . , k3}: this is the set of all states that implement the punishment
phase.

2. QC =
⋃k−1

n=0{k
3 + 2nk + 1, . . . , k3 + 2nk + k} ∪ {k3 + 2k2 + 1}: this is the set of

states in all C-blocks.

3. QD =
⋃k−1

n=0{k
3 +2nk+ k+1, . . . , k3 +2nk+2k}: this is the set of states in all

D-blocks.

The output function is:

f(q) =

{
D q ∈ QP ∪QD,

C q ∈ QC ,

16

and the transition function is

g(q, f(q)) = q + 1, 1 ≤ q < k3 + 2k2 + 1.

Because the play in ω1 is coordinated, the transition is defined only if player 2 complies
with the desired play ω1. Figure 3 illustrates the first step in the construction of
the automaton P

j,H
1 . In this figure, the initial state is the dotted circle to the left,

the white squares correspond to states where the action is D, and the black circles
correspond to states where the action is C.

⊙→�→�→�→. . .→�︸ ︷︷ ︸→•→•→. . .→•︸ ︷︷ ︸→�→�→. . .→�︸ ︷︷ ︸→. . .→•→•→. . .→•︸ ︷︷ ︸→�→�→. . .→�︸ ︷︷ ︸→•

Punishment C-block D-block C-block D-block C

Figure 3: An implementation of ω1.

3.3.2 Step 2: Implementing the next k + k1 action pairs.

We now add to the automaton P
j,H
1 transitions that implement the next k+k1 action

pairs in ω∗, which are
ω2 = k × (C,C) + k1 × (D,D)

Here we use the parameter j. Because (a) the play ω2 starts with k× (C,C), and (b)
each C-block has length k and is followed by a D-block whose length is more than k1,
we can use the j’th C-block and the following D-block to implement ω2. Therefore,
to implement ω2 it is sufficient to add one transition to P

j,H
1 , from the last state to

the beginning of the j’th C-block:

g(k3 + 2k2 + 1, C) = k3 + 2(j − 1)k + 1.

Figure 4 illustrate the automaton P
j,H
1 with this additional transition.

⊙→�→�→�→. . .→�︸ ︷︷ ︸→•⇒•⇒. . .⇒•︸ ︷︷ ︸⇒�→�→. . .→�︸ ︷︷ ︸→. . .→•→•→. . .→•︸ ︷︷ ︸→�→�→. . .→�︸ ︷︷ ︸→•
❄

Punishment C-block D-block C-block D-block C

Figure 4: The automaton P
j,H
1 after the second step.

17

3.3.3 Step 3: Implementing the rest of ω∗.

We now add to the automaton P
j,H
1 transitions that implement the next k2+k3 action

pairs in ω∗, which are
ω3 = k2 × (D,C) + k3 × (C,C),

and continue to implement the regular play, which is a periodic repetition of ω0.
Here we use the parameter set H . To implement the k2 repetitions of (D,C) we

re-use states in a D-block, whose identity is determined by the set H . Thus, whenever
in a re-used state, if player 2 plays D, the automaton P

j,H
1 assumes that the play is

in the babbling phase, whereas if player 2 plays C, the automaton assumes that ω3 is
implemented. Because ω3 comes after a sequence k1 × (D,D), the first re-used state
must be the k1+1 state in the j’thD-block. Because after the sequence k3×(C,C) the
play continues with the next repetition of ω0, namely, with k1× (D,D), the sequence
k3 × (C,C) will be implemented at the end of the j’th C-block.

Formally, assume that the set H satisfies the following two conditions:

(D1) h1 = k3 + 2(j − 1)k + k + k1 + 1, and

(D2) h2, h3, . . . , hk2 are distinct states in QD, all different from h1.

We add the following transitions (see Figure 5):

g(hn, C) = hn+1, 1 ≤ n < k2 − 1, (4)

g(hk2, C) = k3 + 2(j − 1)k + (k − k3). (5)

In Figure 5, re-used states are denoted by triangles. When the automaton P
j,H
1 is at

such a state it plays the action D; if player 2 plays the action D, the transition is
to the subsequent (square) state, whereas if player 2 plays C, the transition is to the
next triangle state.

. . . •⇒•⇒. . .⇒•⇒•⇒•⇒•︸ ︷︷ ︸⇒�⇒�⇒�︸ ︷︷ ︸⇒△→�→△→�→△→�→△︸ ︷︷ ︸→�→. . .→�→. . .→�→. . .→�→•❄ ❄ ❄

✻

❄

k3 × (C,C) k1 × (D,D) k2 × (D,C)

Figure 5: The j’th C-block and D-block in P
j,H
1 .

18

3.3.4 Last step: Deviations.

By construction, the automaton P
j,H
1 is compatible with ω∗. In particular, the com-

plexity of ω∗ w.r.t. player 1 is k3 + 2k2 + 1 as stated in Lemma 5. We now add
transitions to detect deviations of player 2 as follows: all transitions that were not
defined in steps 1-3 lead to state 1.

Only re-used states accept both actions of player 2; the other states accept only
the action that is indicated by ω∗. Because a punishment phase of length k3 begins in
state 1, any deviation in a non re-used state is followed by a severe punishment. In the
next subsection we define the mixed automaton that player 1 uses. The parameters
j and H will be chosen randomly, so that to profit by deviation, player 2 will have to
learn j or H , and such a learning process requires a large memory.

3.3.5 Mixed strategy

We now define the mixed automaton M1 = M1(k) for player 1. For every n, 1 ≤ n ≤
k2, define

Ĥn = {1, 1 + n, 1 + 2n, 1 + 3n, . . . , 1 + k2n},

and
Hn = {k3 + 2(n− 1)k + k + k1 + h : h ∈ Ĥn}.

Thus, Hn contains k2 states in the n’th D-block, that are equally spaced, and the dis-
tance between each two adjacent states is n. Because k0+(k0)

2 ≤ k, there are enough
states in the D-block to accommodate this construction, and the two conditions (D1)
and (D2) (in page 18) are satisfied.

Let J = {j1, j2, . . . , jk2} be a collection of k2 different prime numbers in the range
{k2 + 1, k2 + 2, . . . , k − k1}, which exist by the choice of k. Let M1 be the mixed
automaton of player 1 that assigns a probability 1

k2
to each of the pure automata

P
jl,Hjl

1 .

3.4 An automaton M2 for player 2

In this section we describe an analog construction to the one we presented in section
3.3, for a mixed automaton of player 2. We construct a family of pure automata
for player 2, all of size k3 + 2k2 + k + 1, and all compatible with ω∗ for player 2.
As for player 1, the automata in the family depend on two parameters, an integer
j ∈ {1, 2, . . . , k − 1} and a set H of integers.

19

3.4.1 Step 1: Implementing the prefix of length k3 + 2k2 + k + 1 of ω∗.

We start by implementing the prefix of length k3 + 2k2 + k + 1 of ω∗ by a naive
automaton with k3 + 2k2 + k + 1 states. The prefix is:

ω4 = k3 × (D,D) +

k−1∑

n=0

(k × (C,C) + k × (D,D)) + (k + 1)× (C,C),

and it contains the punishment phase and the babbling phase. As for player 1,
we define an automaton that implements each action pair in one state. Let Q =

{1, 2, . . . , k3 + 2k2 + k + 1} be the set of states of the automaton, and divide Q into
three sets, as follows:

1. QP = {1, 2, . . . , k3}: this is the set of all states that implement the punishment
phase.

2. QC =
⋃k−1

n=0{k
3+2nk+1, . . . , k3+2nk+k}∪{k3+2k2+1, · · · , k3+2k2+k+1}:

this is the set of all states in C-blocks.

3. QD =
⋃k−1

n=0{k
3 +2nk+ k+1, . . . , k3 +2nk+2k}: this is the set of all states in

D-blocks.

The output function is:

f(q) =

{
D q ∈ QP ∪QD,

C q ∈ QC ,

and the transition function is

g(q, f(q)) = q + 1, 1 ≤ q < k3 + 2k2 + k + 1.

3.4.2 Step 2: Implementing the next k1 actions in ω∗.

We now add the transitions that implement the next k1 actions in ω∗, which are
ω5 = k1 × (D,D). To this end, we re-use states in a D-block, and because after ω5

player 2 plays C in ω∗, we re-use the last k1 states that implement a D-block. So that
player 1 does not know which D-block is re-used, we use the j’th D-block. Formally,

g(k3 + 2k2 + k + 1, C) = k3 + 2kj − k1.

20

3.4.3 Step 3: Implementing the rest of ω∗.

We now add transitions that implement ω6 = k2×(D,C)+k3×(C,C)+
∑∞

n=1 ω0. To
implement the sequence k2×(D,C) we re-use states in a C-block that are determined
by the set H = {h1, h2, . . . , hk2}. The first re-used state must be the first state in the
j + 1’th C-block, and therefore h1 = k3 + 2kj + 1. Because the second part of ω3,
that is, k3× (C,C), should lead to the sequence k1× (D,D) that starts ω0, the states
that implement that part must be the last k3 states in Q; therefore we must have
hk2 = k3 + 2k2 + k + 1 − k3. Finally, we require that h1, h2, h3, . . . , hk2 are distinct
states in C-blocks.

Transitions are defined as follows:

g(hn, D) = hn+1, 1 ≤ n < k2, (6)

g(hk2, D) = hk2 + 1. (7)

3.4.4 Last step: Deviations.

Finally we add transitions to handle deviations in states that are not re-used. All
transitions that are not defined in steps 1-3, lead to state 1, so that such deviations
initiate a long punishment phase.

3.4.5 Mixed strategy of player 2.

The definition of the mixed strategy M2 = M2(k) is analog to that of M1. Recall that

Ĥn = {1, 1 + n, 1 + 2n, 1 + 3n, . . . , 1 + k2n},

and
Hn = {k3 + 2nk + k + k1 + h : h ∈ Ĥn},

and that J is a set of k2 distinct prime numbers in the range {k2 + 1, . . . , k − k1}.
Let M2 be the mixed automaton of player 1 that assigns a probability 1

k2
to each

of the pure automata P
jl,Hjl

2 .
In the following subsections we show that the sequence (M1(k),M2(k))k supports

x as a BCC equilibrium payoff. That is, we show that (1) the expected long-run
average payoff under (M1,M2) is

12√
k0
-close to x, (2) no player can profit by deviating

to a smaller automaton, and (3) we bound the amount a player can profit by deviation
to a larger automaton.

21

3.5 The expected payoff under (M1,M2) is close to x

By construction, the automaton M1 (resp. M2) is compatible with the play ω∗ for
player 1 (resp. player 2). Therefore, if the players use these automata the play is ω∗,
and the long-run average payoff is 12√

k0
-close to x.

Define

x∗ := γ(M1,M2) =
k1

k1 + k2 + k3
u(D,D)+

k2

k1 + k2 + k3
u(D,C)+

k3

k1 + k2 + k3
u(C,C).

3.6 (M1,M2) is a c-BCC Equilibrium

In this section we prove that (M1,M2) is a c-BCC-equilibrium, for every c that satisfies
3

k2×k3
< c < η

2k3
. We only prove the claims for player 2. The claims for player 1 can

be proven analogously. Below we denote the state of an automaton of player i at
stage t by qi(t).

For l ∈ {1, 2, . . . , k2} denote P
l
1 := P

jl,Hl

1 , so that the support ofM1 is P
1
1 , P

2
1 , . . . , P

k2
1 .

Let jl and H l be the parameters j and H of P l
1, for l = 1, 2, . . . , k2. Let P2 be an

arbitrary pure automaton that implements a strategy of player 2. We denote by ωl

the play that is generated under (P l
1, P2).

Suppose that the players use the automata (P l
1, P2). If P2 is not compatible with

ω∗ for player 2, then P l
1 restarts whenever a deviation from ω∗ is detected, and a

punishment phase starts. Denote by tln the stage at the n’th time in which P l
1 visits

state 1 when facing P2:

tl1 := 1,

tln+1 := min
{
t > tln : q1(t) = 1

}
, n ≥ 1.

By convention, the minimum of an empty set is ∞.
There are two scenarios where player 2 may improve her long-run average payoff.

One possibility is if there exists n such that tln < ∞ = tln+1. Then tln is the last stage
in which the automaton P l

1 restarts; in other words, this is the last stage in which a
punishment phase starts. If the play after stage tln is different than ω∗, it means that
player 2 plays as if she knows jl and/or H l, and she might use this information to
improve her payoff. Another possibility is that (tln)n∈N are finite and between two of
these stages the average payoff of player 2 is higher than x∗

2 (in fact, if (tln)n∈N are
finite then, so that player 2 improves her payoff, the average payoff between tln and
tln+1 − 1 should be higher than x∗ infinitely often).

This leads us to the following definition.

Definition 6 The automaton P2 fools the automaton P l
1 if either one of the following

conditions hold:

22

C1) There is n0 ∈ N such that tln0
< ∞ = tln0+1 and ωl

n0
6= ω∗.

C2) tln < ∞ for every n ∈ N, and there is n0 ∈ N such that the average payoff for
player 2 between stages tln0

and tln0+1 − 1 is strictly higher7 than x∗
2.

If condition C1 holds, we say that P2 fools P l
1 in stages {tln0

, tln0
+ 1, . . .}. If

condition C2 holds, we say that P2 fools P l
1 in stages {tln0

, tln0
+ 1, . . . , tln0+1 − 1}. In

both cases we set tl∗ = tln0
, and we say that at stage tl∗ player 2 starts to fool P l

1.
Denote by Rl = {q2(t

l
∗), q2(t

l
∗ + 1), · · · , q2(t

l
∗ + k3 − 1)} the k3 states that P2 visits at

the beginning of the period in which it fools P l
1. We will prove below that the sets

(Rl)
n
l=1 are disjoint, thereby bounding from below the size of any automaton of player

2 that obtains high payoff when facing M1.
Neither C1 nor C2 imply that the long-run average payoff under (P l

1, P2) is higher
than x∗

2. Yet, as the next lemma shows, the converse is true: if the long-run average
payoff of player 2 under (P l

1, P2) exceeds x
∗
2, then P2 must have fooled P l

1.

Lemma 7 If P2 does not fool P l
1 then γ2(P

l
1, P2) ≤ x∗

2.

Proof. Since both P l
1 and P2 are automata, the long-run average payoff of player

2 under (P l
1, P2) exists. Suppose first that tln < ∞ for every n ∈ N. Because P2 does

not fool P l
1, for every n ∈ N the average payoff of player 2 between stages tln and tln+1

is at most x∗
2, and therefore γ2(P

l
1, P2) ≤ x∗

2.
Suppose now that there is n0 ∈ N such that tln0

< ∞ = tln0+1. Because P2 does
not fool P l

1, we have ωl
n0

= ω∗, so that the long-run average payoff of player 2 after
stage tln0

is x∗
2, and the result follows.

Our goal is to relate the number of pure automata P l
1 that P2 fools to the size of

P2. In fact, we will prove that the size of P2 is at least k3 times the number of pure
automata P l

1 that P2 fools. To this end, we now prove that if P2 fools both P l1
1 and

P l2
1 , then Rl1 and Rl2 are disjoint: the automaton of player 2 uses different states to

fool each of the two automata.

Lemma 8 Let 1 ≤ l1 < l2 ≤ k2. If P2 fools both P l1
1 and P l2

1 , then Rl1 ∩ Rl2 = ∅.

The subtle definition of (jl, Hl)
k2
l=1 is the key ingredient in the proof of Lemma 8.

An immediate corollary of Lemma 8 is:

Corollary 9 Denote by L0 the number of pure automata P l
1 that P2 fools. Then

|P2| ≥ L0k
3.

7Observe that in this case tln0+1 ≥ tln0
+ k3. In fact, a stronger bound can be obtained.

23

Proof of Lemma 8.
Step 1: If P2 fools P l

1 then the states in Rl are distinct: |Rl| = k3.
At stage tl∗ the automaton P l

1 restarts; it expects the sequence k3 × (D,D) + k ×
(C,C), and none of the states {1, 2, . . . , k3 + 1} of P l

1 is re-used. Because this play
is coordinated, its complexity is k3 + 1, and therefore player 2 must use at least k3

distinct states to implement its prefix of length k3.
Step 2: If Rl1 and Rl2 are not disjoint, then q2(t

l1
∗ + k3 − 1) = q2(t

l2
∗ + k3 − 1): the

last state in Rl1 coincides with the last state in Rl2 .
Suppose that Rl1 and Rl2 are not disjoint, and assume that q2(t

l1
∗ + n1) = q2(t

l2
∗ +

n2). We argue that necessarily n1 = n2. Indeed, assume to the contrary that n1 < n2.
Because in the k3 stages that follow stage tl1∗ the automaton P l1

1 plays D, and in the
k3 stages that follow stage tl2∗ the automaton P l2

1 plays D, the automaton P2 receives
the same inputs (when facing P l1

1 after stage tl1∗ , and when facing P l2
1 after stage tl2∗),

so that it evolves in the same way: q2(t
l1
∗ + n1 + s) = q2(t

l2
∗ + n2 + s) for every s

that satisfies 1 ≤ s ≤ k3 − n2. Because P2 fools P l1
1 , the action P2 plays in state

q2(t
l1
∗ + n1 + k3 − n2 + 1) is D. Because P2 fools P l2

1 , the action P2 plays in state
q2(t

l2
∗ +n2+k3−n2+1) is C. But q2(t

l1
∗ +n1+k3−n2+1) = q2(t

l2
∗ +n2+k3−n2+1),

a contradiction.
Because in the first k3 stages after visiting stage 1, both P l1

1 and P l2
1 play in the

same manner (both output D), it follows that the evolution of P2 when facing either
P l1
1 or P l2

1 is the same. The claim follows.
Step 3: Rl1 ∩ Rl2 = ∅.

Assume to the contrary that Rl1 and Rl2 are not disjoint. Denote by (j1, H1) and
(j2, H2) the parameters (j,H) of P l1

1 and P l2
1 respectively. By Step 2, the last state

in Rl1 coincides with the last state in Rl2 . Both automata P l1
1 and P l2

1 continue in
the same way, until one of them observes a deviation, in which case it restarts.

Denote by tl1∗ +n the first stage after stage tl1∗ in which P2 deviates from ω∗ when
facing P l1

1 . Because Rl1 = Rl2 , the first stage after stage t
l2
∗ in which P2 deviates from

ω∗ when facing P l2
1 is tl2∗ + n. Because P2 fools both P l1

1 and P l2
1 , the state that P l1

1

visits in stage tl1∗ + n is a re-used state, as is the state that P l2
1 visits in stage tl2∗ + n.

Because the re-used states in P l1
1 are in the j1’th D-block, while the re-used states

in P l1
1 are in the j2’th D-block, the automata P l1

1 and P l2
1 are both in re-used states

only when they implement the action pairs (D,C), that is, in the second part of the
regular play ω0.

Let us now verify that P2 cannot fool both P l1
1 and P l2

1 . Because in a D-block
both automata P l1

1 and P l2
1 play D unless a deviation is detected and a punishment

phase starts, the evolution of P2, when facing either P l1
1 or P l2

1 is the same, as long as
these automata are in the D-block. It is therefore sufficient to show that there is no
sequence of actions of player 2 that differ from the play of ω∗ in D-blocks, and that
does not initiate a punishment phase when facing either P l1

1 or P l2
1 .

24

Because H1 (resp. H2) contains k2 numbers, equally spaced with distance j1
(resp. j2), the difference hr1 − hr2 of pairs of elements in H1 (resp. H2) is a multiple
of j1 (resp. j2). Because j1 and j2 are prime numbers larger than k2,the differences
generated by H1 are different than those generated by j2. It follows that the unique
two sequences of actions of player 2 that does not initiate a punishment phase neither
when facing P l1

1 in block j1 nor when facing P l2
1 in block j2 are (a) a repetition of k2

times C, and (b) a repetition of k − k1 times D. Because P2 deviates from ω∗, only
the sequence in (b) should be considered.

Now, in all blocks after block j1 (resp. j2), the automaton P l1
1 (resp. P l2

1) does
not re-use states. Because P2 fools both P l1

1 and P l2
1 , it must follow the play indicated

by these automata. However, because j1 6= j2, when the first of these two automata
reaches its last state, that automaton initiates a punishment phase if P2 plays D,
while the other initiates a punishment phase if P2 plays C. This implies that if P2

plays the sequence in (b), then it cannot fool both P l1
1 and P l2

1 , as desired.

Recall that the min-max value in pure strategies of both players is 1. Therefore,
min{x∗

1 − 1, x∗
2 − 1} > 0 is the minimal difference between the target payoff x∗ and

the min-max value. We now prove that player 2 cannot profit by deviating to an
automaton smaller than M2.

Lemma 10 Let η < x∗
2−1, and assume that k is sufficiently large so that 4

k2
+ 8

k
< η

2
.

Let P ′
2 be an automaton for player 2 with size smaller than k3 + 2k2 + k + 1. Then

γ2(M1, P
′
2)− c|P ′

2| ≤ γ2(M1,M2)− c|M2|, provided c < η

2k3
.

Proof. Because the complexity of ω∗ w.r.t. player 2 is k3 + 2k2 + k + 1, the play
under (P l

1, P
′
2) is not ω∗. By Lemma 8, and because the size of P2 is smaller than

2k3, the automaton P ′
2 can fool at most one of the automata (P l

1). Because it cannot
generate ω∗, any automaton which P2 does not fool restarts after at most k3+2k2+k

stages, so that the average payoff is at most k3

k3+2k2+k
+ 4 2k2+k

k3+2k2+k
. It follows that the

expected payoff γ2(M1, P
′
2) is at most

4
1

k2
+ 4

k2 − 1

k2

2k2 + k

k3 + 2k2 + k
+

k2 − 1

k2

k3

k3 + 2k2 + k
≤ 1 +

4

k2
+

8

k
.

Because the size of the automaton M2 is k3 + 2k2 + k + 1, the gain of reducing the
size of automaton from |M2| to |P ′

2| is at most c(k3 + 2k2 + k). So that player 2 does
profit by this deviation, we need to require that

x∗
2 ≥ 1 +

4

k2
+

8

k
+ c(k3 + 2k2 + k),

and therefore it is enough to require that

x∗
2 − 1 > η >

4

k2
+

8

k
+ c(k3 + 2k2 + k).

25

The right-hand side inequality holds provided

c <
η − 4

k2
− 8

k

k3 + 2k2 + k
,

so it is enough to require that c < η

2k3
.

We finally prove that player 2 cannot profit by deviating to an automaton larger
than M2.

Lemma 11 Let P ′
2 be a pure automaton such that γ2(M1(k), P

′
2) > x∗

2. Then γ2(M1, P
′
2)−

c|P ′
2| ≤ γ2(M1,M2)− c|M2|, provided c > 3

k3k2
.

Proof. Let L0 be the number of pure automata (P l
1) that P2 fools. Because

γ2(M1, P
′
2) > x∗

2 we have L0 ≥ 1. If P2 fools P l
1, player 2’s long-run average payoff is

at most 4, the maximal payoff in the game. If P2 does not fool P
l
1, player 1’s long-run

average payoff is at most x∗
2. The expected long-run average payoff of player 2 then

satisfies

γ2(M1, P
′
2) ≤ 4

L0

k2
+ x∗

2

k2 − L0

k2
< x∗

2 + 3
L0

k2
.

By Corollary 9 we have |P ′
2| ≥ L0k

3, and therefore

γ2(M1, P
′
2) < x∗

2 + 3
L0

k2
= x∗

2 + 3
L0k

3

k3k2
≤ x∗

2 + |P ′
2| ×

3

k3k2
.

Therefore, as soon as c > 3
k3k2

player 2 does not profit by this deviation.

To summarize, given a feasible and an individually rational payoff vector x∗, we
choose η ∈ (0,min{x∗

1 − 1, x∗
2 − 1}). Let c > 0 be sufficiently small, and let k = kc

satisfy 3
k3k2

< c < η

3k3
. Then the automata (M1(k),M2(k)) form a c-BCC equilibrium.

Since the size of the automata M1(k) and M2(k) are k
3+2k2+1 and k3+2k2+k+1,

if for each k ≥ 1 we set ĉk = 4
k3k2

, then 3
k3k2

< ĉk < η

2k3
and ĉkM1(k) and ĉkM2(k)

are both smaller than 10
k2
, which goes to 0 as k goes to infinity (and ĉk goes to 0). It

follows that x∗ is a BCC equilibrium payoff.

4 The General Case

In Section 3 we proved Theorem 4 for the Prisoner’s Dilemma. In the present section
we explain how the proof should be adapted to prove the result for arbitrary games.
In the play path ω∗, the punishment phase, as well as the regular play, are similar to
those in Section 3, and only the babbling phase significantly changes.

26

Assume w.l.o.g. that payoffs are bounded by 1, and let x ∈ F ∩ V . To rule out
trivial cases, assume that each player has at least two actions. The vector x is a
convex combination of all the entries in the payoff matrix

∣∣∣∣∣x−
∑

a∈A

αau(a)

∣∣∣∣∣ ≤ ε,

where (αa)a∈A are non-negative numbers summing to 1. In fact, by Caratheodory’s
Theorem, x is a convex combination of three entries in the payoff matrix. Instead of
handling separately each of the alternative configurations of these three entries, we
find it simpler to handle the general case.

Fix ε > 0, a natural number k0 > 1
ε
, and a natural number k. Let (ka)a∈A be a

collection of positive integers such that (a)
∑

a∈A ka = k0, and (b) |ka − αak0| ≤ 1.
Define the regular path

ω0 =
∑

a=(a1,a2)∈A

ka × (a1, a2).

Then the average payoff along ω0 is within ε of x.
For each i = 1, 2, denote by li = |Ai| the number of actions of player i, and by

Ai = {a1i , a
2
i , . . . , a

li
i } her actions. Assume w.l.o.g. that l1 ≤ l2, and that a1i is the

min-max strategy of player i against player 3− i.
The play path ω∗ is defined as follows:

ω∗ = k4 × (a11, a
1
2) +

(
k2∑

j=1

l1∑

m=1

k × (am1 , a
m
2)

)
+ (k + 1)× (a11, a

1
2)

+

(
k∑

j=1

l2∑

m=l1+1

k × (a11, a
m
2)

)
+ (a21, a

1
2) +

∞∑

j=1

ω0.

Both the punishment phase and the babbling phase are longer in this construction
than in the construction for the Prisoner’s Dilemma, yet the punishment phase is
much longer, to ensure that the payoff that results from a deviation is close to the
min-max value in pure strategies.

The complexity of ω∗ w.r.t. player 1 is k4 + k3l1 + 1. Indeed, as in Section 3, the

complexity of the prefix ω∗(1) = k4 × (a11, a
1
2) +

(∑k2

j=1

∑l1
m=1 k × (am1 , a

m
2)
)
+ (k +

1) × (a11, a
1
2) is k4 + k3l1 + 1, and to implement the rest of the play ω∗ player 1 can

re-use states that were used to implement ω∗(1). One can verify that the complexity
of ω∗ w.r.t. player 2 is k4 + k3l1 + (k + 1) + k2(l2 − l1). A similar construction of
automata M1 and M2 for the two players, that re-uses states to implement the rest
of ω∗, shows that x is a BCC equilibrium payoff.

27

References

[1] D. Abreu and A. Rubinstein. (1988) The structure of Nash equilibrium in repeated
games with finite automata, Econometrica 56, 1259-1281.

[2] J. Banks, and R. Sundaram (1990) Repeated games, finite automata and com-
plexity, Games and Economic Behaviour, 2, 97-117.

[3] E. Ben Porath, (1993), Repeated games with finite automata, Journal of Economic
Theory, 59, 17-32.

[4] K. Chatterjee, and H. Sabourian (2000), Multiperson bargaining and strategic
complexity, Econometrica, 68, 1491-1509.

[5] K. Chatterjee, and H. Sabourian (2008), Game Theory and Strategic Complexity,
in Encyclopedia of Complexity and System Science, Editor-in-Chief Robert A.
Meyers, Springer.

[6] D. Gale, and H. Sabourian, (2005) Complexity and competition, Econometrica,
73, 739-770.

[7] Halpern J.Y. and Pass R. (2008) Game Theory with Costly Computation,
preprint.

[8] E. Kalai (1990) Bounded Rationality and Strategic Complexity in Repeated
Games, in Game Theory and Applications, eds. Ichiishi, Neyman and Tauman,
San Diego: Academic Press, 1990, 131-157.

[9] E. Maenner (2008) Adaptation and complexity in repeated games, Games and
Economic Behavior, 63, 166-187.

[10] A. Neyman, (1985) Bounded complexity justifies cooperation in the finitely-
repeated Prisoners’ Dilemma, Economics Letters, 19, 227-229.

[11] A. Neyman, (1997) Cooperation, repetition and automata, in Cooperation:
Game-Theoretic Approaches, NATO ASI Series F, Vol. 155, S. Hart and A. Mas-
Colell (eds.), Springer-Verlag. 233 255.

[12] A. Neyman (1998) Finitely repeated games with finite automata, Mathematics
of Operations Research, 23, 513-552

[13] A. Neyman, and D. Okada (1999) Strategic entropy and complexity in repeated
games. Games and Economic Behavior, 29, 191-223.

28

[14] A. Neyman, and D. Okada (2000) Repeated games with bounded entropy. Games
and Economic Behavior, 30, 228-247.

[15] A. Neyman, and D. Okada, (2000) Two-person repeated games with finite au-
tomata. International Journal of Game Theory, 29, 309-325.

[16] M. Piccione (1992) Finite automata equilibria with discounting, Journal of Eco-
nomic Theory, 56, 180-193.

[17] M. Piccione, and A. Rubinstein (1993) Finite automata play a repeated extensive
game, Journal of Economic Theory, 61, 160-168.

[18] A. Rubinstein (1986) Finite automata play the repeated prisoner’s dilemma,
Journal of Economic Theory, 39, 83-96.

[19] A. Rubinstein, (1998) Modeling bounded rationality, MIT Press, Cambridge,
Mass.

[20] H. Sabourian, (2003) Bargaining and markets: complexity and the competitive
outcome, Journal of Economic Theory, 116 , 189-228.

[21] H.A.Simon, (1972) Theories of bounded rationality, in “Decision and Organiza-
tion” (C.B. McGuire and R. Radner, Eds), North- Holland, Amsterdam.

[22] H.A. Simon,(1978) On how to decide what to do, Bell Journal of Economics, 9,
494-507.

[23] E. Zemel (1989) Small talk and cooperation: A note on bounded rationality,
Journal of Economic Theory, 49, 1-9.

29

	1 Introduction
	2 The Model and the Main Result
	2.1 Repeated Games
	2.2 Automata
	2.3 Strategies Implemented by Automata
	2.4 Bounded Computational Capacity Equilibrium
	2.5 The Main Result
	2.6 Comments and Discussion
	2.6.1 On the definition of BCC equilibria
	2.6.2 BCC equilibria and Nash equilibria
	2.6.3 A more general definition of a BCC equilibrium
	2.6.4 More than two players
	2.6.5 BCC equilibria in one-shot games

	3 BCC Equilibria in the Prisoner's Dilemma
	3.1 The Equilibrium Play
	3.2 The complexity of *
	3.2.1 The complexity of * w.r.t. player 1 is at least k3 + 2k2 + 1
	3.2.2 The complexity of * w.r.t. player 2 is at least k3 + 2k2 + k+1

	3.3 An automaton M1 for player 1
	3.3.1 Step 1: Implementing the prefix of * of length k3+2k2+1.
	3.3.2 Step 2: Implementing the next k+k1 action pairs.
	3.3.3 Step 3: Implementing the rest of *.
	3.3.4 Last step: Deviations.
	3.3.5 Mixed strategy

	3.4 An automaton M2 for player 2
	3.4.1 Step 1: Implementing the prefix of length k3+2k2+k+1 of *.
	3.4.2 Step 2: Implementing the next k1 actions in *.
	3.4.3 Step 3: Implementing the rest of *.
	3.4.4 Last step: Deviations.
	3.4.5 Mixed strategy of player 2.

	3.5 The expected payoff under (M1,M2) is close to x
	3.6 (M1,M2) is a c-BCC Equilibrium

	4 The General Case

