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1 Introduction

Consider the classical problem of a Bertrand duopoly, i.e., two firms set prices to

compete for customers. A difficulty in modelling this situation is that when the firms

set the same price, customers are indifferent with respect to where to buy, so that

it is unclear how to specify the firms’ profits (payoffs). Games with an endogenous

sharing rule, introduced by Simon and Zame (1990), avoid this difficulty by specifying

players’ payoffs by a correspondence rather than by a function, thus taking a broad

stand on how to specify players’ payoffs.

When analyzing a game with an endogenous sharing rule, one may be interested

in obtaining the existence of a strategy profile that is an equilibrium for each possible

sharing rule, henceforth, an invariant equilibrium. Indeed, whenever such invariant

equilibrium exists, the choice of the sharing rule becomes immaterial. Specifically, the

predictions provided by such invariant equilibrium are robust to the actual sharing

rule that happens to occur, e.g. the actual choice made by consumers regarding which

of the two duopolists to buy from.

An appealing scenario occurs when each strategy that is an equilibrium for some

sharing rule is an invariant equilibrium, henceforth, when the equilibrium set is invari-

ant. In this case, any equilibrium is robust to the actual sharing rule that happens to

occur and, based on this robustness notion, there is no need to select amongst the set

of equilibria. Furthermore, as pointed out by Lebrun (1996) and Jackson and Swinkels

(2005), the invariance of the equilibrium set is also important from a practical view-

point. Indeed, it allows us to analyze the equilibrium set of the game defined by a

sharing rule we may be interest in by analyzing the equilibrium set of the game defined

by any other (simpler, easier to analyze) sharing rule. In particular, in the presence

of incomplete information, it is often easier to establish the existence of equilibrium

for some type-independent sharing rule by first showing that some type-dependent

sharing rule has an equilibrium and then appeal to the invariance of the equilibrium

set.

In this paper, we establish results concerning the invariance of the equilibrium set

for general games with an endogenous sharing rule. Our first key condition, called

“virtual continuity,” roughly says that each player can, with a probability close to

one, avoid points at which the payoff correspondence is multi-valued while virtually
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achieving the same payoff given the strategies of the other players, regardless of the

particular sharing rule which is in force.1 We show that, under this condition, the

equilibrium set coincides with the set of invariant equilibrium in the class of games

defined by efficient sharing rules. More precisely, any strategy that is an equilibrium

of the game defined by some sharing rule is also an equilibrium in the game defined by

any efficient sharing rule. This means that for equilibrium analysis of virtually contin-

uous games with an endogenous sharing rule, one may focus on efficient sharing rules.

In this light, our result has the interesting interpretation that, in equilibrium, inde-

terminacies are resolved efficiently. Moreover, as we illustrate using simple Bertrand

examples, this result is also useful to compute the equilibrium set of games with an

endogenous sharing rule.

Our second key condition, called “strong indeterminacy,” roughly requires that in-

determinacies are not eliminated by focusing on efficient sharing rules. More precisely,

if a player has, at some action profile, more than one possible payoff, then there are

at least two efficient payoff profiles at that action profile giving different payoffs to

that player. Our main result states that each game with an endogenous sharing rule

satisfying virtual continuity and strong indeterminacy has an invariant equilibrium

set.

The intuition for our results is as follows. First, virtual continuity implies that

each player’s value function (i.e. the function assigning to each strategy profile of the

other players the supremum of the payoffs he can achieve) is the same for all sharing

rules. Second, any equilibrium for some sharing rule remains an equilibrium for any

efficient sharing rule. This is so because would some player’s payoff decrease if the

former sharing rule is replaced by the latter, then, by efficiency, some other player’s

payoff would increase. But this is impossible because, in equilibrium, the payoff of any

player must be equal to the payoff as determined by the value function at the strategy

profile of the other players, and, by the first point, the value function of any player

is the same for all sharing rules. From this we get the invariance of the equilibrium

set provided that the set of efficient sharing rules gives the same indeterminacy set

for each player as the set of all sharing rules. But this is just the condition of strong
1Virtual continuity generalizes analogous conditions that appeared in Dasgupta and Maskin

(1986a, Theorem 5), Jackson and Swinkels (2005, Lemma 7) and Bagh (2010, Theorem 4.2).
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indeterminacy.

Jackson and Swinkels (2005) have established the invariance of the equilibrium

set for a specific setting of private-value auctions. Our contribution is to extend this

conclusion to a general framework. The generality of our approach allows us to ob-

tain new equilibrium invariance results for Bertrand competition with convex costs

(along the lines of Dasgupta and Maskin (1986b) and Maskin (1986)), for electoral

competition (as in Duggan (2007)) and contests (as in Moldovanu and Sela (2001)).

The paper is organized as follows. In Section 2 we consider a simple motivating

example to illustrate our results. In Section 3 we present our main results. Section 4

contains applications of our results. In Section 5 we present extensions of our results,

in particular to Bayesian contexts. The proof of our results are in Section A.5 of the

Appendix.

2 A motivating example

Consider a standard Bertrand duopoly with zero costs and one commodity whose

demand is d(x) = 1 − x where x is the lowest price in the market. Each of the two

firms sets a price in the unit interval to attract costumers. If prices are different (i.e.

x1 ̸= x2), then the firm setting the lowest price, firm i say, receives a profit of (1−xi)xi

whereas the other firm receives a profit of zero. If x1 = x2, profits are indeterminate;

if θ denotes the fraction of the demand allocated to firm 1, then θ(1 − x1)x1 is the

profit of firm 1, and (1− θ)(1− x1)x1 is that of firm 2; θ is allowed to take any value

in [0, 1]. The situation can thus be described by an endogenous sharing rule with two

players (the two firms), each having as its action set the interval [0, 1], and with a

payoff correspondence Q : [0, 1]2 → R2 defined by setting, for each x ∈ [0, 1]2,

Q(x) =


(x1(1− x1), 0) if x1 < x2,

(0, x2(1− x2)) if x1 > x2,

{(x1θ(1− x1), x1(1− θ)(1− x1)) : θ ∈ [0, 1]} if x1 = x2.

It turns out that the discussion of how to specify payoff in this Bertrand duopoly

problem is immaterial for equilibrium analysis. Indeed, a particular way of specifying

payoffs amounts to choosing a (measurable) selection of the payoff correspondence

and, for any such choice, the resulting normal-form game has a unique equilibrium
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(both in pure and mixed strategies) where both firms set a price of zero. This is well-

known for the case of the equal-sharing rule defined by setting θ = 1/2 independently

of the price vector x (see, e.g. Kaplan and Wettstein (2000)) and it will follow from

our invariance result in the general case.

3 Invariance of the equilibrium set

3.1 Preliminaries

A game Γ = (N, (Xi)i∈N , Q) with an endogenous sharing rule is defined by a finite

set N of players, a compact metric space Xi of actions for each i ∈ N , and an upper

hemicontinuous (uhc in the sequel) payoff correspondence Q : X → RN with non-

empty compact values, writing X =
∏

i∈N Xi. The interpretation is that Q(x) is the

set of possible payoff vectors for the players when action profile x is played.

We consider mixed strategies. For each player i, we write Mi for the set of mixed

strategies available for him. The set Mi is just the set of Borel probability measures

on Xi. We write M =
∏

i∈N Mi for the set of all mixed strategy profiles. Given

σ = (σ1, . . . , σn) ∈ M , we write τσ for the corresponding product measure on X.

For each i ∈ N and xi ∈ Xi, δxi
denotes the Dirac measure at xi, i.e. the measure

assigning probability 1 to the singleton {xi}.
Let Γ = (N, (Xi)i∈N , Q) be an endogenous sharing rule game. A measurable selec-

tion of Q is a measurable function q : X → RN such that q(x) ∈ Q(x) for all x ∈ X.

Any such q corresponds to a particular sharing rule of players’ payoffs. We write

SQ for the set of all measurable selections of Q. For each q ∈ SQ, Gq = (Xi, qi)i∈N

is a normal-form game. For each i ∈ N and σ ∈ M , let q̄i : M → R be defined

by setting q̄i(σ) =
∫
X
qidτσ. The mixed extension of Gq is the normal-form game

Gq̄ = (Mi, q̄i)i∈N . A mixed strategy Nash equilibrium of Gq = (Xi, qi)i∈N is a pure

strategy Nash equilibrium of Gq̄. Let E(Gq) denote the set of mixed strategy Nash

equilibria of Gq. From now on, we abuse notation and write qi(σ) instead of q̄i(σ) for

each i ∈ N and σ ∈ M .

We say that σ ∈ M is an equilibrium of the game Γ with an endogenous sharing

rule if σ is a mixed strategy Nash equilibrium for some q ∈ SQ, i.e. σ ∈
∪

q∈SQ
E(Gq).
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We write E(Γ) for the set of all equilibria of Γ.2 For σ ∈ E(Γ), we say that σ is an

invariant equilibrium of Γ if σ is a mixed strategy Nash equilibrium for each q ∈ SQ

i.e. σ ∈
∩

q∈SQ
E(Gq). We write I(Γ) for the set of invariant equilibria of Γ.

Given x ∈ X, we say that a payoff vector r ∈ Q(x) is efficient if it is not dominated

by any other payoff vector r′ ∈ Q(x); formally, r ∈ Q(x) is efficient if r′ ∈ Q(x) and

r′ ≥ r implies r′ = r. We write Qeff for the correspondence which assigns to each

action profile x ∈ X the set of efficient payoff vectors. Thus, Qeff : X → RN is given

by setting

Qeff(x) = {r ∈ Q(x) : r is efficient}

for each x ∈ X. We write SQeff
for the set of all measurable selections of Qeff . Taking

q ∈ SQ such such that, for each x ∈ X, q(x) solves maxr∈Q(x)

∑
i∈N ri shows that

SQeff
̸= ∅; see Lemma 5 in Appendix A.1. For σ ∈ E(Γ), we say that σ is a Qeff-

invariant equilibrium of Γ if σ ∈
∩

q∈SQeff
E(Gq). Let Ieff(Γ) be the set of Qeff-invariant

equilibria.

For each i ∈ N , write πi for the projection of Rn onto the i-th copy of R. Let

Qi = πi ◦ Q and note that Qi is uhc with nonempty and compact values. Let Di be

the set of action profiles at which Qi is multi-valued, i.e.,

Di = {x ∈ X : #(Qi(x)) > 1}.

We say that Γ = (N, (Xi)i∈N , Q) is strongly indeterminate if #(πi ◦ Qeff(x)) > 1 for

each i ∈ N and x ∈ Di. In words, Γ is strongly indeterminate if whenever a player

has, at some action profile, more than one possible payoff, then there are at least two

efficient payoff vectors at that action profile giving different payoffs to that player.

Equivalently, Γ is strongly indeterminate if Di = Deff
i for each i ∈ N , where

Deff
i = {x ∈ X : #(πi ◦Qeff(x)) > 1}.

For each q ∈ SQ and i ∈ N , player i’s value function is the function vqi : M → R

defined by setting vqi(σ) = supσ′
i∈Mi

qi(σ
′
i, σ−i) for each σ ∈ M .

2The set {(q, σ) ∈ SQ×M : σ ∈ E(Gq)} is the set of solutions of Γ (see Simon and Zame (1990));

the projection of this set in M equals E(Γ).
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3.2 Virtual continuity

Our definition of virtual continuity is as follows. We say that an endogenous sharing

rule game Γ = (N, (Xi)i∈N , Q) is virtually continuous if for each q ∈ SQ, i ∈ N , ε > 0

and σ ∈ M there is a µi ∈ Mi such that

τ(µi,σ−i)(Di) < ε and qi(µi, σ−i) > qi(σ)− ε.

Note that, by Lemma 4 in Appendix A.1, Di is measurable for each i ∈ N , so

τ(µi,σ−i)(Di) is defined; recall from Section 3.1 that τ(µi,σ−i) denotes the joint prob-

ability measure when player i plays according to µi and the other players together

play according to σ−i. In words, Γ is virtually continuous if each player can, with

a probability close to one, avoid points at which his own payoff correspondence is

multi-valued while virtually achieving the same payoff given the strategies of the

other players, regardless of the particular sharing rule which is in force.

The Bertrand example in Section 2 is easily seen to be virtually continuous as

follows. First, for each i = 1, 2, player i’s payoff correspondence is multi-valued only

on a subset of the diagonal ∆ = {(t, t) : t ∈ [0, 1]}, i.e. Di ⊆ ∆. Second, for each

i = 1, 2, ε > 0 and x̄ ∈ Di, player i can obtain a payoff higher than maxQi(x̄) − ε

by deviating to any xi < x̄i sufficiently closed to x̄i (note that Q(0, 0) = {(0, 0)} and,

hence, (0, 0) ̸∈ Di; thus player i can lower its price at any x̄ ∈ Di). Example 1 below

shows that these two properties are indeed sufficient for virtual continuity.

Example 1. Consider an endogenous sharing rule game Γ = (N, (Xi)i∈N , Q) where

N = {1, 2}, X1 = X2 = [0, 1], and D1, D2 ⊆ ∆, writing ∆ = {(t, t) : t ∈ [0, 1]}.
Consider the following hypothesis. For each i = 1, 2, each ε > 0, and each x̄ ∈ Di,

there is a set Ci(x̄) ⊆ [0, 1] such that (i) x̄i is a condensation point of Ci(x̄) (i.e.

any neighborhood of x̄i contains uncountably many points of Ci(x̄)), (ii) Qi(x) >

maxQi(x̄)− ε for each x ∈ (Ci(x̄)× {x̄j})\{x̄}, where j ̸= i (writing (x2, x1) instead

of (x1, x2) if i = 2; note also that #(Qi(x)) = 1 for x ∈ X \Di, so the inequality in

(ii) is defined). Then virtual continuity holds (see Section A.5.1 for a proof).

Verifying virtual continuity in a particular game with an endogenous sharing rule

is potentially daunting as one needs to consider all possible selections of the payoff

correspondence. The next result may be helpful in this regard. Define mi : X → R,
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i ∈ N , by setting mi(x) = maxq∈Q(x) qi for each x ∈ X, which is possible because Q

takes non-empty compact values, and note that because Q is also uhc, mi is upper

semicontinuous, therefore measurable. Lemma 1 states that, to show that Γ is virtually

continuous, it is sufficient and necessary to verify the conditions in the definition of

virtually continuity for mi, i ∈ N .

Lemma 1. Let Γ = (N, (Xi)i∈N , Q) be a game with an endogenous sharing rule. Then

Γ is virtually continuous if and only if, for each i ∈ N , ε > 0 and σ ∈ M there is a

µi ∈ Mi such that

τ(µi,σ−i)(Di) < ε and mi(µi, σ−i) > mi(σ)− ε.

See Section A.5.2 for a proof of this lemma.

An important implication of virtual continuity is that, in any endogenous sharing

rule game Γ = (N, (Xi)i∈N , Q) satisfying it and for every player, the value functions

defined from the elements of SQ all agree.

Lemma 2. If Γ = (N, (Xi)i∈N , Q) is virtually continuous, then vqi = vq′i for each

q, q′ ∈ SQ and i ∈ N ; in particular, if σ ∈ E(Gq), then σ ∈ E(Gq′) if and only if

qi(σ) = q′i(σ) for each i ∈ N .

This lemma holds because given some strategy profile σ yielding a payoff close to

the supremum of what a player i can obtain under a payoff function q ∈ SQ given

σ−i, there is strategy µi for player i with the following properties: First, (µi, σ−i) also

gives a payoff close to the supremum of what a player i can obtain under a payoff

function q and, second, the payoff of (µi, σ−i) under q is roughly the same as under

any other payoff function q′ ∈ SQ because, with a probability close to one, (µi, σ−i)

avoids points at which his own payoff correspondence is multi-valued (see Section

A.5.3 for a more detailed proof).

Section A.2 contains additional discussion on virtual continuity.

3.3 Structure of the equilibrium set

The importance of virtual continuity for the invariance of the equilibrium set of a

game with an endogenous sharing rule started to appear in the Lemma 2 above as it

establishes the invariance of the value functions of each player. While this property is
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not enough for the invariance of the equilibrium set, it already implies that all efficient

selections have the same equilibrium set. Moreover, as this common equilibrium set

turns out to be the entire equilibrium set, our first result in this section provides a

characterization of equilibria in virtually continuous games.

Theorem 1. If Γ = (N, (Xi)i∈N , Q) is virtually continuous, then E(Γ) = Ieff(Γ).

As the proof of this theorem is short and illustrative for our condition of virtual

continuity, it is presented here.

Proof of Theorem 1. Clearly Ieff(Γ) ⊆ E(Γ). For the reverse inclusion, let q ∈ SQ,

σ ∈ E(Gq) and q̂ ∈ SQeff
. Then τσ({x ∈ X : q̂i(x) > qi(x)}) = 0 for all i ∈ N . Indeed,

pick any i ∈ N and write F = {x ∈ X : q̂i(x) > qi(x)}. Suppose that τσ(F ) > 0. Set

q̃ = q̂1F + q1X\F . Then q̃ ∈ SQ and q̃i(σ) > qi(σ). Hence, by Lemma 2,

vqi(σ−i) = vq̃i(σ−i) ≥ q̃i(σ) > qi(σ),

contradicting the assumption that σ is an equilibrium for q. Thus τσ(F ) = 0.

Suppose now that there is an i ∈ N such that τσ({x ∈ X : q̂i(x) < qi(x)}) > 0. As

q̂ ∈ SQeff
, there must then be a j ∈ N such that τσ({x ∈ X : q̂j(x) > qj(x)}) > 0. But

this is impossible by what has been shown in the previous paragraph.

It follows that for all i ∈ N , τσ({x ∈ X : q̂i(x) ̸= qi(x)}) = 0. By Lemma 2, we

conclude that σ is an equilibrium for q̂.

A simple application of Theorem 1 can be made in the context of the equilibrium

existence result for endogenous sharing rule games established by Simon and Zame

(1990). Recall that in this latter result, the payoff correspondence is required to take

convex values, and that an equilibrium needs to exist just for some selection which

cannot be specified. In both of these aspects, Theorem 1 can be used to get an

improvement if virtual continuity holds.

Theorem 2. If Γ = (N, (Xi)i∈N , Q) is virtually continuous, then E(Γ) ̸= ∅; in fact,

E(Gq) ̸= ∅ for every q ∈ SQeff
.

The point of Theorem 2 is that virtually continuity dispenses the need for the

payoff correspondence to have convex values, as detailed in the following remark (see

Section A.5.4 for a proof of Theorem 2).
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Remark 1. None of our results requires the payoff correspondence to take convex

values. Actually, under our condition of virtual continuity, convexifying payoffs does

not alter the equilibrium set, and also not the invariant equilibrium set. Indeed, let

Γ = (N, (Xi)i∈N , Q) be a virtually continuous game and define Γ′ = (N, (Xi)i∈N , Q
′)

by letting Q′(x) be the convex hull of Q(x) for each x ∈ X. As shown in the proof

of Theorem 2, Γ′ is virtually continuous and SQeff
∩ SQ′

eff
̸= ∅; this, together with

Theorem 1, implies that E(Γ) = E(Γ′). Since SQ ⊆ SQ′ , it follows that I(Γ′) ⊆ I(Γ).

For the converse, let σ ∈ I(Γ). Let q ∈ SQ′ and i ∈ N . Let q ∈ SQ ∩ SQ′ be such

that q
i
(x) = minr∈Q(x) ri = minr∈Q′(x) ri for each x ∈ X. Then qi(σ) ≥ q

i
(σ). By

Lemma 2, applied in Γ′, vq
i
(σ) = vqi(σ). As σ ∈ I(Γ), vq

i
(σ) = q

i
(σ). It follows that

qi(σ) = vqi(σ). As i ∈ N is arbitrary, σ ∈ E(Gq). As q ∈ SQ′ is arbitrary, σ ∈ I(Γ′).

Remark 2. Instead of appealing to Simon and Zame (1990) and our invariance result

Theorem 1, Theorem 2 can also be proved by using Reny (1999, Corollary 5.2). Indeed,

give M the narrow topology. Then virtual continuity implies that, for every q ∈ SQ,

the mixed extension of Gq is payoff secure; see Lemma 9 in the Appendix. Moreover,

if q ∈ SQ is such that q(x) solves maxr∈Q(x)

∑
i∈N ri for each x ∈ X (see Lemma 5),

then the mixed extension of Gq is reciprocal upper semicontinuous; see Reny (1999,

Proposition 5.1). Thus, by Reny (1999, Corollary 5.2), the mixed extension of Gq

is better-reply secure and has an equilibrium (see Reny (1999) for the definitions of

better-reply security and reciprocal upper semicontinuity).

Heading towards invariance of the equilibrium set, we next provide a characteriza-

tion of invariant equilibria which we will use in our main result. This characterization

has interest in its own right as it shows which equilibria are invariant and which ones

are not.

Theorem 3. If Γ = (N, (Xi)i∈N , Q) is virtually continuous, then

I(Γ) = {σ ∈ E(Γ) : τσ(Di) = 0 for all i ∈ N} .

Theorem 3 shows that invariant equilibria are precisely those equilibria that assign

zero probability to the indeterminacy set of each player (see Section A.5.5 for its

proof). Indeed, any such equilibrium σ yields the same payoff for all q ∈ SQ and, thus,

it is an invariant equilibrium by Lemma 2. Conversely, any invariant equilibrium σ
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yields the same payoff for any player and any q ∈ SQ (equal to the player’s value of

the common value function at σ) and this is possible only if σ assigns zero probability

to the indeterminacy set of each player.

We now address the question of when E(Γ) = I(Γ). Having this equality is of

interest because it implies that any selection of the payoff correspondence can be used

to find an equilibrium for any other selection. A sufficient condition for having E(Γ) =

I(Γ) is that Γ be strongly indeterminate in addition to being virtual continuous.

Theorem 4. Let Γ = (N, (Xi)i∈N , Q) be virtually continuous. Then the following

holds:

1. If σ ∈ E(Γ) then τσ(D
eff
i ) = 0 for all i ∈ N .

2. If Γ is strongly indeterminate, then I(Γ) = E(Γ).

The first part of Theorem 4 is analogous to Theorem 3: Any equilibrium is, by

Theorem 1, a Qeff-invariant equilibrium, and any Qeff-invariant equilibrium σ yields

the same payoff for any player and any q ∈ SQeff
(equal to the player’s value of the

common value function at σ); this is possible only if σ assigns zero probability to the

indeterminacy set of each player. (The proof of this latter fact is more involved here

because, unlike Q, Qeff need not be uhc with compact values; see Section A.5.6 for a

proof of Theorem 4.) It is then clear that I(Γ) = E(Γ) holds whenever Di = Deff
i for

each player i — but this is precisely the requirement of strong indeterminacy.

A simple class of games with an endogenous sharing rule that satisfy strong inde-

terminacy is provided in the following example.

Example 2. If Γ = (N, (Xi)i∈N , Q) is a constant-sum endogenous sharing rule game

(i.e., for some c ∈ R,
∑

i∈N ri = c for all r ∈ Q(x) and all x ∈ X) then Q = Qeff and

thus Γ is strongly indeterminate. Consequently, if such a Γ is virtually continuous,

then I(Γ) = E(Γ). Thus, in particular, if Γ is a two-person, constant-sum endogenous

sharing rule game which satisfies the hypothesis in Example 1, then I(Γ) = E(Γ).

Remark 3. In this remark we take a brief look at quasi-concave games. Recall that a

game Γ = (N, (Xi)i∈N , Q) is quasi-concave if, for each i ∈ N , Xi is a convex subset of

an Euclidean space (or, more generally, of a locally convex topological vector space)

and there is a q ∈ SQ such that, for each i ∈ N and x−i ∈ X−i, the function xi 7→
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qi(xi, x−i) is quasi-concave. Identify, for each i ∈ N , Xi with the set of Dirac measures

at the points of this space. Using Bich and Laraki (2017, Theorem 3.4) it follows that

if Γ is quasi-concave, then X ∩ E(Γ) ̸= ∅. Moreover, if Γ is virtually continuous

and strongly indeterminate, then E(Γ) = I(Γ) by Theorem 4 and, therefore, X ∩
E(Γ) = X ∩ I(Γ). In words, invariance in mixed strategies implies invariance in

pure strategies. However, as it can be easily shown, the latter holds when virtually

continuity is required to hold only for pure strategies, in the following sense: For each

q ∈ SQ, i ∈ N , ε > 0 and x ∈ X, there is an x̄i ∈ Xi such that (x̄i, x−i) ̸∈ Di and

qi(x̄i, x−i) > qi(x)− ε.

The following two examples illustrate the scope of Theorem 4. To obtain an in-

variant equilibrium set, strong indeterminacy cannot be dispensed with (Example 3)

and it is not enough to assume that the requirements of virtual continuity hold for

only one measurable selection of the payoff correspondence (Example 4).

Example 3. Modify the example in Section 2 by taking X2 = [c, 1] with 0 < c < 1/2

(i.e., firm 2 has constant marginal cost c with 0 < c < 1/2), so that for each x ∈ X,

Q(x) =


(x1(1− x1), 0) if x1 < x2,

(0, (x2 − c)(1− x2)) if x1 > x2,

{(x1θ(1− x1), (x1 − c)(1− θ)(1− x1)) : θ ∈ [0, 1]} if x1 = x2.

Note that D1 = {x ∈ X : x1 = x2}.
It follows by Example 1 that Γ is virtually continuous. However, E(Γ) ̸= I(Γ).

Indeed, if q ∈ SQ is such that θ(c, c) = 1, then (δc, δc) ∈ E(Gq) ⊆ E(Γ). But

(δc, δc) /∈ E(Gq) if q ∈ SQ is such that θ(c, c) < 1. Thus (δc, δc) /∈ I(Γ).

This shows that virtual continuity is not enough to ensure E(Γ) = I(Γ), and thus

highlights the role of strong indeterminacy as a condition in Theorem 4. Indeed this

latter condition fails at (c, c), because (c, c) ∈ D1 but #(π1 ◦Qeff(x)) = 1.

Example 4. The following example (whose setup is as in Simon and Zame (1990))

illustrates why our notion of virtual continuity is required to hold for all selections

of the payoff correspondence, rather than just for one. Let N = {1, 2}, X1 = [0, 3],

X2 = [3, 4], and for each x ∈ X,

Q(x) =


{(

x1+x2

2
, 4− x1+x2

2

)}
if x ̸= (3, 3),

{(α, 4− α) : α ∈ [0, 4]} if x = (3, 3)
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Note that if q̄ ∈ SQ is such that q̄(3, 3) = (3, 1), then E(Gq̄) = {(δ3, δ3)}.
The function q̄ just specified is continuous, so the requirements of virtual conti-

nuity hold for q̄. Also, strong indeterminacy holds; in fact Q = Qeff . But I(Γ) = ∅.
Indeed, suppose (σ1, σ2) ∈ I(Γ). Then, in particular, (σ1, σ2) ∈ E(Γq̄), which implies

that (σ1, σ2) = (δ3, δ3). But (δ3, δ3) /∈ E(Gq̂) if q̂ ∈ SQ is such that q̂(3, 3) = (4, 0).

This contradiction shows that I(Γ) = ∅. Finally, note that q̂1(x1, 3) < 3 whenever

x1 < 3, i.e., whenever (x1, 3) ∈ X1\D1. Thus the requirements of virtual continuity

are not satisfied for q̂.

4 Applications

4.1 Bertrand-Edgeworth competition with convex costs

In this section we consider a Bertrand-Edgeworth oligopoly with convex costs. The

standard formalization of Bertrand-Edgeworth competition, according to which the

firm posting the lowest price serves the entire demand, leads to difficulties in this

setting. This is so because firms may prefer to tie to reduce the quantity produced.

But this desire of a firm to tie is rather artificial and a consequence of the assumption

that the firm posting the lowest price must serve the entire demand. In other words,

the standard formalization is not appropriate for the case of convex costs; rather, it

is more appropriate to allow firms to choose the quantity they want to supply. We

allow for this by allowing each firm to choose a price and the maximum production

level it is willing to produce. Our formalization is analogous to that of Dasgupta and

Maskin (1986b, Section 2.2) where each firm has an exogenously given capacity; here,

in contrast, we assume that the capacity of each firm is endogenous, i.e. it is chosen

by the firm. Our formalization is also analogous to that of Maskin (1986) where firms

choose both prices and quantities, and firms produce to order, i.e., produce only after

the entire price profile has been observed.

As in Dasgupta and Maskin (1986b), there is a market for a single commodity

with a continuum of consumers represented by the unit interval [0, 1]. Consumers are

identical, and the representative consumer’s demand for the commodity is a contin-

uous and decreasing function d : R+ → R+ such that there exists p̄ > 0 satisfying

d(p) > 0 for all p < p̄ and d(p) = 0 for all p ≥ p̄. There is a continuous, increasing
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and strictly convex cost function c : R+ → R+ with c(0) = 0.

There are n ∈ N firms. Each firm i ∈ N = {1, . . . , n} chooses a price pi and a

capacity si, the latter being the maximum amount the firm is willing to produce. Let

P = [0, p̄] and S = [0, d(0)].

To specify how the demand is allocated to firms, it is convenient to consider first

the case of two firms. In this case, if one firm offers a price p lower than the price p′

offered by the other firm, it serves the entire market up to its capacity s. A fraction
(d(p)−s)+

d(p)
= max{d(p)−s,0}

d(p)
of consumers is not served and each of these consumers de-

mands d(p′) from the firm offering the highest price. When both firms set the same

price, then the demand at the common price is split by each firm up to its capacity.

Formally, the quantities produced by firms are described by the correspondence

Φ : (P × S)2 → R2
+ defined by setting, for each (p, s) ∈ (P × S)2,

Φ(p, s) =


(min{d(p1), s1},min{ (d(p1)−s1)+

d(p1)
d(p2), s2}) if p1 < p2,{

ϕ ∈ R2
+ : ϕ1 + ϕ2 ≤ d(p1), ϕi ≤ si and

[d(p1)− ϕ1 − ϕ2][si − ϕi] = 0 for each i = 1, 2} if p1 = p2,

(min{ (d(p2)−s2)+

d(p2)
d(p1), s1},min{d(p2), s2}) if p1 > p2.

When prices are different, these quantities are the same as in both Dasgupta and

Maskin (1986b) and Maskin (1986) (with the proportional rationing rule in the latter).

There are, however, differences between our formalization and theirs when prices are

equal. First, we allow for indeterminacy, whereas they do not. Second, we rule out

the possibility that a firm produces less than its capacity when there is unfulfilled

demand (i.e. ϕi < si and ϕ1 + ϕ2 < d(p1) for some i is not possible); in contrast this

is allowed in both Dasgupta and Maskin (1986b) and Maskin (1986).

We now return to the general case of n firms. We start by defining the following

correspondence Φ: (P × S)n → Rn
+. Fix any (p, s) ∈ (P × S)n. Order the elements of

the set {p1, . . . , pn} so that p(1) < · · · < p(L(p)). Set N (l) = {i ∈ N : pi = p(l)} for each

l = 1, . . . , L(p). Define numbers D(l)(p, s), l = 1, . . . , L(p), recursively in the following

way. Set D(1)(p, s) = d(p(1)); given that D(l′)(p, s) has been specified for all l′ with

1 ≤ l′ ≤ l − 1 < L(p), set

D(l)(p, s) =
D(l−1)(p, s)−min{D(l−1)(p, s),

∑
j∈N(l−1) sj}

d(p(l−1))
d(p(l)).

14



Now set

Φ(p, s) =

{
ϕ ∈ Rn

+ : ϕi ≤ si, i = 1, . . . , n,

∑
j∈N(l)

ϕj = min
{
D(l)(p, s),

∑
j∈N(l)

sj

}
, l = 1, . . . , L(p)

}
.

The correspondence Φ is closed. To see this, let (pk, sk) be a sequence in (P ×S)n

with (pk, sk) → (p, s) ∈ (P × S)n, and (ϕk) a sequence in Rn with ϕk ∈ Φ(pk, sk)

for each k and ϕk → ϕ. We may assume that L(pk) is constant along the sequence

(pk), say L(pk) = K for all k. Then for each k, we have L(p) ≤ L(pk) = K, and we

can group the elements of {1, . . . , K} into non-empty disjoint sets A(1), . . . , A(L(p)) so

that for each 1 ≤ l ≤ L(p) and any choice of pk,i with pk,i = p
(h)
k for some h ∈ A(l),

k ∈ N, we have pk,i → p(l). It is straightforward to check, using induction, together

with continuity of d and continuity of taking minima, that for each l = 1, . . . , L(p),∑
h∈A(l)

∑
i∈N(h) ϕk,i → min

{
D(l)(p, s),

∑
j∈N(l) sj

}
(just recalculate the limits of the

sums
∑

h∈A(l)

∑
i∈N(h) ϕk,i). Consequently ϕ ∈ Φ(p, s).

Since the values taken by Φ are included in a common compact set, the fact that Φ

is closed implies that Φ is uhc and takes compact values. Clearly Φ takes non-empty

values.

The above specification of Φ allows firms to choose any capacity. However some

choices are easily seen to be redundant. In fact, for each i ∈ N , it suffices to consider

capacity choices that are solutions of the problem

max
0≤s≤d(pi)

pis− c(s).

Note that because c is strictly convex, a solution of this problem is unique. Let

s∗ : P → R describe this solution as a function on P . Note that s∗ is continuous, with

s∗(0) = s∗(p̄) = 0, and that, given pi ∈ P , if z ≥ 0 is a number with z ≤ s∗(pi), then

z′ = z is the profit maximizing quantity choice of i subject to z′ ∈ [0, z].

This discussion leads to consider the following game Γ with an endogenous sharing

rule. For each i ∈ N let the action set be P and define the payoff correspondence

Q : P n → Rn by setting, for each p ∈ P n,

Q(p) = {(p1ϕ1 − c(ϕ1), . . . , pnϕn − c(ϕn)) : ϕ ∈ Φ(p, s̃(p))},
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writing s̃(p) = (s∗(p1), . . . , s
∗(pn)). Then Q takes non-empty values. By the facts that

the map c is continuous and the correspondence Φ takes compact values, we see that

Q takes compact values, and in addition, using the facts that Φ is uhc, the maps d

and s∗ are continuous, and that s∗(p̄) = 0, we can see that Q is uhc.

To check strong indeterminacy, fix p ∈ P n and consider any i ∈ N . Let p(l) be

the element of the order p(1) < · · · < p(L(p)) such that pi = p(l). Suppose p ∈ Di.

Then pi > 0, s∗(pi) > 0, #(N (l)) > 1, and
∑

j∈N(l) s∗(pj) > D(l)(p, s̃(p)) > 0. These

facts together imply strong indeterminacy, because (see above) payoffs are strictly

increasing on [0, s∗(pj)].

As for virtual continuity, fix i ∈ N , pi ∈ P with pi > 0, and ε > 0. Note that

given any 0 ≤ p′i < pi and p−i ∈ P n
−i, and given any q ∈ SQ, for some numbers

0 ≤ α ≤ β ≤ 1 we have qi(pi, p−i) = pimin{αd(pi), s∗(pi)} − c(min{αd(pi), s∗(pi)})
and qi(p

′
i, p−i) = p′imin{βd(p′i), s∗(p′i)} − c(min{βd(p′i), s∗(p′i)}). Continuity of s∗, c,

and d, together with compactness of [0, 1], imply that there is a δ > 0 such that

whenever pi − δ < p′i < pi and α ∈ [0, 1], then

p′imin{αd(p′i), s∗(p′i)} − c(min{αd(p′i), s∗(p′i)})

> pi min{αd(pi), s∗(pi)} − c(min{αd(pi), s∗(pi)})− ε.

As payoffs are non-decreasing on [0, s∗(pi)], it follows that qi(p′i, p−i) > qi(pi, p−i)− ε

for all p−i ∈ P n
−i whenever pi− δ < p′i < pi. Consequently the hypotheses of Lemma 8

are satisfied. Thus virtual continuity holds.

By Theorems 2 and 4, we conclude that I(Γ) = E(Γ) ̸= ∅.

4.2 Electoral competition

We consider a location/voting model as in Duggan (2007, Section 6). The setting is

as follows. There are 2 players i = 1, 2 (e.g. political candidates), choosing locations

x1, x2, respectively, in a compact and convex subset A of Rm, m > 0, with nonempty

interior. When these location differ, then, for each i = 1, 2, the payoff is given by

ui(x1, x2) = ν({α ∈ A : ||α− xi|| < ||α− xj||, j ̸= i}),

where || · || denotes the Euclidean norm and ν is a measure on A which is absolutely

continuous with respect to (m-dimensional) Lebesgue measure. The interpretation is
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that there is a set of individuals whose location in A is distributed according to ν and

that each individual is attracted to the player located closest to him. (Note that as

long as x1 ̸= x2, absolute continuity of ν with respect to Lebesgue measure implies

that points a ∈ A with ∥a − x1∥ = ∥a − x2∥ don’t matter for the payoffs of the

two players.) Now if x1 = x2, there is no canonical way to determine payoffs; in fact,

perturbing such a situation can lead to different payoff sharings in the limit when the

perturbations vanish; see the example given in Section 2. It is therefore natural to

analyze this situation using a game with an endogenous sharing rule, rather than to

make an ad hoc specification of payoffs as in Duggan (2007), where it is assumed that

whenever players choose the same locations, payoffs are distributed in equal shares.

Without loss of generality, we assume that ν(A) = 1. Let S = {p ∈ Rm : ∥p∥ = 1}.
For each p ∈ S and each z ∈ A, let θ(p, z) = ν({a ∈ A : pa < pz}). Note that for

x1, x2 ∈ A with x1 ̸= x2, we can write u1(x1, x2) = θ
(

x2−x1

∥x2−x1∥ ,
1
2
(x1 + x2)

)
and

u2(x1, x2) = θ
(

x1−x2

∥x1−x2∥ ,
1
2
(x1 + x2)

)
. If x1, x2 ∈ A with x1 = x2 = z, let

Q(x1, x2) = {(r1, r2) : r2 = 1− r1, r1 = θ(p, z) for some p ∈ S}.

If x1, x2 ∈ A with x1 ̸= x2, let Q(x1, x2) = {u1(x1, x2), u2(x1, x2)}.

Lemma 3. (a) The correspondence Q is closed. (b) Virtual continuity is satisfied.

For a rough intuition for why virtual continuity holds, consider x ∈ D1 with

x1 ∈ int(A). Indeterminacies only arise when candidates choose the same policy, we

have x1 = x2. Letting p ∈ S be such that θ(p, x1) = maxQ1(x), player 1 satisfies the

requirements of virtual continuity provided in Example 1 by deviating to x1 − λp for

all sufficiently small λ > 0. Indeed, u1(x1 − λp, x2) = θ(p, x1 +
1
2
λp) → θ(p, x1) as

λ → 0. (See Section A.5.7 for a proof of Lemma 3).

Obviously, the game Γ we have discussed is a constant-sum game and thus satisfies

strong indeterminacy. It therefore follows from Lemma 3 and Theorems 2 and 4 that

I(Γ) = E(Γ) ̸= ∅,

Remark 4. (a) Contrary to the case m = 1, if m > 1 then (because S is connected

if m > 1) continuity of θ implies that the correspondence Q takes convex values.

In particular, because maxp∈S θ(p, z) ≥ 1/2 ≥ minp∈S θ(p, z) for each z ∈ A, equal

sharing is allowed when payoffs are indeterminate and m > 1. Equal sharing is also

allowed when m = 1 by convexifying payoffs as in Remark 1.
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(b) The correspondence Q is the smallest closed correspondence which includes

the map (u1, u2) (in the sense of set inclusion of the graphs). (See Section A.5.8 for a

proof).

Remark 5. The analysis of this section does not extend to the case of three or more

players. Indeed, suppose N = {1, 2, 3}, let Xi = [−1, 1] for each i ∈ N , write ν for

Lebesgue measure, and let Q : X → R3 be the smallest closed correspondence which

includes the map u : X ′ → R3, where X ′ = {x ∈ X : xi ̸= xj for each i ̸= j} and

ui(x) = ν({a ∈ [−1, 1] : |a− xi| < |a− xj| for all j ̸= i}).

Consider i = 1. There is a q ∈ SQ such that q1(0, 0, 1) = q1(0, 0,−1) = 1. Let

σ = (δ0, δ0,
δ1+δ−1

2
). Then q1(σ) = 1, and a simple calculation shows that for each

x1 ̸∈ {−1, 0, 1}, q1(δx1 , σ−1) ≤ 3/4. In light of Lemma 7 in Appendix A.2, it follows

that Γ is not virtually continuous.

5 Extension: Incomplete Information

In this section we extend our results to the case of incomplete information. Specif-

ically, we consider incomplete information games with indeterminate outcomes, as

introduced by Jackson, Simon, Swinkels, and Zame (2002), i.e., games where the as-

signment of payoffs to type/action profiles factors through a correspondence to some

space of possible outcomes. We will present two results. The first one can be in-

terpreted as assuming that the auctioneer knows the realizations of players’ types

and can use this information when implementing tie breaking rules. In Jackson and

Swinkels (2005), this case is called that of an “omniscient auctioneer.” In the second

one, which is a corollary of the first, we turn to the more realistic case where the

auctioneer does not have any information about players’ types.

A game with indeterminate outcomes is described as follows. There is a finite set

N = {1, . . . , n} of players. For each i ∈ N , there is a compact metric action space

Ai and a compact metric type space Ti. Write A =
∏

i∈N Ai and T =
∏

i∈N Ti. Type

profiles, i.e., elements of T , are chosen according to a (Borel) probability measure λ

on T ;3 write λi for the marginal measure on Ti, i ∈ N . As usual in the context of
3We use B(T ) and B(A) to denote the Borel σ-algebra of T and A, respectively.
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Bayesian games, it is assumed that λ is absolutely continuous with respect to the

product λ1×· · ·×λn. There is an outcome space Ω, assumed to be a compact metric

space. Players’ actions determine a set of possible outcomes via an uhc correspondence

Θ : A → Ω with nonempty and compact values. The payoffs (or utilities) of players

are determined by a continuous function u : T × graph(Θ) → RN .

The payoff correspondence Q : T × A → RN is now defined by setting

Q(t, a) = {u(t, a, ω) : ω ∈ Θ(a)}

for each (t, a) ∈ T × A. Note that Q is uhc and has nonempty and compact values.

Additional notation is as before: given i ∈ N , πi denotes the projection of RN on

the ith coordinate, and we write Qi = πi ◦ Q, qi = πi ◦ q for q ∈ SQ, and Di =

{(t, a) ∈ T × A : #(Qi(t, a)) > 1}.
Following Balder (1988), we describe a mixed strategy σi of player i by a Young

measure from Ti to Ai, i.e., a map from Ti to the space M(Ai) of probability measures

on Ai such that the map ti 7→ σi(ti)(B) is Borel-measurable for each Borel set B in

Ai.4 As in Section 3, Mi is the set of mixed strategies available for player i, now with

the interpretation as a space of Young measures. Again, we write M =
∏

i∈N Mi for

the set of all profiles of mixed strategies.

As for payoffs, consider any σ = (σ1, . . . , σn) ∈ M . For every t = (t1, . . . , tn) ∈ T

write σ(t) for the Borel measure on A defined by setting σ(t) = σ1(t1)× · · · × σn(tn).

Then the map t 7→ σ(t) is a Young measure from T to M(A).5 By Neveu (1965,

Proposition III.2.1) it follows that there is a uniquely determined probability measure

τσ on T×A such that τσ(E×B) =
∫
E
σ(t)(B) dλ(t) for each E ∈ B(T ) and B ∈ B(A).

Now, for any q ∈ SQ and i ∈ N , the integral
∫
T×A

qi(t, a) dτσ(t, a) is defined, because

qi is bounded and measurable, and by the generalized version of Fubini’s theorem (see

again Neveu (1965, Proposition III.2.1)) we have∫
T×A

qi(t, a) dτσ(t, a) =

∫
T

∫
A

qi(t, a) dσ(t)(a) dλ(t) .

Because, given any realization t ∈ T of possible type profiles, the payoff of player i is∫
A
qi(t, a) dσ(t)(a) (exactly as in the deterministic framework of the previous sections),
4In Milgrom and Weber (1985) such notion of a mixed strategy is called a behavioral strategy

and, as they note, is equivalent to the notion of a distributional strategy that they consider.
5To see that t 7→ σ(t)(B) is measurable for each B ∈ B(A), observe that this is true if B is a

product of Borel subsets Bi of Ti, i = 1, . . . , n, and use the monotone class theorem.
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we see that in the Bayesian framework considered now, the payoff of this player can be

written as
∫
T×A

qi(t, a) dτσ(t, a). Again, we use the expression qi(σ) as abbreviation.

As in Section 4.1 on Bertrand-Edgeworth competition, one may restrict players’

choices of strategies so as that these have certain dominance properties; see also

Example 6 below on Bertrand competition where each firm is restricted to set prices

above its marginal cost. This can be done by specifying, for each i ∈ N , an uhc

correspondence Φi : Ti → Ai, with non-empty closed values, and considering only

strategy profiles σ such that for each i ∈ N , σi(ti)(Φi(ti)) = 1 for λi-a.e. ti ∈ Ti.

Write Wi for the set of all σi ∈ Mi satisfying this restriction, and let W =
∏

i∈N Wi.

Given such correspondences Φi, it might be of interest to get an invariance result in

W . For this the following notion of virtual continuity is appropriate (see Example 6).

Writing Φ for the list (Φ1, . . . ,Φn), we say that a game is Φ-virtually continuous if

for any q ∈ SQ, i ∈ N , σ ∈ Mi × W−i, and ε > 0, there is a µi ∈ Wi such that

τ(µi,σ−i)(Di) < ε and qi(µi, σ−i) > qi(σ)− ε. Note that when Φi ≡ Ai for each i ∈ N ,

the requirements of Φ-virtual continuity are the same as those in Section 3; in general,

the difference is that now µi is required to be in Wi and that τ(µi,σ−i)(Di) < ε and

qi(µi, σ−i) > qi(σ)− ε need to hold only when σ−i ∈ W−i.

Finally, given Φ, some generality can be gained by relaxing strong indeterminacy

into the requirement that there be a Borel set K ⊆ T ×A such that both τσ(K) = 0

for each σ ∈ W and #(πi ◦ Qeff(t, a)) > 1 for each i ∈ N and each (t, a) ∈ Di \ K

(see Example 6). We will call this notion Φ-strong indeterminacy. If T is absent (i.e.

if T is a singleton), then this notion is the same as in Section 3 but here we may have

#(πi ◦Qeff(t, a)) = 1 for some i ∈ N and some (t, a) ∈ Di, for instance, in a null set

of types.

Theorem 5. Let Γ = (N, (Ti, Ai,Φi, ui)i∈N , λ,Θ) be a game with indeterminate out-

comes. Suppose that Γ is Φ-virtually continuous and Φ-strongly indeterminate. Then

E(Γ) ∩W = I(Γ) ∩W ̸= ∅.

The proof of Theorem 5 (in Section A.5.9) is analogous to that of Theorems 1–4,

the existence part being now more involved. In particular, the requirement in the

definition of Φ-virtual continuity that µi belongs to Wi plays a role in guaranteeing

that there is an equilibrium in W .
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Theorem 5 implies an invariance and existence result for selections of the payoff

correspondence which are determined by selections of the outcome correspondence,

i.e., for elements q of SQ which can be written in the form q(t, a) = u(t, a, θ(a)) for

some measurable selection θ of Θ. Write S∗
Q for the set of all q ∈ SQ which can

be written in this form. Let E∗(Γ) =
∪

q∈S∗
Q
E(Gq) and I∗(Γ) =

∩
q∈S∗

Q
E(Gq). As

I(Γ) ∩W ⊆ I∗(Γ) ∩W ⊆ E∗(Γ) ∩W ⊆ E(Γ) ∩W , just by definition, the following

result is an immediate consequence of Theorem 5.

Theorem 6. Let Γ = (N, (Ti, Ai,Φi, ui)i∈N , λ,Θ) be a game with indeterminate out-

comes. Suppose that Γ is Φ-virtually continuous and Φ-strongly indeterminate. Then

E∗(Γ) ∩W = I∗(Γ) ∩W ̸= ∅.

Such a result does not hold in general as shown by Jackson, Simon, Swinkels, and

Zame (2002). Thus the conditions of virtual continuity and strong indeterminacy are

important in Theorem 6.

Note, however, that, in contrast with both Jackson, Simon, Swinkels, and Zame

(2002) and Jackson and Swinkels (2005), Theorem 6 does not require players’ payoff

function to be affine in the outcome. Such feature is important as it allows one to

cover applications such as Bayesian version of the Bertrand-Edgeworth competition

setting of Section 4.1.

We remark that Theorem 6 is important because the type of a player may be his

own private information, and because with selections of the payoff correspondence

that are obtained via selections of the outcome correspondence no issues concerning

type revelation arise.

We illustrate Theorem 5 with two examples. In both of them the next theorem,

which provides a way to show that virtual continuity holds in a wide class of games

with indeterminate outcomes, is used.

Theorem 7. Fix ℓ ∈ N\{0} and let Γ = (N, (Ti, Ai,Φi, ui)i∈N , λ,Θ) be a game with

indeterminate outcomes such that Ai ⊆ Rℓ for all i ∈ N . For each i ∈ N , write

∆i =
{
a ∈

∏
j∈N

Aj : ai,h = aj,h′ for some j ∈ N \{i} and some 0 ≤ h, h′ ≤ ℓ
}
.

Suppose the following:

(1) Ai is convex and has a non-empty interior for each i ∈ N .
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(2) For each q ∈ SQ, i ∈ N , and σ ∈ Mi × W−i there is a σ′
i ∈ Wi such that

qi(σ
′
i, σ−i) ≥ qi(σ).

(3) Di ⊆ T ×∆i for each i ∈ N .

(4) For each i ∈ N and each ε > 0, there is a λi-null set Ci ⊆ Ti, a measurable map

fi : graph(Φi) → Ai and a correspondence Λi : graph(Φi) → Ai, with measurable

graph, such that for each (ti, ai) ∈ graph(Φi)∩((Ti\Ci)×fi(graph(Φi)) the follow-

ing hold : (i) fi(ti, ai) ∈ Φi(ti) and qi(ti, t−i, fi(ti, ai), a−i) ≥ qi(ti, t−i, ai, a−i) for

each q ∈ SQ and each (t−i, a−i) ∈ T−i×A−i, (ii) Λi(ti, ai) ⊆ Φi(ti), (iii) Λi(ti, ai)

is open, (iv) ai is a cluster point of Λi(ti, ai), and (v) for any a′i ∈ Λi(ti, ai) and

any (t−i, a−i) ∈ T−i ×A−i, if (ti, t−i, ai, a−i) ∈ Di, and (ti, t−i, a
′
i, a−i) /∈ Di, then

Qi(ti, t−i, a
′
i, a−i) > maxQi(ti, t−i, ai, a−i) − ε (recall : #Qi(ti, t−i, a

′
i, a−i) = 1 if

(ti, t−i, a
′
i, a−i) /∈ Di).

Then Γ is Φ-virtually continuous.

Theorem 7 is analogous to Example 1. Beside some technical conditions (such as

(1)), it requires, in (2) and (3), that each player i has a best-reply in Wi against

strategies profiles in W−i (which is, in fact, what is intended with Φi) and that his

payoff correspondence is multi-valued only when his actions equals, in some coordi-

nate, the action of some other player. Condition (4) requires each player i to have, at

each (ti, ai) with ai ∈ Φi(ti), a set of actions Λi(ti, ai) which he can use to avoid mul-

tiplicities while virtually guaranteeing the best possible payoff. The following remark

elaborates on condition 4 of Theorem 7, whose proof is in Section A.5.10.

Remark 6. We now clarify what is intended with condition (4)(i). Without this

condition, the restriction that (4) imposes is only the requirement that (ii)–(iv) be

satisfied at the same time as (v). Condition (4)(i) helps in this regard as it allows to

reduce the set of points at which conditions (ii)-(v) need hold. Note, in particular, that

(i) does not impose any restriction in addition to those imposed by (ii)-(v), because

one can always set fi(ti, ai) = ai for each i ∈ N and (ti, ai) ∈ graph(Φi).

As a first application of Theorem 5, we consider a general contest with incomplete

information.
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Example 5. Consider the following game with indeterminate outcomes which models

a contest as formalized in Moldovanu and Sela (2001). There are n contestants i =

1, . . . , n who compete for one of n prizes with values V1 ≥ V2 ≥ · · · ≥ Vn ≥ 0.6 The

allocation of prizes is determined by the contestants’ effort. For example, contestants

can be firms investing in R&D (their “effort”) and prizes be their share of total

demand.

Contestants simultaneously choose an effort level. Each contestant suffers a disu-

tility c(ti, ai) from his own effort ai, where ti ∈ T̃ denotes his ability, T̃ is a nonempty

compact subset of R+, and c : T̃ × R+ → R+ is continuous and satisfies c(ti, 0) = 0

for each ti ∈ T̃ . Abilities are drawn according to a probability measure λ on T̃ n,

which is absolutely continuous with respect to the product of its marginals, and each

contestant’s ability is his own private information. We assume that there is ā > 0

such that V1 < c(t, ā) for each t ∈ T̃ .7

For each i ∈ N , let Ti = T̃ and Ai = [0, ā]. When all contestants choose different

effort levels, then the first prize goes to the player with the highest effort, the second

prize goes to the player with the second highest effort and so on. In case of ties in effort

levels, randomization is used to determined the allocation of prizes. For example, if

players 1, 2 and 4 choose the highest effort level, then the first three prizes are

randomly allocated to players 1, 2 and 4. We let H be the set of allocations, i.e.

the set of 1-1 functions from N (players) to N (prizes). The outcome space Ω is the

set of probability measures on H. Some notation is needed to define the outcome

correspondence. Given a ∈ A, order the elements of the set {a1, . . . , an} so that

a(1) > · · · > a(L(a)). For each l = 1, . . . , L(a), set N
(l)
a = {i ∈ N : ai = a(l)} and

n
(l)
a = #(N

(l)
a ); furthermore, define J

(1)
a = {1, . . . , n(1)

a } and, for each 1 < l ≤ L(a),

J
(l)
a = {n(l−1)

a + 1, . . . , n
(l−1)
a + n

(l)
a }. Given a ∈ A, the set of feasible allocations is

denoted by H(a) and consists of those h ∈ H with the property that, for each i ∈ N ,
6The assumption that the number of prizes equals the number of contestants is without loss of

generality. Indeed, the case where there are p < n prizes, which is allowed in Moldovanu and Sela

(2001), is identified with Vj = 0 for all j = p+ 1, . . . , n.
7Moldovanu and Sela (2001) assume that T̃ = [m, 1] for some 0 < m < 1, c(ti, ai) = tiγ(ai)

where γ : R+ → R+ is strictly increasing and differentiable and satisfies γ(0) = 0. The existence of

ā then follows when γ is linear or convex. Note also that, unlike Moldovanu and Sela (2001), we do

not assume that types are independent with a continuous and strictly positive density.
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if 1 ≤ l ≤ L(a) is such that ai = a(l) then hi ∈ J
(l)
a . We then define Θ : A → Ω in this

context by setting, for each a ∈ A,

Θ(a) = {ω ∈ Ω : ωh = 0 for each h ̸∈ H(a)}.

The payoff of contestant i ∈ N equals the expected value of the prize received minus

his disutility of effort; thus contestant i’s payoff function ui : T ×A×Ω → R is given

by ui(t, a, ω) =
∑

h∈H(a) ωhVhi
− c(ti, ai).

Evidently, we have

∑
i∈N

ui(t, a, ω) =
n∑

i=1

Vi −
n∑

i=1

c(ti, ai)

for each t ∈ T , a ∈ A, and ω ∈ Θ(a). This implies easily that the game Γ just defined

is strongly indeterminate.

We next show that Γ is virtually continuous by using Theorem 7 with Φi(ti) = Ai

for each i ∈ N and ti ∈ Ti (so that Wi = Mi). It is clear that conditions (1)–(3) in

Theorem 7 hold. As for condition (4), fix i ∈ N and ε > 0. Let Ci = ∅ for each i ∈ N .

Let η ∈ (0, ā) be such that V1 < c(t, a) for each a > ā − η, and define fi by setting,

for each (ti, ai) ∈ Ti × Ai,

fi(ti, ai) =

ai if ai ≤ ā− η,

0 otherwise.

Then (i) of condition (4) in Theorem 7 holds. Note that fi(Ti × Ai) ⊆ [0, ā− η]. Let

δ ∈ (0, η) be such that |c(t, a) − c(t, a′)| < ε whenever |a − a′| < δ, a, a′ ∈ [0, ā] and

t ∈ T̃ , and define Λi by setting

Λi(ti, ai) =

(ai, ai + δ) if ai ≤ ā− η,

Ai otherwise

for each (ti, ai) ∈ Ti × Ai. Clearly Λi has a measurable graph and (ii)–(iv) of con-

dition (4) in Theorem 7 are satisfied. As for (v) of that condition, let ti ∈ Ti,

ai ∈ fi(Ti×Ai), a′i ∈ Λi(ti, ai), (t−i, a−i) ∈ T−i×A−i and suppose (ti, t−i, ai, a−i) ∈ Di

and (ti, t−i, a
′
i, a−i) ̸∈ Di. Let l ∈ {1, . . . , L(a)} be such that ai = a(l) and let

l′ ∈ {1, . . . , L(a′i, a−i)} be such that a′i = (a′i, a−i)
(l′). Since a′i > ai, we must have
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min J
(l′)
(a′i,a−i)

≥ max J
(l)
a . Therefore

Qi(ti, t−i, a
′
i, a−i)−maxQi(ti, t−i, ai, a−i)

= V
min J

(l′)
(a′

i
,a−i)

− V
max J

(l)
a

− c(ti, a
′
i) + c(ti, ai) > −ε,

as desired.

By Theorems 5 we conclude that E(Γ) = I(Γ) ̸= ∅.

The next theorem provides a way to see that strong indeterminacy holds in a wide

class of games with indeterminate outcomes.

Theorem 8. Let Γ = (N, (Ti, Ai,Φi, ui)i∈N , λ,Θ) be a game with indeterminate out-

comes. Suppose that, for some ℓ ∈ N\{0}, Ai, Ti ⊆ Rℓ for each i ∈ N . Let ∆i be as

in the statement of Theorem 7 and suppose (2) of Theorem 7 is satisfied. For each

i ∈ N and each 1 ≤ h ≤ ℓ, let fi,h : Ai,h → R be a measurable function such that

fi,h(ai,h) ≥ ti,h whenever ai ∈ Φi(ti). For each i ∈ N and each 1 ≤ h ≤ ℓ, write

∆i,h = {(t, a) ∈ T × A : ai,h = aj,h′ , j ̸= i, 0 ≤ h′ ≤ ℓ}.

Suppose the following:

(a) Q(t, a) = Qeff(t, a) if (t, a) ∈ T × A is such that ai ∈ Φi(ti) for each i ∈ N and

such that (t, a) ∈ ∆i,h implies fi,h(ai,h) > ti,h, i ∈ N , 1 ≤ h ≤ ℓ.

(b) λi({ti,h} × Ti,−h) = 0 for each i ∈ N , ti ∈ Ti, and 0 ≤ h ≤ ℓ.

Then Γ is Φ-strongly indeterminate.

Theorem 8, whose proof is in Section A.5.11, covers situations where Φ is defined

via thresholds fi,h(ai,h) ≥ ti,h (i ∈ N and 1 ≤ h ≤ ℓ), for instance as when one

considers, in auctions or Bertrand competition, the closure of the set of undominated

actions for each type of each player. Moreover, in such examples, the threshold also

means that player i strictly prefer to receive the hth object or to sell more of com-

modity h whenever fi,h(ai,h) > ti,h. Thus, if there is a tie between, say, players 1 and

2 due to a1,h = a2,h′ and both f1,h(a1,h) > t1,h and f2,h(a2,h′) > t2,h′ hold, then there

are multiple possible payoffs for players 1 and 2 but all of them are efficient.

Condition (a) of Theorem 8 covers situations of the above kind. It is not sufficent

for Φ-strong indeterminacy as Example 3 with an asymmetric complete-information
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Betrand duopoly shows. Condition (b) fills the gap by requiring marginal type distri-

butions to be atomless in each coordinate.

As a second application of Theorem 5, we consider a Bertrand oligopoly with

incomplete information.

Example 6. Consider a Bertrand oligopoly with linear cost functions and one com-

modity whose demand is d(x) where x is the lowest price in the market and d :

R+ → R+ is a continuous function. There is incomplete information regarding firms’

marginal costs. For some ā > 0 and each firm i ∈ N , let Ai = [0, ā] and Ti be a

compact subset of R+. Let λ be a probability measure on T which is absolutely con-

tinuous with respect to the product of its marginals and such that λi is atomless for

each i ∈ N . The outcomes of the game are the fractions of total demand that each

firm gets. Thus, we let the outcome space Ω be {ω ∈ [0, 1]n :
∑

i∈N ωi = 1}, with

the interpretation that ωi ∈ [0, 1] is the fraction of total demand that firm i satisfies,

i ∈ N . The natural choice of the outcome correspondence Θ : A → Ω in the context

is given by setting, for each a ∈ A,

Θ(a) =

{
ω ∈ Ω : ωi > 0 only if ai = min

j∈N
aj for each i ∈ N

}
.

The payoff functions ui : T × A× Ω → R are then given by

ui(t, a, ω) = ωid

(
min
j∈N

aj

)
(ai − ti)

for each i ∈ N . Finally, let Φi(ti) = {ai ∈ Ai : ai ≥ ti}, i.e. Φi(ti) is the set of prices

above marginal cost, which we assume to be nonempty.

To see that the game Γ just defined is virtually continuous, we check that the

hypotheses of Theorem 7 are satisfied. Clearly conditions (1) and (3) of that theorem

are satisfied. As for condition (2), without loss of generality consider player 1. Fix

q ∈ SQ and σ ∈ M . By Lemma 11 there is a measurable map g : T1 → A1 such

that q1(δg, σ−i) ≥ q1(σ). Define h : T1 → A1 by setting h(t1) = max{g(t1), t1}. Then

δh ∈ W1. Moreover, we have q1(t1, t−1, h(t1), a−1) ≥ q1(t1, t−1, g(t1), a−1) for each
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(t1, t−1, a−1) ∈ T1 × T−1 × A−1, so

q1(δh, σ−1) =

∫
T

∫
A

q1(t1, t−1, a1, a−1) dδh(t1)× σ−1(t−1) dλ(t)

=

∫
T

∫
A1

q1(t1, t−1, h(t1), a−1) dσ−1(t−1) dλ(t)

≥
∫
T

∫
A1

q1(t1, t−1, g(t1), a−1) dσ−1(t−1) dλ(t)

=

∫
T

∫
A

q1(t1, t−1, a1, a−1) dδg(t1)× σ−1(t−1) dλ(t)

= q1(δg, σ−1) ≥ q1(σ1, σ−1).

Thus condition (2) of Theorem 7 holds. To see that condition (4) of that theorem

holds, fix ε > 0 and i ∈ N . Let η > 0 be such that |d(a′i)(a′i − ti)− d(ai)(ai − ti)| < ε

whenever ti ∈ Ti and ai, a
′
i ∈ Ai are such that |a′i − ai| < η. Let Ci = {ā} ∩ Ti, and

note that λi(Ci) = 0 because λi is atomless. Let fi(ti, ai) = ai for each i ∈ N and

(ti, ai) ∈ graph(Φi). Define the correspondence Λi : graph(Φi) → Ai by setting

Λi(ti, ai) =


(max{ti, ai − η}, ai) if ai > ti

(ai, ā) if ai = ti < ā

{ā} if ai = ti = ā .

Then fi and Λi satisfy the requirements in (4) of Theorem 7 for the given i and ε. As

i ∈ N and ε > 0 are arbitrary, (4) of Theorem 7 is satisfied.

Thus, by Theorem 7, Γ is Φ-virtually continuous. For each i ∈ N , define a map

hi : Ai → R by setting hi(ai) = ai. Using Theorem 8, with ℓ = 1 and fi,1 = hi for

each i ∈ N , we see that Γ is Φ-strongly indeterminate. Now by Theorem 5 we can

conclude that I(Γ) ∩W = E(Γ) ∩W ̸= ∅.

Remark 7. It is straightforward to generalize the above example to the case of more

than one commodity by using the full generality of Theorem 7 with ℓ > 1. It is also

interesting to contrast the conclusion of the above Bertrand example with Example

3. In both examples, the two firms have asymmetric costs with probability one; how-

ever, invariance of the equilibrium set holds in Example 6 but not in Example 3.

The difference is that the possible types of each firm are distributed atomlessly in

Example 6, so that Theorem 8 applies to yield strong indeterminacy, which is not the

case in the other example.
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A Appendix

A.1 Lemmata

This section contains some preliminary lemmata. Let Γ = (N, (Xi)i∈N , Q) be a game

with an endogenous sharing rule.

Lemma 4. Di is measurable for each i ∈ N .

Proof. Because Q is uhc with non-empty and compact values, there is a sequence

⟨qk⟩k∈N of measurable selections of Q such that {qk(x) : k ∈ N} is dense in Q(x) for

each x ∈ X (see Castaing and Valadier (1977, Corollary III.3, p. 63 and Theorem III.6,

p. 65)). Now, for each i ∈ N , X \Di = {x ∈ X : qk,i(x) = q0,i(x) for all k ∈ N}.

For convenience of later reference, we record the following fact in form of a lemma;

the lemma implies in particular that SQeff
̸= ∅ (consider f(r) =

∑
i∈N ri).

Lemma 5. If f : Rn → R is continuous, then there is a q ∈ SQ such that, for each

x ∈ X, f(q(x)) = maxr∈Q(x) f(r)

Proof. Use Aliprantis and Border (2006, 18.2, 18.19 and 18.20).

Recall that the σ-algebra of the universally measurable subsets of X equals
∩

µ Bµ,

where the intersection is over all the Borel probability measures µ on X and Bµ denotes

the µ-completion of the Borel σ-algebra.8 Each Borel probability measures µ on X

has an unique extension to the universally measurable subsets of X, which we also

denote by µ.

Lemma 6. Deff
i is universally measurable for each i ∈ N .

Proof. (a) By Lemma 5, Qeff has nonempty values; we now show that graph(Qeff)

is a Borel subset of X × RN . To see this, set A = RN and B = RN , and for each

m ∈ N\{0} let

Gm = {(x, a, b) ∈ X × A×B : a, b ∈ Q(x), b ≥ a, bi ≥ ai + 1/m for some i ∈ N}.
8It is easy to see that this definition is equivalent to Castaing and Valadier (1977, Definition 21,

p. 73) where the intersection is over all the Borel positive bounded measures µ on X.
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Let Hm be the projection of Gm onto X ×A. Because Q is uhc with compact values,

Gm is compact, and hence so is Hm. Now graph(Qeff) = graph(Q)\
∪

m∈N\{0} Hm.

(b) By Castaing and Valadier (1977, Theorem III.22, p. 74), it follows from (a)

that there is a sequence ⟨qk⟩k∈N of universally measurable selections of Q such that

the set {qk(x) : k ∈ N} is dense in Q(x) for each x ∈ X. Now, for each i ∈ N ,

X \Deff
i = {x ∈ X : qk,i(x) = q0,i(x) for all k ∈ N}.

A.2 Virtual continuous games

Let Γ = (N, (Xi)i∈N , Q) be a game with an endogenous sharing rule. One aspect of

Example 1 is that Dirac measures (i.e., pure strategies) are taken for the µi’s of the

definition of virtual continuity. In Lemma 7 below it is shown that this is always

possible.

Lemma 7. Γ is virtually continuous if and only if for each q ∈ SQ, i ∈ N , ε > 0 and

σ ∈ M , there exists x̄i ∈ Xi such that τ(δx̄i ,σ−i)(Di) < ε and qi(x̄i, σ−i) > qi(σ)− ε.

Proof. The sufficiency part is obvious. For the necessity part, fix 0 < ε < 1 and i ∈ N .

Choose a ≥ 0 so that qi(x)+a > 0 for all x ∈ X. Set k = max{1, sup{qi(x) : x ∈ X}}
and ε′ = ε2/(2(k + a)). Note that ε′ ≤ ε/2.

Virtual continuity gives a µi so that τ(µi,σ−i)(Di) < ε′ and qi(µi, σ−i) > qi(σ)− ε′.

Let E = {xi ∈ Xi : σ−i(Di,xi
) ≥ ε} where Di,xi

⊆ X−i is the section of Di at xi. By

Fubini’s theorem, µi(E) < ε′/ε. Thus µi(E) < ε/(2(k + a)) by the choice of ε and ε′.

Now, again using Fubini’s theorem,∫
Xi\E

∫
X−i

(qi(xi, x−i) + a) dσ−i(x−i) dµi(xi)

> qi(σ) + a− ε′ −
∫
E

∫
X−i

(qi(xi, x−i) + a) dσ−i(x−i) dµi(xi)

≥ qi(σ) + a− ε′ − µi(E)(k + a)

≥ qi(σ) + a− ε/2− ε/2

= qi(σ) + a− ε.

There must therefore be an x̄i ∈ Xi\E such that

µi(Xi\E)

∫
X−i

(qi(x̄i, x−i) + a) dσ−i(x−i) > qi(σ) + a− ε.
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Because
∫
X−i

(qi(x̄i, x−i) + a) dσ−i(x−i) ≥ 0 by the choice of a, it follows that∫
X−i

(qi(x̄i, x−i) + a) dσ−i(x−i) > qi(σ) + a− ε

and hence that
∫
X−i

qi(x̄i, x−i) dσ−i(x−i) > qi(σ)−ε. Finally, we have τ(δx̄i ,σ−i)(Di) < ε

because x̄i ∈ Xi\E.

Lemma 7 implies that virtual continuity in mixed strategies implies virtual conti-

nuity in pure strategies (see Remark 3 for the definition of the latter). However, the

converse does not hold, as the following example shows.

Example 7. Suppose N = {1, 2} and X1 = X2 = [0, 1]. Define a correspondence

Q1 : X → R by setting

Q1(x1, x2) =

[0, 1] if − 1/4 + x1 ≤ x2 ≤ 1/4 + x1

{1} otherwise.

Define a correspondence Q2 : X → R by setting Q2(x) = {0} for all x ∈ X. Let

Q = Q1 ×Q2. Evidently virtual continuity holds for pure strategies. But if σ2 is the

restriction of Lebesgue measure to the Borel sets of [0, 1], then τσ(D1) ≥ 1/4 for all

σ1 ∈ M1, so virtual continuity fails for mixed strategies.

The next result is used in our treatment of Bertrand-Edgeworth competition.

Lemma 8. Let Γ = (N, (Xi)i∈N , Q) be such that Xi = A for each i ∈ N , where A is

a perfect compact subset of Rm, m ≥ 1. For each i ∈ N , write

∆i =
{
x ∈ X : xi = xj for some j ∈ N \{i}

}
.

Suppose the following:

(1) Di ⊆ ∆i for each i ∈ N .

(2) Given ε > 0, i ∈ N and xi ∈ A, there is an open subset Λi(xi) of A such that

(i) xi is a cluster point of Λi(xi), (ii) whenever ai ∈ Λi(xi) and x−i ∈ An−1 are

such that (xi, x−i) ∈ Di and (ai, x−i) /∈ Di, then Qi(ai, x−i) > maxQi(xi, x−i)− ε

(recall that #(Qi(ai, x−i)) = 1 if (ai, x−i) /∈ Di).

Then virtual continuity holds.
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Proof. To see this, consider any q ∈ SQ, σ ∈ M , ε > 0, and i ∈ N . Without loss of

generality, take i = 1 and let x1 ∈ A be such that

q1(δx1 , σ−1) ≥ q1(σ).

(i) For each k ∈ N\{0} there is ak ∈ A such that

(a) τ(δak ,σ−1)(D1) = 0 and

(b) ||ak − x1|| < 1/k.

To see this, first observe that the set E = {a1 ∈ A : τσ−1(∆1,a1) = 0} is dense,

writing ∆1,a1 for the section of ∆1 at a1. Indeed, for each i ∈ N \{1}, the set of

all r ∈ Rm such that τσ−1({x−1 ∈ An−1 : xi = r}) > 0 is countable. Now if a1 /∈ E

there must be i ∈ N \{1} such that τσ−1({x−1 ∈ An−1 : xi = a1}) > 0. Thus A\E is

countable. Because A is perfect, every point of A is a condensation point for A, and

the claim about E follows.

Now for each k ∈ N\{0}, choose ak ∈ Λ1(x1) ∩ E such that (b) holds; such ak

exist by condition (2)(i), because E is dense and Λ1(x1) is open. As for (a), note

that we have

τ(δak ,σ−1)(D1) ≤ τ(δak ,σ−1)(∆1) = τσ−1(∆1,ak) = 0

for each k, because ak ∈ E.

(ii) Using Fubini’s theorem and the fact that the countable union of null sets is

a null set, we see from (b) that for τσ−1-a.e. x−1 ∈ A−1 we have δak(D1,x−1) = 0 for

the x−1-section of D1, i.e., (ak, x−1) /∈ D1, for all k ∈ N\{0}. Hence, from (2)(ii), and

because (x1, x−1) is a continuity point of q1 whenever (x1, x−1) /∈ D1, we must have

lim
k→∞

q1(ak, x−1) ≥ q1(x1, x−1)− ε

for τσ−1-a.e. x−1 ∈ An−1. It follows that

lim
k→∞

q1(δak , σ−1) = lim
k→∞

∫
An−1

q1(ak, x−1) dτσ−1(x−1)

≥
∫
An−1

q1(x1, x−1) dτσ−1(x−1)− ε = q1(σ)− ε,

by Fatou’s lemma. Thus, by (i)(a), and as ε > 0 is arbitrary, the requirements of

virtual continuity are satisfied for player 1.
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Returning to the definition of virtual continuity, it would of course be more in-

tuitive, and for typical applications probably also sufficient (this is actually the case

for the applications we will consider in this paper), to require τ(µi,σ−i)(Di) = 0 in the

definition of virtual continuity, rather than just τ(µi,σ−i)(Di) < ε for ε > 0. However,

the “τ(µi,σ−i)(Di) < ε”-clause adds some generality.

Example 8. Let N = {1, 2}, and X1 = X2 = [0, 1]. Define a correspondence

Q1 : X → R by setting

Q1(x1, x2) =

[0, 1] if x1 ≤ x2 ≤ x1/2 + 1/2 or x1 = 1

{1} otherwise.

Define a correspondence Q2 : X → R by setting Q2(x) = {0}, x ∈ X. Let Q = Q1×Q2.

Then Q is uhc with non-empty compact values, and

D1 = {x ∈ X : x1 ≤ x2 ≤ x1/2 + 1/2} ∪ {x ∈ X : x1 = 1}.

Pick any q ∈ SQ. Of course, the requirements of virtual continuity are satisfied for

i = 2. Consider i = 1. Pick any σ2 ∈ M2. Let x1,k, k ∈ N, be such that x1,k < 1 for

all k but x1,k → 1. Then, by the choice of Q, τ(δx1,k ,σ2)(D1) → 0 and q1(δx1,k
, σ2) → 1,

from which we can see that the requirements of virtual continuity are satisfied for

i = 1. However, if σ2 has full support, then τ(σ1,σ2)(D1) > 0 for all σ1 ∈ M1.

Remark 8. Example 8 shows, in particular, that our definition of virtual continuity

allows the sets Di to be quite large. In fact, in that example, D1 has a non-empty in-

terior.

Lemma 9. Give M the narrow topology. Then virtual continuity implies that each

q ∈ SQ is mixed strategy payoff secure, i.e., for all σ ∈ M , i ∈ N , and ε > 0 there is

a µi ∈ Mi and a neighborhood V of σ such that qi(µi, σ
′
−i) > qi(σ)− ε for all σ′ ∈ V .

Proof. Fix q ∈ SQ, σ ∈ M , i ∈ N , and ε > 0. Recall that q ∈ SQ is such that

q
i
(x) = minr∈Q(x) ri for each x ∈ X and let vi = vq

i
. Let µi ∈ Mi be such that

q
i
(µi, σ−i) > vi(σ)−ε/2. Noting that x 7→ q

i
(x) is lsc (see Aliprantis and Border (2006,

Lemma 17.30)) and, hence, so is σ 7→ q
i
(σ) (see Aliprantis and Border (2006, Theorem
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15.5), let V be an open neighborhood of σ such that q
i
(µi, σ

′
−i) > q

i
(µi, σ−i)− ε/2 for

all σ′ ∈ V . Hence, for each σ′ ∈ O,

qi(σ) ≤ vqi(σ) = vi(σ) < q
i
(µi, σ−i) +

ε

2
< q

i
(µi, σ

′
−i) + ε ≤ qi(µi, σ

′
−i) + ε.

Lemma 10. Let M be given the narrow topology. Then virtual continuity implies that

vqi is continuous for each q ∈ SQ and each i ∈ N .

Proof. Fix q ∈ SQ and i ∈ N . By Lemma 9 we can see that vqi is lower semicontinuous.

By Lemma 5 there is a q′ ∈ Sq such that q′i is upper semicontinuous and, thus, vq′i is

also upper semicontinuous. By Lemma 2, vqi is upper semicontinuous.

We conclude this section with an example showing that the converse of Lemma 2

does not hold.

Example 9. Let N = {1, 2}, and X1 = X2 = [0, 1]. Define a correspondence

Q1 : X → R by setting

Q1(x) =

[x1, 1] if x1 < 1,

[x2, 1] if x1 = 1.

Define a correspondence Q2 : X → R by setting Q2(x) = {0}, x ∈ X. Let Q = Q1×Q2.

Then Q is uhc with non-empty compact values, and D1 = X \ {(1, 1)}. If σ2 = δ0,

then τσ(D1) = 1 for any σ1, hence virtual continuity fails. However, there exists a

common value function: For each q ∈ SQ, vq2 ≡ 0 and vq1 ≡ 1. Indeed, for the latter,

note that, as xk
1 → 1 from below, q1(xk

1, σ2) ≥ xk
1 → 1.

A.3 Young measures

In this section we establish a result on Young measures that is needed for our main

results.

Lemma 11. In the context and notation of Section 5, let σ = (σ1, . . . , σn) ∈ M

and q : T × A → R be a bounded measurable function. Then, for any i ∈ N , there

is a measurable map g : Ti → Ai such that g(ti) ∈ supp(σi(ti)) for λi-a.e. in Ti and

q(δg, σ−i) ≥ q(σi, σ−i).
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Proof. Without loss of generality consider i = 1. Assume first that q(t, a) ≥ 0 for

all (t, a) ∈ T × A. For each t−1 ∈ T−1 write σ
(×)
−1 (t−1) for the product measure on

A−1 defined from the measures σ2(t2), . . . , σn(tn). Write λ
(×)
−1 for the product measure

on T−1 defined from the measures λ2, . . . , λn, and τ
(×)
−1 for the uniquely determined

probability measure on T−1×A−1 such that τ (×)
−1 (C×B) =

∫
C
σ
(×)
−1 (t−1)(B) dλ

(×)
−1 (t−1)

for each C ∈ B(T−1) and B ∈ B(A−1). Let ρ : T → R+ be a Radon-Nikodym derivative

of λ with respect to λ1× . . .×λn. Define q̃ : T×A → R+ by setting q̃(t, a) = ρ(t)q(t, a)

for each (t, a) ∈ T × A. In the sequel of this proof, Tonelli’s theorem (in its ordinary

and generalized version; see Neveu (1965, Proposition III.2.1)) is used repeatedly and

invoked without explicit reference.

Note that whenever O ⊆ A1 is open, then for any t1 ∈ T1, supp(σ1(t1)) ∩ O ̸= ∅
if and only if σ1(t1)(O) > 0. Therefore, by the definition of Young measure, for

such sets O, the set {t1 ∈ T1 : supp(σ1(t1)) ∩O ̸= ∅} is measurable. Using Castaing

and Valadier (1977, Proposition III.13, p. 69), this implies that the correspondence

t1 7→ supp(σ1(t1)) : T1 → A1 has a measurable graph. Next note that the maps

h : T1 → R+ ∪ {+∞} and h1 : T1 × A1 → R+ ∪ {+∞}, defined by setting

h(t1) =

∫
A1

∫
T−1

∫
A−1

q̃(t1, t−1, a1, a−1) dσ
(×)
−1 (t−1)(a−1) dλ

(×)
−1 (t−1) dσ1(t1)(a1)

and

h1(t1, a1) =

∫
T−1

∫
A−1

q̃(t1, t−1, a1, a−1) dσ
(×)
−1 (t−1)(a−1) dλ

(×)
−1 (t−1)

respectively, are measurable. It follows that the correspondence F : T1 → A1, defined

by setting

F (t1) =

supp(σ1(t1)) ∩ {a1 ∈ A1 : h1(t1, a1)− h(t1) ≥ 0} if h1(t1) < ∞

A1 otherwise,

has a measurable graph. Clearly F (t1) ̸= ∅ for all t1 ∈ T1. Using Castaing and Valadier

(1977, III.22, p. 74), there is a universally measurable map g′ such that g′(t1) ∈ F (t1)

for all t1 ∈ T1. Observe that the set
{
t1 ∈ T1 :

∫
T−1

ρ(t1, t−1) dλ
(×)
−1 (t−1) = +∞

}
is

a λ1-null set, so the same must be true of the set {t1 ∈ T1 : h(t1) = +∞} because

q is bounded. Modifying g′ on a λ1-null set, if necessary, we can therefore find a

measurable map g : T1 → A1 such that
∫
T1
h1(t1, g(t1)) dλ1(t1) ≥

∫
T1
h(t1) dλ1(t1) and

g(t1) ∈ supp(σ1(t1)) for λ1-a.e. t1 ∈ T1.
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Now, for each fixed t1 ∈ T1,∫
A1×(T−1×A−1)

q̃(t1, ·) dσ1(t1)× τ
(×)
−1

=

∫
A1

∫
T−1×A−1

q̃(t1, t−1, a1, a−1) dτ
(×)
−1 (t−1, a−1) dσ1(t1)(a1)

=

∫
T−1×A−1

∫
A1

q̃(t1, t−1, a1, a−1) dσ1(t1)(a1) dτ
(×)
−1 (t−1, a−1) .

Consequently,

q(σ1, σ−1)

=

∫
T1×T−1

∫
A

q̃(t1, t−1, a1, a−1) dσ1(t1)× σ
(×)
−1 (t−1)(a1, a−1) dλ1 × λ

(×)
−1 (t1, t−1)

=

∫
T1

∫
T−1

∫
A

q̃(t1, t−1, a1, a−1) dσ1(t1)× σ
(×)
−1 (t−1)(a1, a−1) dλ

(×)
−1 (t−1) dλ1(t1)

=

∫
T1

∫
T−1

∫
A−1

∫
A1

q̃(t1, t−1, a1, a−1) dσ1(t1)(a1) dσ
(×)
−1 (t−1)(a−1) dλ

(×)
−1 (t−1) dλ1(t1)

=

∫
T1

∫
T−1×A−1

∫
A1

q̃(t1, t−1, a1, a−1) dσ1(t1)(a1) dτ
(×)
−1 (t−1, a−1) dλ1(t1)

=

∫
T1

∫
A1

∫
T−1×A−1

q̃(t1, t−1, a1, a−1) dτ
(×)
−1 (t−1, a−1) dσ1(t1)(a1) dλ1(t1)

=

∫
T1

∫
A1

∫
T−1

∫
A−1

q̃(t1, t−1, a1, a−1) dσ
(×)
−1 (t−1)(a−1) dλ

(×)
−1 (t−1) dσ1(t1)(a1) dλ1(t1)

=

∫
T1

h(t1) dλ1(t1)

≤
∫
T1

h1(t1, g(t1)) dλ1(t1)

=

∫
T1

∫
T−1

∫
A−1

q̃(t1, t−1, g(t), a−1) dσ
(×)
−1 (t−1)(a−1) dλ

(×)
−1 (t−1) dλ1(t1)

=

∫
T1

∫
T−1

∫
A

q̃(t1, t−1, a1, a−1) dδg(t1)× σ
(×)
−1 (t−1)(a1, a−1) dλ

(×)
−1 (t−1) dλ1(t1)

=

∫
T1×T−1

∫
A

q̃(t1, t−1, a1, a−1) dδg(t1)× σ
(×)
−1 (t−1)(a1, a−1) dλ1 × λ

(×)
−1 (t1, t−1)

= q(δg, σ−1).

Thus the lemma is true whenever q is non-negative. But this implies that the lemma

is true for any bounded q, by the fact that if f : T ×A → R is constant-valued, then

f(σ1, σ−1) = f(σ′
1, σ−1) for any σ′

1 ∈ M1.
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A.4 Spaces of Young measures

Fix a probability space (T,Σ, ν) and a Polish space X, and let R denote the set of

all Young measures from T to X.

A Carathéodory integrand on T × X, with control measure ν, is a measurable

function q : T ×X → R such that q(t, ·) is continuous for each t ∈ T and such that for

some ν-integrable θq : T → R+, sup{|q(t, x)| : x ∈ X} ≤ θq(t) for each t ∈ T . Write

Gν for the set of all such functions. Now the narrow topology for Young measures on

R, with ν as control measure, is the coarsest topology on R such that for each q ∈ Gν

the functional

γ 7→
∫
T

∫
X

q(t, x)dγ(t)(x)dν(t) : R → R

is continuous. With this topology, R becomes a subset of a locally convex topological

vector space (see Balder (2002, Step 2, p. 462)). It should be noted that, in general,

the narrow topology for Young measures is not a Hausdorff topology.

If κ : T → X is a correspondence, then Rκ denotes the subset of R defined by

setting

Rκ = {γ ∈ R : supp(γ(t)) ⊆ κ(t) for almost all t ∈ T}.

The following theorem gathers several properties of the space Rκ (see Carmona and

Podczeck (2014, Theorem 10) for a proof).

Theorem 9. Let κ : T → X be a correspondence with measurable graph such that

κ(t) is non-empty and compact for all t ∈ T . Give R the narrow topology for Young

measures, with ν as control measure. Then the subset Rκ of R is non-empty, convex,

closed, compact, and sequentially compact.

Now for each i = 1, . . . , n, let (Ti,Σi, λi) be a probability measure, Xi a Polish

space, and write Ri for the set of all Young measures from Ti to Xi. Set X =
∏n

i=1Xi,

T =
∏n

i=1 Ti, and Σ =
⊗n

i=1Σi. Let R be the set of all Young measures from T to

X, and g :
∏

i∈N Ri → R the map defined by setting

g(σ1, . . . σn)(t) = σ1(t1)× · · · × σn(tn), t ∈ T,

for all (σ1, . . . σn) ∈
∏

i∈N Ri. Write λ(×) for the product measure defined from the

measures λi, i = 1, . . . , n, and let λ be any probability measure on (T,Σ). For each
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i = 1, . . . , n, give Ri the narrow topology for Young measures, with λi as control

measure. Write Rλ for R endowed with the narrow topology for Young measures,

taking λ as control measure, and Rλ(×) for R endowed with the narrow topology for

Young measures, taking λ(×) as control measure. Then the following three lemmata

are true.

Lemma 12. The map g is continuous.

Proof. Using induction, this follows from Balder (1988, Theorem 2.5).

Lemma 13. If λ is absolutely continuous with respect to λ(×), then the identity from

Rλ(×) to Rλ is continuous.

Proof. Let h be a Radon-Nikodym derivative of λ with respect to λ(×). Note that

if q is a Carathéodory integrand on T × X with control measure λ, then q × h is a

Carathéodory integrand on T ×X with control measure λ(×).

Lemma 14. Suppose that T is a Polish space, and that Σ is the Borel σ-algebra. Give

M(T ×X) the narrow topology. Then the function σ 7→ τσ from Rλ to M(T ×X) is

continuous.

Proof. Let c : T × X → R be bounded and continuous. Then c is a Carathéodory

integrand on T ×X. Since∫
cdτσ =

∫
T

(∫
A

c(t, a)dσ(t)(a)

)
dλ(t),

the result follows.

A.5 Proofs

This section contains the proofs of the results in the main text.

A.5.1 Proof of Example 1

Consider any q ∈ SQ, σ ∈ M , ε > 0, and i ∈ {1, 2}. Without loss of generality, take i =

1. Using Fubini’s theorem, we can find an x̄1 ∈ [0, 1] such that
∫
[0,1]

q1(x̄1, x2) dσ2(x2) ≥
q1(σ). For any x1 ∈ X1, write D1,x1 for the section of D1 at x1. If σ2(D1,x̄1) = 0, then

τ(δx̄1 ,σ2)(D1) = 0, and we are done by taking δx̄1 for µ1. Otherwise, let x̄ be the unique
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point in D1 determined by x̄1, and choose C1(x̄) corresponding to ε and x̄ according

to the hypotheses above. By (i) there is a sequence ⟨x1,k⟩ in C1(x̄) with x1,k → x̄1

such that σ2(D1,x1,k
) = 0 for each k, because D1 ⊆ ∆. Now τ(δx1,k ,σ2)(D1) = 0 for all k.

Moreover, because each x ∈ X\D1 is a continuity point of q1, (ii) and Fatou’s lemma

ensure that q1(δx1,k
, σ2) > q1(σ)− ε if k is large.

Remark 9. It should be obvious that in Example 1 one may take any compact metric

spaces (which need not be the same) for X1 and X2, and for ∆ any subset of X1×X2

such that the sections ∆x1 = {x2 ∈ X2 : (x1, x2) ∈ ∆} and ∆x2 = {x1 ∈ X1 :

(x1, x2) ∈ ∆} are empty or singletons for each x1 ∈ X1 and x2 ∈ X2.

A.5.2 Proof of Lemma 1

The “only if” part is true because for each i ∈ N there is a q ∈ SQ (which may

depend on i) such that qi(x) = mi(x) for all x ∈ X (see Lemma 5). For the “if”

part, let i ∈ N , q ∈ SQ, ε > 0 and σ ∈ M be given. Since X is compact and

Q is uhc and takes compact values, there is a number B such that ||y|| ≤ B for

all y ∈ Q(x) and x ∈ X. Let η > 0 be such that (1 + 2B)η < ε. By hypothesis,

there is a µi ∈ Mi such that mi(σ) < mi(µi, σ−i) + η and τ(µi,σ−i)(Di) < η. Now

mi(µi, σ−i)− qi(µi, σ−i) =
∫
Di
(mi − qi)dτ(µi,σ−i) < 2Bη, so

qi(σ) ≤ mi(σ) < mi(µi, σ−i) + η < qi(µi, σ−i) + (1 + 2B)η < qi(µi, σ−i) + ε.

Also, τ(µi,σ−i)(Di) < ε. Thus the “if” part follows.

A.5.3 Proof of Lemma 2

Fix i ∈ N and σ ∈ M . Let ε > 0 and H = {µi ∈ Mi : τ(µi,σ−i)(Di) < ε}. Consider any

q, q′ ∈ SQ. Then, by virtual continuity, since q, q′ agree on X \Di,

|vqi(σ)− vq′i(σ)| =
∣∣∣∣ sup
µi∈H

qi(µi, σ−i)− sup
µi∈H

q′i(µi, σ−i)

∣∣∣∣ ≤ ε2B

where B as in the proof of Lemma 1. As ε is arbitrary, vqi(σ) = vq′i(σ).

A.5.4 Proof of Theorem 2

Define an endogenous sharing rule game Γ′ = (N, (Xi)i∈N , Q
′) by letting Q′(x) be the

convex hull of Q(x) for each x ∈ X. (By Aliprantis and Border (2006, Theorem 17.35,
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p. 573), Q′ is uhc and takes non-empty compact values, as required by our definition

of a game with an endogenous sharing rule.)

Using Lemma 1, we can see that virtual continuity of Γ implies virtual continuity

of Γ′, because maxr∈Q(x) ri = maxr∈Q′(x) ri. Also we have SQeff
∩ SQ′

eff
̸= ∅ (consider a

q ∈ SQ such that q(x) solves maxr∈Q(x)

∑
i∈N ri for each x ∈ X).

Now by Simon and Zame (1990), E(Γ′) ̸= ∅, so by the previous paragraph and

Theorem 1, E(Γ) ̸= ∅, and in particular, E(Gq) ̸= ∅ for every q ∈ SQeff
.

A.5.5 Proof of Theorem 3

That {σ ∈ E(Γ) : τσ(Di) = 0 for all i ∈ N} ⊆ I(Γ) is immediate from Lemma 2.

For the reverse inclusion, consider any i ∈ N . There are q̄, q ∈ SQ such that for

every x ∈ X, q̄i(x) = maxr∈Q(x) ri and q
i
(x) = minr∈Q(x) ri (see Lemma 5). Now if

σ ∈ M is such that τσ(Di) > 0, then q̄i(σ) > q
i
(σ), so by Lemma 2, σ /∈ I(Γ).

A.5.6 Proof of Theorem 4

(i) Given σ ∈ M and i ∈ N , if τσ(Deff
i ) > 0, then there are q, q̃ ∈ SQeff

such that

qi(σ) ̸= q̃i(σ). Indeed, as shown in the proof of Lemma 6, Qeff has a measurable

graph and nonempty values, so by Castaing and Valadier (1977, Theorem III.22)

that there is a sequence ⟨hk⟩k∈N of (Borel) measurable functions hk : X → Rn and

a Borel set Y ⊆ X with τσ(Y ) = 0 such that {hk(x) : k ∈ N} is a dense subset of

Qeff(x) for all x ∈ X\Y . Modify each hk on Y so that it becomes a member of SQeff

(by making it equal to q on Y for some q ∈ SQeff
; recall that SQeff

̸= ∅). Because

Deff
i belongs to the τσ-completion of the Borel σ-algebra of X, if τσ(Deff

i ) > 0 then

there a Borel set H ⊆ Deff
i with τσ(H) > 0. Set H ′ = H \Y . Then also σ(H ′) > 0.

Note that {hk,i(x) : k ∈ N} is a dense subset of Qeff,i(x) for each x ∈ H ′. Hence,

#({hk,i(x) : k ∈ N}) > 1 for all x ∈ H ′. Thus for some k ∈ N\{0} and some Borel set

B ⊆ H ′ with τσ(B) > 0 we have hk,i(x) > h0,i(x) for all x ∈ B, or for some k ∈ N\{0}
and some Borel set B ⊆ H ′ with τσ(B) > 0 we have hk,i(x) < h0,i(x) for all x ∈ B.

In either case, set q = h0 and q̃ = 1Bhk + 1X\Bh0.

(ii) Virtual continuity, Theorem 1, and Lemma 2 combine to say that whenever

σ ∈ E(Γ) and q, q̃ ∈ SQeff
, then qi(σ) = q̃i(σ). Thus (ii) yields part 1.

39



(iii) If Di = Deff
i for each i ∈ N , then part 1 and Theorem 3 imply that I(Γ) =

E(Γ).

A.5.7 Proof of Lemma 3

(i) Given z ∈ bd(A), there is a p ∈ S such that pz ≥ pa for all a ∈ A and such

that z − λp ∈ A for all λ > 0 sufficiently small. Indeed, let C be the set of all

p ∈ Rm such that pz ≥ pa for all a ∈ A. Then C convex, with 0 ∈ C. We must have

(z − C) ∩ int(A) ̸= ∅. Otherwise, as int(A) ̸= ∅, there would be a non-zero v ∈ Rm

such that va ≤ v(z− p) for all a ∈ A and p ∈ C, by the separation theorem. The fact

that 0 ∈ C implies that v ∈ C, and the fact that z ∈ A implies that vp ≤ 0 for all

p ∈ C. But these implications contradict each other because v ̸= 0 means vv > 0.

(ii) The map θ is continuous. To see this, suppose pk → p in S and zk → z in A.

Set Bk = {a ∈ A : pka < pkzk} and B = {a ∈ A : pa < pz}. Observe that
∞∩

m=0

∞∪
k≥m

B △Bk ⊆ {a ∈ A : pa = pz}.

Because ν is absolutely continuous with respect to Lebesgue measure, it follows that

ν(B △Bk) → 0, and therefore that ν(Bk) → ν(B).

(iii) Using (ii) we see that Q is closed. As for virtual continuity, wlog consider

player 1. Suppose that x1 = x2 = z ∈ int(A). Let (r1, r2) ∈ Q(x1, x2), and let p ∈ S

be such that r1 = θ(p, z). As x1 ∈ int(A), we have xλ = x1−λp ∈ A for all sufficiently

small λ > 0. Now, for such λ,

u1(xλ, x2) = θ
(

x2−x1+λp
∥x2−x1+λp∥ ,

1
2
(x1 + λp+ x2)

)
= θ(p, z + 1

2
λp),

and by (ii), θ(p, z+ 1
2
λp) → θ(p, z) as λ → 0, so u1(xλ, x2) → r1 as λ → 0. This holds,

in particular, if r1 = max{r′1 : (r′1, r′2) ∈ Q(x1, x2)}.
Suppose next that x1 = x2 = z ∈ bd(A). Choose p ∈ S with respect to z according

to (i). Then, setting r1 = θ(p, z), we have

r1 = θ(p, z) = 1 = max{r′1 : (r′1, r′2) ∈ Q(x1, x2)},

and because z − λp ∈ A for all sufficiently small λ > 0, we can again choose xλ for

player 1 to get u1(xλ, x2) → r1. In view of Example 1 and Remark 9 (the latter in

Section A.5.1) it follows that virtual continuity is satisfied.
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A.5.8 Proof of the claim in Remark 4(b)

From (iii) in the proof of Lemma 3 we see that on (A× A)\(D ∩ (bd(A)× bd(A))),

Q is the smallest closed correspondence which includes the map (u1, u2), writing D

for the diagonal in A × A. Now if x1 = x2 = z ∈ bd(A) and p ∈ S, consider any

z0 ∈ int(A). Then by (ii) in the proof of Lemma 3, θ(p, λz0 + (1 − λ)z) → θ(p, z)

as λ → 0, and it follows that on the entire domain A × A, Q is the smallest closed

correspondence which includes the map (u1, u2).

A.5.9 Proof of Theorem 5

The proof of the equality E(Γ) ∩W = I(Γ) ∩W (points (a)-(e) below) amounts, in

essence, to a reinterpretation of the proofs of Lemma 2 and Theorems 1, 3, and 4,

with T × A in place of X; note that for the arguments in the proofs of those results

it does not matter whether or not the τσ’s appearing there are product measures.

(a) For each q ∈ SQ and i ∈ N , define value functions vqi : M → R in the same

way as in Section 3. Then, provided that σ ∈ W , Φ-virtual continuity implies that

vqi(σ) = vq′i(σ) for any q, q′ ∈ SQ and any i ∈ N . This follows as in the proof of

Lemma 2, just replace Mi by Wi in the definition of the set H there. Consequently,

for any q, q′ ∈ SQ, if σ ∈ W then σ ∈ E(Gq) implies σ ∈ E(Gq′) if and only if

qi(σ) = q′i(σ) for each i ∈ N .

(b) From (a) we see that E(Γ) ∩ W = Ieff(Γ) ∩ W , arguing as in the proof of

Theorem 1 (replacing virtual continuity by Φ-virtual continuity).

(c) Next note that I(Γ) ∩ W = {σ ∈ E(Γ) ∩W : τσ(Di) = 0 for all i ∈ N}; see

the proof of Theorem 3.

(d) Putting (a) and (b) together we see that if σ ∈ E(Γ)∩W and q, q̃ ∈ SQeff
, then

qi(σ) = q̃i(σ). It follows from this by arguments as in (i) of the proof of Theorem 4

that if σ ∈ E(Γ) ∩W , then τσ(D
eff
i ) = 0 for each i ∈ N .

(e) Φ-strong indeterminacy means that if σ ∈ W , then τσ(D
eff
i ) = 0 implies

τσ(Di) = 0. From (c) and (d) we therefore conclude that E(Γ) ∩W = I(Γ) ∩W .

(f) It remains to see that E(Γ) ∩ W ̸= ∅. To this end, let q̄ ∈ SQ be such that∑
i∈N q̄i(t, a) = maxr∈Q(t,a)

∑
i∈N ri for each (t, a) ∈ T × A. Note that since Q is uhc

with nonempty compact values, (t, a) 7→
∑

i∈N q̄i(t, a) is bounded and usc. Taking

λi as control measure for Wi, give each Wi the narrow topology for Young measures
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(see Appendix A.4). Then (by Theorem 9 in Appendix A.4) each Wi becomes a non-

empty compact convex subset of a locally convex topological vector space. Consider

the normal form game Ḡ = (Wi, q̄i)i∈N , where payoffs are specified as above. Suppose

temporarily that Ḡ has a Nash equilibrium, say σ̄ = (σ̄1, . . . , σ̄n). Thus, for each

i ∈ N , σ̄i ∈ Wi and q̄i(σ̄) ≥ q̄i(σi, σ̄−i) for all σi ∈ Wi. Pick any i ∈ N and suppose

there is a µi ∈ Mi with q̄i(µi, σ̄−i) > q̄i(σ̄). Then, given ε > 0, Φ-virtual continuity

implies that there is a σi ∈ Wi such that q̄i(σi, σ̄−i) > q̄i(µi, σ̄−i) − ε, which implies

qi(σ
′
i, σ̄−i) > qi(σ̄) if ε is small enough. But this contradicts the fact that σ̄ is a

Nash equilibrium of Ḡ and we conclude that σ̄ ∈ E(Γ) ∩ W . Now by Reny (1999,

Theorem 3.1), Ḡ has a Nash equilibrium if Ḡ is quasi-concave, payoff secure, and

σ 7→
∑

i∈N q̄i(σ) is usc on W . Quasi-concavity is clear. The other facts are established

in what follows.

(g) Give W =
∏

i∈N Wi the product topology defined from the Wi’s. Let W̃ be

the set of all Young measures from T to M(A). Take λ as control measure for W̃

and give W̃ the corresponding narrow topology for Young measures. As noted above,

given σ ∈ W , the map t 7→ σ1(t1)×· · ·×σn(tn) is a Young measure from T → M(A).

We may therefore define a map f : W → W̃ by setting

f(σ)(t) = σ1(t1)× · · · × σn(tn), t ∈ T, σ ∈ W.

It follows from Lemmata 12 and 13 in Appendix A.4 that f is continuous. Now let

ρ : T × A → R be a bounded and usc. By Balder (1988, Theorem 2.2), the map

σ̃ 7→
∫
T

∫
A
ρ(t, a) dσ̃(t) dλ(t) : W̃ → R is usc. Consequently, as f is continuous, the

map σ 7→
∫
T

∫
A
ρ(t, a) df(σ)(t) dλ(t) : W → R is usc. By the definition of f , it follows

that the map σ 7→
∫
T×A

ρ(t, a) dτσ(t, a) : W → R is usc.

(h) As noted above, (t, a) 7→
∑

i∈N q̄i(t, a) is bounded and usc. Consequently, in

view of (g), the map

σ 7→
∑
i∈N

q̄i(σ) =
∑
i∈N

∫
T×A

q̄i(t, a) dτσ(t, a) =

∫
T×A

∑
i∈N

q̄i(t, a) dτσ(t, a)

is usc on W .

(i) Combining Lemmata 12–14 in Appendix A.4 shows that if i ∈ N , µi ∈ Wi, and

⟨σk⟩ is a sequence in W with σk → σ, then τ(µi,σk,−i) → τ(µi,σ−i). From this and the

argument in the proof of Lemma 9 we can see that Ḡ is payoff secure.
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A.5.10 Proof of Theorem 7

Without loss of generality, consider i = 1. Fix any q ∈ SQ, σ ∈ M1 × W−1, and

ε > 0. Use (2) and Lemma 11 to find a h′ ∈ SΦ1 such that q1(δh′ , σ−1) ≥ q1(σ).

Define h : T1 → A1 by setting h(t1) = f1(t1, h
′(t1)) for t1 ∈ T1. By (4)(i), h ∈ SΦ1 .

Also by (4)(i), q1(t1, t−1, h(t1), a−1) ≥ q1(t1, t−1, h
′(t1), a−1) for each t1 ∈ T1 and each

(t−1, a−1) ∈ T−1 × A−1; thus, q1(δh, σ−1) ≥ q1(δh′ , σ−1) ≥ q1(σ).

We claim that for each k ∈ N \ {0} there is a gk ∈ SΦ1 such that

(a) ∥h(t1)− gk(t1)∥ < 1/k for all t1 ∈ T1;

(b) τ(δg ,σ−1)(D1) = 0;

(c) gk(t1) ∈ Λ1(t1, h(t1)) for λ1-a.e. t1 ∈ T1.

To see this, let λ
(×)
−1 be the product measure on T−1 defined from the measures

λ2, . . . , λn and let τ (×)
−1 be the uniquely determined probability measure on T−1×A−1

such that τ (×)
−1 (C×B) =

∫
C
σ2(t2)× . . .×σn(tn)(B) dλ

(×)
−1 (t) for each C ∈ B(T−1) and

B ∈ B(A−1). We claim that the set E = {a1 ∈ A1 : τ
(×)
−1 (T−1 ×∆1,a1) = 0} is a dense

Gδ-set, writing ∆1,a1 for the section of ∆1 at a1. Indeed, for each i ∈ N\{1} and each

0 ≤ h ≤ ℓ, the set Ri,h = {r ∈ R : τ
(×)
−1 ({(t−1, a−1) ∈ T−1 × A−1 : ai,h = r}) > 0} is

countable. Observe that if a1 /∈ E, then there must be an i ∈ N\{1} and 0 ≤ h, h′ ≤ ℓ

such that τ
(×)
−1 ({(t−1, a−1) ∈ T−1 × A−1 : ai,h = a1,h′}) > 0. We must therefore have

A1 \E =
∪

h′
∪

i̸=1

∪
h

∪
r∈Ri,h

{a1 ∈ A1 : a1,h′ = r}. Because A1 is convex and has

non-empty interior, the set {a1 ∈ A1 : a1,h′ = r} is closed and nowhere dense in A1 for

each r ∈ R, and the claim about E follows by Baire’s category theorem.

Now, for each k ∈ N \ {0}, define a correspondence Fk : T1\C1 → A1 by setting

Fk(t1) =
{
a1 ∈ A1 : ∥h(t1)− a1∥ < 1/k

}
∩ Λ1(t1, h(t1)) ∩ E

for each t1 ∈ T1\C1. Then Fk has a measurable graph. As (t1, h(t1)) ∈ graph(Φ1) and

h(t1) ∈ f1(graph(Φ1)) for each t1 ∈ T1\C1, it follows by (4)(iv) and the properties

of E that Fk has non-empty values. Consequently, by Castaing and Valadier (1977,

Theorem III.22, p. 74), Fk has a universally measurable selection g′k : T1\C1 → A1.

Choosing a suitable extension to all of T1, and making modifications on a λ1-negligible

set, if necessary, we obtain a gk ∈ SΦ1 such that (a) and (c) hold.

43



As for (b), observe that, for each k ∈ N \ {0},∫
T

δgk(t1)× σ2(t2)× . . .× σn(tn)(∆1) d(λ1 × . . .× λn)(t)

=

∫
T

σ2(t2)× . . .× σn(tn)(∆1,gk(t1)) d(λ1 × . . .× λn)(t)

=

∫
T1

∫
T−1

σ2(t2)× . . .× σn(tn)(∆1,gk(t1)) dλ
(×)
−1 (t−1) dλ1(t1)

=

∫
T1

τ
(×)
−1 (T−1 ×∆1,gk(t1)) dλ1(t) = 0, because gk(t1) ∈ E for λ1-a.e. t1 ∈ T1.

We must therefore have δgk(t1) × σ2(t2) × . . . × σn(tn)(∆1) = 0 for λ1 × . . . × λn-a.e

t ∈ T , hence also for λ-a.e. t ∈ T , because λ is absolutely continuous with respect to

λ1 × . . .× λn. Consequently τ(δgk ,σ−1)(T ×∆1) = 0, and thus (3) implies (b).

As the countable union of null sets is a null set, there must be a λ-null set H ⊆ T

such that δgk(t1)×σ2(t2)× . . .×σn(tn)(∆1) = 0 for all k ∈ N\{0} and all t ∈ T\H. Let

H1 ⊆ T1 be the exceptional set from (c) and let H ′ = H ∪ (H1×T−1)∪ (C1×T−1), so

that H ′ is a λ-null set in T . Fix any t ∈ T\H ′. Using Fubini’s theorem and the fact that

the countable union of null sets is a null set, we see that for σ2(t2)× . . .× σn(tn)-a.e.

a−1 ∈ A−1 we have δgk(t1)(∆1,a−1) = 0 for all k ∈ N\{0}, i.e., (gk(t1), a−1) /∈ ∆1 and

thus (t1, t−1, gk(t1), a−1)) /∈ D1 (as D1 ⊆ ∆1). Combining this with (c), (4)((iv)), and

the fact that (t1, t−1, h(t1), a−1) is a continuity point of q1 if (t1, t−1, h(t1), a−1) /∈ D1,

we see that

lim
k→∞

q1(t1, t−1, gk(t1), a−1) ≥ q1(t1, t−1, h(t1), a−1)− ε

for σ2(t2)× . . .× σn(tn)-a.e a−1 ∈ A−1. Hence, by Fatou’s lemma,

lim
k→∞

∫
A−1

q1(t1, t−1, gk(t1), a−1) dσ2(t2)× . . .× σn(tn)(a−1)

≥
∫
A−1

q1(t1, t−1, h(t1), a−1) dσ2(t2)× . . .× σn(tn)(a−1)− ε,

or, in other words,

lim
k→∞

∫
A

q1(t1, t−1, a1, a−1) dδgk(t1)× σ2(t2)× . . .× σn(tn)(a−1)

≥
∫
A

q1(t1, t−1, a1, a−1) dδh(t1)× σ2(t2)× . . .× σn(tn)(a−1)− ε.
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Since this is true for λ-a.e. ∈ T , we now see, again using Fatou’s lemma, that

lim
k→∞

q1(δgk , σ−i) = lim
k→∞

∫
T

∫
A

q1(t, a) d(δgk(t1)× σ2(t2)× . . .× σn(tn)) dλ(t)

≥
∫
T

lim
k→∞

∫
A

q1(t, a) d(δgk(t1)× σ2(t2)× . . .× σn(tn)) dλ(t)

≥
∫
T

∫
A

q1(t, a) d(δh(t1)× σ2(t2)× . . .× σn(tn)) dλ(t)− ε

= q1(δh, σ−1)− ε ≥ q1(σ)− ε, by the choice of δh.

Thus, as q ∈ SQ, σ ∈ M1×W−1, and ε > 0 are arbitrary, the requirements of Φ-virtual

continuity are satisfied for player 1. As the consideration of player 1 does not imply

any loss of generality, Γ is Φ-virtually continuous.

A.5.11 Proof of Theorem 8

For each i, j ∈ N , i ̸= j, and each 0 ≤ h, h′ ≤ ℓ, let

Ki,0 = (T × A)\(graph(Φi)× T−i × A−i)

and

Ki,j,h,h′ = {(t, a) ∈ T × A : fi,h(ai,h) = ti,h and ai,h = aj,h′}.

Let

K =
∪
i∈N

Ki,0 ∪
∪
i∈N

∪
j∈N,j ̸=i

ℓ∪
h=1

ℓ∪
h′=1

Ki,j,h,h′ .

By hypothesis, if (t, a) ∈ Di\K, then Q(t, a) = Qeff(t, a). We therefore need to show

that τσ(K) = 0 whenever σ ∈ W . Thus fix any σ ∈ W . By the definition of W ,
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τσ(Ki,0) = 0 for each i ∈ I. Consider any Ki,j,h,h′ . Then, by the fact that i ̸= j,

τσ(Ki,j,h,h′) =

∫
T

σ(t)
(
{a ∈ A : fi,h(ai,h) = ti,h, ai,h = aj,h′}

)
dλ(t)

≤
∫
T

σ(t)
(
{a ∈ A : fi,h(aj,h′) = ti,h}

)
dλ(t)

=

∫
T

(∫
Ai

σ−i(t−i)
(
{a−i ∈ A−i : fi,h(aj,h′) = ti,h}

)
dσi(ti)(ai)

)
dλ(t)

=

∫
T

σ−i(t−i)
(
{a−i ∈ A−i : fi,h(aj,h′) = ti,h}

)
dλ(t)

=

∫
T

σ−i(t−i)
(
{a−i ∈ A−i : fi,h(aj,h′) = ti,h}

)
ρ(t) dλ(×)(t)

=

∫
T−i

(∫
Ti

σ−i(t−i)({a−i ∈ A−i : fi,h(aj,h′) = ti,h}
)
ρ(t)dλi(ti)

)
dλ

(×)
−i (t−i)

= 0,

because for each t−i ∈ T−i, by Fubini’s theorem,

λi × σ−i(t−i)
(
{(ti, a−i) ∈ Ti × A−i : fi,h(aj,h′) = ti,h}

)
=

∫
Ti

σ−i(t−i)
(
{a−i ∈ A−i : fi,h(aj,h′) = ti,h}

)
dλi(ti)

=

∫
A−i

λi

(
{ti ∈ Ti : fi,h(aj,h′) = ti,h}

)
dσ−i(t−i)(a−i) = 0

by hypothesis (b), so σ−i(t−i)({a−i ∈ A−i : fi,h(aj,h′) = ti,h}) = 0 for λi-a.e. ti ∈ Ti.

Since a finite union of null sets is a null set, it follows that τσ(K) = 0.
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