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Abstract

Prior to advising a decision maker, the expert needs to gather information about the state of the

world. This often takes time and therefore, even if the expert's learning process is unobservable, the

timing of the advice is informative in itself. If learning is strategic in that the expert can choose which

inspections to perform, the timing of advice may reveal not only the amount but also the type of

information available to the expert. This paper studies the expert's covert and strategic process of

information acquisition and its e�ect on the quality of advice. The main result of this paper suggests

that, even in the absence of an �objective� reason to expedite information transmission, putting the

biased expert under an arti�cial (or �strategic�) pressure, can increase the amount of transmitted

information and be bene�cial to both players.
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1 Introduction

Strategic interactions with asymmetric information have been a main interest of economics during the

past few decades. In many cases, the actual asymmetry in information is not exogenously �xed but

changes over time in an endogenous manner. When it takes time to acquire information, even if time

is immaterial, the timing of actions becomes informative in itself. Furthermore, if the actual learning

process is determined strategically, the timing of actions can reveal not only the amount but also the type

of information acquired. This friction of gradualness in learning brings in new strategic considerations

and can signi�cantly a�ect predicted outcomes. However, ongoing strategic information acquisition has

not yet received enough attention in the literature.

The present paper addresses the strategic aspect of gradual information acquisition in a sender-receiver

environment. I study a dynamic cheap-talk game where, at the start, both players are symmetrically

uninformed but the expert has the ability to explore the state. Learning is gradual as it is carried out

under some technological limitations; it is impossible to perform many experiments at the same time

and only certain experiments can be performed (for example, a �perfect experiment� that instantaneously

reveals all relevant information does not exist). Learning is strategic in that the selection of a particular

collection of experiments to be performed and the ordering of these experiments are left to the expert's

discretion. The actual learning process cannot be observed or veri�ed by the decision maker. To emphasize

the particular e�ect of gradualness in the expert's learning I assume that learning is costless and that the

time available for learning places no direct restrictions on the expert's ability to become fully informed.

Consider the following scenario. A patient (decision maker) arrives at a physiotherapy clinic. If his

problem falls within the list of conditions treated in the clinic, the problem can either be mild (state

1) or severe (state 2). In addition, it can be the case that the patient's problem is unrelated to the

treatments provided in the clinic (state 0). Assume that the three states are equally likely. The patient

has to determine the level of his expenditure on physiotherapy a (for example, depending on the number

of treatments). His �rst-best such expenditure at state θ is a = θ. The therapist (expert), who stands to

bene�t from the treatment, can advise the patient. Assume that, if the patient's problem is unrelated to

the treatments o�ered in the clinic, the therapist prefers not to pursue any active treatment and so the

interests of the players are aligned at θ = 0. Otherwise, the therapist is biased towards more expensive

treatments and her most-desired level of patient expenditure in state θ ∈ {1, 2} is a = θ + 1. For the

concreteness of example, assume that both players minimize the expected quadratic loss (that is, the

squared distance between each player's ideal point and the actual patient expenditure).

The case in which the therapist advises when she is perfectly informed and the patient is uninformed

is similar to the model of cheap talk analyzed in Crawford and Sobel (1982). Under these assumptions

on the players' information, in the �most informative� equilibrium, the patient only discovers whether his

condition can be treated in the clinic (θ ∈ {1, 2}) or not (θ = 0).

To illustrate the key element of the model I now add to the standard cheap-talk environment an

explicit description of the process according to which the information asymmetry between players arises.
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Assume that both players are initially uninformed but the therapist has the ability to explore the patient's

condition as follows. Two examinations are available: ε1 and ε2. Examination ε1 (ε2) privately reveals to

the therapist whether θ = 1 (θ = 2) or not. The patient knows what examinations are available but does

not observe (or understand) which, if any, are performed. It is also known that each examination takes

one unit of time, the examinations are costless from the therapist's perspective, and it is impossible to

perform ε1 and ε2 at the same time (e.g., due to technological limitations or regulations). The patient has

to make his decision at period T > 2 and so the time available is su�cient to fully explore the patient's

condition.

In this case, it turns out that the patient can accurately infer his condition. The following behavior

of the therapist is consistent with a fully informative equilibrium. First, she performs examination ε2. If

the result is positive, she reports it immediately. Otherwise, she proceeds to examination ε1, which takes

another unit of time. When the result of ε1 is obtained the therapist reports it truthfully.

To see why this is consistent with equilibrium, note that when the therapist chooses her learning strat-

egy she takes into account that, given the patient's best-response strategy, she has only one opportunity

to induce the highest possible expenditure of the patient (a = 2). This can be done only by reporting that

�θ = 2� at the end of period 1 (claiming that �θ = 2� at the end of period 2 would not be reliable). Since

only one examination can be performed at a time, the therapist has to choose which to perform �rst. It

is most desirable from her perspective to begin with ε2 and report that �θ = 2� only if the result of ε2 is

positive. If ε2 is negative, inducing a = 2 is not desirable because, at this point, the therapist does not

know whether θ = 1 or θ = 0. In the absence of early report, the patient believes that θ ∈ {0, 1} and
essentially no con�ict of interests is left so the expert will report truthfully after performing ε1.

The crucial feature in the above equilibrium is the therapist's strategic use of time. Even though the

patient can observe neither the examinations nor their outcomes, he knows that at most one examination

could have been performed if a report is submitted at the end of period 1. Notice that there is no objective

reason to expedite information transmission; however, in the most informative equilibrium the expert is

put under strategic pressure, in the sense that, certain reports are reliable only if submitted early. This

arti�cial pressure induces a problem of strategic scheduling of experiments for the expert. In this case, the

most informative equilibrium is fully revealing and, ex ante, this equilibrium is strictly preferred by both

players to any other equilibrium.

Strategic gradual learning, even if unobservable, may signi�cantly a�ect the economic outcomes in

many environments where players are asymmetrically informed. Examples may include, in addition to

advising, situations of trade where the quality of an asset can only gradually be learned (this environment

is studied in Eliaz and Frug (2016)), and recruiting where the parties only gradually learn the available

alternatives and qualities of each other. The objective of the present paper is to illustrate this e�ect in

the environment of cheap-talk advising. To present the basic forces at play in the most transparent way I

begin with a convenient discrete version of Crawford and Sobel's model and add to the traditional state

space a special state where the players' interests are aligned. Furthermore, I assume that choosing the

optimal action in this state is particularly important. Even though this is done mostly for technical and
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expositional purposes, such a state space can actually �t better some real-life situations. One possible

interpretation of this special state could be that of a �categorically di�erent� state where it is commonly

agreed that no active actions should be taken. For example, if a defendant is innocent, it can be agreed

that he should not be punished, while if he is guilty, di�erent parties may consider distinct punishments

as more appropriate for each level of guilt; or, if the patient's problem turns out to be unrelated to the

doctor's specialty, the doctor may prefer to direct the patient to another doctor, but if the problem falls

within her specialty, she might be biased towards more expensive treatments, etc..

The main part of the paper considers the learning technology, i.e., the set of possible experiments,

as in the above patient-therapist example. This learning is termed here Learning by Identi�cation. The

�rst result (Proposition 1) characterizes the unique inspection order and reporting policy that can be

consistent with a fully informative equilibrium (namely, an equilibrium where the expert acquires full

information and transmits it truthfully to the decision maker). The expert inspects the states in a direction

opposite to her bias and reports immediately (and truthfully) upon locating the true state of the world.

Proposition 2 provides a su�cient condition for fully informative equilibria to exist. This condition relates

the sender's prior beliefs with her preferences and replaces the standard supermodularity condition that

is often assumed in models of asymmetric information where one party is fully informed. The suggested

condition is satis�ed in the discrete version of the leading uniform-quadratic constant-bias case that has

been the focus of many theoretical and applied papers. However, it also applies to many other speci�cations

where, for example, unlike in the uniform-quadratic constant-bias case, the players do not rank identically

the set of equilibria ex ante. Intuitively, this condition guarantees that given the decision maker's belief

that the unobserved inspection is carried out in the order identi�ed in Proposition 1, the expert does not

bene�t from covertly changing the order of inspections.

After proving those results for a state space that contains the �categorically di�erent� state I extensively

discuss the role of this special state, and show that the results are not an artifact of the assumed environ-

ment; similar learning and communication dynamics arise in an equilibrium in a state space without such

a special state. While it is impossible to induce full separation in this case, in claim 1 I show that, for the

discrete version of the uniform-quadratic constant-bias speci�cation of the model, complete separation is

possible above some threshold. This threshold is set such that, given the receiver's beliefs that the sender

inspects the states from top to bottom, deviating and performing the experiments in a di�erent order is

undesirable for the sender. In addition, I illustrate in an example that even if the expert's bias is not of

constant sign, strategic pressure can improve communication and be bene�cial to both players.

Not surprisingly, the extent to which the gradualness in expert's learning can be exploited to improve

the quality of her advice depends on the learning technology. At this point, I am unable to provide

full characterization of optimal equilibria for general learning technologies or to identify the set of all

learning technologies that improve communication over the fully informed sender benchmark. Instead, in

the continuation of the paper I address two additional, arguably natural, learning technologies: Criteria

Learning and Cuto� Learning. The �rst refers to a situation where a state of the world can be represented

by an aggregation of several distinct criteria (random variables) and the expert acquires information by
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sequentially inspecting the realized values of those variables separately. I show that strategic pressure can

facilitate informative communication under Criteria Learning and that, to fully exploit its gradualness, the

expert will often transmit information more than once - even though no actions are taken by the decision

maker between the reports.

Under Cuto� Learning, for each element of the state space - a �threshold,� there is an experiment that

reveals whether the true state of the world is below or above that threshold. In Proposition 3, I show that

under very general conditions (for a state space with or without the �categorically di�erent� state) such

learning technology does not facilitate information transmission at all. In other words, every receiver's

information structure that is consistent with an equilibrium under Cuto� Learning is also attainable in an

equilibrium of the fully informed expert benchmark.

Several other works have considered certain aspects of sender's strategic learning, e.g., Austen-Smith

(1994), Argenziano et al. (2016), and Di Pei (2015). The main di�erence is that while these models are

essentially static, the key feature of the model studied here is the dynamic nature of the expert's learning.

Notably, communication with a sender who becomes better informed over time has recently been

addressed from a di�erent perspective - that of dynamic informational control. In Ivanov (2015, 2016),

the receiver has the ability to determine the sender's information structures during the interim stages

of the game but cannot observe the information itself. The dynamics where an upwardly biased sender

reports on high states before she reports on low states is reminiscent of the one in Ivanov (2015). However,

Ivanov's model and the model addressed in the present paper are built on two substantially di�erent sets

of assumptions. In the present paper, the process of information acquisition is covert and strategic on the

sender's side. Therefore the key step is to ensure that, given the receiver's belief about sender's learning,

the sender does not want to deviate to a di�erent plan of learning - without being detected. In contrast, in

Ivanov (2015) the sender is not strategic with respect to information acquisition but rather it is the receiver

who speci�es and, in particular, observes the sender's information structure at every stage of the game.

The identity of the player who speci�es the actual learning process is important, especially when sender's

learning is unobservable. This not only changes the equilibrium requirements but also a�ects the results.

This point is illustrated in more details in section 3.1. Finally, the apparently similar communication

dynamics o�ered in the two models is not generally optimal in the environment considered in Ivanov

(2015). For example, in Frug (2016b) it is shown that if the sender is not too biased, controlling only the

�rst-period sender's information structure and letting the sender become perfectly informed at the end of

period two allows full information extraction in the uniform-quadratic constant-bias speci�cation. A more

extensive discussion of these and other related papers is deferred to Section 6.

The rest of the paper is organized as follows. Section 2 presents the model where the sender's learning

is done by sequential inspections of the di�erent states of the world. In Section 3, I analyze the model,

and discuss the interpretation of �strategic pressure.� Sections 4 and 5 illustrate how the ideas presented

apply to other environments: Section 4 studies an example where the expert is biased towards extreme

actions and Section 5 discusses alternative learning technologies. Section 6 discusses related literature and

Section 7 concludes.
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2 Model

There are two players, sender and receiver, N = {S,R}.
State Space I begin the analysis with a convenient state space Θ = {φ, 1, 2, . . . , n}, where φ represents

a �categorically di�erent� state (intuitively, φ corresponds to the state in which the patient's problem is

unrelated to the treatments provided by the therapist in the example in Introduction). In Section 3.1, I

discuss the role of φ and develop a related result in a conventional state space that does not contain φ.

Let P denote the common prior on Θ.

Learning by Identi�cation For each k ∈ {1, . . . , n}, there is an experiment εk = 1θ=k that reveals

whether θ = k or not. All of the experiments entail no direct costs for any of the players; however,

conducting an experiment takes one unit of time and parallel experimentation is not possible. Only the

sender has the ability to perform experiments. The experiments she conducts, the order in which she

conducts them, and the outcomes cannot be observed or veri�ed. Notice that there does not exist an

experiment εφ. In other words, the realization θ = φ can be learned by the sender only by means of ruling

out all other states.

Information Transmission The sender is allowed to submit only one report, but she can choose when

to submit it. Formally, let M be a set of available reports and let σ ∈ M denote the �empty report�

corresponding to the sender's choice to �remain silent.� Assume that the set M is rich enough to transmit

any of the information that was available to the sender.1 Let T = {1, 2, . . . , T} be a discrete timeline and

assume T > n. At each t ∈ T, the sender may remain silent (i.e., submit an �empty report� mt = σ) or

submit an �active report� mt ∈ M − {σ}. Any terminal history of reports contains at most one �active

report.� The reports are cheap talk in the sense that they have no direct e�ect on players' utilities.

It is worthwhile to note that the main result of the paper does not rely on the selection of this

particular reporting protocol. In other words, every equilibrium under the selected single-report protocol

can be recovered in an environment that places no restrictions on the sender's reporting opportunities.

The assumed reporting protocol highlights the main aspect of the reporting strategy � the timing of the

report's submission.

Receiver's Action At period T , the receiver has to choose an action a ∈ {φ}∪R+. It is convenient to

interpret the action φ as �the choice of not taking an active action.� The assumption that T > n implies

that, in principle, the time available for learning places no restrictions on the sender's ability to become

fully informed.

Utility Functions Player i's utility function is

U i(a, θ) =


ui(a, θ)

0

−∞

a 6= φ, θ 6= φ

a = φ, θ = φ

(a = φand θ 6= φ) or (a 6= φand θ = φ).

1The richness assumption guarantees that the result is not driven by the limited language. However, since timing of report
will play a central role in communication, up until section 5, one available message will su�ce for all results.
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The assumption that in the latter case the payo� is negative in�nity captures in a stylized way the intuition

that any mismatch with respect to φ is very costly for the players (intuitively, providing irrelevant treatment

or not treating an ill patient are both strongly undesirable). Looking forward, this simplifying assumption

will prevent the sender from making active recommendations before she learns the true state of the world.

This part of the payo� structure is reminiscent of Aghion and Tirole (1997) who assumed that among the

set of available projects, at least one is associated with a �signi�cantly negative� payo� which prevents the

agent from recommending a speci�c project when he is uninformed. The simplifying assumption of the

in�nite cost facilitates the exposition and is clearly stronger than required. It is discussed at the end of

Section 3.

The functions ui : R+ × {1, 2, .., n} → R for i ∈ {S,R} satisfy the following assumptions. For each

θ ∈ {1, 2, ..., n}, the function ui(·, θ) ≤ 0 represents single-peaked preferences; player i's most desired

action at state θ, ai(θ) = argmaxa u
i(a, θ), is (strictly) increasing in θ; and the sender is upwardly biased

in the sense that for all θ < n,

uS(aR(θ), θ) < uS(aR(θ + 1), θ),

that is, if the true state of the world is θ, the sender prefers the action that the receiver would choose

under the belief that the state of the world is θ+ 1 rather than the action he would choose believing that

the state of the world is θ.

Strategies and Equilibrium The applied solution concept is perfect Bayesian equilibrium. The re-

ceiver's strategy is an action rule α(m) ∈ ∆A that assigns to any terminal history of reports {mt}t∈T a

distribution over actions (recall that the receiver does not observe which experiments are performed). The

receiver's pure strategy is denoted by a(m).

The sender's strategy has two components. She chooses both how to acquire information and how to

report. A possible representation of a typical sender's (private) history ht at the end of time t consists of

a sequence of experiments that were performed in the �rst t periods and their outcomes. After every such

history, the sender's strategy speci�es a (possibly mixed) report choice mt(ht) ∈ ∆(M) and a (possibly

mixed) experiment to be performed next ε(ht) ∈ ∆({εnull, ε1, ..., , εn}).2 This approach requires a direct

speci�cation of the sender's next move after any possible sequence of experiments. However, in the present

environment it is natural to adopt a more succinct and intuitive description of the sender's behavior.

Let f : T → {null, 1, 2, ..., n} be the sender's learning plan (or, the ordering of experiments) that

speci�es the unique experiment εf(t) to be performed at each period t. Such a learning plan induces a

sequence of information structures. If the sender follows the learning plan f , her information structure at

period t is given by,

Ft(f) =

{
{f(s)}s≤t,Θ− ∪

s≤t
{f(s)}

}
(i.e., a collection of singletons that correspond to elements of the state space that have been inspected and

an information set of all uninspected states).

2The game ends after a non-empty report, thus, adding the sender's reports to the description of her private history is
redundant.
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The �exibility of the reporting component of the sender's strategy depends on its learning component

as the report at each period can depend only on the information collected up to that period. Formally,

a (possibly mixed) reporting plan, m = {mt}t∈T, is �f -measurable� if mt is measurable with respect to

Ft(f) for all t. A sender's plan of behavior with a pure learning plan is a pair (f,mf ) where mf is

f −measurable.
To obtain a full description of the sender's strategy, it is necessary to specify her future behavior after

histories where the learning is inconsistent with f . However, recall that the receiver does not observe

which experiments are performed, thus his o�-equilibrium beliefs for such events need not be speci�ed. In

addition, note that the sender's preferences at each state of the world do not change over time and the

continuation of learning is essential only if neither of the previously performed experiments revealed the

true state of the world. Thus, to specify the sender's behavior in an equilibrium it is su�cient to provide

a plan of behavior (possibly mixed), which is consistent with the sender's best response to the receiver's

strategy at the beginning of the interaction and not after any possible history of inspection.

3 Analysis

In the main part of the analysis I illustrate how �strategic pressure� can increase the amount of information

transmitted by showing that, under some conditions, there exists an equilibrium in which the receiver

accurately infers the state of the world. An equilibrium in which the sender acquires full information

and transmits it truthfully is termed here a fully informative equilibrium. Proposition 1 characterizes the

essentially unique sender's behavior in any fully informative equilibrium. Qualitatively, this proposition has

two implications. First, the sender will perform her exploration as fast as possible. The fully informative

equilibrium has the feature of �strategic pressure,� which implies that certain actions can be induced only

during the early stages of the game. Therefore, as learning is private and costless, to decide whether to

induce a particular action, the sender would prefer to proceed as much as she can with the most e�ective

learning plan, from her perspective. Second, in a fully informative equilibrium, an upwardly biased sender

will necessarily explore the states downwards (against the bias direction). Actions towards which she

is �most biased� are the �rst to become no longer inducible. In Sections 4 and 5, it is shown that the

insights of strategic pressure and exploration direction also apply to other situations in which the sender's

information is acquired through a di�erent learning technology and the bias is not of constant direction.

Proposition 1 In any fully informative equilibrium, for all t < n, f(t) = n + 1 − t and mf
t 6= σ if

and only if εf(t) = 1.

Proof Fix a fully informative equilibrium. For each k ∈ Θ − {φ}, denote by t(k) the last period

in which the information that θ = k can be transmitted to the receiver in this equilibrium. A necessary

condition for a fully informative equilibrium is that for every k > 1, the singleton {k−1} is not an element

of the sender's information structure at period t(k). Otherwise, upon learning the fact that θ = k− 1, the
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sender is better o� pretending that θ = k. Thus, it follows that t(n) < t(n− 1) < ... < t(2) < t(1), which

implies t(k) ≥ n + 1 − k for all k ∈ {1, 2, ..., n}. Moreover, if t(k) > n + 1 − k for some k > 1, from the

above strict inequalities, it follows that t(2) ≥ n. In this case, the sender has a pro�table deviation to a

strategy by which she performs all the experiments by t = n (and no experiment is postponed relative to

the original learning plan), and induces the receiver's action argmaxa u
R(a, θ = 2) at state θ = 1. Thus,

in any fully informative equilibrium, t(k) = n+ 1− k for all k > 1, which ensures that the learning plan

f satis�es f(t) = n+ 1− t for all t < n.

Notice that, distinct realizations of εk (an experiment that is performed at t(k)) must induce distinct

reports at t(k). Choosing mt(k) 6= σ terminates the game. Thus, in a fully informative equilibrium, εk = 0

must be followed by mt(k) = σ for all k > 1. �

Next, a su�cient condition for a fully informative equilibrium is provided. This condition relates the

sender's preferences to the prior distribution. It replaces the standard supermodularity condition that is

often assumed in information economics when considering interactions with informed agents.

The sender's preferences satisfy p-supermodularity if, for every ā > a and θ̄ > θ, the following inequality

holds:

p(θ̄)[uS(ā, θ̄)− uS(a, θ̄)] > p(θ)[uS(ā, θ)− uS(a, θ)].

To understand the intuition behind this condition it is instructive to consider �rst the discrete coun-

terpart of the leading uniform-quadratic constant-bias speci�cation of the model: the states {1, 2, ..., n}
are equally likely and the players' utility functions are uR = −(θ− a)2 and uS = −(θ+ b− a)2, where the

constant b measures the degree of interest divergence between the players. The above condition amounts

to the standard supermodularity of uS which is satis�ed under this speci�cation. Therefore, a fully re-

vealing equilibrium exists. In this equilibrium, by Proposition 1, the sender inspects the states �from top

to bottom� and reports immediately as the true state of the world is identi�ed. In particular, at every

stage of the game (as long as the true state has not been found), the sender considers it optimal to spend

one unit of time inspecting the highest element of the state space that has not been inspected yet. Now

consider a general prior instead of the uniform distribution on {1, 2, ..., n}. To support a fully revealing

equilibrium, the sender must inspect the states from top to bottom (and the receiver must believe the

sender follows this order of inspection). However, if, for example, the probability p(n) is very low the

sender may �nd it bene�cial to �skip� the experiment εn and inspect other, more likely, states earlier.

Identifying the true state of the world earlier, would allow the sender to induce a higher receiver's action,

which is desirable from her perspective. The above condition ensures that the probability of relatively

higher states is su�ciently high so that skipping an experiment is non-pro�table. What probability is

considered to be high enough depends on the relative gains from increasing the receiver's induced action

at di�erent states, and thus, the condition involves both the sender's utility function and her beliefs. As

time goes by, the sender's beliefs change. However, only the relative likelihood of the uninspected states
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is important, hence, it is su�cient to consider the sender's prior beliefs.

Proposition 2 If the sender's preferences satisfy p-supermodularity, a fully informative equilibrium

exists.

Proof Assume the sender follows the learning plan f(t) = n+ 1− t, and submits an active report at

period τ , mf
τ 6= σ, if and only if εf(τ) = 1. In addition, assume that if mf

τ 6= σ, the actual report is chosen

randomly (with full support) from M −{σ}. Notice that, if such (f,mf ) is played in an equilibrium, from

the receiver's perspective, o�-equilibrium events do not exist, and thus, the whole system of the receiver's

beliefs is pinned down by the Bayes' rule. Accordingly, the receiver's best response is to select aR(n+1−τ)

if mτ 6= σ for some τ ≤ n, and the action φ if mt = σ for all t ≤ n. It is left to show that (f,mf ) is

consistent with the sender's best response to the receiver's strategy.

First, I show that mf is optimal given f . Since φ ∈ Θ, it cannot be optimal for the sender to submit

a �false-positive� report, mτ 6= σ, in case εf(t) = 0 for all t ≤ τ , because this would induce a 6= φ while

the possibility that θ = φ is not yet ruled out. On the other hand, once θ is identi�ed, she cannot bene�t

from delaying the report because ui(·, θ) represents single-peaked preferences, and aR(θ) < aS(θ) for each

θ.

I now show that there does not exist an alternative learning plan g, and a �g-measurable� reporting

plan mg such that (g,mg) constitutes a pro�table deviation.

Since the learning is unobservable and unveri�able, and it consists of deterministic and costless exper-

iments, it is without loss of generality to restrict attention to deviations in which the sender's learning

plan can be represented as a permutation in3 Sn. Fix an arbitrary permutation g ∈ Sn such that g 6= f .

Let k be the minimal integer with g(k) > f(k). De�ne a new permutation g′ = (g(k), g(k− 1)) ◦ g that is
obtained from g by swapping g(k) and g(k− 1), and let mg and mg′ denote some optimal reporting plans

given g and g′ respectively. I now show that the sender strictly prefers (g′,mg′) over (g,mg). This will

conclude the proof because, since g is chosen arbitrarily, it follows that every g 6= f is suboptimal. Given

the receiver's strategy, at least one pure learning plan in Sn must be optimal for the sender. Thus, (f,mf )

is consistent with the sender's best response.

Since φ ∈ Θ, it must be the case that mg and mg′ induce identical receiver's actions whenever θ /∈
{g(k), g(k − 1)}. To see this, note that the sender never induces a 6= φ as long as θ = φ is not ruled out,

and every θ /∈ {g(k), g(k− 1)} is learned by the sender at identical times under both learning plans g and

g′. Thus, to compare g and g′ it su�ces to compare the sender's expected utility under g and g′ given

that θ ∈ {g(k), g(k − 1)}.
From the de�nition of k, it follows that g(k) > g(k − 1). Otherwise, g(k − 1) ≥ g(k) + 1 > f(k) + 1 =

f(k − 1), a contradiction to the minimality of k. Let ā and a denote the actions that are taken by the

receiver after mk−1 6= σ and mk 6= σ respectively. Note that that ā > a. As g(k) > f(k), expediting εg(k)

3Sn denotes the set of all possible permutations on the set {1, 2, ..., n}. Each of the �rst n periods, {1, 2, ..., n} is mapped
to a distinct experiment which also corresponds to a number in {1, 2, ..., n}. For example, f ∈ Sn.
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from t = k to t = k − 1 generates an (expected) improvement of

p(θ = g(k)) · [uS(ā, g(k))− uS(a, g(k))].

On the other hand, a delay of εg(k−1) from t = k − 1 to t = k can have one of two possible consequences.

If us(ā, g(k − 1)) < us(a, g(k − 1)), such a delay does not a�ect the sender's utility. To see this note that

the optimality of mg implies that, in case εg(k−1) = 1, the sender chooses not to report immediately. This

means that if she identi�es that εg(k−1) = 1 one period later (as happens under g′), she can induce the

same receiver's action under both g and g′.

Alternatively, if us(ā, g(k− 1)) ≥ us(a, g(k− 1)) a delay of εg(k−1) from t = k− 1 to t = k amounts to

the expected loss of

p(θ = g(k − 1)) · [uS(a, g(k − 1))− uS(ā, g(k − 1))].

In this case, if εg(k−1) = 1 (which is revealed at t = k under g′), then mg′

k 6= σ, because us(·, g(k − 1))

represents single-peaked preferences.

To summarize: the net value of the swap is

p(θ = g(k)) · [uS(ā, g(k))− uS(a, g(k))] + p(θ = g(k − 1)) ·max{0, [uS(a, g(k − 1))− uS(ā, g(k − 1))]} ≥

p(θ = g(k)) · [uS(ā, g(k))− uS(a, g(k))] + p(θ = g(k − 1)) · [uS(a, g(k − 1))− uS(ā, g(k − 1))] > 0,

where the last inequality follows from the p-supermodularity of uS . �

I interpret this result as follows. Even though there is no �objective� reason to expedite information

transmission (e.g., costs or discounting), creating an arti�cial pressure can actually improve the overall

quality of the expert's advice. In particular, for the sender not to have an opportunity to in�ate the report

in the direction of her bias, it is important that the set of inducible actions will shrink su�ciently fast

with time in the direction opposite to the bias. Relatively high actions can be induced by the sender only

during the early stages of the game. Of course, for the communication to be e�cient, it is also important

that the set of inducible actions will shrink at a pace that is in keeping with the expert's physical ability

to acquire information. This coordination between the sender's learning abilities and the set of actions

that can be induced at di�erent periods arises endogenously in this equilibrium.

It is worthwhile to note that the assumption that U i(a, θ) = −∞ if (a = φand θ 6= φ) or (a 6= φand θ =

φ) is clearly stronger than required. Obviously, this can be replaced with a su�ciently large cost which

has to be selected properly given the speci�cation of the model. As the example in Introduction suggests,

when a particular function uS is given, typically, a much weaker assumption will su�ce to support the

fully informative equilibrium. I include this stronger assumption in order to clear the proof of additional

elements that depend on the �ne speci�cations of the model. It simpli�es the exposition and highlights

the general aspect and the main force at work.

11



In Sections 4 and 5, I show that the insights on strategic pressure and exploration manner (in terms of

direction) also apply to other situations in which the sender's information is acquired through a di�erent

learning technology and the bias is not of constant direction. In the next section, I discuss the role of

the special state φ and develop a related result in a state space not containing φ for the discrete uniform-

quadratic constant-bias case.

3.1 The Role of φ

When the state space does not include the special state φ, fully informative equilibria do not exist and

the receiver's most-desired equilibrium depends on the �ne details of the game, what severely complicates

its derivation in general. On the other hand, it is shown below that the e�ect of φ on the informativeness

of communication becomes insigni�cant if the state space is large relative to the divergence between the

players' interests.

Consider again the fully informative equilibrium in Proposition 2. As long as the true state of the

world is not identi�ed, the mere possibility of it being φ prevents the sender from inducing an action

a 6= φ. Assume now that Θ = {1, 2, .., n} and that the sender follows the top-to-bottom learning plan as

described in Proposition 1. If the divergence in interests is not too great, during the early periods the

sender will not have an incentive to submit a false-positive report. By submitting such a report, she will

induce a high action and bene�t if the true state of the world is su�ciently high (e.g., just below the

induced receiver's belief). On the other hand, if the true state of the world turns out to be very low,

submitting a false-positive report will induce an action which is too high even from the perspective of an

upwardly biased sender. Thus, during the early stages of learning, the sender's behavior as in Proposition

1 seems plausible in this environment as well.

As time goes by, more and more high states are ruled out. Thus, the risk of �far low states� is reduced

over time. For example, if εk = 0 for all k > 1, the sender infers that θ = 1 without performing ε1.

Rather than waiting another period, she is better o� submitting a �false-positive� report that corresponds

to �θ = 2.� Thus, if Θ = {1, .., n} one can proceed with the logic of the equilibrium as in Proposition 2,

but not all the way down the state space. At some point, the players must engage in another reporting

phase which will not be fully revealing. The exact form of the optimal equilibrium from the receiver's

perspective depends on �ne details of the model speci�cation.

I now formalize the above discussion in a discrete version of the canonical uniform-quadratic constant-

bias speci�cation of the model.4

Let Θ = {1, .., n}, p(k) = 1
n for each k ∈ Θ, uR(a, θ) = −(θ − a)2, and uS(a, θ, b) = −(θ + b − a)2,

where b ∈ N measures the sender's bias. The set of available experiments is {εk|k ∈ Θ} and the sender is

4The tractability of the uniform quadratic speci�cation of the model and the possibility to derive parametric results
(for example as a function of the level of interest divergence) have made this speci�cation of the model the focus of many
theoretical as well as applied papers. For example, see, Blume et al. (2007), Goldsman et al. (2009), Ivanov (2010), and
Krishna and Morgan (2004).
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allowed to submit only one report but she can choose the timing of the report's release.

In Claim 1, I prove that there is a threshold that depends on b (and does not depend on n), such that,

in equilibrium, the receiver can discover every state above this threshold. In this sense, the e�ect of φ on

the optimal equilibrium becomes negligible as the state space becomes large relative to the sender's bias.

Claim 1 There exists an equilibrium that attains complete separation of every state θ ≥ 10b.

Proof See Appendix. �

Claim 1 does not characterize the optimal equilibrium but places a lower bound on the amount of

information that can be transmitted under this learning technology.5 The main purpose of Claim 1 is

to illustrate how the logic of the equilibrium in Proposition 2 can be applied in a state space without φ.

Essentially, by giving up communication about states below a certain threshold, an arti�cial substitute for

φ is created.

The proof of Claim 1 is more involved than that of Proposition 2 for the following reasons. An

important feature in the proof of Proposition 2 is that, due to φ, we could limit attention to potential

deviations in which a report is submitted only if the true state of the world is identi�ed. In the proof of

Claim 1, however, deviations to strategies in which both the learning plan is changed and a false-positive

report is submitted should also be considered. Moreover, for the state space with φ, it was assumed that

εφ is not available. In contrast, now every state can be inspected directly.

The main intuition of strategic pressure remains - the sender knows that she has a limited amount

of time before choosing whether to induce each action. However, she may consider investing this time in

inspecting a number of states below the threshold and upon ruling them out to induce a relatively high

action, by submitting a false-positive report. Dealing with these kinds of deviations is central in the proof

of Claim 1 (see step 3 in the proof).

In brief, the logic of the key step of the proof can be described as follows. Let k̂ denote the threshold

above which we attempt to support full revelation and assume the receiver believes that inspections are

performed as in Proposition 1. The general structure of the best deviation for the sender is the following:

The sender starts with the top-to-bottom inspection but follows it only until she gets to some state l which

satis�es k̂ < l < 2k̂. Then, in the next l − k̂ units of time she inspects the lowest states {1, ..., l − k̂}. If
εk = 1 for some k ≤ l− k̂, the sender will wait and induce a low action in the future. Otherwise, if εk = 0

for all k ≤ l − k̂, she submits a false positive report and induces a = k̂ - the highest inducible receiver's

action at that period. To make this deviation non-pro�table, k̂ has to be su�ciently high, so that it will

take the sender too long (and hence be too costly) to rule out a su�cient amount of low states. The

coe�cient selected in the claim is minimal such that full separation above the threshold is consistent with

5Sometimes the players can bene�t if they coordinate on partially informative communication below the threshold (for
example, playing an equilibrium à la Crawford and Sobel (1982) in this region, after all experiments are performed).
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equilibrium for all n, b ∈ N.
High-quality information transmission above some threshold and the early arrival of information on

higher states also appear in Ivanov (2015). However, Proposition 2 and Claim 1 illustrate two signi�cant

di�erences in both the strategic considerations and results between the case where information acquisition

is strategic and covert on the sender's part, and the case considered in Ivanov (2015) where the receiver

speci�es and, in particular, observes the evolution of sender's information structures during the game.

Firstly, as shown in Proposition 2, the prior distribution of the states plays an important role in incen-

tivizing the sender to inspect the states from top to bottom (and thus supporting the dynamics of the

equilibrium), while if it is the receiver who speci�es the learning the distribution of the states is immaterial.

Secondly, as shown in Claim 1, the thresholds above which full revelation is possible in equilibrium

are very di�erent in the two models. In Ivanov's model, this threshold is determined by the shortest

sub-interval on which informative communication is possible in equilibrium. Therefore, having in mind

Ivanov's result for the standard continuous state space, it is easy to see that if it is the receiver who controls

the sender's information in the present discrete state-space model, full revelation of all states above 4b

can be supported in equilibrium. However, due to sender's ability to covertly deviate to a di�erent order

of inspections (as illustrated in the brief discussion above), this cannot be part of an equilibrium under

sender's covert learning. Such considerations are completely absent in a model where the learning is

observable or where the receiver controls the sender's information.

Interestingly, the relative quality of information transmission on di�erent regions of the state space is

signi�cantly di�erent from the one obtained in the fully informed sender benchmark. In contrast to the

result in Claim 1, under the uniform-quadratic constant-bias speci�cation of the model, in all equilibria,

higher states are pooled in larger intervals in the resulting receiver's information partition, and so the

receiver acquires coarser information on higher states.

4 Bias towards Extreme Actions

One important feature of Crawford and Sobel's model and the model presented above is the unidirectional

sender's bias. In some cases, other forms of interest divergence take place. The present section illustrates

by way of example how, under a similar learning technology, strategic pressure facilitates information

extraction if the sender is biased towards extreme actions.6

Let Θ = {−2,−1, 0, 1, 2} and assume that p(θ) = 1
5 for each θ ∈ Θ. Let uR(a, θ) = −(θ − a)2 and

uS(a, θ) = −(θ + sign(θ) − a)2 be the players' utility functions.7 These functions capture the idea that,

relative to the receiver, the sender is biased towards the extreme positive or negative actions. In particular,

within each region (positive/negative), the sender has a constant bias of 1.

6This type of sender's bias is studied in Gordon (2010).

7Recall that sign(x) =


−1
0

1

x < 0

x = 0

x > 0

for x ∈ R.
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First consider the fully informed sender benchmark. It is easy to see that under the optimal equilibrium

the receiver learns whether the state is negative, positive, or 0 (the unique point of agreement).

Now I incorporate gradual learning. Assume that for each k ∈ Θ, there is an experiment εk which

reveals to the sender whether θ = k. As before, each experiment takes one unit of time, the sender can

choose when to submit a report, and at most one report is allowed.

Basic intuition can suggest that each of the regions (above and below zero) can be addressed separately.

It turns out that this intuition is wrong and to get full information extraction the inspection plan must

alternate between the two regions. Uninspected states in one region serve as a disciplining device for better

communication in the other region because they increase the risk in submitting false-positive reports.

Claim 2 A fully informative equilibrium exists.

Proof See Appendix. �

The sender's behavior in a fully informative equilibrium is to acquire information according to the

following learning plan, (
t : 1 2 3 4

f(t) : −2 2 −1 1

)
,

and report immediately (and truthfully) upon identifying the state of the world.

Again, compared to the fully informed sender benchmark, the players manage to attain a mutually

preferred outcome in which the sender is put under strategic pressure. One feature of the fully informative

equilibrium is that the extreme actions (a = −2, and a = 2) can be induced only during the early stages of

the game, therefore ε2 is performed before ε1 and ε−2 is performed before ε−1. This is a direct consequence

of the logic of Proposition 1, applied to positive and negative regions separately. The second, and novel,

feature of this problem is that it cannot be separated into two sub-problems where the sender explores,

say, the positive region �rst and afterwards turns to the negative region. To achieve complete separation

in equilibrium, it is important that states in a given region (negative/positive) not be completely ruled

out as long as there is still more than one state to be examined within the opposite region.

5 Alternative Learning Technologies

To demonstrate how the gradualness of the sender's learning can enhance informativeness in communica-

tion I assumed a particular learning technology - Learning by identi�cation. Clearly, the result of having

a fully revealing equilibrium in Proposition 2 is an extreme case, which relies on this particular learning.

In this section I address other learning technologies and elaborate on the intuition of strategic pressure.

I begin with introducing a slightly more general model which accounts for a more general sender's

experimentation. This model will serve as a uni�ed framework for what has been presented earlier and all

of the following results.
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An experiment Q = {Q(θ) : θ ∈ Θ} is a partition of Θ with the standard interpretation that upon

performing Q, the sender learns that θ ∈ Q(θ). A learning technology is characterized by the set of

available experiments. This set, denoted by EX = {Qi|i ∈ I}, where I is a (�nite) set of indices, is

commonly known. Each experiment takes one unit of time and it is impossible to conduct more than one

experiment at a time. The experiments performed and their outcomes are unobservable and nonveri�able.

At the end of each period, the sender submits a cheap-talk report regarding her progress in exploration.

(In previous sections, it was convenient and without loss of generality to restrict the sender's reporting

opportunities. As illustrated below in section 5.1, with general learning technologies, allowing for only one

report is with loss of generality.) An action must be selected by the receiver at time T > |Θ|.
Clearly, the completely uninformative equilibrium always exists. Also, if the set EX is rich in the

sense that upon performing all of the experiments in EX the sender becomes completely informed, it is

immediate that any equilibrium of the fully informed sender benchmark can be reproduced in the present

environment. The assumption that T > |Θ| implies that, in principle, the time available for exploration

places no restrictions on the expert's ability to explore the state. I now turn to analyze two alternative

learning technologies that may be natural under some circumstances, and then conclude this section with

several general observations.

5.1 Criteria Learning

In many cases, a su�cient representation of a state of the world is a value that is determined by several

di�erent criteria of varying importance. Exploring these criteria separately one after another is a natural

way of learning in such cases. Regardless of the order in which these criteria are explored, the information

can only be acquired gradually because it is impossible to inspect the di�erent attributes at the same time.

Consider the following example in which the state θ is determined by the realizations of two di�erent

random variables ζ and η, and, for convenience, the total value θ(ζ, η) is uniformly distributed. Speci�cally,

let ζ, η ∼ U{0, .., k} and let8 θ = (k + 1)ζ + η. Intuitively, this implies that ζ is the �more important�

criterion. Assume again uR(a, θ) = −(θ− a)2, and uS(a, θ, b) = −(θ+ b− a)2, where b ∈ N is the sender's

bias.

Claim 3 Let b ≥ 1. Any equilibrium under the fully informed sender benchmark splits Θ into at most

k + 1 �intervals� of di�erent lengths.

Proof See Appendix. �

I now introduce strategic gradual learning. Assume that two experiments are available,

EX = {checkζ , checkη},
8To verify that θ ∼ U{0, k2 +2k}, write every x ∈ {0, .., k2 +2k} in terms of its unique representation x = (k+1)x1 +x2,

where xi ∈ {0, .., k}. Then, Pr(θ ≤ x) = Pr(ζ < x1) + Pr(ζ = x1) · Pr(η ≤ x2) =
x1
k+1

+ 1
k+1
· x2+1

k+1
= 1

(k+1)2
· (x+ 1).
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such that each experiment reveals (to the sender) the realized value of the corresponding random variable.

If a decision maker has to explore the state himself and he has only one period to acquire information,

it is natural that he would focus on the most important criterion. On the other hand, if a decision maker

has su�cient time to check all the attributes before taking an action, the ordering of the experiments

would not matter. In the present model, the decision maker relies on a biased expert's advice. In this

case, even in the absence of direct time constraints, desired equilibria again involve indirect, strategic

pressure that forces the expert to submit an early report. Before submitting this report, the expert also

chooses to focus on the most important attribute, but for completely di�erent strategic considerations.

Claim 4 Let b ≤
⌈
k
2

⌉
. There exists an equilibrium that is strictly preferred to any equilibrium under

the fully informed sender benchmark.9

Proof See Appendix. �

The equilibrium that outperforms the fully informed sender benchmark involves the sender focusing

her learning on the most important criterion, ζ, and reporting its realized value truthfully before she could

become completely informed. The main part of the proof is to show that the sender does not want to

secretly deviate and perform checkη instead of checkζ .

In this case, even one round of communication does strictly better than any equilibrium in the fully

informed sender benchmark. However, it worth mentioning that, contrary to previous sections, the players

can bene�t from allowing for more than one round of communication. Speci�cally, if 4b ≤ k + 1, after

revealing the value of ζ at t = 1 the players can have another report regarding the residual state space in

which they play an informative equilibrium à la Crawford and Sobel (1982). For example, if k = 3 and

b = 1, the resulting receiver's information partition under the optimal equilibrium is10

{{0}, {1, 2, 3}︸ ︷︷ ︸
ζ=0

, {4}, {5, 6, 7}︸ ︷︷ ︸
ζ=1

, {8}, {9, 10, 11}︸ ︷︷ ︸
ζ=2

, {12}, {13, 14, 15}︸ ︷︷ ︸
ζ=3

}.

Intuitively, in such an equilibrium the expert �rst provides �general� information and later, as she

becomes more informed, she adds �ner details to her previous, general report. No actions are taken by the

receiver between the reports. However, having the �rst report submitted at an early stage of the expert's

learning, even though additional report is expected before an action is taken, is essential for improving

the overall quality of the expert's advice.

9For r ∈ R, dre is the smallest integer such that dre ≥ r.
10For comparison, the receiver's information partition in the optimal equilibrium under the fully informed sender benchmark

is {{0}, {1, 2, 3}, (4, 5, 6, 7, 8}, {9, 10, 11, 12, 13, 14, 15}}. For details see Frug (2016a).
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5.2 Cuto� Learning

The aim of the present section is to illustrate the richness of the problem under consideration by pre-

senting a natural gradual learning technology that cannot be exploited to improve the informativeness of

communication. It is shown below that if the sender can, at each period, select an element x ∈ Θ and

privately learn whether θ ≥ x, gradual learning does not increase the amount of information that can be

transmitted in equilibrium, relative to the fully informed sender benchmark. This result is given under

fairly general assumptions.

Let Θ be a �nite, linearly ordered, discrete state space. Assume that for each θ, uR(·, θ) is concave

and uR1 (·, θ) = 0 for some a. This ensures that, given any information, there is a unique optimal action

from the receiver's perspective. Also assume that ui(a, θ) is supermodular.

A �cuto� k� experiment, ck = 1θ≥k, reveals to the sender whether θ ≥ k. The set of available

experiments in the cuto� learning regime is given by the collection EX = {ck : k ∈ Θ}. In each period the

sender privately chooses a cuto� kt, which may depend on previous experiments and their results.11 For a

state space like that presented in Section 2, let φ < θ for every θ 6= φ. Adding φ to the conventional state

space and allowing the receiver to avoid active actions as in Section 2, does not a�ect the result given in

the next proposition.

Proposition 3 Every equilibrium under the cuto� learning regime is equivalent (in terms of the

transmitted information) to some equilibrium under the fully informed sender benchmark.

Proof Consider an equilibrium under cuto� learning. Every sequence of sender's reports generates

a receiver's belief µ ∈ ∆(Θ), which induces a unique receiver's action a(µ). More generally, the sender's

strategy induces a receiver's belief structure µ̃ ∈ ∆(∆(Θ)), that is, a distribution of beliefs over states.

It is without loss of generality to assume that, in equilibrium, every belief in supp µ̃ induces a distinct

receiver's action.12 Let a1 < a2 < ... < ak denote the receiver's actions that are induced with positive

probability and let µi be the receiver's belief that supports ai.

I now show that at each state θ, the sender induces a belief µ ∈ supp µ̃ with positive probability only

if, from her perspective, given the state θ, the action a(µ) is at least as good as a(µ′) for all µ′ ∈ supp µ̃.
Assume by contradiction there exist beliefs µ, µ′ ∈ supp µ̃, and a state θ ∈ Θ such that, us(a(µ), θ) <

us(a(µ′), θ) and a(µ) is induced by the sender with positive probability at state θ.

First consider the case a(µ) < a(µ′). Let i be the maximal index such that there exists θ′ ∈ supp µi with
us(ai, θ

′) < us(aj , θ
′) for some j > i. From the supermodularity of the sender's utility function it follows

that us(ai,max suppµi) < us(ai+1,max suppµi). In particular, it follows that max suppµi < maxΘ. For

θ ∈ Θ, let θ + 1 (θ − 1) denote the lowest (highest) element in Θ, which is greater (lower) than θ. Since

11Note that given any history of experiments, the experiment cminΘ is completely uninformative and so it can be interpreted
as �doing nothing,� that is, the sender is not forced to acquire information.

12For any equilibrium in which two di�erent beliefs induce the same action there exists an equilibrium that spares the
receiver all the redundant information.
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max suppµi ∈ supp µi and max suppµi + 1 /∈ supp µi, the experiment cmax suppµi+1 is part of the sender's

inspection strategy and it is performed before the receiver's beliefs µi,µi+1 are induced. Replacing the

experiment cmax suppµi+1 with the experiment cmax suppµi , and maintaining the original reporting strategy

as a function of experiments outcomes, constitutes a pro�table deviation as, at state θ = max suppµi, the

sender would induce the action ai+1 (which is preferred to ai), and at every other state of the world, the

original and the modi�ed strategies coincide.

The case a(µ) > a(µ′) is similar. Let ai be the lowest action such that us(ai, θ = min suppµi) <

us(ai−1, θ = min suppµi). The experiment cmin suppµi is performed before the receiver's beliefs µi, µi−1

are induced. By replacing the experiment cmin suppµi with an experiment cmin suppµi+1 and maintaining the

original reporting strategy as a function of experiments outcomes, the sender improves upon the original

strategy as, at state θ = min suppµi she induces ai−1 (an improvement by assumption), and at every

other state, the original and the modi�ed strategies coincide.

To complete the proof, observe that what has been shown is that among all the elements of supp µ̃, the

fully informed sender is willing to induce the same receiver's beliefs as she induces in the equilibrium with

cuto� learning. Therefore, the belief structure µ̃ can be supported by an equilibrium in the fully informed

sender benchmark. �

I conclude this section with two general observations on rich collections of experiments. It is trivial

that adding an experiment to a rich collection of experiments can make the players worse o� (to see this,

simply add to any collection of experiments the �perfect experiment� that is fully revealing). On the other

hand, Observation 1 shows that adding experiments to rich collections can also make the players better

o�. Observation 2 shows that dispensing with experiments that are unused in the optimal equilibrium can

also make the players better o�. In the following observations, I apply Proposition 3 and use a result on

optimal equilibria in the discrete uniform quadratic speci�cation of Crawford and Sobel's model as given

in Frug (2016a).

Observation 1 Adding experiments to a rich collection of experiments can make the players better

o�.

Example Consider the discrete uniform-quadratic constant-bias case with Θ = {1, .., 10} and b = 1.

By Proposition 3, the optimal equilibrium under the cuto� learning regime induces a receiver's information

partition {{1}, {2, .., 4}, {5, .., 10}}, which is identical to the one obtained under the optimal equilibrium in

the fully informed sender benchmark. Let Q = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}. If Q is added to the

set of available experiments the following sender's behavior is consistent with an equilibrium. The sender

performs Q at t = 1 and immediately reports truthfully the outcome of this experiment, all subsequent

reports are completely uninformative. Provided that the sender's information structure is given by Q, it

is immediate that truth-telling is incentive compatible and a direct calculation shows that the sender's

expected payo� in this equilibrium is −5
4 . To see that the sender does not have an incentive to deviate to a
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di�erent experiment, note that every cuto� experiment partitions Θ in two. This implies that performing

such an experiment at t = 1 will induce at most two receiver's actions. Thus, if an experiment other

than Q is performed at t = 1, say cj , any sender's report at the end of period 1 will induce at least four

elements of the state space such that the distance between the sender's most-desired action and the action

she induces at this state is at least 2. Therefore, E[uS(·, θ)|cj ] < − 1
10 · 4 · 2

2 < −5
4 .

Observation 2 Dispensing with experiments that are unused in the optimal equilibrium can make

the players better o�.

Example Consider the discrete uniform-quadratic constant-bias case with Θ = {1, .., 5} and b = 1.

By Proposition 3, the optimal equilibrium under the cuto� learning regime induces a receiver's information

partition {{1}, {2, .., 5}}, which is identical to the one obtained under the optimal equilibrium in the fully

informed sender benchmark. Moreover, this can be attained by a report at t = 1 after the sender performs

c2. The set of experiments EX ′ = {c2, c5} is obtained by dispensing with some unused experiments.

However, with EX ′, the following sender's behavior is consistent with an equilibrium. Perform c5 at t = 1

and report truthfully. If θ < 5, perform c2 at t = 2 and report truthfully. It is straightforward to verify

that the sender does not have a pro�table deviation. The partition obtained in this equilibrium re�nes

the receiver's information structure under the optimal equilibrium with EX = {ck : k ∈ Θ}. Thus, both
players are now better o�.

6 Related Literature

The literature on costless communication (cheap talk) between informed experts and uninformed decision

makers began with the contributions of Crawford and Sobel (1982) and Green and Stokey (1980).13 Since

then, many authors have studied a variety of cheap-talk environments under di�erent speci�cations. Sobel

(2010) provides a comprehensive literature review of the communication literature.

Several previous works consider environments where the sender is imperfectly informed. Fisher and

Stocken (2001) showed that, in equilibrium, the accuracy of the receiver's information is not monotonic in

the quality of the sender's information. This was extended by Ivanov (2010) who characterized the optimal

static information structure from the receiver's perspective for the leading uniform-quadratic constant-bias

case.

Dynamic communication where the sender's information changes over time is also addressed in Ivanov

(2015, 2016). In these models, it is assumed that the receiver cannot observe information directly but he

can perfectly control the sender's information structure and change it during the game. In Ivanov (2016)

an optimal two-stage protocol is suggested. By coupling distant separable elements at the early stage and

by conditioning the informativeness of the second signal on the truthfulness of the �rst report, the receiver

13Earlier literature on costly signaling can be traced back to Spence (1973).
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can successfully elicit full information.14

In Ivanov (2015), the dynamic information control is restricted so that the receiver cannot alter future

sender's information structures as a function of her past reports. The dynamic information control in this

model works as follows. The receiver gradually re�nes the sender's information such that, in each period,

the sender learns whether the state is above a given threshold that decreases over time. The information

control is designed such that it is incentive compatible for the sender to truthfully report his observed

information. Thus, in e�ect, the sender reports on high states before she reports on lower states, and as the

number of periods increases, the receiver can elicit an arbitrarily accurate information about states that are

positioned above a given threshold (determined by the level of interest divergence between the players).

In both of these papers by Ivanov, the sender is not strategic with respect to information acquisition

as it is determined by the receiver who, in particular, observes the sender's information structures. On

the other hand, the main focus of the present paper is on the sender's unobservable strategic choice of

learning. While the communication dynamics in Ivanov (2015) and the dynamics in Proposition 1 and

Claim 1 in the present paper are related, the identity of the party specifying the learning process and

the observability of information acquisition make the sender's strategic reasoning signi�cantly di�erent

between the models and change the results. Intuitively, the sender's strategic considerations in Ivanov's

model are parallel to those in the reporting component of the sender's strategy in the present model, if she

could not a�ect the process of information acquisition. In addition, the dynamics in Ivanov (2015) is not

generally optimal. For a di�erent construction that allows for full information extraction in two periods

for the uniform-quadratic constant-bias case where the sender is not too biased see Frug (2016b).

Several works have also considered certain aspects of the sender's strategic learning. Austen-Smith

(1994) proposed a model in which the sender chooses whether to learn (perfectly) the state and has the

ability to prove information acquisition. The choice whether to become informed depends on the realization

of the cost of learning that is privately observed. The author shows that, relative to Crawford and Sobel

(1982), more information can be transmitted in equilibrium. As in our model, the choice whether to

become informed is left to the sender's discretion. Unlike in our model, the learning is costly, veri�able,

and non-gradual. In Argenziano et al. (2016) the sender can a�ect the quality of her information by

selecting how many Bernoulli trials to perform. The trials are costly for the sender. The authors compare

�covert� and �overt� selection of the number of trials to be performed and show that under the overt

regime it is possible to force the sender to overinvest in learning. In Kamenica and Gentzkow (2011)

the sender selects a �signal,� i.e., an information structure used to persuade a decision maker. While the

selection of the information structure is costless and left to the sender's discretion, the receiver observes

both the information structure and its realization. In Gentzkow and Kamenica (2012) the sender also

publicly selects the information structure but now it is no longer costless. A more informative information

structure is associated with a higher cost. Since the information is costly for the sender, endogenous

information will always be disclosed in equilibrium and so disclosure requirements have no e�ect on the

set of equilibrium outcomes. A related result appears in Di Pei (2015). In that paper the sender gathers

14A similar idea of separable pair of states appears in Golosov et al. (2013).
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costly information before advising the receiver. The sender communicates all her information and all

equilibria are less informative than the most informative one in Crawford and Sobel (1982).

All of the above models that contain strategic learning are essentially static. However, the key feature

of the model studied in this paper is the dynamic nature of the sender's learning. The timing of the

sender's reports provides a signal to the receiver not only about the quality but also about the type of

information available to the sender. Frug (2014) considers a model of gradual exogenous learning and

communication. That paper focuses on the design of e�cient reporting protocols.

7 Conclusion

This work studied the e�ect of a gradual and strategic process of information acquisition in a sender-

receiver environment. The main ingredients of the considered environment were (1) gradual strategic

learning and (2) the time available for learning places no direct restrictions on the overall quality of the

expert's information. If the expert is expected to submit a report at the end of her learning (as she

becomes fully informed), the problem of experiment scheduling is completely vacuous. On the other hand,

the arti�cial pressure, presented in most of the results in the paper, raised an important issue of strategic

scheduling of experiments for the expert. It is not only how much information, but also, which type of

information is acquired at each period. The only motivation for the scheduling problem in this environment

is strategic as, by assumption, the state can be learned at no cost before an action has to be taken. It has

been shown that strategic pressure can increase the amount of information transmitted and make both

parties better o�. This may suggest a broader question of strategic scheduling both in the environment of

observable experiments (unobservable outcomes) and unobservable experimentation.

While the potential gains from gradualness in information acquisition depend on the assumed learn-

ing technology, this paper has shown that the sender-receiver interaction changes dramatically, both in

terms of strategic considerations and the outcomes, if the �xed and exogenous information asymmetry is

replaced with endogenous gradual learning. In many strategic interactions with asymmetric information,

the information asymmetry is not �xed. Players take measures to improve their information and they can

partially control the process according to which they acquire information. As the gradualness in learning

can have a signi�cant potential e�ect on economic outcomes, it may be valuable to consider gradual and

strategic attainment of private information in other contexts and in a broader perspective.

8 Appendix

Proof of Claim 1 Consider the sender's plan of behavior s∗ = (f,mf ) where f(t) = n + 1 − t

for all t ∈ {1, .., n}, and mf
τ 6= φ if and only if εf(τ) = 1 and τ ∈ {1, .., n + 1 − 10b}. The receiver's

best response is then to select a∗({mt}) = n + 1 − τ if mτ 6= σ for some τ ∈ {1, .., n + 1 − 10b} and
a∗({mt}) = E[θ|θ < 10b] = 5b if mt = σ for all t ∈ {1, .., n + 1 − 10b}. I now prove, in three steps, that

s∗ = (f,mf ) is consistent with a sender's best response strategy to the receiver's strategy.
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Step 1: mf is optimal given the learning plan f .

The sender cannot bene�t from postponing a report once θ is revealed because this will induce a lower

receiver's action, which is worse for the sender. The main part of this step is to show that the sender cannot

bene�t from a �false-positive� report that induces an action a ≥ 10b, provided that none of the previous

experiments identi�ed the true state of the world. It is shown below that the sender's expected utility

from a �false-positive� report at time n + 1 − a (LHS) is lower than her expected utility from continuing

to follow (f,mf ) (RHS):

− 1

a− 1

a−1∑
θ=1

(θ + b− a)2 < − 1

a− 1

(
a−10b∑
θ=1

(b)2 +

a−1∑
θ=a−10b+1

(θ + b− a)2

)
=

= − 1

a− 1

(
10b−1∑
θ=1

(θ + b− 10b)2 + (a− 10b)b2

)
< − 1

a− 1

(
10b−1∑
θ=1

(θ + b− 5b)2 + (a− 10b)b2

)
.

It is left to show that there does not exist an alternative learning plan g : {1, ..n} → Θ and a g-

measurable reporting policy mg such that (g,mg) constitutes a pro�table deviation for the sender. Denote

by a(θ|s) the action induced at state θ if the sender plays according to a plan s and let

K = {(g,mg) : if mg
t 6= σ and t ≤ n+ 1− 10b then εg(t′) = 1 for some t′ ≤ t}

be the set of all plans of behavior in which an active report is submitted only after the true state of the

world is identi�ed.

Step 2: The plan s∗ = (f,mf ) is optimal in K.

Let s = (g,mg) ∈ K such that g 6= f and let k be the minimal integer with g(k) 6= f(k). Then, g(k) <

f(k). Let g′ = (g(k), f(k)) ◦ g be the learning plan in which the experiments εf(k) and εg(k) are swapped.

If a(g(k)|s) ≤ a(f(k)|s), g′ is clearly preferred to g, as the sender can induce a higher action at state f(k)

and keep the state-to-action mapping unchanged in other states. If a(g(k)|s) > a(f(k)|s), g′ allows the
sender to induce the higher action a(g(k)|s) in the higher state f(k) and the lower action a(f(k)|s) in the

lower state g(k) without changing the state-to-action mapping at other states. Supermodularity of the

sender's preferences ensures that g′ is preferred. At least one pure learning plan must be consistent with

an optimal plan in K, thus (f,mf ) is optimal in K.

Step 3. The plan s∗ = (f,mf ) is optimal among the plans outside K.

Let t(a) be the period in which, if an active report is submitted, the receiver's action a is induced.

The plans of behavior outside K have the property that there is a ≥ 10b, such that, after performing t(a)

experiments whose outcome was negative, action a is induced.

For each t̄ ∈ {1, ..., t(10b)}, let Nt̄ = {(g,mg) : if εg(t) = 0 for all t < t̄, thenmt̄ 6= σ} be the set of

plans according to which, after t̄ experiments with negative outcomes, the sender submits an active report

at the end of period t̄ (and thus, induces an action a = n+ 1− t̄). Let N = ∪
t̄≤t(10b)

Nt̄. In addition, given a

plan s = (g,mg) ∈ Nt̄ denote by ζ and η the maximal and the minimal elements of Θ that is not inspected
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before or at time t̄, respectively.

Step 3.1: Under an optimal plan in Nt̄, if θ ∈ {η, ..., ζ}, then θ is not inspected before or at time t̄.

Let s = (g,mg) ∈ Nt̄ and denote by a the action induced in all states that where uninspected during

the �rst t̄ periods. Assume that there exists η < θ < ζ such that θ is inspected in the �rst t̄ periods under

g. If a(θ|s) > a (a(θ|s) < a), by supermodularity, the sender is better o� performing εζ (εη) instead of εθ

and inducing the action a(θ|s) in state ζ (η) - and the action a at state θ. If a(θ|s) = a, the sender gains

nothing by performing εθ but can bene�t if a di�erent experiment is performed instead. If, at η, the sender

prefers one of the inducible actions that are below a, she can be better o� if instead of εθ she performs εη.

Otherwise, it must be the case that η > 1 and therefore uS(a, ζ) < uS(a+ 1, ζ) since ζ − η ≥ a. Moreover,

either g−1(η − 1) < t̄ or g−1(θ) < t̄. Therefore, the sender can be better o� by performing εζ instead of

εη−1 or εθ.

Step 3.2: Let s = (g,mg) be an optimal plan in Nt̄; then, g−1(θ0) > g−1(θ1) > g−1(θ2) for θ0 < η

and ζ < θ1 < θ2. In words, every inspection of an element below the interval that remains uninspected

before the false-positive report is performed after all of the states above ζ are inspected, and moreover,

all states above ζ are inspected �from top to bottom.� This step follows as a direct consequence of the

supermodularity of the sender's preferences.

Step 3.3: Let s = (g,mg) be an optimal plan in Nt(â); then η ≤ â − 3b. Assume by contradiction

that g(t) = â − 3b for some t ≤ t(â). From 3.1 and the fact that â − 1 states are not inspected before

t(â), it follows that ζ > â+ 6b. Hence, the distance between the induced action and the sender's optimal

action at state ζ is ds(ζ) ≥ 7b. If the sender performs εζ before inspecting states below η, she will be able

to induce the action ζ at state ζ. Thus, the loss (ds(ζ))2 at state ζ can be replaced with a loss of b2. On

the other hand, giving up εâ−3b increases the loss in this state by at most (2b)2.

Step 3.4: The optimal sender's strategy in N is an element of Nt(10b). Let t̄ < t(10b). Consider an

optimal strategy in Nt̄, and let a > 10b be such that t(a) = t̄. I now show that there is a better strategy

(from the sender's perspective) in Nt̄+1. From 3.2, �rst the sender explores all the states above ζ (from

top to bottom) and then turns to the exploration of states below η. Action a is induced at each of the

states η, η+1, .., ζ−1, ζ. Consider s′ = (g′,mg′) ∈ Nt̄+1, where s and s
′ di�er only in that before exploring

states below η, the sender performs εζ , mt(ζ) 6= σ if and only if εζ = 1, and the action a − 1 is induced

at period t̄ + 1. To see that the sender prefers s′ to s, it is su�cient to note that the sender's payo� at

ζ under s′ is higher than her payo� at η under s. It is immediate that under s and s′ the sender obtains

identical payo�s at all states above ζ and below η . Also, it is easy to see (illustrated in the �gure below)

that the sender's payo� at θ ∈ {η + 1, .., ζ} under s is equal to her payo� at θ − 1 under s′.

To conclude, note that the sender's payo� at ζ, under s′, is −b2. From 3.3, η ≤ a − 3b, which means

that the sender's payo� at η, under s, is at most −(2b)2.

I now conclude the proof by directly showing that the sender is better o� under s∗ than under the

optimal plan of behavior in Nt(10b), denoted by s = (g,mg). Under s, by de�nition, the action a = 10b

is induced at least in 10b − 1 states, denote these states by θ1 < θ2 < ... < θ10b−1. First, assume that

θ1 > 3b. The vector of smallest possible distances between the induced and the most desired actions from
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the sender's perspective, (ds(θj))
10b−1
j=1 , is given by

(5b− 1, 5b− 2, ..., 1, 0, 1, ..., 5b− 2, 5b− 1).

On the other hand, by θ1 > 3b, the vector of the largest such distances under s∗ is given by

(6b− 1, . . ., b+ 1, b, . . ., b︸ ︷︷ ︸
5b

).

Notice that for any θ ≥ ζ and θ ≤ η we have a(θ|s) = a(θ|s∗). As the states are uniformly distributed,

s and s∗ can be compared by summing up the �losses� (negative utility) given by the squared distances

d2
s(θ) and d

2
s∗(θ) on {θ1, ..., θ10b−1}. By using the formula for the sum of squares of the �rst K naturals:∑K

k=1 k
2 = K3

3 + K2

2 + K
6 , the following inequality holds for any b ∈ N:

10b−1∑
j=1

d2
s(θj) ≥ 2

5b−1∑
k=1

k2 > (5b)b2 +
6b−1∑
k=1+b

k2 ≥
10b−1∑
j=1

d2
s∗(θj);

therefore, s∗ is better than s. By replacing one of the states in {θ1, ..., θ10b−1} with a state θ ≤ 3b, the

LHS of the strict inequality increases by, at least, (θ + b− 10b)2 − (5b− 1)2 and the RHS increases by, at

most, (θ + b − 5b)2 − (6b − 1)2. For any b ∈ N and θ ≤ 3b, the increase in LHS is greater than in RHS.

Thus, the sender is better o� under s∗ rather than under s even if we dispense with the assumption that

θ1 ≥ 3b. Therefore, s∗ is better than s, and the proposition follows. �

Proof of Claim 2 Let

(
t : 1 2 3 4

f(t) : −2 2 −1 1

)
, and mf

t 6= σ if and only if εf(t) = 1. Moreover, if

the sender submits a non-report, assume that it is chosen randomly, and with full support, from M −{σ}.
Thus, the receiver's beliefs are derived from the Bayes' rule and the receiver's best reply is

a∗(m) =

 f(t)

0

mt 6= σ, t ≤ 4

mt = σ, ∀t ≤ 4.
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I now show that s∗ is the sender's best response to a∗(m). Denote by ds(θ) the distance between the

sender's most-desirable action and the action induced by the strategy s at state θ. The sender's expected

utility if she plays according to s is simply E[uS |s] = −1
5

∑
θ∈Θ(ds(θ))

2. Under s∗, whenever θ 6= 0 the

sender experiences a loss of 1, and thus E[uS |s∗] = −4
5 .

Clearly, mf is optimal given f . Note that if s′ = (g,mg) is a pro�table deviation, it must be the case

that the sender is better o� at θ = 1 or at θ = −1.

First, assume that the sender is better o� at θ = −1. In this case, under s′, the sender induces the

action a = −2 at the state θ = −1. If g(1) = −1, and m1 6= σ if and only if ε−1 = 1, the action a = −2

is not induced at the state θ = −2. In this case ds′(−2) ≥ 2, and E[uS |s′] ≤ −1
5((ds′(−2))2 + (ds′(2))2) ≤

−1 < E[uS |s∗]. Otherwise, it must be the case that, εg(1) = 0 ⇒ m1 6= σ. In this case, there are

at least four states in which the action a = −2 is induced. Thus, ds′(η) > 2 for some η > 0 and

E[uS |s′] ≤ −1
5(ds′(η))2 < −1 < E[uS |s∗].

Now, assume that the sender is better o� at θ = 1. In this case, under s′, the sender induces the action

a = 2 at the state θ = 1. If 1 ∈ {g(1), g(2)}, and m2 6= σ if and only if ε1 = 1, then either 2 /∈ {g(1), g(2)}
or −2 /∈ {g(1), g(2)}. Consequently, ds′(η) ≥ 2 for some η ∈ {−2, 2}, and so E[uS |s′] ≤ −1

5((ds′(−2))2 +

(ds′(2))2) ≤ −1 < E[uS |s∗]. Otherwise, it must be the case that, if εg(1) = 0 and εg(2) = 0, then m2 6= σ.

In this case, the action a = 2 is induced in at least three di�erent states, and so there is η ≤ 0 with

ds′(η) ≥ 2, and therefore E[uS |s′] ≤ −1
5((ds′(η))2 + (ds′(2))2) ≤ −1 < E[uS |s∗]. �

Proof of Claim 3 Observe that for each I ∈ N, we have
∑I

i=1(1 + 2(i − 1)) = I2. According to

Procedure 1 in Frug (2016a), if b = 1, in the optimal equilibrium the length of the i-th interval is exactly

1 + 2(i − 1). The claim follows for b = 1 as |Θ| = (k + 1)2. For b > 1, every equilibrium splits Θ into a

smaller number of intervals. �

Proof of Claim 4 I construct an equilibrium. Consider the following strategy pro�le: the sender

performs checkζ (explores the most important criterion) and submits a �separating� report at t = 1,

denoted by m∗(ζ). Regardless of the report at t = 1, no valuable information is transmitted at t = 2 (the

sender �babbles�). The receiver plays his best response (denoted by a∗(m)). The choice of b ≤
⌈
k
2

⌉
ensures

that, provided that the sender's information structure corresponds to knowing only the value of ζ, she is

willing to reveal the truth. To show that this is indeed an equilibrium I now show that the sender cannot

bene�t from performing checkη instead of checkζ . Let aS(η) denote the most-desirable action, from the

sender's perspective, given a realization of η (while ζ is unknown). Notice that

aS(η) = argmaxaE[uS(a, θ)|θ ∈ {(k + 1)ζ + η}] =
k(k + 1)

2
+ η + b.
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Substitute and rearrange terms to get

E[uS(a∗(m(η)), θ)] ≤ − 1

(k + 1)2

k∑
η=0

k∑
ζ=0

(ζ · (k + 1) + η + b− aS(η))2 = −(k + 1)
k∑
ζ=0

(ζ − k

2
)2 =

= −k(k + 2)(k + 1)2

12
<
(∗)
−(

(k + 1)2

12
+ 1) < −k

2 + 2k + 12

12
= E[uS(a∗(m∗(ζ)), θ)].

The RHS is the sender's expected utility if she follows the equilibrium strategy. The LHS is her utility

if she deviates and privately explores η instead of ζ. The inequality denoted by (∗) holds for every integer

k ≥ 2. It is straightforward to verify that for k = 1, the suggested pro�le of strategies also constitutes

an equilibrium. In the latter case, however, it is a weak equilibrium. To complete the proof, note that

the suggested equilibrium splits Θ into k + 1 intervals of the same length. Thus, the variance of this

partition is necessarily lower than the variance of the unbalanced partition that is obtained under the

optimal equilibrium in the fully informed sender benchmark (see claim 3). �
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