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I propose a model to study whether trade frictions in an over-the-counter market for

financial assets exacerbate or attenuate financial fragility. I model the financial sector as

a large number of financial institutions, which I label banks. Each bank is a coalition of

depositors and depositors are subject to privately observed liquidity shocks. The banks’

problem is to maximize the welfare of depositors by implementing the efficient allocation

of financial assets among them. I show that when banks use the balanced team mechanism,

proposed by Athey and Segal (2013), there is always a truth-telling equilibrium which

supports the constrained Pareto efficient allocation. When the frictions in the over-the-counter

market are small, this equilibrium is unique. However, I provide numerical examples in which

these frictions are severe and the economy has other equilibria. In one equilibrium depositors

claim high liquidity needs, asset price falls, the trade volume collapses and, consequently, the

equilibrium allocation is not constrained Pareto efficient. I label this equilibrium a bank-run

equilibrium and I interpret the existence of bank-runs as a financial fragility. I propose two

policies to eliminate bank-run equilibria. The first is a suspension scheme and the second

is an opening of trade facilities similar to the ones established by the Federal Reserve Bank

during the 2007-08 financial crisis. Both policies can eliminate bank runs when contingent

on announcements of liquidity needs in a large number of banks.

KEYWORDS: Over-the-counter markets, banking, bank-runs, financial fragility, finan-

cial crisis, dynamic mechanism design, weak implementation.

1. INTRODUCTION

In the last decades, securitization has grown steadily for a wide range of financial assets. From

household mortgages to long-term firm financing, it allowed financial institutions to transform

illiquid investments into asset-backed-securities (ABS) which are traded over-the-counter. However,

a panic during the 2007/2008 financial crisis hit particularly hard financial institutions deeply

involved in the ABS market and coincided with a collapse of ABS trading volume and price. But
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what generates financial panics in an environment where the portfolio of financial institutions

consists of assets traded in an over-the-counter market? Or, more generally, how is financial fragility

affected by the tradability of financial assets?

The existing literature does not adequately address this issue. Jacklin (1984) investigates bank

fragility in the context of a Diamond and Dybvig (1983) model with financial assets traded in a

centralized market. Trading in centralized markets has the implication that panics are ruled out, as

agents engage in perfect risk-sharing trough financial markets. However, the rise of securitization

has substantially increased the relevance of over-the-counter markets and it is yet not understood

how frictions created by an over-the-counter market might affect financial fragility.

I propose a new model of financial fragility where financial assets are traded in an over-the-

counter market. The model builds on a discrete time version of Duffie et al. (2005) and Lagos and

Rocheteau (2009), hereafter DGP and LR, with with three important modifications. Agents in my

model belong to small coalitions in which they participate in risk-sharing arrangements. I call these

coalitions banks and agents in my model I call depositors.1 Depositors receive preference shocks

over time, which generates stochastic liquidity needs, and these shocks are private information.

With private information there is an issue of how to achieve truth-telling among depositors. I

investigate the balanced team mechanism, proposed by Athey and Segal (2013), which always has

a truth-telling equilibrium.2 Lastly, I assume that each bank has random accesses to a centralized

Walrasian market, which is a special case of DGP and LR.

I derive two main results from my model. First, I show that there always exists an equilibrium

which supports the constrained Pareto efficient allocation in the economy. Second, and most impor-

tant, I construct numerical examples of equilibria where depositors misrepresent their preference

shocks and, consequently, the equilibrium allocation is not constrained Pareto efficient. In the

inefficient equilibrium depositors announce a high demand for liquidity because they believe that

the other depositors are doing the same—a form of self-fulfilling crisis which I call a bank run.

During a bank run, the asset price falls and the trade volume collapses. I interpret the existence of

runs as a fragility of the financial sector. Private information and agents belonging to a coalition are

both essential extensions of DGP and LR in order for the economy to be fragile. If either assumption

is dropped, the economy turns into a special case of LR which has a unique equilibrium.

1The interpretation of banks as a coalition of agents is not a novelty. For example, Bryant (1980) and Diamond and
Dybvig (1983) model a bank as a coalition of agents engaging in risk-sharing arrangements trough a bank contract.

2The balanced team mechanism extends the mechanism proposed by Arrow (1979) and d’Aspremont and Gérard-
Varet (1979), which is known as the AGV-Arrow mechanism, to dynamic environments. See Fudenberg and Tirole
(1991) for a detailed description of the AGV-Arrow mechanism.
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My findings imply that the benefits of reducing trade frictions in an over-the-counter market

are twofold. The first is to be expected. Since agents face idiosyncratic preference shocks, there

are gains from trading with each other. Thus, with less trading frictions, they explore the trading

opportunities more efficiently. The second reason is that, when the over-the-counter market is

efficient, the economy does not have bank-run equilibria. Therefore, if policy makers can eliminate,

or substantially reduce, trade frictions, they can make the financial sector stable.

Of course, in many cases policy makers are unable to reduce trade frictions and, as an

alternative, I investigate two policies to enhance financial stability in my model: a suspension

scheme and the opening of a centralized exchange facility where banks can trade financial assets.3

I consider an arrangement where either one of above policies is implemented once the aggregate

distribution of announcements does not coincide with the true distribution of preference shocks,

which is known since there is no aggregate uncertainty in the model. Depositors anticipate that,

conditional on either policy being implemented, truth-telling is a best response because there is

no risk-sharing among depositors in their own bank—only trade in a Walrasian market. And, as a

result, they have no incentives to misrepresent their preference shocks. Therefore, there cannot exist

an equilibrium where the distribution of announcements differs from the true distribution of types.

A large literature studies optimal bank mechanisms in the Diamond-Dybvig model.4 This

literature shows that for Diamond-Dybvig banks to be fragile under an optimal direct mechanism,

banks need to face aggregate uncertainty and a sequential service constraint—payments must respect

a first-come, first-served rule. Uncertainty is also a necessary condition for fragility in my model;

however, the sequential service constraint is not. Several financial institutions considered part of the

shadow bank sector finance its assets by issuing debt with specific due dates. Hence, sequential

service does not seem a relevant constraint for those institutions and it is appropriate to have a

model that explains financial fragility without imposing sequential service. A second finding of this

literature is that an indirect mechanism can be used to prevent runs.5 Although I consider this an

interesting possibility, I do not address it in this paper.

The fact that some form of trade friction is an essential element of a fragile financial sector is

3This policy provides a rationale for a Fed intervention in the aftermath of the crisis, namely, the creation of the
Term Asset-Backed Securities Loan Facility (TALF). The model suggests that the Fed should use such facility to
eliminate the trade frictions by operating as a market-maker. Worth mentioning that the Fed also lent over $1 trillion
dollars taking ABSs as collateral, which is inconsistent with the policy recommendation in my model.

4This literature includes, but is not limited to, Wallace (1988), Peck and Shell (2003), Green and Lin (2003),
Andolfatto et al. (2007), Ennis and Keister (2009), Cavalcanti and Monteiro (2011) and Andolfatto et al. (2014).

5See Cavalcanti and Monteiro (2011) and Andolfatto et al. (2014) for a discussion of indirect mechanisms in the
context of the Diamond-Dybvig model.
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not new. Jacklin (1984) studies a version of the Diamond-Dybvig model where there is a Walrasian

market to trade financial assets. In this case, the market can implement the efficient outcome and

the economy is not fragile. In the limit case of my model where the market for financial assets is a

centralized exchange, I obtain this same result. But if one considers only the limit case where there

is a Walrasian market, as Jacklin (1984) shows, banks are redundant. In practice, we do observe

banks and, therefore, it is a desirable property of the environment that banks are not redundant

institutions. My model displays this property as long as some market friction exists, which is a

realistic assumption when assets are traded in an over-the-counter fashion. One may ask why not

to study only the other limit case where markets do not exist—as most of the Diamond-Dybvig

literature does. I also study this case in the paper; however, if there is no financial market, one

cannot study the implications of bank runs on asset prices and trade volume and how it relates with

trade frictions.

Allen and Gale (2000) and Allen and Gale (2004), here after AG, study the implications of

bank fragility in a setting were Diamond-Dybvig banks trade contingent claims in a static inter-

bank market. There are two important differences between my work and AG. First, AG focus on

understanding the implications of bank fragility in the market outcomes given different market

structures—complete vs incomplete markets. But they don’t ask the question of why banks are

fragile. On the other hand, the main focus of my paper is exactly to understand why banks are

fragile and how it relates with different market structures. The second difference is that AG study

a static Walrasian market. While I study a dynamic over-the-counter market, which allows me to

analyse how market outcomes evolve over time.

Lagos et al. (2011) study financial crises in the context of an over-the-counter market where

dealers provide liquidity to the economy. The financial crisis is modelled as an exogenous aggregate

shock that makes all agents have a low valuation of the underlying financial asset. There is evidence

that some form of aggregate shock decreased the value of mortgage-backed securities during the

2007/08 crisis period. However, in practice, it is hard to differentiate whether such shock was

exogeneous, as in Lagos et al. (2011), the result of bank runs, as in my model, or both.

Trejos and Wright (2014) generalize preferences in the DGP model to preferences that are

separable but not quasi-linear.6 They show that, for some parameters, there are multiple equilibria

and the equilibrium dynamics can be the outcome of self-fulfilling prophecies—sunspots. The main

reason for multiplicity in Trejos and Wright (2014) is that the asset can also be used as a means of

6Their work also integrates DGP and the monetary economy of Shi (1995) and Trejos and Wright (1995).
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exchange. As a result, beliefs over whether people will accept the asset as payments in the future

change the value of the asset in the present generating multiple equilibria. In my model assets do

not have value as a means of exchange, instead, I explore agents long-term relationships as in a

bank arrangement. I believe both approaches are complementary to each other.

The rest of the paper is organized as follows. Section 2 studies a simplified version of the

model where there is only one bank and one period. I use this simple version to introduce the

AGV-Arrow mechanism in a simple context and to provide intuition of why bank-run equilibria

exists in the model. Section 3 extends this version with one bank to an infinite-horizon model. I

use this one-bank infinite-horizon version to introduce the Athey and Segal (2013) balanced team

mechanism mechanism and to discuss a different nature of bank runs that emerges in a dynamic

setting. Section 4 introduces the complete model, where there are a large number of banks which

interact in an over-the-counter market. Section 5 describes the balanced team mechanism for the

complete version; characterizes the constrained Pareto efficient allocation; shows that this allocation

is supported by an equilibrium; and also shows that, if over-the-counter frictions are small, the

equilibrium that supports the constrained Pareto efficient allocation is the unique equilibrium.

Section 6 provides a numerical example which resembles a financial crisis. Section 7 considers an

extension where depositors have no commitment. Section 8 studies policies to enhance stability in

the banking system. And section 9 discusses the results and possible extensions.

2. A SINGLE BANK ONE-PERIOD MODEL

In this section I study the simplest version of the model, where there is only one bank and

one period. An advantage of this version is that the implementation result of the AGV-Arrow

mechanism applies. Namely, the AGV-Arrow mechanism implements the efficient outcome in

Bayesian equilibrium. However, I provide an example where the economy also has an inefficient

equilibrium under the AGV-Arrow mechanism. I label this equilibrium a bank-run equilibrium.

Environment

The economy consists of a single coalition of agents, which I call a bank. In the bank there

are N ∈ N ex-ante identical agents, called depositors, and there are two consumption goods: a

numéraire good and fruits. Depositors have an aggregate endowment M̄ > 0 of the numéraire good

and Ā > 0 of a financial asset, where one unit of the asset bears one unit of fruit. Initially, both

endowments are equally divided among depositors.

Depositors receive a preference type which is private information. The total utility of a
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depositor is given by u(a;θ)+m, where θ is a preference type, a ∈ R+ is the consumption of fruits

and m ∈ R+ is the consumption of the numéraire good. Trough out the paper I assume that the

endowment M̄ is large enough so the constraint m ≥ 0 does not bind for any of the mechanisms

I consider. Preference types are drawn from a known distribution π with finite support Θ ⊂ R+,

and are i.i.d. across depositors. For each type θ ∈ Θ, the function u(·;θ) is twice continuous

differentiable, strictly increasing, strictly concave, u′(0;θ) = ∞ and u′(∞;θ) = 0.

Direct mechanisms and equilibrium

I focus on the class of direct mechanisms, where each depositor only announces his type, and I

assume that depositors can commit with a direct mechanism.7 The time of actions is the following.

First, depositors observe their types and then they simultaneously make an announcement of it.

Label θθθ = (θ 1, . . . ,θ N)∈ΘΘΘ := ΘN the announcement vector, which I assume is publicly observable.

After announcements are made, the mechanism transfers numéraire goods and allocates financial

assets—all contingent on the announcement vector.

Formally, a direct mechanism is a pair of asset and numéraire policies, µ = {χχχ,ψψψ}. An asset

policy is a function χχχ = (χ1, . . . ,χN) : ΘΘΘ→ RN
+ which assigns assets to each depositor contingent

on the announcement vector. And a numéraire policy is a function ψψψ = (ψ1, . . . ,ψN) : ΘΘΘ→ RN
+

which assigns numéraire good to each depositor contingent on the announcement vector. An asset

policy χχχ is feasible if ∑nχn(θθθ) = Ā for every θθθ . That is, if the aggregate asset holdings is consistent

with the total amount of assets in the economy. Analogously, a numéraire policy ψψψ is feasible if it

satisfies ∑nψn(θθθ) = M̄ for every θθθ . I label this the budget balanced condition. A direct mechanism

is feasible if both its policies are feasible. Label M the set of feasible direct mechanisms. Figure 1

depicts the sequence of actions.

1st

depositors observe
types θ n ∈Θ

2nd

depositors make type

announcements

3rd

bank transfers numéraire ψn(θθθ)

and allocates assets χn(θθθ)

Figure 1: Sequence of actions

A direct mechanism µ = {χχχ,ψψψ} should be interpreted as a trade mechanism. An announce-

ment θ n gives a depositor n a claim χn(θ n,θ−n) on the assets, where θ−n denotes the announce-

ments from depositors i 6= n. The price the depositor pays/receives for this claim in terms of the

7In section 7 I discuss an extension of the model where there is no commitment.



FINANCIAL FRAGILITY AND OVER-THE-COUNTER MARKETS 7

numéraire good is M̄
N −ψn(θ n,θ−n). Ultimately, the mechanism establishes trade quantities and

prices contingent on the vector of announcements.

A feasible direct mechanism µ ∈M is associated with a Bayesian game for depositors. A

depositor’s pure strategy is an announcement contingent on his preference type, σ(θ) ∈Θ. Label

Σ the set of pure strategies, which is the same for every depositor. I restrict attention to equilibria

in pure strategies, which is without loss of generality with respect to implementing the efficient

outcome. The payoff of a depositor n, when he is of type θ n and the announcement vector is θ̂θθ , is

vn(θ̂θθ ;θ
n) = u

(
χ

n(θ̂θθ);θ
n
)
+ψ

n(θ̂θθ).(1)

I label this game the depositors-game and I focus on its Bayesian equilibria.

The AVG-Arrow mechanism

The bank objective is to implement the efficient distribution of assets across depositors given

any type realization. That is, the bank’s problem is

max
{

∑
n

u(χn;θ
n); ∑

n
χ

n = Ā
}

(2)

given any type vector θθθ . Label χχχ∗(θθθ) the asset policy associated with the solution of problem (2).

The bank designs a numéraire policy ψψψ in order to generate incentives for depositors to

truthfully announce their preference type, so χχχ∗(θθθ) can be implemented. It is known that the VCG

mechanism implements the efficient outcome in dominant strategies in this environment, but its

transfer scheme is not budget balanced. As an alternative, I use the AGV-Arrow mechanism, which

is a budget balanced mechanism.

Let the numéraire policy ψ̄∗ be defined by

ψ̄
∗n(θθθ) =

M̄
N

+ γ
n(θ n)− 1

N−1 ∑
i 6=n

γ
i(θ i),(3)

where

ψ
∗n(θθθ) = ∑

i6=n
u(χ∗i(θθθ);θ

i), and(4)

γ
n(θ n) = E

[
ψ
∗n(θθθ)|θ n]−E

[
ψ
∗n(θθθ)

]
.(5)

The AGV-Arrow mechanism is given by the pair µ∗ = {χχχ∗, ψ̄ψψ∗}. The term ψ∗n(θθθ) is the utility
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of depositors other than depositor n in state θθθ . In order to generate incentives for truth-telling,

depositor n needs to internalize this term trough transfers. However, generically, we cannot make

transfers associated with ψ∗n(θθθ) and balance the budget for every state θθθ . AVG-Arrow solve this

problem by working with γn(θ n), which is the change in the expected ψ∗n implied by depositor

n’s type. When the other depositors are announcing truthfully, the transfer γn is associated with

the expected ψ∗n and, therefore, γn provides the same incentives for truth-telling as ψ∗n. For this

reason, γn is labelled the incentive term of depositors n. Since γn(θ n) depends only on θ n, the

budget can be balanced by making depositor n pays an equal share of depositors i 6= n transfers

without distorting incentives. Which leads to the transfer ψ̄∗n(θθθ).

A strategy σ is a truth-telling strategy if σ(θ n) = θ n for all θ n ∈Θ. Truth-telling is a Bayesian

equilibrium of the game implied by the AVG-Arrow mechanism and the implied outcome achieves

the maximum of problem (2). See Fudenberg and Tirole (1991) chapter 7 for a proof.

A bank-run example

The AVG-Arrow mechanism is an optimal mechanism in the sense that it has a Bayesian

equilibrium associated with the efficient allocation of assets across depositors. Unfortunately,

truth-telling is not necessarily the unique equilibrium. Consider the following illustrative example.

There are N = 3 depositors and the total endowments are of M̄ = 3.0 and Ā = 3.0. The utility

function is a constant relative risk aversion u(a;θ) = θ
a1−δ−1

1−δ
with parameter δ = 6.0. The type

space is Θ = {θL,θH}= {1.0,1.5}. The probability of type θL is πL = 0.1 and the probability of

type θH is πH = 0.9.

Type θL

θL

θH

θL,θL θH ,θL θL,θH θH ,θH

1.0000 1.0061 1.0061 1.0100

0.9881 0.9903 0.9903 1.0000

Type θH

θL

θH

θL,θL θH ,θL θL,θH θH ,θH

1.0000 0.9939 0.9939 0.9834

0.9988 1.0007 1.0007 1.0000

Figure 2: The depositors-game

Figure 2 depicts the depositors-game associated with the AVG-Arrow mechanism in this

example. The first table contains the payoff of depositor n for each possible vector of announcements

when his true type is θL. And the second table contains the payoff of depositor n for each possible

vector of announcements when his true type is θH . The rows represent depositor n’s announcement

and the columns the possible combinations of the other depositors’ announcements. Since the
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environment is symmetric, the AVG-Arrow mechanism is symmetric and, therefore, these two tables

fully characterize the depositors-game.

The AVG-Arrow mechanism has a truth-telling equilibrium, but in this example it also has

another equilibrium. Consider the strategy profile in which every depositor announces type θL

independent of their true type. If a depositor is of type θL and deviate from the proposed equilibrium

by announcing θH , his payoff is 0.9881 instead of 1.0000, which is not a profitable deviation. If a

depositor is of type θH and deviate from the proposed equilibrium by announcing θH , his payoff is

0.9988 instead of 1.0000, which is also not a profitable deviation. Therefore, announcing type θL

independent of your type is a Bayesian equilibrium of the game. I call this equilibrium a bank-run

equilibrium because depositors announce a low demand for the bank assets anticipating that other

depositors are going to do the same, which a form of self-fulfilling crisis.

The reason a bank-run equilibrium exists in this example is that, during a run, assets are

relatively “cheap”. The price a depositor pays for the asset is associated with the impact of his

announcement on the expected utility of other depositors. When a depositor announces θH , the

mechanism allocates more assets to him which causes a big reduction on the utility of the other

depositors. Therefore, the price he pays when announcing θH is high. A depositor is willing to pay

this high price under a truth-telling equilibrium because, if he misrepresent his type, he expects that

the mechanism will allocate very little assets to him—in which case his marginal utility of holding

more assets is high. Once a depositor believes everyone else will announce type θL, he believes

the bank will allocate a reasonable amount of assets to him independently of his announcement. In

this sense assets are “cheap”. As a consequence, the depositor has a low marginal utility of holding

more assets and he has no incentives to announce θH independently of his true type.

This form of bank run is in some sense opposite to the bank run presented in Diamond and

Dybvig (1983). In the Diamond-Dybvig model depositors believe that resources are going to be

scarce due to overpayments. Therefore, they run to the bank in order to get as much resources out

of the bank as they can. In my model depositors believe that resources (financial assets) are going

to be abundant due to a low demand for it. Therefore, they run to the bank in order to pay a lower

price for those resources.

3. A SINGLE BANK INFINITE-HORIZON MODEL

An advantage of my model is that it can easily be extended to an infinite-horizon model. In a

version with a single bank and infinite-horizon, the model is a special case of the model studied by

Athey and Segal (2013) and I can use their results of implementation in perfect Bayesian equilibrium.
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This extension is useful because it highlights a type of bank run which doesn’t exist in static models.

In dynamic settings, inefficient actions in the present can be supported as an equilibrium outcome

by fear of even worse actions in the future. I label this form of inefficient equilibria a dynamic bank

run. This is the type of bank runs I use to construct the financial crisis example in section 6.

Environment

The environment is an infinite repetition of the one discussed in the previous section. Time is

discrete and goes from zero to infinite. All depositors discount the future at rate β ∈ (0,1). Each

preference type is drawn from a known distribution π0, in date t = 0, and from t = 1 forwards it

follows a Markov process with transition Q : Θ×Θ→ [0,1], which I assume has a unique ergodic

distribution. As before, types are i.i.d. across depositors.

Direct mechanisms and equilibrium

In this setting, since types change over time, depositors announce their type at every date. Label

θθθ t = (θ 1
t , . . . ,θ

N
t )∈ΘΘΘ :=ΘN the date t announcement vector of depositors, and θθθ

t = (θθθ 0, . . . ,θθθ t)∈
ΘΘΘ

t the history of announcement vectors from period zero up to period t.

A direct mechanism is a pair of asset and numéraire policies, µ = {χχχ,ψψψ}. An asset policy

is a sequence χχχ = {χχχ t}t of functions χχχ t = (χ1
t , . . . ,χ

N
t ) : ΘΘΘ

t → RN
+ which assigns assets to each

depositor contingent on the history of announcement vectors θθθ
t . A numéraire policy is a sequence

ψψψ = {ψψψ t}t of functions ψψψ t = (ψ1
t , . . . ,ψ

N
t ) : ΘΘΘ

t → RN
+ which assigns numéraire good to each

depositor contingent on the history of announcement vectors θθθ
t . An asset policy χχχ is feasible if

∑nχn
t (θθθ

t) = Ā for every date t and history θθθ
t . That is, if the aggregate consumption asset holdings

is consistent with the total amount of assets in the economy. Analogously, a numéraire policy ψψψ is

feasible if it satisfies the budget balanced condition, ∑nψn
t (θθθ

t) = M̄, for every date t and history θθθ
t .

A direct mechanism is feasible if both its policies are feasible. I label M the set of feasible direct

mechanisms.

A depositor’s pure strategy is a sequence of announcements contingent on his type and the

history of announcements. Formally, a pure strategy for a depositor n is a sequence σσσ = {σt}t , where

σt maps (θθθ t−1,θ n
t ) into an announcement σt(θθθ

t−1,θ n
t ) ∈Θ. Label Σ the set of pure strategies.

A feasible direct mechanism µ ∈M is associated with a dynamic Bayesian game for depositors.

The strategy set, Σ, is the same for every depositor and, given a history of announcement vectors θ̂θθ
t ,
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the date t payoff of a depositor n when he is of type θ n
t is

vn(θ̂θθ t ;θ
n
t ) = u

(
χ

n
t (θ̂θθ

t);θ
n
t

)
+ψ

n
t (θ̂θθ

t).(6)

As in the previous section, I label this game the depositors-game and consider its perfect Bayesian

equilibria, from now on PBE.

The balanced team mechanism

The AVG-Arrow mechanism is designed for one-period environments, not dynamic ones. In

dynamic environments types change over time and depositors are required to announce their type in

every period. In this case, when a depositor misrepresent his type, his belief over the distribution of

future types may differs from the bank’s belief. Hence, it is possible that a depositor have incentive

to lie in order to manipulate the bank’s belief. Athey and Segal (2013) proposed an extension of the

AGV-Arrow mechanism, which they called the balanced team mechanism, to deal with this case.

Let me start introducing the optimal asset policy. The bank objective is to implement the

efficient allocation of assets across depositors in every period and every realization of types. That is,

the bank’s problem is

max
{

∑
n

u(χn;θ
n
t ) ; ∑

n
χ

n = Ā
}
.(7)

for all date t and history θθθ
t . Label χχχ∗ the asset policy associated with the solution to (7).

The balanced team mechanism makes transfers so each depositor internalises the welfare of

the other depositors in the bank, pretty much in the same way the AVG-Arrow mechanism does.

The crucial difference is that in a dynamic setting each depositor needs to internalise not only the

utility of others in the current period, but also the expect present value of their future utilities. In

this way, depositors do not have incentives to manipulate the bank future beliefs. Formally, for all

period t and history θθθ
t , the transfer to an depositor n in the balanced team mechanism is

ψ̄ψψ
∗n
t (θθθ t) =

M̄
N

+ γ
n
t (θθθ

t−1,θ n
t )−

1
N−1 ∑

i 6=n
γ

i
t (θθθ

t−1,θ i
t ),(8)

where

ψ
∗n
t (θθθ t) = ∑

i6=n
u
(
χ
∗i
t (θθθ t);θ

i
t
)
,(9)
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Ψ
n
t (θθθ

t) = E
{

∑
s

β
s−t

ψ
∗n
s (θθθ s)

∣∣∣ θθθ
t
}
, and(10)

γ
n
t (θθθ

t−1,θ n
t ) = E

[
Ψ

n
t (θθθ

t)
∣∣ θθθ

t−1,θ n
t

]
−E

[
Ψ

n(θθθ t)
∣∣ θθθ

t−1
]
.(11)

The balance team mechanism is given by µ̄µµ∗ = {χχχ∗, ψ̄ψψ∗} ∈M .

The environment here is a special case of Athey and Segal (2013). They show that truth-telling

is a perfect Bayesian equilibrium of the balanced team mechanism, where a strategy σσσ = {σt}t is a

truth-telling strategy if σt(θθθ
t−1,θt) = θt for all t and (θθθ t−1,θt). Consequently, for each history of

type realizations θθθ
t , the implied outcome achieves the maximum of problem (7).

A bank-run example

A dynamic environment generates an additional source of financial fragility. Once a depositor

believes his announcement will trigger future “bad” behaviour among other depositors, he may

have incentives to misrepresent his type even if it implies a welfare loss in the present. Consider

the following illustrative example. There are N = 3 depositors and the total endowments are of

M̄ = 3.0 and Ā = 3.0. The utility function is a constant relative risk aversion u(a;θ) = θ
a1−δ−1

1−δ
with

parameter δ = 6.0. The type space is Θ = {θL,θH}= {1.0,1.5}. For simplicity, instead of consider

a Markov process for types, I will look at the particular case where types are i.i.d. over time. The

probability of type θL is πL = 0.7 and the probability of type θH is πH = 0.3. When types are i.i.d.

over time, the balanced team mechanism is reduced to a repetition of an AVG-Arrow mechanism at

every period, which simplifies the presentation of the depositors-game. This simplification is not

essential in order to construct bank run examples.

Type θL

θL

θH

θL,θL θH ,θL θL,θH θH ,θH

1.0000 1.0020 1.0020 1.0016

0.9871 0.9945 0.9945 1.0000

Type θH

θL

θH

θL,θL θH ,θL θL,θH θH ,θH

1.0000 0.9898 0.9898 0.9761

1.0071 1.0049 1.0049 1.0000

Figure 3: The depositors-game

Figure 3 depicts the depositors-game associated with the balanced team mechanism for this

example. As before, the first table represents the payoff of depositor n for each possible vector of

announcements when his true type is θL. While the second table represents the payoff of depositor n

for each possible vector of announcements when his true type is θH . The rows represent depositor n’s
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announcement and the columns the possible combinations of the other depositors’ announcements.

While the second table is the payoff of depositor n for each possible vector of announcements when

his true type is θH . Since types are i.i.d. over time, the stage game is the same in every date t and,

therefore, it can be described with only two tables. If types followed a Markov process, the stage

game would be contingent on the previous announcement vector.

This depositors-game has two interesting features. First, truth-telling at every period is a

dominant strategy when β is close to zero. To see this note that, in the first table, when the depositor

is type θL, his payoff of announcing θL is always higher than the payoff of announcing θH . And in

the second table, when the depositor is type θH , his payoff of announcing θH is always higher than

the payoff of announcing θL.

The second feature is that the dominant strategy implementation result does not hold when β

is close to one. In this case, there are equilibria where depositors misreport their types in at least

one period and the implied welfare is strictly lower than truth-telling. For example, consider the

following strategy profile:

1. In date t = 0 announce θL independent of the true type, then go to 2.

2. If in date t = 0 all depositor have announced θL, then go to 4, otherwise, go to 3.

3. Announce θh until all depositors have announced θH for 5 consecutive periods, then go to 4.

4. Follow truth-telling.

Label σσσu the strategy profile described above.

CLAIM 1: There exists a β̄ ∈ (0,1) such that, for all β ∈ [β̄ ,1), the strategy profile {σσσn}n, with

σσσn = σσσu for all depositor n, constitutes a perfect Bayesian equilibrium of the depositors-game

depict in Figure 3. Furthermore, in the equilibrium path, all depositors announce θL in date zero.8

The gains from trade within a bank occurs when depositors are from different types. In this

case, the gains of trade are shared following the rules the balanced team mechanism in order to

generate incentives for truth-telling. When all depositors misrepresent their types and announce θL,

the gains from trade are not realized. This “inefficient” action can be supported as an equilibrium

by the threaten of having depositors misrepresenting their type in the future. In other words, the

one-period loss of announcing θL is lower than the five-periods loss of announcing θH . One may ask

8For this proof see Appendix A.
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why to stay five periods announcing θH is a credible threat. It is credible because if some depositor

deviate the punishment will be to stay at least one more period announcing θH . Of course, σσσu is

only an equilibrium when depositors have high valuation of future utilities—β is close to one.

4. THE COMPLETE MODEL

In this section I introduce a version of the model where banks trade assets in an over-the-

counter market. I emphasize one feature of over-the-counter markets, namely, trade happens with

delay. When the trade delay is short, the inter-bank market resembles a centralized market like the

NYSE, when the trade delay is long, it resembles an over-the-counter market like the ABS market.

Environment

There is a non-atomic unit measure of financial institutions which I call banks. Each bank

is the same described in section 3, and preference shocks across depositors in different banks

are independent. From period t = 1 forwards, a bank access a centralized Walrasian market with

probability α ∈ (0,1]. This assumption is equivalent to introducing a dealer, as as in DGP and LR,

but giving all the bargaining power to the bank. When dealers have bargaining power, the Nash

bargaining solution does not apply because depositors have private information. And, in order to

keep the analysis simple, I do not consider this version of the model. Let ιt ∈ {0,1} denotes whether

a bank had access to the market, ιt = 1, or not, ιt = 0, in date t. I assume that ιt is independent

across banks and over time.

The price of assets in terms of numéraire good in the centralized is given by a stochastic

process ppp = {pt}. For this section I assume that depositors observe a sunspot variable xt , which

is the same variable for all depositors in all banks. The sunspot random variables are i.i.d. over

time with distribution F and finite support S. Since there is a non-atomic measure of banks, and

preference types and market accesses are independent across banks, the only source of aggregate

uncertainty are the sunspots. Therefore, the price process is a deterministic function of sunspots.

That is, a price is a function pt : St → R+.

Direct mechanisms

Before formally define a direct mechanism, let me introduce some notation. I label θθθ t =

(θ 1
t , . . . ,θ

N
t ) ∈ΘΘΘ := ΘN the period t announcement vector, ιt ∈ {0,1} whether the banks has access

to the centralized market in period t or not, and pt the period t price of assets in terms of numéraire

good in the Walrasian market. The vector with the realization of these variables is denoted by
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ht = (θθθ t , ιt , pt) ∈ H := ΘΘΘ×{0,1}×R+. As usual, I use superscript t to denote the history of

variables from period zero up to period t.

A direct mechanism is a pair of asset and numéraire policies denoted by µµµ = {χχχ,ψψψ}. An asset

policy is a sequence χχχ = {χχχ t}t , where χχχ t = (χ1
t , . . . ,χ

N
t ) : Ht → RN

+ denotes the amount of assets

allocated to depositor in the bank contingent on the history ht . A numéraire policy is a sequence

ψψψ = {ψψψ t}t , where ψψψ t = (ψ1
t , . . . ,ψ

N
t ) : Ht → RN denotes the transfer of numéraire good to each

depositor contingent on the history ht .

The difference between banks in this section and in the previous ones is that it can adjust its

aggregate asset holdings when accessing the inter-bank market. In practice, this only changes the

feasibility conditions of the direct mechanisms. That is, an asset policy χχχ = {χχχ t} is feasible if

∑nχn
0 = Ā and (1− ιt)∑n

[
χn

t (h
t)−χn

t−1(h
t−1)

]
= 0. The first condition is that the aggregate asset

holding in a bank needs to be consistent with the initial distribution of assets among depositors.

The second condition is that the bank can only adjust its aggregate asset holdings if it accesses the

centralized market. Label Γ the set of all feasible asset policies. A numéraire policy ψψψ = {ψψψ t} is

feasible if it satisfies the budget balanced condition, ∑nψn
t (h

t) = M̄+ pt∑n
[
χn

t−1(h
t−1)−χn

t (h
t)
]
.

That is, the aggregate numéraire transfers among depositors equals the aggregate transfer with the

market. A direct mechanism is feasible if both policies are feasible. Label M the set of all feasible

direct mechanisms.

A pure strategy is a sequence of announcements contingent on these variables. Formally, a

depositor n strategy is a sequence σσσn = {σn
t }t of measurable functions, where σn

t maps a vector

(ht−1,θ n
t ,x

t) into a announcement σn
t (h

t−1,θ n
t ,x

t) ∈Θ. Label ΣΣΣ the set of all pure strategies.

A feasible direct mechanism, µµµ ∈M , and a price process, ppp, is associated with a stochastic

game of incomplete information to depositors. Where the strategy set of each depositor n is ΣΣΣ and

his period utility in date t given a history ht when he is of type θ n
t is

vn
t (h

t ;θ
n
t ) = u

(
χ

n
t (h

t);θ
n
t
)
+ψ

n
t (h

t).(12)

I label this game the depositors-game.

Equilibrium

I restrict attention to symmetric equilibria, meaning, every bank adopts the same mechanism

and all depositors adopt the same strategy. Note that depositors from different banks can still make

different announcements because they face different history of type realizations.

The only aggregate uncertainty in the economy comes from the public sunspot. Therefore, the
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price in a period t is a deterministic function of xt = (x0,x1, . . . ,xt). The market clearing condition

requires that, for every period t and public sunspot realization xt , the demand of assets equal the

total offer of assets in the economy.

Formally, the transition probability of types, Q, the probability of accessing the centralized

market, α , the distribution of sunspot, the price process, ppp, a feasible mechanism, µµµ ∈M , and a

strategy profile {σσσn}n ∈ ΣΣΣ
n, generate a sequence of measures ηηη = {ηt}t over the space of histories

Ht . These measures are defined in the usual way. The aggregate demand for assets in the centralized

market in period t is

Dt(xt) :=
∫

∑
n

χ
n
t (h

t)dηt(ht |xt).(13)

Note that the aggregate demand for assets is a function of the sunspot history xt . Markets clear at a

period t if Dt(xt) equals Ā almost surely.

DEFINITION 1: Given a feasible direct mechanism µµµ ∈M , a symmetric equilibrium is a pair

{σσσ , ppp} such that: (i) the strategy profile {σσσn}n, with σσσn = σσσ for all n, is a perfect Bayesian

equilibrium of the depositors-game associated with µµµ and ppp; and (ii) markets clear at every period.

5. EFFICIENCY RESULTS

In this section I show that there exists a price process and a direct mechanism which supports

the constrained Pareto efficient allocation as an equilibrium outcome. Where constrained means

constrained by the market access (ι equal to zero or one).

The balanced team mechanism

Let me start characterizing the optimal asset policy. Given a price process ppp, the expected

aggregate utility of a bank implied by an asset policy χχχ is

Wppp(χχχ) = E
{

∑
t

β
t
[
∑
n

u(χn
t ,θ

n)+ M̄+ pt ∑
n
(χn

t−1−χ
n
t )

]}
.(14)

Label χχχ∗ppp the asset policy that maximizes Wppp among all feasible asset policies. The policy χχχ∗ppp

is only defined for a given price process ppp, but trough out the text I will omit the argument ppp to

keep the notation short whenever it is convenient. Note that χχχ∗ppp may not exist for a particular price

process. However, if χχχ∗ppp exists it is unique since u(·,θ) is strictly concave for all θ .

Before I proceed, let me introduce some notation. Label U(A,θθθ) the maximum aggregate
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period utility of a bank with total assets equal to A and vector type θθθ . That is,

U(A;θθθ) = max
{

∑
n

u(an;θ
n); ∑

n
an = A

}
.(15)

The function U(·;θθθ) inherit all the properties of u(·;θ). Namely, it is twice continuous differentiable,

strictly increasing, strictly concave, U ′(0;θθθ) = ∞ and U ′(∞;θθθ) = 0. Label {tk}∞
k=1 the random

sequence of periods in which a bank access the centralized market, and dk = tk+1− tk the time

length between the accesses. Note that dk follow a geometric distribution with parameter α . That is,

the probability of the next access to the market be in d periods is (1−α)d−1α .

PROPOSITION 1: Consider a feasible asset policy, χχχ , and a sequence AAA = {At}t satisfying At(ht) =

∑nχn
t (h

t) almost surely. A sufficient condition for χχχ to solve problem (14) is that for all t and ht: (i)

the policy χt(ht) solves problem (15) for θθθ = θθθ t and A = At(ht) almost surely; (ii) if the bank has

its k-th access to the centralized market in period t = tk, then At(ht) satisfies

pt−E
{

β
dk pt+dk

∣∣ ht
}
= E

{
dk−1

∑
d=0

β
dU ′(At ;θθθ t+d)

∣∣∣ ht

}
(16)

almost surely; and (iii) the transversality condition, limK→∞E{β tK ptK AtK}= 0, holds.9

Proposition 1 provides sufficient conditions for a feasible asset policy to be optimal, which are

given by the first order conditions of the bank problem. I use this conditions later when I show that

there exists an equilibrium which supports the constrained Pareto efficient allocation.

The numéraire policy in the balanced team mechanism is constructed so a depositor internalizes

the aggregate welfare of the bank. Label ψ∗nt (ht) the difference between depositor n utility and the

aggregate utility of the bank in date t given history ht , net from the cost of depositor n’s own assets

pt
(
χn

t−1−χn
t
)
. That is,

ψ
∗n
t (ht) = ∑

i 6=n

[
u
(
χ
∗(ht);θ

i
t
)
+ pt

(
χ

i
t−1(h

t−1)−χ
i
t (h

t)
)]
.(17)

Label Ψn
t (h

t) the period t expected present value of the sequence {ψ∗ns }∞
s=t given ht . That is,

Ψ
n
t (h

t) = E
{

∞

∑
s=t

β
s−t

ψ
∗n
s (hs)

∣∣∣ ht
}
.(18)

9See Appendix B for all the proofs in this section.
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The agent n incentive term of announcing θ n
t in period t is given by

γ
n
t (h

t−1, pt ,θ
n
t ) = E

[
Ψ

n
t (h

t) | ht−1, pt ,θ
n
t
]
−E

[
Ψ

n(θθθ t) | ht−1, pt
]
.(19)

For all period t and history ht , the transfer to a depositors n in the balanced team mechanism is

ψ̄ψψ
∗n
t (ht) =

M̄
N

+ pt
(
χ

n
t−1(h

t−1)−χ
n
t (h

t)
)
+ γ

n
t (h

t−1, pt ,θ
n
t )−

1
N−1 ∑

i 6=n
γ

i
t (h

t−1, pt ,θ
i
t ).(20)

The balance team mechanism is given by µ̄µµ∗ppp = {χχχ∗ppp, ψ̄ψψ∗ppp} ∈M . As in the case with only one bank,

the depositors-game implied by the balance team mechanism has a perfect Bayesian equilibrium in

truth-telling strategies. See Athey and Segal (2013) for a proof.

The constrained Pareto efficient allocation

In this class of models the numéraire good allows depositors to transfer utility with a linear

technology. Therefore, an outcome is constrained Pareto efficient if, and only if, it maximizes

depositors aggregate welfare. In this subsection I characterize this allocation. Note that constrained

here refers to the constraint on market accesses, not the incentive compatibility constraint.

An allocation is a sequence aaa = {aaat}t of measurable functions aaat = (a1
t , . . . ,a

N
t ) : ΘΘΘ

t ×
{0,1}t → [0,B]N , where B > 0 is an upper bound on depositors asset holdings. I impose two

restrictions on the allocation: there is an upper bound on asset holdings and the allocation is sym-

metric. Both restrictions are without loss of generality with respect to maximize aggregate welfare.

The upper bound B can be taken large enough so it does not bind.10 And the strictly concavity of

u(·;θ) implies that the welfare maximizing allocation is symmetric.

A symmetric allocation aaa is feasible if for all (θθθ t , ι t) it satisfies

∑
n

an
t (θθθ

t , ι t−1,0) = ∑
n

an
t−1(θθθ

t−1, ι t−1),(21)

∑
θθθ

t
∑
ιt
P(θθθ t , ι t)∑

n
an

t (θθθ
t , ι t) = Ā, and(22)

∑
n

an
0 = Ā.(23)

10A necessary condition for an allocation aaa to maximize welfare is that, ∀(θθθ t , ι t), (θθθ ′t , ι ′t) such that ιt = ι ′t = 1 and
θθθ t = θθθ

′
t , we have at(θθθ

t , ι t) = at(θθθ
′t , ι ′t). This result comes from the fact that u(·;θ) is strictly concave and that the

stochastic type process is Markov. In addition, u(∞;θ) = 0 for each θ ∈Θ and the measure of banks with type vector
θθθ ∈ ΘΘΘ is bounded away from zero at any period t. Combined with the fact that assets exist in finite supply Ā, these
features imply that there is a positive real number, B, such that for all feasible aaa, if at(θθθ

t , ι t)> B for some (θθθ t , ι t), then
there exists a Pareto superior and feasible outcome aaa′ that is bounded above by B.
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The first equation means that, in case the bank does not access the market, its total amount of assets

is the same of the previous period. The second equation means that the total amount of assets held

by depositors equals the total amount of assets existent in the economy. The last equation is the

requirement that, since the initial distribution of assets is uniform, every bank should hold exactly Ā

assets at period zero. Let F denotes the set of all feasible allocations aaa.

The aggregate welfare of the economy implied by an allocation aaa ∈F is

W (aaa) = E
{

∑
t

β
t
∑
n

u(an
t ;θ

n
t )

}
.(24)

An allocation is constrained Pareto efficient if it achieves the maximum aggregate welfare among

all feasible allocations. It is easy to show that such allocation exists and it is unique. Label this

allocation aaa∗. The following proposition characterizes aaa∗.

PROPOSITION 2: Consider a feasible allocation, aaa ∈F , and a sequence AAA = {At}t defined by

At(θθθ
t , ι t) = ∑nan

t (θθθ
t , ι t). A necessary and sufficient condition for aaa to maximizes (24) is that for all

(θθθ t , ι t): (i) the allocation rule aaat(θθθ
t , ι t) solves (15) for θθθ = θθθ t and A = At(θθθ

t , ι t); and (ii) there

exists a sequence of Lagrange multipliers, λλλ = {λt}t , such that, if ιt = 1, then At(θθθ
t , ι t) satisfies

λt = E

{
dk−1

∑
d=0

β
dU ′(At ;θθθ t+d)

∣∣∣ θθθ
t , ι t

}
.(25)

Proposition 2 provides sufficient conditions for a feasible asset allocation to be constrained

Pareto efficient, which are given by the first order conditions implied by the maximization of (24)

constrained by equations (21)-(23).

The constrained Pareto efficient equilibrium

The balanced team mechanism weakly implements the optimal outcome within a bank for

a given price. In addition, as long as depositors follow truth-telling strategies, it also sustain the

constrained optimal outcome as an equilibrium outcome.

PROPOSITION 3: There exists a price process ppp, a strategy σσσ and a feasible mechanism µ̄µµ∗ =

{χχχ∗, ψ̄ψψ∗} ∈M such that: (i) µ̄µµ∗ = µ̄µµ∗ppp is the balanced team mechanism associated with the price

process ppp; (ii) σσσ is the truth-telling strategy; (iii) {σσσ , ppp} is an equilibrium associated with the

direct mechanism µ̄µµ∗; and (iv) the implied asset allocation is constrained Pareto efficient.

The proof of proposition 3 follow two steps. First, I use the Lagrange multipliers of proposition
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2 in order to build a price sequence such that the optimal asset policy is associated with the

constrained Pareto efficient allocation. This is done by equalizing the price in the first order

conditions of the bank, equation (16), to the Lagrange multiplier in equation (25). The second step

is to generate incentives for truth-telling. I use the balanced team mechanism which always has a

truth-telling equilibrium.

A uniqueness result when the inter-bank market is efficient

From previous sections, we know that banks are fragile when they are isolated—α = 0. Is the

inter-bank market able to eliminate bank fragility? I am able to provide a positive answer to this

question when the over-the-counter market frictions are small.

PROPOSITION 4: There exist ᾱ ∈ (0,1) such that, for all α ∈ [ᾱ,1], the constrained Pareto efficient

allocation is the unique equilibrium outcome associated with the balanced team mechanism.

When α is close to one, there is very little risk-sharing among a bank depositors because the

bank adjusts its portfolio immediately after a depositor announcement. As a result, the balanced

team mechanism only replicates the allocation of assets that each depositors would choose if they

were by themselves accessing the market. And, because this is the Walrasian demand, depositors

cannot get better by misrepresent their types.

6. A FINANCIAL CRISIS EXAMPLE

I have shown that the model with a single bank generates bank-run equilibria, and that when a

large numbers of banks trade assets in a efficient inter-bank market such equilibria disappears. But

what happens when the inter-bank market features severe over-the-counter trade frictions?

In this section I provide a numerical example of an equilibrium which resembles a financial

turmoil in an economy where the over-the-counter market frictions are severe. Consider the

following parametrization. There are N = 3 depositors and the total endowments are M̄ = 3.0 and

Ā = 3.0. The utility function is a constant relative risk aversion u(a;θ) = θ
a1−δ−1

1−δ
with parameter

δ = 6.0. The type space is Θ = {θL,θH}= {1.0,1.5}. The distribution of types over time is driven

by a Markov process Q, where Q(θL,θL) = 0.95 and Q(θH ,θH) = 0.2, and the economy starts in

the steady state distribution of Q. Depositors discount the future at rate β = 0.98. The probability of

accessing the market is α = 0.5. And assume that there exists x̄ ∈ S such that F(x̄) = 10−8, where

F is the distribution of sunspots.

Let me construct the strategy profile that will be supported in equilibrium. Label tu the first
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time period in which the sunspot, xt , is in the interval [0, x̄]. Consider the following strategy:

1. Announce truthfully in all periods t < tu.

2. In period tu announce θL.

3. In period t > tu

• if in period t−1 all depositors have announced θL, then keep announcing θL.

• otherwise, announce θH until all depositors have announced θH for 2 consecutive

periods. Then announce θL.

Label this strategy σσσu. To summarize, depositors announce truthfully until a sunspot hits the

economy, which happens with probability 10−8. The period of this shock is labelled tu and I

interpret it as the period the crisis starts. From tu forwards, depositors “run” against the bank by

announcing θL independent of their types. Having depositors announcing θL independent of their

types can be supported as an equilibrium outcome by the fear of going to a cycle of having every

depositors announcing θH . That is, this is a dynamic bank-run equilibrium.

I numerically verify that there exists an equilibrium price process, ppp, such that {σσσu, ppp}
constitutes an equilibrium associated with the balanced team mechanism. This equilibrium display

interesting features. The price is constant until period tu, when the crisis occurs, and then it drops

by 9.94 percent. The trade volume has a more interesting dynamic, as depicted in Figure 4. At the

moment of the crisis the trade volume increases by 168 percent. This increase is due to a “fire-sale”

effect: every bank try to reduce their asset holdings and, as a result, price drops and the trade volume

increases. As time pass by, assets are reallocated and the trade volume converges to zero, which I

interpret as a collapse of the over-the-counter asset market.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.5

1.0

1.5

2.0

2.5
Sunspot—128.2% increase in trade volume

Long term effect—collapse of trade volume

z

Figure 4: Trade volume
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7. THE NON-COMMITMENT CASE

A weakness of the results in the previous sections is that depositors need to be able to commit

with a long term relationship, which is a strong assumption. For instance, in a mutual fund there is

nothing preventing a depositor from selling his respective share and permanently leave the fund.

In this section, I consider the non-commitment version of the model, where depositors cannot

commit with future actions. I show that the balanced team mechanism implements the constrained

Pareto optimal allocation if β is high. That is, there exists β̄ ∈ (0,1) such that for all β ∈ [β̄ ,1) the

constrained Pareto efficient allocation is an equilibrium outcome. I also show that there exists at

least one inefficient equilibrium, which is autarky.11

The sequence of actions is the following. Depositors start the period with whatever assets they

finish in the period before. Then they announce their types. After announcements are made, the

mechanism will suggest how much assets each depositor should transfer to each other, how much

assets to trade with the market in case there is access, and how much of the numéraire good to

transfer. The key difference here is that the mechanism will only suggest the transfers, whether they

are made or not depends on depositors’ decision. That is, after observe the suggested transfers, each

depositor have the option to deviate from what was suggested (transferring whatever amounts he so

desires) and go to autarky, or to sticky with the transfers suggested by the mechanism. I assume that,

once a depositor goes to autarky, he cannot get back into the bank. This is without loss of generality

with respect to implement the best bank outcome since, in order to generate incentives, we always

want to give a depositor the worse punishment for a deviation. The probability of accessing the

market once in autarky is the same probability of the bank accessing the market.

The balanced team mechanism need to be extended to account for the possibility of some

depositor deviating from the mechanism and going to autarky. The modification I propose is simple.

The mechanism follow the balanced team mechanism until a depositor deviate. After a deviation

the mechanism recommend autarky to all remaining depositors. Label this mechanism µ̄µµ∗ and call

it the modified balanced team mechanism.

PROPOSITION 5: There exist β̄ such that, for all β ∈ [β̄ ,1), the constrained Pareto efficient

allocation is an equilibrium outcome associated with the modified balanced team mechanism µ̄µµ∗.

The intuition for this result is that going to autarky prevents depositors from engaging in

risk sharing. Even though there may be some gains from doing this in the short run, due to some

11See Appendix C for a formal discussion.
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particular shocks, in the long run it definitely represents a cost. If depositors are patient enough, the

long run cost exceeds any short term benefit from a deviation.

Proposition 5 shows that truth-telling is an equilibrium when β is high. On the other hand,

autarky is always an equilibrium associated with any feasible mechanism and any β . Given any

feasible mechanism, depositors are indifferent between deviating from the mechanism or not when

all other depositors are going to autarky. As a result, autarky is always an equilibrium.

8. OPTIMAL POLICY

The model I developed here has a fragile economy in the sense that different equilibria arise

and some are associated with low welfare.12 In this section I consider again the commitment version

of the model which I extend to study two alternative policies to reduce financial fragility.

Suspension

Assume that banks can monitor the distribution of announcement vectors in the whole economy.

Label Π̃t the distribution of announcement vectors in period t and Π̃t the history of Π̃t realizations.

Note that I use capital pi to denote distribution over vector types and non-capital pi to denote

distribution over types.

The relevant state for a bank, ht , needs to be extended in order to account for Π̃t . That is,

let ht = (θθθ t , ιt , pt ,ωt , p̄t). The asset policy, the transfer policy, the depositors strategies and the

equilibrium definition are extended to capture the extension in the space of histories.

I consider a very simple modification of the balanced team mechanism. Let tu denotes the

first period in which Π̃t 6= Πt , where Πt is the true distribution of bank type vectors. The modified

mechanism follows exactly the balanced team mechanism until t = tu. For t ≥ tu, the modified

mechanism maximize each depositor utility separately, which is a reversion to DGP and LR where

depositors are isolated. That is, for t ≥ tu the bank maximizes

E
{

∑
t

β
t−tu
[

u(χn
t ,θ

n)+
M̄
N

+ pt(χ
n
t−1−χ

n
t )

]}
(26)

for each depositor n. And the numéraire consumption is ψ̄n∗ = M̄
N + pt(χ

n
t−1−χn

t ). Label µ̄µµ∗mod the

modified balanced team mechanism. I refer to this policy as a suspension because from tu forward

12One may suggest that the use of a different mechanism, instead of the balanced team mechanism, can eliminate the
inefficient equilibria. Unfortunately, the recent developments in implementation theory do not provide such mechanism.
Unique, or full, implementation is only guaranteed under a particular set of assumptions and as a limit result as the
discount rate, β , goes to one. See, for example, Renou and Tomala (2013).
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the bank suspend all risk-sharing among depositors.

PROPOSITION 6: Consider a price process, ppp, and a associated modified balanced team mechanism,

µ̄µµ∗mod . If a pair {σσσ , ppp} is an equilibrium for the mechanism µ̄µµ∗mod then σσσ generates a distribution of

type vectors that equals the true distribution Πt at every date t.13

The reason proposition 6 does not guarantee that the equilibrium is truth-telling is because

suspension only occurs when the bank knows depositors are misrepresenting. If depositors are

playing an strategy that generates the true distribution of announcements, but is not truth-telling, the

bank cannot differentiate this from truth-telling. Consequently, there is not threat of suspension.

Fortunately, generically this cannot happen, where generically here means on a full measure set of

the space of initial distribution of types, π0, Markov processes, Q, and sunspot distributions F .

PROPOSITION 7: Generically, given a price process ppp and associated balanced team mechanism,

µ̄µµ∗ppp, if a pair {σσσ , ppp} is an equilibrium for the mechanism µ̄µµ∗mod then σσσ is a truth-telling strategy.

Suspension prevents bank runs from a different reason that it does in Diamond and Dybvig

(1983). In Diamond-Dybvig agents don’t run against the bank during a suspension regime because

they know there will be enough resources for later depositors. While in my setting suspension

works because it kills risk-sharing and, therefore, any possibility for strategic complementarity.

Trading facilities

Assume that there exists a benevolent policy-maker with access to a commitment technology

and a trading facility. The policy-maker can produce or consume the numéraire good with a linear

technology as other depositors,14 but he derives no utility from holding assets. A trading facility

is a place that can be open or closed. When the facility is closed, the physical environment is that

same discussed before and no one can trade with the policy-maker. When the facility is open, every

bank has access to it and they can trade with the policy-maker. There is an operational cost c≥ 0 in

terms of the numéraire good for the policy-maker to open the facility.

The sequence of actions within a period are the following. First, depositors make their

announcements in the bank. Second, each bank reports the announcement vectors to the policy-

maker. Without loss of generality, I assume that banks cannot misreport depositors announcements.

This assumption is without loss of generality because, under the policy I consider, banks will have

13See Appendix D for the proofs in this section.
14This assumption can be replaced by the assumption that the market-maker can collect taxes.
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no incentives to misreport. For the last, the policy-maker decides whether to pay the operational

cost and trade occurs.

A policy-maker decision is family fff = { ft}t , where ft(Π̃t) =
(
ωt(Π̃t), p̄t(Π̃t)

)
. ωt(Π̃t) ∈

{0,1} denotes whether the policy-maker paid the operational cost c≥ 0 in order to trade with the

banks, and p̄t(Π̃t) ∈R+ is the price the policy-maker is willing to buy and sell assets. Which means

the policy-maker acts as a market-maker. Let W M denotes the maximum welfare attained if the

policy-maker operates at every period. Formally, we have that

WM = ∑tβ
t
∑θ πt(θ)u(aM

t
(
θ)
)
,(27)

where {πt} is the true distribution of types and {aaaM
t (θ)}t satisfies

∑θ πt(θ)aM
t (θ) = Ā, and(28)

u′
(
aM

t (θ);θ
)
= u′

(
aM

t (θ̃); θ̃
)

for all θ , θ̃ ∈Θ.(29)

Since there is a non-atomic measure of depositors and shock are i.i.d., there is no uncertainty over

πt . That is, {πt}t is a known deterministic sequence.

When the operational cost is low enough such that WM− c
1−β
≥W (aaa∗), the optimal policy is

to pay the operational cost at every period and set the price p̄t to satisfy the difference equation

u′
(
aM

t (θ);θ
)
= p̄t−β p̄t+1 for all period t(30)

for all θ . Label this decision policy fff M. For this decision policy there will be a unique equilibrium

associated with the balanced team mechanism.

PROPOSITION 8: Given fff M, for any price process, ppp, and associated balanced team mechanism,

µ̄µµ∗, the implied depositors-game features a unique equilibrium which is truth-telling.

Proposition 8 implies that in this setting we can always guarantee stability and a welfare of

WM− c
1−β

. On the other hand, if the operational cost c is so high that WM− c
1−β

<W (aaa∗), using fff M

leads to a welfare loss. Is it possible to achieve stability under this circumstances without sacrificing

welfare?

The answer to the above question is yes. The simple threat of implementing fff M is enough to

guarantee that the equilibrium will be unique. Consider the following policy-maker policy decision.

Let tu denotes the first period in which Π̃t 6= Πt , where Πt is the true distribution of bank type
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vectors. The policy-maker decision is ωt = 0 for all t < tu, and, the policy fff M from tu forward.

Label this decision policy fff S.

PROPOSITION 9: Given fff S, for any price process, ppp, and associated balanced team mechanism,

µ̄µµ∗ppp, if a pair {σσσ , ppp} is an equilibrium for the mechanism µ̄µµ∗ppp then σσσ generates a distribution of type

vectors that equals the true distribution Πt at every period t with probability one.

The reason proposition 9 does not guarantee that the equilibrium is truth-telling is the same of

6. If depositors are playing a strategy that generates the true distribution of announcements, the

policy-maker cannot differentiate this from truth-telling, so there is not threat of intervention. But

again this cannot happen in general.

PROPOSITION 10: Generically, given fff S, a price process, ppp, and associated balanced team

mechanism, µ̄µµ∗, if a pair {σσσ , ppp} is an equilibrium associated with the mechanism µ̄µµ∗ then σσσ is a

truth-telling strategy.

As before, generically here means on a full measure set of the space of initial distribution of

types, π0, Markov processes, Q, and sunspot distributions F .

9. DISCUSSION AND FUTURE EXTENSIONS

My model helps us to identify one of the causes for the 2007/08 financial crisis. In recent years

the market for asset-backed securities (ABSs) has expanded extremely fast. Annual issuance of

ABS went from $10 billions in 1986 to $893 billions in 2006, as reported by Agarwal et al. (2010).

And a growing shadow bank sector has purchased most of these assets, which are usually traded

in an over-the-counter fashion. Moreover, ABSs are complex financial instruments, which make

it hard to trade since only very specialized traders are able to evaluate those assets. As a result,

in 2007 the financial sector featured a large number of financial institutions operating a market

with severe over-the-counter market frictions—all important elements for a fragile bank sector, as

suggested by my model.

The most common prescription for enhancing financial stability is to regulate the contracts

offered by financial institutions. For example, recently, the Securities and Exchange Commission

(SEC) announced a set of proposals to enhance financial stability, which includes a recommendation

for the MMF board of directors to impose fees and gate payments in times of heavy redemption
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activity.15 And Cochrane (2014) calls for an narrow bank sector funded 100% by equity.

There are two downsides of directly regulating bank contracts. First, each type of financial

institution serves a different type of depositor and, therefore, requires a different bank contract. As

a result, the regulation needs to be specific to the type of institution. That is, we need one particular

regulation for commercial banks, one for mutual funds, one for structured investment vehicles, etc.

Which results in a complex regulatory system doomed to feature loopholes and regulatory arbitrage

possibilities. The second downside is that, even if we are willing to write complex regulations to

every type of financial institution, it is not clear what regulations we should impose. Even a glimpse

through the Diamond-Dybvig literature shows that the optimal contract depends on several details of

the environment. When you consider models other than Diamond-Dybvig, the possible regulations

grow exponentially. Besides, more often than not, regulations have a welfare cost. In which case,

the optimal regulation also depends on how the policy-maker evaluates welfare.

In this paper I suggest a different approach to enhance financial stability. Instead of focusing

on the particular contract financial intermediaries are offering, I focus on the market where the

underlying assets are traded. I show that, if we reduce trade frictions, we enhance financial stability

with no need to regulate individual banks. Of course, much research still needs to be done to

understand how robust this result is to alternative specifications. However, I believe it offers a much

more promising path to financial stability than an overly complex regulatory framework.

There are possible extensions that I do not explore in this paper. To start with, over-the-counter

trading relates to two frictions; trade delay due to search for trade partners, and bargaining due to

bilateral trade. But in this paper I only explore the trade delay friction. A natural extension is to

explicitly model the bargaining process. This extension is challenging because involves bargaining

under private information.

Each bank in my model has a fixed group of depositors. In the real world, depositors change

their bank with some frequency and banks are always searching for new depositors. An extension

that allows for these possibilities would help to understand bank formation and the effect of financial

crisis on the size distribution of banks. The challenge of this extension is computational, since the

state of a bank grows exponentially with the number of depositors.

My model completely abstracts from the real side of the economy. An interesting extension

would be to build a channel through which bank runs have real effects. One way of establishing this

channel could be to have a real side of the economy producing financial assets from loans to firms

15See SEC (2013).
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and consumers—a form of securitization trough which assets are created. In this case, a drop in

asset prices would reduce incentives for lending.
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APPENDIX A: INEFFICIENCY RESULTS

Proof of claim 1

PROOF: I will use the one deviation principle to show the result. First, assume a depositor deviates

in a period t = 0 by announcing θH . If the depositor is of type θL, the total gain of deviation is

−0.0129−β
1−β 5

1−β
0.0023.

The first term is the gain of the deviation. And the second is the expected gain of deviation implied

by staying 5 consecutive periods announcing θH . Since both are negative, this deviation is not

profitable. Now, assume the depositor is of type θH . In this case his gain of deviation is

0.0071−β
1−β 5

1−β
0.0023 < 0 ⇐⇒

0.0071 < β
1−β 5

1−β
0.0023≤ lim

β↗1
β

1−β 5

1−β
0.0023 = 0.0117.

Thus, there exist β̄0 such that, if β ≥ β̄0, the gain of deviation is strictly negative.

For the last, let us check a deviation in periods t > 0. If the depositors are supposed to announce

truthfully forever, then a deviation is welfare decreasing since truth-telling is a strictly dominant

strategy of the stage game. Assume someone deviate in period t = 0 and depositors are suppose to

announce θH for five consecutive periods—the punishment stage described in bullet three. If the

depositor is of type θL, the total gain of deviation is

0.0016−β
5−s0.0023,

where s is the number of consecutive periods all depositors have announced θH before. The gain

from deviation is bounded above by

0.0016−β
50.0023 < 0 ⇔ 0.0016 < β

50.0023≤ lim
β↗1

β
50.0023 = 0.0023.

Thus, there exist β̄1 such that, if β ≥ β̄1, the gain of deviation is strictly negative. If the depositor is

of type θH , the total gain of deviation is

−0.0239−β
5−s0.0023
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which is always negative.

Label β̄ the maximum between β̄0 and β̄1. Then, we can conclude that, if β ∈ [β̄ ,1), the

the gain of any deviation is strict negative and the proposed strategy profile constitutes a perfect

Bayesian equilibrium of the depositors-game.

APPENDIX B: EFFICIENCY RESULTS

Poof of proposition 1

PROOF: Consider the problem

sup
{
E∑tβ

t[U(At ,θθθ t)+ pt(At−1−At)
]
; AAA = {At}t ∈A

}
,(31)

where A denotes the set of random sequences, AAA = {At(ht)}t , satisfying, for all ht ∈ Ht , A0 = Ā

and (1− ιt)[At−1(ht−1)−At(ht)] = 0.

Let me start showing that conditions (ii) and (iii) are sufficient for AAA ∈A to solve problem

(31). Consider a sequence AAA ∈A satisfying (ii) and (iii) and another arbitrary sequence ÃAA ∈A .

The difference in the objective function of problem (31) implied by AAA and ÃAA is

D = lim
K→∞

E
{

∑
K−1
k=1 β

tk
{

∑
dk−1
d=0 β

d[U(Atk ;θθθ tk+d)−U(Ãtk ;θθθ tk+d)
]

−
[
ptk−β

dk ptk+dk

][
Atk− Ãtk

]}
−β

tK ptK
[
AtK − ÃtK

]}
≥ lim

K→∞
E
{

∑
K−1
k=1 β

tk
{

∑
dk−1
d=0 β

dU ′(Atk ;θθθ tk+d)
[
Atk− Ãtk

]
−
[
ptk−β

dk ptk+dk

][
Atk− Ãtk

]}
−β

tK ptK
[
AtK − ÃtK

]}
= lim

K→∞
E
{

∑
K−1
k=1 β

tkE
{

∑
dk−1
d=0 β

dU ′(Atk ;θθθ tk+d)−
[
ptk−β

dk ptk+dk

]∣∣∣htk
}[

Atk− Ãtk
]

−β
tK ptK

[
AtK − ÃtK

]}
.

Condition (ii) implies that

E
{

∑
dk−1
d=0 β

dU ′(Atk ;θθθ tk+d)−
[
ptk−β

dk ptk+dk

]∣∣∣htk
}

equals zero almost surely. Hence,

D≥− lim
K→∞

E
{

β
tK ptK

[
AtK − ÃtK

]}
≥− lim

K→∞
E
{

β
tK ptK AtK

}
.
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The last term of the above equation equals zero due to condition (iii). Therefore, we can conclude

that conditions (ii) and (iii) are sufficient for a sequence AAA ∈A to solve problem (31). And we

have by construction that if AAA solves problem (31) then a policy χχχ satisfying condition (i) solves

problem (14).

Existence and uniqueness of a constrained Pareto efficient allocation

LEMMA 1: There exists a unique constrained Pareto efficient allocation.

PROOF: Note that W is a continuous map and F is a compact space when equipped with the norm

|| · ||β , which defined as

||aaa||β = ∑tβ
t sup{|at(θθθ

t , ι t)|; θθθ
t , ι t ∈ΘΘΘ

t×{0,1}t}.

Therefore, by the Weierstrass theorem, there exists an allocation aaa that maximizes W among all

outcomes in F . The uniqueness result comes from the strict concavity of u(·;θ), for each θ ∈Θ,

and the convexity of the set F .

Proof of proposition 2

PROOF: Consider the problem

(32) max
{
E∑tβ

tU(At ;~θt); AAA ∈A
}
,

where AAA = {At}t is a sequence of maps At : ΘΘΘ
t×{0,1}t → [0,NB] and A is the set of sequences

AAA = {At}t satisfying

At(θθθ
t , ι t−1,0) = At−1(θθθ

t−1, ι t−1),

∑θθθ
t ∑ιtP(θθθ t , ι t)At(θθθ

t , ι t) = Ā, and

A0(θθθ 0) = Ā.

It is easy to see that an outcome aaa is constrained optimal if, and only if, there exists AAA = {At}t ∈A

such that: At(θθθ
t , ι t) = ∑nan

t (θθθ
t , ι t), aaat(θθθ

t , ι t) solves (15) for A = At(θθθ
t , ι t), and AAA achieves the

maximum of problem (32). Hence, I just need to show that the existence of the Lagrange multipliers

satisfying equation (25) is necessary and sufficient for an AAA ∈A to solve problem (32). This result

can be derived from theorem 1, section 8.3, and theorem 1, section 8.4, in Luenberger (1969).
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Proof of proposition 3

PROOF: Let λλλ = {λt}t denotes the Lagrange multipliers in proposition (2). And consider the

deterministic price sequence ppp = {pt}t defined by

pt = λt−αβ∑
∞
d=0β

d
λt+1+d(33)

for all t. Let µ̄µµ∗ppp = {χχχ∗ppp, ψ̄ψψ∗ppp} ∈M be the balanced team mechanism associated with the price

sequence ppp, and let σσσ be the truth-telling strategy. From Athey and Segal (2013), σσσ is a perfect

Bayesian equilibrium of the depositors-game implied by µ̄µµ∗ppp and ppp. From equation (33), it is easy to

see that the sequence ppp satisfies

λt = pt−∑
∞
d=1β

d(1−α)d−1
α pt+d.(34)

Equation (34), combined with propositions (1) and (2), implies that the optimal asset policy satisfies

χ∗npt (θθθ
t , ι t , pt) = a∗n(θθθ t , ι t). Since aaa∗ is feasible, the market clearing condition must be satisfied.

And for the last, the implied allocation coincides with the constrained Pareto efficient allocation aaa∗.

Proof of proposition 4

PROOF: For α = 1, the optimal mechanism reflects the Walrasian demand associated with the

depositors type and the market cost of the implied demand of assets. As a result, the balanced team

mechanism only replicates the allocation of assets that each depositor would choose if they were

by themselves accessing the market. And, because this is the Walrasian demand associated with

a strictly continuous utility function, depositors get strictly worse off by misrepresent their types.

Since payoffs in the depositors-game are continuous in α , depositors also get strictly worse off by

misrepresent their type when α is in a neighbourhood of 1.

APPENDIX C: THE NON-COMMITMENT CASE

Let me extend the notation introduced before to account for the depositors decision to go

to autarky. Let Θ̃ΘΘ := Θ∪ {aut} where θ n ∈ Θ denotes that depositor n is not in autarky and

have announced type θ n and θ n = aut denotes that depositor n is in autarky. In a given period

t, let θθθ t = (θ 1
t , . . . ,θ

N
t ) ∈ Θ̃ΘΘ := Θ̃N denotes the vector. I denote the period t realized variables

ht = (θθθ t , ιt , pt) ∈ H := Θ̃ΘΘ×{0,1}×R+, and the history of realizations ht = (θθθ t , ι t , pt) ∈ Ht .
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An asset policy is a sequence χχχ = {χχχ t}t , where χχχ t = (χ1
t , . . . ,χ

N
t ) : Ht → RN

+ ∪{aut}. If

χχχ t ∈ RN
+ then it denotes how much assets to allocate for each depositor in the bank. If χχχ t ∈ {aut}

then it denotes a suggestion for depositors to go to autarky. An asset policy χχχ = {χχχ t} is feasible if

∑nχn
0 = NĀ; for all ht ∈Ht , either ιt = 1 or ∑n1θ n

t 6=aut χ
n
t (h

t) = ∑n1θ n
t 6=aut χ

n
t−1(h

t−1); and θ n
t = aut

implies χn
t (h

t) = 0. The first condition is the same as before. The second condition is that the bank

can only adjust its aggregate asset holdings once it accesses the centralized market, but it can only

make with depositors that are not in autarky. The last condition is that the suggested transfer for

people in autarky is always zero. Let Γ denotes the set of all feasible asset policies.

Note that a asset policy can be decentralized in many different ways. How much assets

depositor 1 transfer to depositor 2 or depositor 3 can be set in different ways so it implies the

same aggregate transfer. For simplicity, I impose this arrangement to be proportional. For instance,

suppose depositors 1 and 3 are the depositors to receive net transfers of assets. And suppose that

depositor 1 is going to receive 60% of the net transfer of assets while depositor 3 is going to receive

40%. That is,

χ1
t (h

t)−χ1
t−1(h

t−1)

∑n=1,3χn
t (ht)−χn

t−1(h
t−1)

= 0.6 and
χ3

t (h
t)−χ3

t−1(h
t−1)

∑n=1,3χn
t (ht)−χn

t−1(h
t−1)

= 0.4.

Then, each depositor n 6= 1,3 will transfer 60% to depositor 1 and 40% to depositor 2 of the net

amount he is suppose to transfer, χn
t−1(h

t−1)−χn
t (h

t).

A numéraire policy is a sequence ψψψ = {ψψψ t}t , where ψψψ t = (ψ1
t , . . . ,ψ

N
t ) : Ht → RN ∪{aut}.

If ψψψ t ∈ RN
+ then it denotes how much numéraire good to transfer to each depositor in the bank. If

ψψψ t ∈ {aut} then it denotes a suggestion for depositors to go to autarky. A transfer policy ψψψ = {ψψψ t}
is feasible if ∑n1θ n

t 6=autψ
n
t (h

t) = pt∑n1θ n
t 6=aut

[
χn

t (h
t)− χn

t−1(h
t−1)

]
for all ht ∈ Ht ; and θ n

t = aut

implies ψn
t (h

t) = 0. That is, the transfers between depositors that have not gone to autarky are

budget balanced and a depositor in autarky does not receive any numéraire transfer.

A pure strategy for an depositor n is a sequence sssn = {σσσn,aaan,yyyn}= {σn
t ,aaa

n
t ,yyy

n
t }t of measurable

functions where, σn
t maps (ht−1,θ n

t ,x
t) into Θ and (aaan

t ,yyy
n
t ) maps (ht ,θ n

t ,x
t) into RN−1

+ ×RN−1. σn
t

is the announcement decision, as before. (aaan
t ,yyy

n
t ) is the asset and numéraire transfer to each other

N−1 depositors. The implied depositors-game is analogous to the commitment case.

As before, the only aggregate uncertainty in the economy comes from the public sunspots.

Therefore, the price in a period t is a deterministic function of the public signal vector xpt . The

market clearing condition requires that, for a given realization of the sequence xpt , the implied

demand of assets equal the total offer of assets at a period t.
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Let ηηη = {ηt}t be the sequence of measures over the space Ht which is generated by Q, α , F ,

ppp, µµµ ∈M , and {sssn}n. The aggregate demand for assets in the centralized market in period t is

Dt(xpt) :=
∫

∑n∑i 6=nan
ti(h

t)dηt(ht |xpt).(35)

Markets clear at a period t if Dt(xpt) equals Ā for all xpt in the support Spt .

DEFINITION 2: Given a feasible mechanism µµµ ∈M , a symmetric equilibrium is a pair {sss, ppp}
such that: (i) sssn = sss for all depositors form a perfect Bayesian equilibrium of the depositors-game

implied by µµµ; and (ii) markets clear at every period.

The balanced team mechanism need to be extended to account for the possibility of some

depositor deviate and go to autarky. The modification I propose is simple. The mechanism follow the

balanced team mechanism until an depositor deviate. After a deviation the mechanism recommend

autarky to all remaining depositors.

PROPOSITION 11: There exist β̄ such that, for all β ∈ [β̄ ,1), there exists a price process ppp, a

strategy sss = {σσσ ,aaa,yyy} and a feasible mechanism µ̄µµ∗ = {χχχ∗, ψ̄ψψ∗} ∈M such that: (i) µ̄µµ∗ = µ̄µµ∗ppp is

the modified balanced team mechanism associated with the price ppp; (ii) {sss, ppp} is a symmetric

equilibrium associated with the mechanism µ̄µµ∗; (iii) σσσ is the truth-telling strategy ; (iii) aaa and yyy

follow the mechanism recommendation; and (iv) the implied asset allocation is constrained Pareto

efficient.

PROOF: The proof of this proposition follows exactly the same steps of the proof of proposition

15. The only difference being that we cannot apply Athey and Segal (2013) to show that follow

the mechanism transfer recommendation is an equilibrium since it requires commitment. Athey

and Segal (2013) have an extension of their result for the environment without commitment which

guarantees that cooperation with the mechanism is an equilibrium for β high, this result is given

by proposition 4 in their paper. The reason we cannot directly apply proposition 4 in Athey and

Segal (2013) is because the payoffs of the depositors-game, and also the optimal mechanism, varies

with β . On the other hand, if we exam equation (34) and (25) we see that the equilibrium price and

Lagrange multipliers, normalized by (1−β ), converge as β goes to 1. Therefore, we can apply the

proposition 4 in Athey and Segal (2013) to show that cooperation is an equilibrium of this limit

game. And, since autarky makes the depositor strictly worse off than cooperation, the result will

also hold for β high.
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PROPOSITION 12: Autarky is an equilibrium of the depositors-game implied by any price process,

ppp, and feasible mechanism, µ̄µµ .

PROOF: If all depositors in the bank go to autarky, a depositor payoff of staying in the bank is

bounded above by the autarky payoff. Therefore, going to autarky must be a best response.

APPENDIX D: OPTIMAL POLICY

Proof of proposition 6

PROOF: Suppose by the way of contradiction that a pair {σσσ , ppp} is an equilibrium and σσσ generates a

sequence Π̃t 6= Πt along the equilibrium path. Let tu denotes the the first period in which Π̃t 6= Πt .

Note that from date tu forward depositors know that the bank will maximize his utility individually,

hence, truth-telling is a dominant strategy. Thefore, σσσ need to be consistent with truth-telling for

t = tu forwards, which contradicts the fact that Π̃t = Πt .

Proof of proposition 7

PROOF: At any period t, the distribution of announcements needs to be generated by the distribution

of previous types and sunspots realizations. That is, the announcement vector in period t is a

function gt(θθθ
t ,xt). If gt generates the same distribution of announcement vector Πt , then it needs

to satisfy, for all θθθ t ∈ΘΘΘ,

P[gt(θθθ
t ,xt) = θθθ t ] = ∑

θ̃θθ
t ,x̃t∈g−1

t (θθθ t)
P(x̃t)Π0(θ̃θθ 0)×t

s=1Qc(θ̃θθ s−1, θ̃θθ s)(36)

= Πt(θθθ t) = ∑θ̃θθ
t∈ΘΘΘ

t1
θ̃θθ t=θθθ

t Π0(θ̃θθ 0)×t
s=1Qc(θ̃θθ s−1, θ̃θθ s).

Note that the above equation always holds if g−1
t (θθθ t) = {θ̃θθ t , x̃t ∈ΘΘΘ

t×St ; θ̃θθ t = θθθ t}, that is, under

truth-telling. Now suppose this equation holds for some function gt such that g−1
t (θθθ t) 6= {θ̃θθ t , x̃t ∈

ΘΘΘ
t×St ; θ̃θθ t = θθθ t}. Consider a initial distribution Π̂0 6= Π0 such that ||Π̂0−Π0||< ε and a transition

Q̂c such that ||Q̂c−Qc||< ε . Since ΘΘΘ
t×St is finite, any change in gt implies a discontinuous jump

on the left hand side of equation (36). As a result, equation (36) cannot be satisfied for a different gt

if we take ε to be small enough. Note that

∑
θ̃θθ

t ,x̃t∈g−1
t (θθθ t)

P(x̃t)Π0(θ̃θθ 0)×t
s=1Qc(θ̃θθ s−1, θ̃θθ s)
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and

∑θ̃θθ
t∈ΘΘΘ

t1
θ̃θθ t=θθθ

t Π0(θ̃θθ 0)×t
s=1Qc(θ̃θθ s−1, θ̃θθ s)

are two different weighted sums of the terms Π0(θ̃θθ 0)×t
s=1Qc(θ̃θθ s−1, θ̃θθ s). Therefore, when the

weights are fixed, any perturbation in the terms Π0(θ̃θθ 0)×t
s=1Qc(θ̃θθ s−1, θ̃θθ s) will, generically, breaks

the equality. Which concludes the proof.

Proof of proposition 8

PROOF: Since depositors access the market-maker at every period they don’t cause externalities to

each other. Therefore, the balanced team mechanism allocates the optimal demand associated with

the Walrasian demand given the price sequence {p̄t}t . Since this demand is optimal, the depositor

cannot get any better by misrepresenting his type.

Proof of proposition 9

PROOF: Analogous to proposition 6.

Proof of proposition 10

PROOF: Analogous to proposition 7.
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