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Abstract

This paper identifies a condition for an efficient social choice rule to be fully im-

plementable when we take into account investment efficiency. To do so, we extend

the standard implementation problem to include endogenous ex ante and ex post in-

vestments. In our problem, the social planner aims to achieve efficiency in every

equilibrium of a dynamic game in which agents strategically make investments be-

fore and after playing the mechanism. Our main theorem shows that a novel condition

commitment-proofness is sufficient and necessary for an efficient social choice rule to be

implementable in subgame-perfect equilibria. The availability of ex post investments is

crucial in our model: there is no social choice rule that is efficient and implementable in

subgame-perfect equilibria without ex post investments. We also show that our positive

result continues to hold in the incomplete information setting.
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1 Introduction

The literature on implementation theory has identified which social choice rules can be fully

implemented under various solution concepts and informational assumptions. Here, full im-

plementation means that the set of all equilibrium outcomes of the mechanism coincides with

the set of outcomes specified by the social choice rule. Although this is a strong requirement,

the literature has shown rather permissive results: for example, under complete information

and quasi-linear utility, any social choice rule is implementable in subgame-perfect equilibria

(Moore and Repullo, 1988; Maskin and Tirole, 1999).1 In the implementation problem, how-

ever, the problem of investment incentives has not been fully examined. In many real-life

applications such as auctions and the provision of public goods, there are opportunities for

agents to invest in the outcomes of the mechanism (Tan, 1992; Bag, 1997; Arozamena and

Cantillon, 2004). When agents strategically invest before participating in a mechanism, the

positive results implied by implementation theory may be threatened. That is, although the

mechanism implements efficient allocations at the market clearing stage, it may not necessar-

ily induce efficient ex ante investments in equilibrium. In particular, even when there is an

efficient investment equilibrium, we may not be able to rule out other inefficient equilibria,

which is a concern of the full implementation problem.

The goal of this paper is to provide a condition for an “efficient” social choice rule to

be implementable when we take into account both investment and allocative efficiency.2 To

do so, we extend the standard implementation problem to include endogenous investments.

First, we consider a rich set of types that are defined by the agents’ costs of investment

rather than their valuations of alternatives. Given realized cost types, agents endogenously

form their valuations of the alternatives by investing before and after participating in the

mechanism, which we call ex ante and ex post investments.3 Here, we explicitly model ex

post investments because in many applications, agents make further investments after the

market clearing stage to maximize the value of the outcome (McAfee and McMillan, 1986;

Laffont and Tirole, 1986, 1987). A social choice rule F is defined as a correspondence from

the set of cost types to the set of alternatives, transfers and investments. This social choice

rule, however, is not standard because investments are non-contractible and they are only

1There is a criticism that the Moore-Repullo mechanism is not robust to small perturbations of informa-

tion (Aghion et al., 2012). In a more recent study, however, Chen et al. (2018) show that their mechanism

can implement any social choice rule even with a certain class of information perturbations. Although these

are important issues, we do not discuss robustness in this paper.
2“Implementation” in this paper refers to full implementation.
3In Section 5, we consider the case where ex post investments are not possible.
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chosen by the agents as part of their strategies. We assume that the social planner can

design a mechanism that specifies an alternative and a transfer vector, but that he cannot

intervene in the structure of the investment opportunities. Therefore, the planner aims to

achieve efficiency for every profile of cost types through a dynamic game in which agents

strategically make ex ante and ex post investments in addition to playing the mechanism

itself. In the main part of the paper, we assume that the agents have complete information.4

In this setting, our main theorem shows that the sufficient and necessary condition for

an efficient social choice rule F to be implementable in subgame-perfect equilibria is the

commitment-proofness of the associated allocation and transfer rules (α, τ) at the mecha-

nism stage (Theorem 1). The associated (α, τ) represents the choice of F over contractible

outcomes given the investments: these are the functions that specify the same alternative

and transfer vector as F for each profile of agents’ valuation functions at the mechanism

stage. Establishing a condition on (α, τ) is useful for the social planner because (α, τ) can

be interpreted as a standard social choice function where investments are exogenously given.

To provide the intuition for Theorem 1, let us consider an example where a city decides

on a public project to utilize a vacant lot.5 Suppose that there are several potential projects

and that each citizen supports one of them. The goal of the city is to maximize social

welfare from the lot taking into account the costs of the citizens’ potential investments to

utilize it. However, the investments and cost structures are neither observable to the city

nor contractible. Suppose that some inefficient supporters have made a huge costly and

irreversible investment in their favorite project prior to participating in the mechanism.

Then, since the city does not know the cost of their ex ante investments and the cost is

sunk, the city would simply choose their project as long as it is the most efficient one at the

mechanism stage. However, there may be another project with more efficient supporters,

which would require lower investment costs and hence achieve higher social welfare. This

problem would not happen if none of the citizens had made any ex ante investments. Indeed,

when the investment cost does not increase over time, the social efficiency can be achieved

by making everyone invest only after the project is selected.6

How can the city prevent citizens from investing ex ante without directly intervening in

their investment activities? Our solution is to design allocation and transfer rules (α, τ)

carefully so that they satisfy commitment-proofness. The commitment-proofness condition

4We also extend the model to the incomplete information setting. See Section 6.2.
5This example will be numerically elaborated in Section 3.
6In our model, we introduce time discounting δ ∈ (0, 1) between two investment stages to rule out the

possibility of any other investments being efficient.
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is interpreted in the following abstract way: suppose that (i) each citizen i is assigned a

“default” valuation ui for her favorite project, and (ii) i could increase ui to ũi ex ante

through a certain commitment device that costs ũi − ui. Even with this costly commitment

device, a citizen may want to commit to a high valuation ũi if her favorite project is selected

only when she has ũi. The commitment-proofness of (α, τ) requires that under (α, τ), none of

the citizens should have an incentive to change their valuation from any default ui to another

ũi through this commitment device. Going back to the investment problem in the example,

for each citizen, the choice between no ex ante investment and making a costly investment

corresponds to the choice between the default ui and another ũi in the commitment-proofness

condition. From this correspondence, none of the citizens has an incentive to invest ex ante

under this condition, and the city succeeds in achieving efficiency. Commitment-proofness

is a relatively weak requirement: it is implied by strategy-proofness, and moreover, we can

find (α, τ) that is commitment-proof, efficient and budget-balanced (Proposition 3).

The difficulty and novelty of our implementation problem stem from the combination

of the following assumptions: (i) the investments are not contractible, (ii) the agents’ cost

types are not known to the planner, and (iii) the investments are irreversible. First, if the

investments were contractible, they could just be part of the outcome of mechanisms and our

problem reduces to the standard implementation problem. However, investment activities

are usually difficult to describe; they are multidimensional and they involve the expenditure

of time and effort as well as the expenditure of money (Hart, 1995). These non-contractible

investments have also been a central concern in the literature on the hold-up problem (Klein

et al., 1978; Williamson, 1979, 1983; Grossman and Hart, 1986; Hart and Moore, 1988, 1990).

Second, if the planner knew the agents’ cost types, he would be able to identify the first-best

alternative in our model. Since the investments do not have externalities in our model, the

efficient level of investment would be chosen by each agent if the planner just selects the

first-best alternative. Finally, if the investments were reversible, ex ante investments would

not affect the valuations of the alternatives at the mechanism stage. Therefore, the planner

would not be bothered by ex ante investments, and the efficient choice of an alternative at

the mechanism stage could simply achieve investment efficiency.

Our characterization result (Theorem 1) relies on the assumption that ex post investments

are possible under the same cost functions. However, in many papers such as Rogerson (1992)

and Hatfield et al. (2018), ex post investments are not explicitly considered. Hatfield et al.

(2018) showed a result that is seemingly contradictory to our theorem: for efficient mecha-

nisms, strategy-proofness is sufficient and necessary for the existence of an ex ante efficient

investment equilibrium. The difference stems from the availability of ex post investments
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and more precisely, how it interacts with the implication of the rich cost types. In our

model, since every agent takes into account an optimal ex post investment, there is a natural

restriction to the set of possible valuations at the mechanism stage and their costs. On the

other hand, in the necessity result of Hatfield et al. (2018), the richness of the cost types

implies that any valuations could be associated with any costs. Therefore, the availability

of ex post investments allows us to restrict the set of valuations and their costs at the mech-

anism stage in a natural way and obtain a more positive result. In Section 5, we examine

our full implementation problem when ex post investments are not possible. We obtain an

impossibility result in this setting: there does not exist a social choice rule that is efficient

and implementable in subgame-perfect equilibria without ex post investments (Proposition

2).7

We also extend our main model to the incomplete information setting where agents are

unsure about the cost types of other agents. In this environment, we show that an efficient

social choice rule is implementable in PBE if its associated allocation and transfer rules are

strategy-proof (Proposition 4).

1.1 Related Literature

Our research question mainly differs from those in the literature in the following two aspects.

First, we extend the requirement of full implementation to the investment stage. The liter-

ature has mostly investigated the existence of an efficient investment equilibrium. Rogerson

(1992) showed that when agents make pre-mechanism investments, there is a socially effi-

cient investment equilibrium for any Bayesian incentive compatible and efficient mechanism.

In the context of information acquisition (Milgrom, 1981; Obara, 2008), Bergemann and

Välimäki (2002) provided a similar result: the VCG mechanism ensures ex ante efficiency

under private values. Second, unlike most of the models in the incomplete-contracts litera-

ture (Grossman and Hart, 1986; Hart and Moore, 1988, 1990; Aghion et al., 1994), we assume

that the cost types of agents are not known to the social planner. Hatfield et al. (2018) ex-

ploited the assumption of the rich cost types and showed the necessity of strategy-proofness

for the existence of an efficient investment equilibrium.

There are several papers in the literature that analyzed ex ante investments under specific

mechanisms such as the first-price and the second-price auctions (Tan, 1992; Piccione and

7On the other hand, if only ex post investments are possible, any efficient social choice rule is imple-

mentable in our model. This is because ex post investments are always chosen optimally in equilibrium,

and extensive form mechanisms allow us to implement any alternatives and transfers by Moore and Repullo

(1988).
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Tan, 1996; Stegeman, 1996; Bag, 1997; Arozamena and Cantillon, 2004; Loertscher and Ri-

ordan, 2019). A companion paper Tomoeda (2017) analyzed the implementability of efficient

ex ante and ex post investments under the first-price auction. In contrast to these works,

we take the approach of considering the entire space of social choice rules and identifying a

condition for implementability.

There is also large body of the literature on investment incentives in bargaining and

two-sided matching (Gul, 2001; Cole et al., 2001a,b; Felli and Roberts, 2002; de Meza and

Lockwood, 2010; Mailath et al., 2013; Nöldeke and Samuelson, 2015). These papers usually

do not model the possibility of ex post investments. This is because they focus on how agents

bargain over the surplus of investments in the market clearing stage and their utility does

not reflect their future investments. Hence, our main theorem may not be applied to their

settings. That being said, our impossibility result without ex post investments applies to

many of their models. Moreover, since investments are often allowed to have externalities

in these models, it is even more difficult to eliminate inefficient investment equilibria due

to coordination failure. For this reason, the question of full implementation is not typically

asked in this strand of the literature.

The remainder of the paper is organized as follows. In Section 2, we introduce the formal

model and provide the basic results. Section 3 discusses the intuition of our main results

using a numerical example with two alternatives. In Section 4, commitment-proofness is

introduced, and we present our main results. In Section 5, we provide an impossibility result

when ex post investments are not possible. Section 6 contains two discussions about our

main results: budget balance and incomplete information. Section 7 concludes. All proofs

are in Appendix A.

2 Model

2.1 Framework

Consider a finite set I of agents and a finite set A of alternatives such that |I| ≥ 2 and

|A| ≥ 2. The objective of the social planner is to maximize social welfare. As in the typical

implementation problem, since the valuations of the alternatives are private information of

the agents, the planner uses a mechanism to elicit the information. In our model, however,

the valuations are endogenously determined: agents make investment decisions before and

after participating in the mechanism to form their own valuations. We assume that these

investments are observable among agents but are neither contractible nor observable to the
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social planner. This means that the planner can specify only an alternative and transfers in

the mechanism but cannot directly specify investments. To maximize social welfare net of

investment costs, the planner needs to take into account the equilibrium investment decisions

by considering the investment game induced by the mechanism.

To describe each agent’s investment decisions, we use a shortcut of modeling investment

as an explicit choice of a valuation function vi : A → R.8 Vi ⊆ RA is a compact set of

all possible valuation functions for agent i, and we assume that there is κ > 0 such that

[0, κ]A ⊆ Vi. Let V ≡ ×i∈IVi. The cost of investment is determined by cost function

ci : ∪θi∈Θi
(V θi ×{θi}) → R≥0, where Θi is the set of cost types of agent i and V θi ⊆ Vi is the

set of possible valuation functions for type θi. Let Θ ≡ ×i∈IΘi and V θ ≡ ×i∈IV
θi . Without

loss of generality, the cost of investment is assumed to be non-negative, and for each θi ∈ Θi,

there is v0i ∈ V θi such that ci(v
0
i , θi) = 0. The cost function for any agent i is bounded; i.e.,

there exists M ∈ R≥0 such that ci(vi, θi) ≤ M for any θi ∈ Θi and vi ∈ V θi . We impose the

following two assumptions on the set of cost types Θ:

(Richness) For any compact set Wi ⊆ Vi and any continuous function r : Wi → R≥0, there

exists θi ∈ Θi such that V θi = Wi and ci(·, θi) = r(·).

(Compactness) For any θi ∈ Θi and vi ∈ V θi , V̄i(vi, θi) ≡ {v̄i ∈ V θi|ci(v̄i, θi) ≥ ci(vi, θi)}
is a compact set.

The richness condition is a key assumption used to show the necessity of commitment-

proofness in Theorem 1 and the impossibility result in Proposition 2. The compactness

condition ensures that we can always find an optimal choice of ex post investment.

We consider two timings of investment: before and after participating in the mechanism.

Each investment stage is modeled as a simultaneous move game by all agents.9 Assume that

the investment is irreversible: if agent i with cost type θi chooses vi first, she can choose

only a valuation function from the set V̄i(vi, θi) = {v̄i ∈ V θi|ci(v̄i, θi) ≥ ci(vi, θi)} in the ex

post investment stage. The timeline of the game is:

0. Agents observe their cost types θ ∈ Θ. The social planner announces a mechanism.

1. Each agent i with cost type θi simultaneously chooses a valuation function vi ∈ V θi .

2. Agents play the mechanism.

8This means that the investment does not have an externality effect on the other agents. See Matsushima

and Noda (2016) for the case where investments have arbitrary externality effects on other agents’ valuations.
9Our main results do not heavily rely on the simultaneity of the investments. Indeed, the main result

(Theorem 1) continues to hold even when the agents make investments in an arbitrary order.

7



3. After the mechanism is run, each agent i with cost type θi can again choose a valuation

function from V̄i(vi, θi).

We call this the entire game induced by the mechanism. We also call the first stage of the

game the ex ante investment stage, the second stage of the game the mechanism stage, and

the third stage of the game the ex post investment stage.

The utility function of each agent is defined in the following way. Let δ ∈ (0, 1) be a

discount factor that discounts the utility realized in the second and third stages.10,11 For an

alternative a ∈ A, a transfer vector t ≡ (ti)i∈I ∈ RI and investments (vi, v̄i) where vi is the

ex ante valuation and v̄i is the ex post valuation, the ex ante utility of i with cost type θi is

defined by

−ci(vi, θi) + δ
[
v̄i(a)− ti −

(
ci(v̄i, θi)− ci(vi, θi)

)]
. (1)

In the first stage, i incurs the cost ci(vi, θi) of ex ante investment. In the second stage,

the outcome (a, t) of the mechanism is evaluated by the final valuation function v̄i. In the

last stage, i incurs the additional cost ci(v̄i, θi) − ci(vi, θi) ≥ 0 for revising the valuation

function.12 Throughout the paper, we consider this quasi-linear utility function.

In the main part of the paper, we assume that the agents have complete information

regarding the cost types. However, the social planner does not know their realized cost

types. He only knows the environment, i.e., the set I of agents, the set A of alternatives,

the set V of possible valuation functions, the cost functions c and the set Θ of possible

cost types. Thus, the goal of the social planner is to implement efficient investments and

allocations for all possible cost types θ ∈ Θ. We also assume that the chosen valuation

functions are observable among the agents, but neither contractible nor observable to the

planner. In Section 6.2, we also extend the model to the incomplete information setting.

In this model, a social choice rule F : Θ → 2A×RI×V 2 \ {∅} is defined as a non-empty

valued correspondence from the set of cost types to the set of alternatives, transfer vectors

and investments. Note that this social choice rule F is not standard because the investments

in V 2 are not contractible. Therefore, investments in V 2 are not achieved as an outcome

of a mechanism but as strategies in the entire game induced by a mechanism. However, we

still incorporate investments into an outcome of a social choice rule because our goal is to

10When δ = 1, the sufficiency of commitment-proofness does not hold in Theorem 1. See Observation 1.
11There is no time discounting between the mechanism stage and the ex post investment stage. However,

this is without loss of generality because the set of cost types is rich.
12Here, we assume that the same cost function is used for both investment stages. Some of the main

results, however, still hold when the cost functions differ over time. For example, the sufficiency part of

Theorem 1 holds as long as the ex post cost function is weakly lower than the ex ante cost function.　
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achieve the efficiency of both allocation and investment choices. The efficiency of a social

choice rule F requires that any (a, (v, v̄)) in F (θ) should maximize the sum of the agents’

valuations for an alternative net of the investment costs.

Definition 1. A social choice rule F : Θ → 2A×RI×V 2 \ {∅} is efficient if for any profile of

cost types θ ∈ Θ,{
(a∗, (v∗, v̄∗)) ∈ A× V 2

∣∣∣(a∗, t∗, (v∗, v̄∗)) ∈ F (θ) for some t∗ ∈ RI
}

= arg max
(a,(v,v̄))∈A×{(p,q)∈(V θ)2|q∈V̄ (p,θ)}

∑
i∈I

{
− ci(vi, θi) + δ

[
v̄i(a)−

(
ci(v̄i, θi)− ci(vi, θi)

)]}
where V̄ (v, θ) ≡ ×i∈I V̄i(vi, θi).

Note that efficiency is defined in terms of the surplus generated through the entire game

and that the transfers are not taken into account.13 One of the important implications of

efficiency is that because δ is strictly less than one, the efficient choice of ex ante investment

should always be v∗ with the lowest cost; i.e., for any θ ∈ Θ and (a∗, t∗, (v∗, v̄∗)) ∈ F (θ), we

have v∗ ∈ Zθ ≡ ×i∈IZ
θi , where Zθi ≡ {vi ∈ V θi|ci(vi, θi) = 0}.

To implement a social choice rule F , the social planner designs a mechanism. In our

setting, we assume that the social planner can design a mechanism in the mechanism stage

but cannot design the game of two investment stages. Therefore, given a mechanism, agents

always face the entire game induced by the mechanism.

Since the focus of our paper is the implementability of efficient investments, we allow for

flexibility in the form of the mechanisms. We consider general extensive form mechanisms

because with them, any social choice of allocations can be implemented under complete infor-

mation and quasi-linear utilities (Moore and Repullo, 1988). An extensive form mechanism

m is defined as a tuple m ≡ (N,>,D, d, w), where N is a set of nodes, > is a partial ordering

on N that represents precedence, D is a set of possible decisions, d is a one-to-one function

from N \ {n ∈ N |n has no predecessor} into D that labels each non-initial node with the

last decision taken to reach it, and w ≡ (wα, wτ ) is a function from T ≡ {n ∈ N |n has no

successors} into A× RI that associates to each terminal node the alternative and transfers

that are obtained at this node. wα specifies the alternative, and wτ ≡ ×i∈Iw
τ
i specifies the

transfer vector. We assume that each mechanism m starts with one initial node n0 and that

the maximum length of the game tree is finite. We denote by Si(n) the set of strategies for

i at node n. It is possible that |Si(n)| > 1 and |Sj(n)| > 1 hold for i ̸= j, which means that

13We consider the budget-balance requirement in Section 6.1.
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agents i and j move simultaneously at node n. We assume that at each node n, all agents

know the entire history of the play.

Note that the same mechanism m is always run in the mechanism stage because the

social planner does not observe ex ante investments. Given realized θ and chosen ex ante

investments v, we denote each node in the mechanism stage of the entire game by n(θ, v)

if it corresponds to node n of mechanism m. Let N(θ, v) (T (θ, v), respectively) be the set

of all corresponding nodes (terminal nodes, respectively) in mechanism m in the subgame

where θ is realized and v is chosen.

We define a subgame-perfect equilibrium of the entire game in the following way. Let

Ξi(θ, v) be the set of all mappings from T (θ, v) to V̄i(vi, θi). Let Si(θ) ≡ V θi ×
(
×v∈V θ

×n(θ,v)∈N(θ,v)\T (θ,v)Si(n(θ, v))
)
×

(
×v∈V θ Ξi(θ, v)

)
be the strategy set of agent i in the entire

game induced by m when the cost types are θ. Let S(θ) ≡ ×i∈ISi(θ). For each v ∈ V θ,

s ∈ ×i∈I ×v∈V θ ×n(θ,v)∈N(θ,v)\T (θ,v)Si(n(θ, v)) and n(θ, v) ∈ N(θ, v) \ T (θ, v), let z(s;n(θ, v))
be the terminal node when agents follow strategies s in the mechanism starting from node

n(θ, v).

Definition 2. A profile of strategies (v∗, s∗, ξ∗) ∈ S(θ) is a subgame-perfect equilibrium

(SPE) of the entire game induced by mechanism m for cost types θ ∈ Θ given a discount

factor δ ∈ (0, 1) if for each i ∈ I,

1. ξ∗i (n(θ, v)) ∈ arg max
v̄i∈V̄i(vi,θi)

{
v̄i(w

α(n(θ, v)))− ci(v̄i, θi)
}

for any v ∈ V θ and n(θ, v) ∈ T (θ, v),

2. s∗i ∈ arg max
si∈×v∈V θ×n(θ,v)∈N(θ,v)\T (θ,v)Si(n(θ,v))

{
ξ∗i
(
z(si, s

∗
−i;n(θ, v))

)(
wα(z(si, s

∗
−i;n(θ, v)))

)
−wτ

i (z(si, s
∗
−i;n(θ, v)))− ci

(
ξ∗i
(
z(si, s

∗
−i;n(θ, v))

)
, θi

)}
for any v ∈ V θ and n(θ, v) ∈ N(θ, v) \ T (θ, v),

3. v∗i ∈ arg max
vi∈V θi

{
− ci(vi, θi) + δ

[
ξ∗i
(
z(s∗;n0(θ, vi, v

∗
−i))

)(
wα(z(s∗;n0(θ, vi, v

∗
−i)))

)
−wτ

i (z(s
∗;n0(θ, vi, v

∗
−i)))− ci

(
ξ∗i
(
z(s∗;n0(θ, vi, v

∗
−i))

)
, θi

)
+ ci(vi, θi)

]}
hold. Let SPE(θ,m, δ) ≡ {(a, t, (v, v̄)) ∈ A × RI × V 2| ∃ SPE (v, s, ξ) of the entire game

induced by m at θ given δ s.t. w(z(s;n0(θ, v))) = (a, t) and ξi
(
z(s;n0(θ, v))

)
= v̄i ∀i ∈ I}

denote the set of all outcomes and valuation functions that are on the equilibrium paths of

the entire game induced by mechanism m for cost types θ given a discount factor δ.
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The first condition is the optimality of ex post investments. The second condition de-

scribes the SPE condition in any subgame in the mechanism stage. The third condition

ensures that v∗ forms a Nash equilibrium of the ex ante investment stage.

Using the SPE of the entire game induced by the mechanism, we can define the concept

of implementation in a standard way:

Definition 3. Given a discount factor δ ∈ (0, 1), mechanism m implements social choice

rule F : Θ → 2A×RI×V 2 \ {∅} in subgame-perfect equilibria if F (θ) = SPE(θ,m, δ) holds for

any profile of cost types θ ∈ Θ. Given a discount factor δ ∈ (0, 1), social choice rule F is

implementable in subgame-perfect equilibria if there exists a mechanism that implements F

in subgame-perfect equilibria.

2.2 Allocation and Transfer Rules

Our goal is to characterize the condition for an efficient F to be implementable in SPE. To

do so, we focus on social choice rules F for which the associated allocation and transfer rules

(α, τ) at the mechanism stage are functions throughout the paper.14 The associated (α, τ)

represents the choice of F over the alternatives and transfers given the investments, and our

main theorem provides a sufficient and necessary condition on (α, τ) for the implementability

of F .

To define (α, τ), we first consider the valuations at the mechanism stage. When agents

participate in a mechanism, the cost of ex ante investment has been sunk and each alternative

should be evaluated by the optimal choice of a final valuation function.

Definition 4. The valuation function uθi,vi : A → R at the mechanism stage given cost type

θi ∈ Θi and valuation function vi ∈ V θi is defined by

uθi,vi(a) = max
v̄i∈V̄i(vi,θi)

{
v̄i(a)− ci(v̄i, θi)

}
+ ci(vi, θi)

for each a ∈ A. Let uθ,v ≡ (uθi,vi)i∈I .

This equation is taken from the second term of equation (1) and takes into account each

agent’s optimal ex post investment choice. Given vi and a, the optimal choice of the ex post

investment v̄i ∈ V̄i(vi, θi) maximizes v̄i(a)− ci(v̄i, θi). By the compactness condition of cost

14The associated allocation and transfer correspondences exist for any implementable F in general, but

they are not guaranteed to be single-valued functions. We only consider functions in order to obtain a simple

sufficient and necessary condition.
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types, we can always find an optimal v̄i. Let U
θi be the set of all possible valuation functions

at the mechanism stage for i with θi, i.e., U
θi ≡ {ui ∈ RA|∃vi ∈ V θi such that uθi,vi = ui}.

Let U θ ≡ ×i∈IU
θi , Ui ≡ ∪θi∈Θi

U θi , and U ≡ ×i∈IUi.

An allocation rule α : U → A is defined as a function that specifies an alternative for each

profile of valuations at the mechanism stage. In the same way, a transfer rule τ : U → RI

is a function that specifies a transfer vector for each profile of valuations at the mechanism

stage. (α, τ) is considered to be a standard social choice function where investments are

exogenously given. We say that α is efficient if α(u) ∈ arg max
a∈A

∑
i∈I ui(a) for any u ∈ U .

Figure 1 describes the relationship between F and (α, τ). The standard Mount-Reiter

diagram (without endogenous investments) is the small triangle in the bottom where (α, τ)

is implemented, but our problem is described by the entire triangle in which we aim to

implement F .

Mechanism

choose choose

!
(#, %) '̅ ∈ *+(', ,)' ∈ *-

Θ

/×ℝ2

/×ℝ2×*34

5
Figure 1: A social choice rule F and a pair of allocation and transfer rules (α, τ).

Now, we formally define the associatedness of (α, τ) with F :

Definition 5. A pair of allocation and transfer rules (α, τ) : U → A×RI is associated with

a social choice rule F : Θ → 2A×RI×V 2 \{∅} if α(uθ,v) = a and τ(uθ,v) = t hold for any θ ∈ Θ

and (a, t, (v, v̄)) ∈ F (θ).

This definition implies that for any θ, θ′ ∈ Θ, (a, t, (v, v̄)) ∈ F (θ) and (a′, t′, (v′, v̄′)) ∈
F (θ′) with uθ,v = uθ′,v′ , (a, t) = (a′, t′) must hold. When F is efficient, we can show that

the associated allocation and transfer rules (α, τ) are uniquely determined and that α is also

efficient.
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Proposition 1. Consider a social choice rule F : Θ → 2A×RI×V 2\{∅} and a pair of allocation

and transfer rules (α, τ) : U → A× RI that is associated with F . If F is efficient, (α, τ) is

the unique pair of associated allocation and transfer rules and α is efficient.

To prove this, we exploit the efficiency of F and the richness of Θ: for any u ∈ U , we can

find (θ, v) such that uθ,v = u and (α(u), τ(u)) has to be determined by the information of F .

Since Proposition 1 guarantees the uniqueness of the associated (α, τ) and the efficiency of

α, our question of the implementability of an efficient F essentially reduces to the design of

the transfer rule τ .

2.3 Interpretation of Investments

In our model, we assume that ex post investment is less costly than ex ante investment

because of time discounting δ ∈ (0, 1). The efficiency of F implies that the efficient ex ante

investment should be the one with the lowest cost (which is zero). Indeed, when ex ante

investments are not possible, any efficient social choice rule can be implemented. Exploiting

this, our goal is to find a condition for which no agent has an incentive to invest ex ante.

Why does the social planner not simply prohibit ex ante investment itself? In most appli-

cations such as auctions and public goods provision, the planner first announces a mechanism

and there is some time period in which agents are allowed to think about their strategies

in the mechanism before it is run. We argue that the agents could also strategically make

some investments during this time period. In general, any kind of action that increases the

valuation of a certain outcome is considered as an investment in our context. In particular,

“paying a deposit” is a good example of an investment that can be done even in a short

period of time. When several firms are competing for a project to be chosen by the social

planner, each of them could make a contract with a relevant third party and pay a deposit

to them ex ante for their preferred project. Here, a deposit is simply a prepayment of their

future cost of their project, but it will not be refunded if their project is not selected by the

mechanism. Then, by paying a deposit and making it a sunk cost, a firm can successfully

commit to a higher profit from their project (net of the future investment cost) at the mech-

anism stage. This could change the outcome of the mechanism, and this firm could benefit

from the ex ante deposit payment. These examples indicate that the ex ante investment

that we consider in our model cannot be directly prohibited in many situations and that the

agents may have an incentive for pre-mechanism investments even with δ ∈ (0, 1).
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3 Example

Before showing the formal results, let us provide the intuition for why efficient investments

are implemented for some transfer rules τ , while they are not for others. We do so by giving

numerical details to the example discussed in the Introduction section. Suppose that a city

has a vacant lot and has two plans to exploit it: building either a baseball field (denoted by

aB) or a soccer field (denoted by aS), and A = {aB, aS}.15 Either facility will be public, and

all citizens will have a free access to it. Since the lot is not large enough to build both of the

fields, they have to decide which one to build. There are two types of citizens: type B, who

are interested in only playing and watching baseball, and type S, who are interested in only

soccer. For type-B citizens, the potential values of the projects are represented by (vB, 0),

where vB ∈ [0, 10] is their value for the baseball field and 0 is their value for the soccer field.

Similarly, type-S citizens have potential values (0, vS), where their value for the soccer field is

denoted by vS ∈ [0, 10]. This means that a scalar value vB or vS is sufficient for representing

their valuation functions. For simplicity, we regard each type as a representative agent and

consider a problem with just two agents B and S, i.e., I = {B, S}.
Each agent makes investments to determine her own value of the project she likes. In-

vestment here includes several actions for them to make use of the new facility: buying

equipment, collecting and organizing team members, inviting coaches for lessons, and so on.

By the structure of the valuation functions in this example, investment is simply a choice of

a scalar value from the interval [0, 10] for each agent.

We compare two efficient social choice rules, the efficient VCG social choice rule F V CG

and the zero-transfer efficient social choice rule F 0. F V CG has the associated (αV CG, τV CG),

which is defined as follows: for any u = (uB, uS),

αV CG(u) =

aB if uB ≥ uS

aS if uB < uS

,

τV CG
B (u) =

uS if uB ≥ uS

0 if uB < uS

,

τV CG
S (u) =

0 if uB ≥ uS

uB if uB < uS

.

Note that the domain of (α, τ) is {(uB, uS) ∈ [0, 10]2|∃θi ∈ Θi and vi ∈ [0, 10] such that uθi,vi =

ui for each i = B, S} because the valuation function at the mechanism stage can be writ-

15Suppose that the cost of building them is zero.
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ten by a scalar value for each agent. (αV CG, τV CG) is exactly the outcome function of the

second-price auction in this example.16 F 0 has the associated (α0, τ 0), which is defined as

follows: for any u = (uB, uS),

α0(u) =

aB if uB ≥ uS

aS if uB < uS

,

τ 0B(u) = 0,

τ 0S(u) = 0.

The allocation rule is the same as that of VCG, but no transfer is imposed under F 0.

Although the set Θ of cost types is assumed to be rich, we focus on particular cost types

θ = (θB, θS) such that cB(vB, θB) =
1
6
(vB)

2 and cS(vS, θS) =
1
4
(vS)

2. First, consider F V CG(θ)

and F 0(θ). Since both social choice rules are efficient, the alternative and investments should

be the same. By δ < 1, efficient ex ante investments should be zero, i.e., vB = vS = 0. If

a baseball field is built, the optimal ex post investment of B should be arg max
v̄B∈[0,10]

{−1
6
(v̄B)

2 +

v̄B} = 3. As S’s value for the baseball field is always zero, the maximum social welfare in

this case is 3
2
δ. Similarly, if the soccer field is built, the optimal investment of S should be

arg max
v̄S∈[0,10]

{−1
4
(v̄S)

2 + v̄S} = 2, and the maximum social welfare in this case is δ. Therefore,

for each F ∈ {F V CG, F 0} and any (a∗, t∗, (v∗, v̄∗)) ∈ F (θ), we have a∗ = aB, (v
∗
B, v̄

∗
B) = (0, 3)

and (v∗S, v̄
∗
S) = (0, 0).

For each F ∈ {F V CG, F 0}, we examine whether F (θ) = SPE(θ,m, δ) holds for some

mechanism m. Since each F has the associated (α, τ), if there exists a mechanism m that

implements F in SPE, the SPE outcomes of m in the mechanism stage should be consistent

with (α, τ). Note that for any (α, τ), we can find a mechanism m that implements (α, τ)

in the mechanism stage (Moore and Repullo, 1988). Let mV CG (m0, respectively) be the

mechanism that implements (αV CG, τV CG) ((α0, τ 0), respectively). Then, the entire game

induced by each m ∈ {mV CG,m0} is written as follows:

1. Each agent i = B, S simultaneously chooses vi from [0, 10]. Each i incurs the cost of

investment ci(vi, θi).

2. Mechanism m implements the allocation and transfers rules (α, τ) for their valuations

(uθB ,vB , uθS ,vS).

3. Each agent i = B,S chooses the final valuation v̄i from [vi, 10]. Each i incurs the cost

of additional investment ci(v̄i, θi)− ci(vi, θi).
16The choice of a tie-breaking rule does not matter for the results in this example.
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The ex ante utility of agent i = B,S is

−ci(vi, θi) + δ
[
v̄i1l{α(uθB,vB ,uθS,vS )=ai} − τi(u

θB ,vB , uθS ,vS)− (ci(v̄i, θi)− ci(vi, θi))
]

where j is the other agent and 1l is the indicator function.17

SPE is solved by backward induction. Consider B’s optimal ex post investment given vB

and the chosen project. Since B makes further investment only when the baseball field is

built and vB is less than 3, the optimal v̄B given vB is

v̄B =

max{3, vB} if α(uθB ,vB , uθS ,vS) = aB,

vB otherwise.

Similarly, S’s optimal v̄S given vS and the chosen project is

v̄S =

max{2, vS} if α(uθB ,vB , uθS ,vS) = aS,

vS otherwise.

Next, let us compute the valuations (uθB ,vB , uθS ,vS) at the mechanism stage for each

(vB, vS) ∈ [0, 10]2. Following Definition 4, the valuations are computed as

uθB ,vB = max
v̄B∈[vB ,10]

{
v̄B −

(
cB(v̄B, θB)− cB(vB, θB)

)}
=

3
2
+ 1

6
(vB)

2 if vB ∈ [0, 3) and

vB if vB ∈ [3, 10],

and

uθS ,vS = max
v̄S∈[vS ,10]

{
v̄S −

(
cS(v̄S, θS)− cS(vS, θS)

)}
=

1 + 1
4
(vS)

2 if vS ∈ [0, 2) and

vS if vS ∈ [2, 10].

Intuitively, when vi is higher than the optimal value, uθi,vi is equal to vi as there is no

further investment. If vi is lower than the optimal value, uθi,vi is increasing in vi exactly by

the amount of ci(vi, θi) because more ex ante investment means that there is a smaller cost

for additional investment when i’s favorite project is realized.

Finally, we analyze the ex ante investment stage of the entire game.

[1] Ex ante investments induced by mV CG.

17For any proposition p, 1l{p} is defined by

1l =

1 if p is true,

0 otherwise.
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Consider S’s incentive. If the soccer field is built, S’s VCG payment is at least 3
2
because

uθB ,vB ≥ 3
2
holds for any vB ∈ [0, 10]. However, since the net utility from the soccer project

cannot exceed 1 for S, she does not have an incentive to realize aS. That is,

−(1− δ)
1

4
(vS)

2 + δ
(
max{2, vS} − uθB ,vB − 1

4

(
max{2, vS}

)2)
< 0

for any (vB, vS) ∈ [0, 10]2 with uθS ,vS ≥ uθB ,vB and δ ∈ (0, 1). Given vS = 0, B’s SPE strategy

also leads to the efficient investments (v∗B, v̄
∗
B) = (0, 3). Thus, F V CG(θ) = SPE(θ,mV CG, δ)

holds for these cost types θ.

[2] Ex ante investments induced by m0.

Now, S has an incentive to invest more than B as long as B’s investment is efficient, i.e.,

vB = 0. This occurs because the payment in the mechanism is always zero and S would still

earn positive utility from the soccer project. That is, there exists vS ∈ (3
2
, 4) and δ ∈ (0, 1)

such that

−(1− δ)
1

4
(vS)

2 + δ
(
max{2, vS} − 0− 1

4

(
max{2, vS}

)2)
> 0.

Indeed, there is a mixed strategy equilibrium in which vS > 0 occurs with a positive proba-

bility. Thus, F 0(θ) ̸= SPE(θ,m0, δ) holds for these cost types θ.

This example illustrates that the transfer rule is crucial for inducing the right incentive

for S. Suppose that B chooses vB = 0, and consider two options for S: vS = 0 or 2. The

baseball project will be realized in the former case, but S could realize the soccer project in

the latter case. To prevent S from investing, the transfer rule τ for (3
2
, 2) should satisfy

0 ≥ −cS(2, θS) + δ
{
uθS ,2 − τS

(3
2
, 2
)}

⇔ τS

(3
2
, 2
)
≥ 2− 1

δ
.

τV CG satisfies this condition for any δ ∈ (0, 1), but τ 0 does not for δ ∈ (1
2
, 1). Moreover,

we can see that τV CG is not the unique transfer rule that satisfies this inequality. Our main

theorem generalizes this idea and finds a sufficient and necessary condition on (α, τ) for an

efficient F to be implementable.

4 Main Results

4.1 Commitment-proofness

First, we formally define the main concept of our paper.
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Definition 6. A pair of allocation and transfer rules (α, τ) is commitment-proof if for any

i ∈ I, u ∈ U and ũi ∈ Ui,

ũi(α(ũi, u−i))− τi(ũi, u−i)−max
{
0,max

a∈A
{ũi(a)− ui(a)}

}
≤ ui(α(u))− τi(u). (2)

Note that this is a condition on the allocation and transfer rules (α, τ) and does not

involve the investment structure of our model. To interpret this condition, consider the

following situation: (i) (α, τ) is implemented, (ii) the agents are assigned their “default”

valuation functions u ∈ U , and (iii) each agent i could change ui to any other valuation

functions in Ui ex ante through a certain costly commitment device. The RHS of equation

(2) is agent i’s default utility from (α, τ). Since agents would arbitrarily increase their

valuations if the commitment device were free, suppose that the cost of commitment from

ui to ũi is max
{
0,maxa∈A{ũi(a) − ui(a)}

}
. Then, i’s utility from the commitment to ũi is

represented by the LHS of equation (2). The equation (2) requires that from any default

valuation functions, none of the agents should have an incentive to commit to any other

valuation function through this commitment device.

The commitment-proofness condition can be written in the following form as well:

ui(α(ũi, u−i))− τi(ũi, u−i)− ϵ(u, ũi, α) ≤ ui(α(u))− τi(u)

where ϵ(u, ũi, α) = max
{
0,maxa∈A{ũi(a)−ui(a)}

}
−
[
ũi(α(ũi, u−i))−ui(α(ũi, u−i))

]
. Since

ϵ(u, ũi, α) ≥ 0 always holds, we can see that commitment-proofness is implied by strategy-

proofness: ui(α(ũi, u−i)) − τi(ũi, u−i) ≤ ui(α(u)) − τi(u) for any i ∈ I, u ∈ U and ũi ∈ Ui.

However, this is not a standard approximation of strategy-proofness because ϵ is not a

given value but rather depends on the valuation functions u, ũi and the allocation rule

α. ϵ(u, ũi, α) can become zero or a large positive value. To illustrate the key feature of

commitment-proofness, we provide an example of (α, τ) that is commitment-proof but not

strategy-proof.

Example 1. Suppose I = {i, j} and A = {a1, a2, a3}. Consider the following set of valuation
functions U :

Ui = {ui, ũi},

Uj = {uj}

such that

a1 a2 a3

ui(·) 0 2 0

ũi(·) 1 5 5

uj(·) 5 2 0
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Consider the following (α, τ): α is efficient; that is,

α(ui, uj) = a1, α(ũi, uj) = a2,

and τ satisfies

τi(ui, uj) = 0, τi(ũi, uj) = 1.

Let us examine the strategy-proofness and commitment-proofness conditions for agent i.

First, since

ui(α(ũi, uj))− τi(ũi, uj) = 2− 1 > 0− 0 = ui(α(u))− τi(u),

(α, τ) is not strategy-proof. On the other hand, (α, τ) is commitment-proof because

ũi(α(ũi, uj))−τi(ũi, uj)−max
{
0,max

a∈A
{ũi(a)−ui(a)}

}
= 5−1−5 ≤ 0−0 = ui(α(u))−τi(u)

and

ui(α(u))−τi(u)−max
{
0,max

a∈A
{ui(a)− ũi(a)}

}
= 0−0−0 ≤ 5−1 = ũi(α(ũi, uj))−τi(ũi, uj).

The deviation from ui to ũi highlights the difference between these two concepts. We can

also see that this (α, τ) satisfies commitment-proofness using the alternative definition:

ui(α(ũi, u−i))− τi(ũi, u−i)− ϵ(u, ũi, α) = 2− 1− 2 ≤ 0− 0 = ui(α(u))− τi(u).

Here, arg max
a∈A

{ũi(a) − ui(a)} = a3 ̸= a2 = α(ũi, uj) implies ϵ(u, ũi, α) > 0, and this allows

the non-strategy-proof (α, τ) to satisfy commitment-proofness.

4.2 Implementability of Efficient F

For our main theorem, the following lemma is useful.

Lemma 1. For any agent i ∈ I and any cost type θi ∈ Θi,

ci(vi, θi) ≥ max
a∈A

{
uθi,vi(a)− uθi,v

0
i (a)

}
holds for any vi ∈ V θi and v0i ∈ Zθi(= {ṽi ∈ V θi|ci(ṽi, θi) = 0}).

Proof: According to the definition of the valuation at the mechanism stage,

uθi,v
0
i (a) = max

v̄i∈V θi

{
v̄i(a)− ci(v̄i, θi)

}
≥ max

v̄i∈V̄i(vi,θi)

{
v̄i(a)− ci(v̄i, θi)

}
= uθi,vi(a)− ci(vi, θi)
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holds for any a ∈ A. Thus, we have ci(vi, θi) ≥ maxa∈A

{
uθi,vi(a)− uθi,v

0
i (a)

}
.

This lemma shows that the cost of any ex ante investment vi is at least as high as

the maximal increment from uθi,v
0
i with least costly ex ante investment v0i to uθi,vi . The

following theorem is our main result, which identifies the condition for an efficient F to be

implementable.

Theorem 1. Consider an efficient social choice rule F : Θ → 2A×RI×V 2 \ {∅} and a pair

of allocation and transfer rules (α, τ) : U → A × RI that is associated with F . F is imple-

mentable in subgame-perfect equilibria for any discount factor δ ∈ (0, 1) if and only if (α, τ)

is commitment-proof.

The key idea of this theorem is to apply the commitment-proof condition to the choice

between the least costly investment v0i ∈ Zθi and any other investment vi ∈ V θi in the

ex ante investment stage. Lemma 1 implies that (uθi,v
0
i , uθi,vi , ci(vi, θi)) corresponds to

(ui, ũi,max{0,maxa∈A{ũi(a) − ui(a)}}) in the definition of commitment-proofness. Then,

in the if part of the proof, we show that i has a dominant strategy to choose v0i ex ante

when (α, τ) is commitment-proof, which leads to the implementation of efficient investments.

Moreover, we show the necessity of commitment-proofness by exploiting the richness of the

set Θ of cost types. Namely, whenever (α, τ) is not commitment-proof for i, we can find a

cost type for which i has an incentive to make a costly ex ante investment vi ∈ V θi \ Zθi ,

which leads to the inefficiency of this SPE. Therefore, we conclude that for an efficient F to

be implementable, commitment-proofness of the associated (α, τ) is sufficient and necessary.

The main contribution of this theorem is that it provides a condition on the associated

(α, τ) for an efficient F to be implementable. Since our social choice rule F is not standard

in the sense that non-contractible investments are included as the outcomes of F , deriving a

condition on (α, τ), which is a standard social choice function given investments, is useful for

the social planner who designs a mechanism. Since Proposition 1 shows that the associated α

is always efficient for efficient F , the commitment-proofness condition matters for the design

of τ . We also know that the set of commitment-proof and efficient (α, τ) is non-empty as

commitment-proofness is weaker than strategy-proofness.

Although the sufficiency of commitment-proofness holds for any δ that is arbitrarily close

to one, it does not for δ = 1.18 Intuitively, when δ is one, investing ex ante and ex post can

be indifferent and there exists an equilibrium in which more than one agents invest ex ante.

The next example illustrates this using the efficient VCG social choice rule F V CG. F V CG is

18Note that the necessity of commitment-proofness in Theorem 1 still holds for δ = 1.

20



efficient in the sense of Definition 1, and the associated (αV CG, τV CG) is the standard VCG

function, which is strategy-proof: for any u ∈ U ,

αV CG(u) ∈ arg max
a∈A

∑
i∈I

ui(a),

τV CG
i (u) = max

a∈A

∑
j∈I\{i}

uj(a)−
∑

j∈I\{i}

uj(α
V CG(u)) for any i ∈ I.

Observation 1. The efficient VCG social choice rule F V CG is not implementable in SPE

when δ = 1.

Example 2. Let {i, j} ⊆ I and {a1, a2} ⊆ A. Consider the following cost types θ:

V θi = {ui, ũi},

V θj = {uj, ũj},

V θk = {0} for any k ∈ I \ {i, j},

where

ui(a1) = uj(a1) = 5, ui(a2) = uj(a2) = 4, ui(a) = uj(a) = 0 for any a ∈ A \ {a1, a2},

ũi(a1) = ũj(a1) = 0, ũi(a2) = ũj(a2) = 6, ũi(a) = ũj(a) = 0 for any a ∈ A \ {a1, a2},

and

ci(ui, θi) = cj(uj, θj) = 0,

ci(ũi, θi) = cj(ũj, θj) = 2,

ck(0, θk) = 0 for any k ∈ I \ {i, j}.

We only need to consider agents i and j. Since the maximum social welfare is δ(5+5) = 10,

efficient ex ante investments of i and j in F V CG(θ) should be (ui, uj).

Suppose, for the sake of contradiction, that there exists a mechanism m that implements

F V CG in SPE. Then, the outcome of m has to be consistent with (αV CG, τV CG). Consider the

entire game induced by m. We first examine the optimal ex post investment for i (note that

i and j are symmetric). If i chooses ũi as an ex ante investment, since ci(ũi, θi) > ci(ui, θi),

the ex post investment must be ũi. The valuation at the mechanism stage is also ũi. When i

chooses ui as an ex ante investment, since ui(a) ≥ ũi(a)− ci(ũi, θi) holds for any a ∈ A, the

ex post investment and the valuation at the mechanism stage are both ui.

Next, suppose that j chooses ũj in the ex ante investment stage. If i chooses ui, the

SPE outcome of m should be αV CG(ui, ũj, 0) = a2 and τV CG
i (ui, ũj, 0) = 0. The ex ante

utility of i is 4δ = 4. On the other hand, when i chooses ũi, the SPE outcome will be
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αV CG(ũi, ũj, 0) = a2 and τV CG
i (ũi, ũj, 0) = 0, and the ex ante utility of agent i is 6δ − 2 = 4.

Thus, there is an SPE in which i and j choose (ũi, ũj) as ex ante investments. However, this

is a contradiction because these SPE ex ante investments (ũi, ũj) achieve the social welfare

of 8, which is not the outcome of F V CG.

5 Without Ex Post Investments

5.1 Relation to Rogerson (1992) and Hatfield et al. (2018)

In our main model, although the set Θi of cost types is rich, there is a natural restriction

on the set of valuations at the mechanism stage and their costs because of the optimality

of ex post investment. To see this, recall that the set of valuations at the mechanism stage

for type θi is given by U θi ≡ {ui ∈ RA|∃vi ∈ V θi such that uθi,vi = ui}. If we see our model

as a one-shot ex ante investment choice problem, an agent with type θi faces a choice of

valuations ui = uθi,vi ∈ U θi for which the costs are given by ci(vi, θi). The key restriction

between uθi,vi and ci(vi, θi) is represented by Lemma 1.

On the other hand, in many papers such as Rogerson (1992) and Hatfield et al. (2018),

such restrictions on the set of valuations and their costs are not imposed because ex post

investment is not explicitly modeled. These studies typically obtain results on the existence

of an efficient investment equilibrium, which are more conservative than our Theorem 1. In

particular, Hatfield et al. (2018) showed that for allocatively efficient mechanisms, strategy-

proofness is sufficient and necessary for the existence of an ex ante efficient investment

equilibrium. The necessity part of their theorem exploits the assumption that any valuation

(at the mechanism stage) could be chosen at any cost. Here, a natural question is the

following: What happens to our full implementation problem when no ex post investment is

possible but the set of cost types is still rich?

5.2 Impossibility Result

By extending the logic of Hatfield et al. (2018), we prove the following impossibility result:

without ex post investments, there does not exist any social choice rule that is efficient and

implementable in subgame-perfect equilibria.

To do so, we first redefine several concepts in this environment accordingly. We consider a

special case of social choice rules G : Θ → 2A×RI×V \{∅}, where only ex ante investments are

specified. As in the main part of the model, we only consider G whose associated allocation

and transfer rules are functions: the associated allocation and transfer rules are defined as
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(α, τ) : V → A × RI such that α(v) = a and τ(v) = t for any θ ∈ Θ and (a, t, v) ∈ G(θ).

Here, we assume δ = 1 without loss of generality because there is only one investment stage.

The efficiency condition becomes simpler: for any θ ∈ Θ,{
(a∗, v∗) ∈ A×V

∣∣∣(a∗, t∗, v∗) ∈ G(θ) for some t∗ ∈ RI
}
= arg max

(a,v)∈A×V

∑
i∈I

{
− ci(vi, θi)+vi(a)

}
.

We consider the same definition of mechanisms, but the entire game reduces to the entire

game without ex post investments induced by a mechanism, where agents cannot make further

investments after the mechanism stage. Let S̃i(θ) ≡ V θi×
(
×v∈V θ×n(θ,v)∈N(θ,v)\T (θ,v)Si(n(θ, v))

)
be the strategy set of agent i in this game when the cost types are θ. Let S̃(θ) ≡ ×i∈I S̃i(θ).

In this setting, SPE and the implementability of G are defined in the following way:

Definition 7. A profile of strategies (v∗, s∗) ∈ S̃(θ) is a subgame-perfect equilibrium (SPE)

of the entire game without ex post investments induced by mechanism m for cost types θ ∈ Θ

if for each i ∈ I,

1. s∗i ∈

arg max
si∈×v∈V θ×n(θ,v)∈N(θ,v)\T (θ,v)Si(n(θ,v))

{
vi
(
wα(z(si, s

∗
−i;n(θ, v)))

)
− wτ

i (z(si, s
∗
−i;n(θ, v)))

}
for any v ∈ V θ and n(θ, v) ∈ N(θ, v) \ T (θ, v),

2. v∗i ∈ arg max
vi∈V θi

{
− ci(vi, θi) + vi

(
wα(z(s∗;n0(θ, vi, v

∗
−i)))

)
− wτ

i (z(s
∗;n0(θ, vi, v

∗
−i)))

}
hold. Let SPE(θ,m) ≡ {(a, t, v) ∈ A × RI × V | ∃ SPE (v, s) of the entire game without

ex post investments induced by m at θ s.t. w(z(s;n0(θ, v))) = (a, t)} denote the set of

all outcomes and valuation functions that are on the equilibrium paths of the entire game

without ex post investments induced by mechanism m for cost types θ.

Definition 8. Mechanism m implements social choice rule G : Θ → 2A×RI×V \ {∅} in

subgame-perfect equilibria without ex post investments if G(θ) = SPE(θ,m) holds for any

profile of cost types θ ∈ Θ. Social choice rule G is implementable in subgame-perfect equilibria

without ex post investments if there exists a mechanism that implements G in subgame-

perfect equilibria.

The next proposition is the impossibility result in this setting.

Proposition 2. There does not exist a social choice rule G : Θ → 2A×RI×V \ {∅} that is

efficient and implementable in subgame-perfect equilibria without ex post investments.
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First, it is easy to prove the counterpart of Proposition 1 in this setting. That is, the

pair of associated allocation and transfer rules (α, τ) : V → A × RI has to be unique, and

the efficiency of G implies that α must be efficient in a standard sense: given any v ∈ V ,

α(v) ∈ arg max
a∈A

∑
i∈I vi(a).

Then, we consider the following two cases: when (α, τ) is strategy-proof and when it

is not. When (α, τ) is not strategy-proof, the logic follows from the necessity of strategy-

proofness for the existence of an efficient investment equilibrium (Hatfield et al., 2018).

Since there is no ex post investment, the valuation functions at the mechanism stage can be

associated with any investment costs because of the richness condition. Therefore, we can

find cost types at which the privately optimal ex ante investment choice for some agent does

not maximize the social welfare.

On the other hand, for any efficient and strategy-proof (α, τ), we can always find cost

types for which an inefficient investment equilibrium exists in addition to the efficient one.

Basically, we embed the example in Section 3 to any general problem and show the multi-

plicity of SPE. This is possible because given efficiency and strategy-proofness, the transfer

rule τ is unique up to a constant.

5.3 Example Revisited

To illustrate the main idea of Proposition 2 for the case of strategy-proof (α, τ), we revisit

the two-alternative example in Section 3.

Recall that there are two agents, B and S, and each of them is interested only in project

ai with i = B,S. Suppose, for the sake of contradiction, that F V CG can be implemented

by mechanism m in SPE, and consider the entire game without ex post investments induced

by m. Since (αV CG, τV CG) must be the unique pair of the associated allocation and transfer

rules as shown in Proposition 2, the entire game is written as follows:

1. Each agent i = B, S simultaneously chooses vi from [0, 10]. Each i incurs the cost of

investment ci(vi, θi).

2. The mechanism m implements (αV CG, τV CG) for their valuations (vB, vS).

Given (αV CG, τV CG), the ex ante utility of agent i = B, S for v = (vB, vS) ∈ [0, 10]2 is written

as

−ci(vi, θi) + (vi − vj)1l{αV CG(vB ,vS)=ai}

where j is the other agent.
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Let us analyze the ex ante investment stage. First, it is easy to see that the socially

efficient investments (v∗B, v
∗
S) = (3, 0) are achieved in equilibrium. Now, suppose that S

chooses an ex ante investment vS = 2. If B chooses vB ≥ 2 and realizes the baseball project,

then the VCG payment for B would be 2, which exceeds B’s maximum net utility 3
2
. That

is,

−1

6
(vB)

2 + (vB − 2)1l{vB≥2} ≤
3

2
− 2 < 0

for any vB ∈ [2, 10]. Thus, B does not have an incentive to achieve aB by investing more

than S. For S, it is clear that choosing 2 is optimal given that B does not invest. Therefore,

(vB, vS) = (0, 2) is also an SPE outcome of the entire game, but obviously this is not chosen

by efficient F V CG.

6 Discussions

6.1 Budget Balance

In this subsection, we consider an additional requirement for social choice rules: budget

balance. This is especially important in the provision of public goods as the cost must be

covered by the participants of the mechanism. Budget balance can also be considered as part

of efficiency if the transfers collected by the social planner are regarded as a loss of welfare.

Definition 9. A social choice rule F : Θ → 2A×RI×V 2\{∅} is budget-balanced if for any θ ∈ Θ

and (a, t, (v, v̄)) ∈ F (θ),
∑

i∈I ti = 0 holds. A transfer rule τ : U → RI is budget-balanced if∑
i∈I τi(u) = 0 holds for any u ∈ U .

Our main finding in this subsection is that budget balance is still compatible with

commitment-proofness and efficiency; i.e., there exists (α, τ) that is commitment-proof, ef-

ficient and budget-balanced. This result contrasts with the well-known theorem that there

is no social choice function that is strategy-proof, efficient and budget-balanced (Green and

Laffont, 1977; Hölmstrom, 1979; Walker, 1980).

Proposition 3. For any efficient allocation rule α : U → A, there exists a budget-balanced

transfer rule τ : U → RI such that (α, τ) is commitment-proof.

Proposition 3 is shown by finding a specific transfer rule τ : for any agent i ∈ I, τi is

defined by

τi(u) = ui(α(u))−
1

n

∑
i∈I

ui(α(u)).
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First, it is clear that this τ is budget-balanced. To see why (α, τ) is commitment-proof, con-

sider the utility change from ui(α(u))−τi(u) to ũi(α(ũi, u−i))−τi(ũi, u−i) when i’s valuation

function changes from ui to ũi. By the structure of τ , it is exactly 1
n
of the change in the social

welfare. This means that the utility change from ui(α(u))−τi(u) to ũi(α(ũi, u−i))−τi(ũi, u−i)

is always less than zero or maxa∈A{ũi(a)−ui(a)}, and hence, the inequality of commitment-

proofness is satisfied. It is easy to see that this (α, τ) is not strategy-proof because the agents

have an incentive to underreport their valuations to reduce their payment.

By the result of Theorem 1, we obtain the following corollary: budget balance is com-

patible with the implementation of efficient social choice rules.

Corollary 1. There exists a social choice rule F : Θ → 2A×RI×V 2 \ {∅} that is efficient,

budget-balanced and implementable in subgame-perfect equilibria for any discount factor δ ∈
(0, 1).

6.2 Incomplete Information

In the main model, we assumed that the agents have complete information about the cost

types. In fact, we can show that complete information is not necessary for inducing efficient

investment incentives. In incomplete information environments, we would need a tighter

condition for implementing efficient allocations and transfers since not all allocation and

transfer rules are implementable even with extensive form mechanisms. In this subsection,

we provide the following sufficient condition for the implementability of an efficient F under

incomplete information: strategy-proofness of the associated (α, τ).

We consider a model where each agent i knows her own cost type θi ∈ Θi, but may

be unsure about the other agents’ cost types θ−i ≡ (θj)j∈I\{i}. The agents have a common

prior on Θ, denoted by p. Conditional on knowing her own cost type θi, agent i’s posterior

distribution over Θ−i ≡ ×j∈I\{i}Θj is denoted by p(·|θi). For simplicity, we assume that V θi

and Θi are both finite sets in this subsection.19 The prior belief is diffuse, i.e., p(θ) > 0 for

any θ ∈ Θ, and p(·|θi) is computed by Bayes’ rule.

In this section, we consider a reduced version of the entire game: the investment game

induced by a pair of allocation and transfer rules (α, τ). Here, the mechanism stage of the

entire game is replaced by functions (α, τ), and the game simply consists of the ex ante and

ex post investment stages. In this Bayesian setting, the investment strategies are defined

19In one of the extensions, Duggan (1998) argued that the finiteness of these sets is not necessary for

implementing Bayesian incentive compatible social choice functions. However, we assume finiteness as it

makes the model simpler and does not change the main argument of our result.
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in the following way. The set of ex ante investment strategies for agent i is the set of all

mappings from Θi to Vi, denoted by Σi. The set of ex post investment strategies for agent i

is the set of all mappings from V θi × V−i × A×Θi to V θi , denoted by M̄i. Let Σ ≡ ×i∈IΣi

and M̄ ≡ ×i∈IM̄i. First, we define a perfect Bayesian equilibrium of the investment game

induced by (α, τ).

Definition 10. A profile of investment strategies (σ∗, µ∗) ∈ Σ × M̄ is a perfect Bayesian

equilibrium (PBE) of the investment game induced by a pair of allocation and transfer rules

(α, τ) given a discount factor δ ∈ (0, 1) if for each i ∈ I and θi ∈ Θi,

1. µ∗
i (v, a, θi) ∈ arg max

v̄i∈V̄i(vi,θi)

{
v̄i(a)− ci(v̄i, θi)

}
for any v ∈ V θi × V−i and a ∈ A, and

2. σ∗
i (θi) ∈ arg max

vi∈V θi

{
− ci(vi, θi) + δ

∑
θ−i∈Θ−i

p(θ−i|θi)[
µ∗
i (vi, σ

∗
−i(θ−i), α(u

θi,vi , u−i), θi)(α(u
θi,vi , u−i))− τi(u

θi,vi , u−i)

−ci(µ
∗
i (vi, σ

∗
−i(θ−i), α(u

θi,vi , u−i), θi), θi) + ci(vi, θi)
]}

where u−i ≡ uθ−i,σ
∗
−i(θ−i)

hold. Let PBE(θ, α, τ, δ) ≡ {(a, t, (v, v̄)) ∈ A × RI × V 2| ∃ PBE (σ, µ) of the investment

game induced by (α, τ) given δ s.t. (α(uθ,σ(θ)), τ(uθ,σ(θ))) = (a, t) and µi(v, a, θi) = v̄i ∀i ∈ I}
denote the set of all outcomes and valuation functions that are on the equilibrium paths of

the investment game given (α, τ) and δ when θ is realized.

Note that in the ex post investment stage, we do not need to specify the beliefs of agents

because other agents’ cost types are irrelevant to their decisions in this stage.

Now, consider the implementability of (α, τ). In the literature, several papers have

identified the class of social choice functions that can be implemented by extensive form

mechanisms in this Bayesian setting (Brusco, 1995; Bergin and Sen, 1998; Duggan, 1998;

Baliga, 1999). These studies differ in the generality of the model and the equilibrium con-

cept (PBE or sequential equilibrium), but it is common that they require Bayesian incentive

compatibility. Moreover, in the simplest model of Duggan (1998) where quasi-linear util-

ity is employed, he shows that any Bayesian incentive compatible social choice function is

implementable in perfect Bayesian equilibria and sequential equilibria.20 Based on these

arguments, we directly include Bayesian incentive compatibility of (α, τ) in the definition of

the PBE implementability of F .
20Duggan (1998) required value-measurability for implementation, in the sense that chosen outcomes do

not change unless at least one agent’s preference does, but (α, τ) in this paper automatically satisfies this.
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Our model has an ex ante investment stage, and the belief system at the mechanism

stage is endogenously formed by the observations of ex ante investments and the agents’

investment strategies. Let p(θ−i|θi, v, σ) be agent i’s belief on θ−i given her own cost type,

observed ex ante investments and all agents’ investment strategies. This is computed by

Bayes’ rule:

p(θ−i|θi, v, σ)

≡


p(θ−i|θi)Πj∈I\{i}1l{σj(θj)=vj}∑

θ̃−i∈Θ−i
p(θ̃−i|θi)Πj∈I\{i}1l{σj(θ̃j)=vj}

if
∑

θ̃−i∈Θ−i
p(θ̃−i|θi)Πj∈I\{i}1l{σj(θ̃j)=vj} > 0,

any probability distribution over Θ−i otherwise.

Bayesian incentive compatibility of a social choice function is defined for each information

set at the mechanism stage.

Definition 11. A pair of allocation and transfer rules (α, τ) : U → A × RI is Bayesian

incentive compatible at θ ∈ Θ and v ∈ V θ given σ ∈ Σ if for any i ∈ I, θ̃i ∈ Θi and ṽi ∈ V θ̃i ,∑
θ−i∈Θ−i

p(θ−i|θi, v, σ)
[
uθi,vi(α(uθ,v))− τi(u

θ,v)
]

≥
∑

θ−i∈Θ−i

p(θ−i|θi, v, σ)
[
uθi,vi(α(uθ̃i,ṽi , uθ−i,v−i))− τi(u

θ̃i,ṽi , uθ−i,v−i)
]
.

Because the planner does not observe the ex ante investments v, (α, τ) must satisfy

Bayesian incentive compatibility for any possible beliefs at the mechanism stage.21 The

implementability of F with the associated (α, τ) is defined by the following two conditions:

(i) (α, τ) must be Bayesian incentive compatible given the PBE investment strategy in every

information set at the mechanism stage, and (ii) the set of PBE outcomes of the investment

game coincides with F for any θ ∈ Θ.

Definition 12. Given a discount factor δ ∈ (0, 1), social choice rule F : Θ → 2A×RI×V 2 \{∅}
with the associated allocation and transfer rules (α, τ) : U → A × RI is implementable in

perfect Bayesian equilibrium if

1. (α, τ) is Bayesian incentive compatible at any θ ∈ Θ and v ∈ V θ given any σ∗ ∈ Σ

such that σ∗ is part of a PBE, and

2. F (θ) = PBE(θ, α, τ, δ) for any θ ∈ Θ.

21Duggan (1998) also considered global implementation, in which the social planner elicits information

regarding agents’ belief systems and implements different social choice functions depending on their belief

systems. However, we do not consider this in our paper and leave it for future research.
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Proposition 4 is our main result in this incomplete information setting.

Proposition 4. Consider an efficient social choice rule F : Θ → 2A×RI×V 2 \ {∅} and a

pair of allocation and transfer rules (α, τ) : U → A × RI that is associated with F . F is

implementable in perfect Bayesian equilibria for any discount factor δ ∈ (0, 1) if (α, τ) is

strategy-proof.

The key idea is that even under incomplete information, the least costly investments

are chosen in any equilibrium of the investment game as long as the associated (α, τ) is

commitment-proof. We provide a stronger sufficient condition (strategy-proofness) than

commitment-proofness just to satisfy Bayesian incentive compatibility for any beliefs of

agents at the mechanism stage.

7 Concluding Remarks

The main contribution of our paper is to provide a sufficient and necessary condition for an ef-

ficient social choice rule to be implementable when there are endogenous investments. More-

over, the commitment-proofness condition is defined for (α, τ), which is interpreted as a stan-

dard social choice function where investments are exogenously given. Therefore, when the as-

sumptions regarding the investment environment are satisfied, the social planner can simply

design a mechanism so that (α, τ) satisfies commitment-proofness. Commitment-proofness is

not a strong requirement because Proposition 3 shows the existence of a commitment-proof,

efficient and budget-balanced social choice function.

In this paper, the assumptions regarding the technology of investments are somewhat

strong. In particular, (i) the investment technology has no uncertainty, and (ii) ex post in-

vestment is available and is strictly less costly than the ex ante one.22 These assumptions

allow us to easily characterize efficient investments, and the goal was to eliminate incentives

for any ex ante investments. In future research, these assumptions can be relaxed in the fol-

lowing general ways. Agents may make uncertain ex ante investments, which would introduce

a new source of uncertainty to the model. Moreover, some positive ex ante investment could

be socially efficient while ex post investments are still available. These extensions would more

closely connect our paper to Piccione and Tan (1996) and other papers on information ac-

quisition (Bergemann and Välimäki, 2002; Obara, 2008). Under these more general settings,

we hope to obtain conditions for which efficient social choice rules are implementable.

22Although our result still holds for some systematic changes in the cost functions after the mechanism

is run (see footnote 12), we do not know what will happen if the ex post cost function is uncertain ex ante.
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Appendix A Proofs of the Main Results

Appendix A.1 Proof of Proposition 1

To show that the associated (α, τ) is uniquely determined by F , it suffices to show that for

every u ∈ U , there exist θ ∈ Θ and (a, t, (v, v̄)) ∈ F (θ) such that uθ,v = u.

By the efficiency of F and δ ∈ (0, 1), the efficient choice of ex ante investment should

always be v with the lowest cost; i.e., for any θ ∈ Θ and (a, t, (v, v̄)) ∈ F (θ), we have v ∈ Zθ.

Now, take any u ∈ U . By definition, there exist θ ∈ Θ and v ∈ V θ such that uθ,v = u. By

the richness of Θ, we can find θ̃ ∈ Θ such that

• ci(vi, θ̃i) = 0,

• V θ̃i
i = V̄i(vi, θi), and

• ci(v̄i, θ̃i) = ci(v̄i, θi)− ci(vi, θi) for any v̄i ∈ V̄i(vi, θi)

for all i ∈ I. Then, we can show that uθ̃,ṽ = u holds for any ṽ ∈ Z θ̃: for any i ∈ I and a ∈ A,

ui(a) = uθi,vi
i (a)

= max
v̄i∈V̄i(vi,θi)

{
v̄i(a)− ci(v̄i, θi)

}
+ ci(vi, θi)

= max
v̄i∈V

θ̃i
i

{
v̄i(a)− ci(v̄i, θ̃i)

}
= uθ̃i,ṽi

i (a).

This implies that there exists (ã, t̃, (ṽ, ṽ′)) ∈ F (θ̃) with uθ̃,ṽ = u, and (α(u), τ(u)) is uniquely

determined to be (ã, t̃) for any (α, τ) that is associated with F .

Moreover, by the efficiency of F and ṽ ∈ Z θ̃, α(u) must satisfy

α(u) = ã ∈ arg max
a∈A

∑
i∈I

{
− ci(ṽi, θ̃i) + δuθ̃i,ṽi(a)

}
= arg max

a∈A

∑
i∈I

uθ̃i,ṽi(a),

which requires that α be efficient.

Appendix A.2 Proof of Theorem 1

[1] If part.

Take any discount factor δ ∈ (0, 1) and fix it.

First, consider the ex post investment stage. Since this stage is a single-agent optimization

problem and it does not involve a mechanism, in any subgame starting from the terminal
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node n(θ, v) ∈ T (θ, v) of the mechanism for any (θ, v), the equilibrium investment choice of

every agent is socially efficient.

Next, consider the mechanism stage starting from each initial node n0(θ, v) of the mech-

anism for each (θ, v). Here, since the pair of associated allocation and transfer rules (α, τ) :

U → A × RI is unique, consider a Moore-Repullo mechanism m that implements (α, τ) in

SPE in the mechanism stage of each subgame. That is, the SPE outcome (alternative and

transfers) of m is (α(uθ,v), τ(uθ,v)) in any subgame starting from the initial node n0(θ, v)

of the mechanism. Then, since (α, τ) is associated with F , mechanism m implements (a, t)

that is consistent with F for any given (θ, v).

The main part of the proof is to show that when (α, τ) is commitment-proof, efficient ex

ante investments specified by F are chosen in the SPE of the entire game induced by this

mechanism m. According to the definition of efficiency, it is clear that the efficient ex ante

investment should always be v with the lowest cost; i.e., for any θ ∈ Θ and (a, t, (v, v̄)) ∈
F (θ), we have v ∈ Zθ. Therefore, it suffices to show that for any θ ∈ Θ, the equilibrium ex

ante investments are characterized by Zθ.

Take any θ ∈ Θ, any i ∈ I and v−i ∈ V θ−i and consider i’s incentive for ex ante

investments when the valuation functions of other agents at the mechanism stage are fixed

to u−i ≡ uθ−i,v−i . Consider two different choices: any v0i ∈ Zθi and any vi ∈ V θi \ Zθi . We

can show that v0i gives a strictly higher utility than vi for i. To see this, let µ∗
i : V θ → V θi

be the optimal ex post investment function that selects the optimal ex post investment v̄i for

each ex ante investments v ∈ V given (α, τ). The ex ante utility from vi given v−i is written

as:

−ci(vi, θi) + δ
[
µ∗
i (v)(α(u

θi,vi , u−i))− τi(u
θi,vi , u−i)−

(
ci(µ

∗
i (v), θi)− ci(vi, θi)

)]
(3)

= δ
[
µ∗
i (v)(α(u

θi,vi , u−i))− τi(u
θi,vi , u−i)− ci(µ

∗
i (v), θi)

]
− (1− δ)ci(vi, θi) (4)

< δ
[
µ∗
i (v)(α(u

θi,vi , u−i))− τi(u
θi,vi , u−i)− ci(µ

∗
i (v), θi)

]
(5)

= δ
[
uθi,vi(α(uθi,vi , u−i))− τi(u

θi,vi , u−i)− ci(vi, θi)
]

(6)

≤ δ
[
uθi,vi(α(uθi,vi , u−i))− τi(u

θi,vi , u−i)−max
{
0,max

a∈A

{
uθi,vi(a)− uθi,v

0
i (a)

}}]
(7)

≤ δ
[
uθi,v

0
i (α(uθi,v

0
i , u−i))− τi(u

θi,v
0
i , u−i)

]
(8)

= δ
[
µ∗
i (v

0
i , v−i)(α(u

θi,v
0
i , u−i))− τi(u

θi,v
0
i , u−i)− ci(µ

∗
i (v

0
i , v−i), θi)

]
, (9)

in which the last equation (9) is the ex ante utility from choosing v0i given v−i. The inequality

in (5) holds because ci(vi, θi) > 0 and δ < 1; the equality in (6) follows from the definition

of uθi,vi ; the inequality in (7) follows from Lemma 1; the inequality in (8) follows from the
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fact that (α, τ) is commitment-proof; and the equality in (9) follows from the definition of

uθi,v
0
i . Moreover, consider when Zθi is not a singleton set. Since any valuation functions in

Zθi give exactly the same utility from the calculation above, Zθi is the set of best responses

for i in the first investment stage to any v−i.

From the same argument, for any ex ante investment vj ∈ Zθj , j should have the same

valuation at the mechanism stage. Since the utility i obtains from choosing any investment

in Zθi is unchanged as long as vj is taken from Zθj for any j ∈ I \ {i}, the equilibrium ex

ante investments are characterized by Zθ. Thus, we conclude that F is implemented by the

mechanism m in SPE for any discount factor δ ∈ (0, 1).

[2] Only if part.

By Proposition 1, we know that the pair of associated (α, τ) is unique for efficient F .

Suppose, for the sake of contradiction, that this (α, τ) is not commitment-proof. Then, there

must be i ∈ I, u ∈ U and ũi ∈ Ui such that

ũi(α(ũi, u−i))− τi(ũi, u−i)−
(
ui(α(u))− τi(u)

)
> max

{
0,max

a∈A

{
ũi(a)− ui(a)

}}
. (10)

Consider the following profile of cost types θ such that

V θi = {ui, ũi},

V θj = {uj}, for all j ∈ I \ {i},

ci(ui, θi) = 0,

ci(ũi, θi) =

maxa∈A

{
ũi(a)− ui(a)

}
if maxa∈A

{
ũi(a)− ui(a)

}
> 0,

∆ otherwise,

cj(uj, θj) = 0 for all j ∈ I \ {i}

where ∆ > 0. The richness condition ensures θ ∈ Θ. Note that for this profile of cost types

θ, F specifies u as ex ante investments because Zθ = {u}.
Consider any mechanism m that implements F in SPE and the entire game induced by

m. First, we can see that U θi = {ui, ũi}. Consider the optimal ex post investment in each

terminal node of the mechanism. When i chooses ũi ex ante, since ci(ũi, θi) > ci(ui, θi), the

only ex post choice is ũi for any a ∈ A. Thus, the valuation at the mechanism stage is also

ũi. On the other hand, when i chooses ui ex ante, she can still choose from {ui, ũi} in the

ex post stage. However, by the construction of the cost function, we have

ui(a) ≥ ũi(a)− ci(ũi, θi)
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for any a ∈ A. Thus, the valuation at the mechanism stage is

uθi,ui(a) = max
v̄i∈{ui,ũi}

{
v̄i(a)− ci(v̄

i, θi)
}
= ui(a)

for each a ∈ A. To summarize, i’s optimal investment strategy and the valuation at the

mechanism stage are:

Ex Ante Valuation Valuation at the Mechanism Optimal Ex Post Valuation

ui ui for any a: ui (or ũi if ui(a) = ũi(a)− ci(ũi))

ũi ũi for any a: ũi

Now, consider i’s incentive in the ex ante investment stage: i chooses either ui or ũi given

other agents’ valuations u−i. Since (α, τ) is associated with F , we can write the ex ante utility

using (α, τ): i’s ex ante utility when choosing ũi is −ci(ũi, θi) + δ[ũi(α(ũi, u−i))− τi(ũi, u−i)]

and that from choosing ui is δ[ui(α(u))− τi(u)]. The difference between these two is

−ci(ũi, θi) + δ
[
ũi(α(ũi, u−i))− τi(ũi, u−i)

]
− δ

[
ui(α(u))− τi(u)

]
= −(1− δ)ci(ũi, θi) + δ

[
ũi(α(ũi, u−i))− τi(ũi, u−i)− ci(ũi, θi)

]
− δ

[
ui(α(u))− τi(u)

]
= −(1− δ)ci(ũi, θi)

+δ
[
ũi(α(ũi, u−i))− τi(ũi, u−i)−

(
ui(α(u))− τi(u)

)
−max

{
∆,max

a∈A

{
ũi(a)− ui(a)

}}]
> 0,

in which ci(ũi, θi) = max{∆,maxa∈A
{
ũi(a)−ui(a)

}
} holds for sufficiently small ∆ > 0, and

the final inequality holds from equation (10) when we take δ sufficiently close to 1 and ∆ > 0

sufficiently small. Therefore, ũi is chosen in the first investment stage in any SPE of the

entire game induced by m, and this contradicts the fact that m implements F in SPE.

A.3 Proof of Proposition 2

Suppose that there exists a social choice rule G : Θ → 2V×A×RI \ {∅} that is efficient and

implemented by some mechanism m in SPE without ex post investments, and we derive a

contradiction.

First, we can see that the pair of associated allocation and transfer rules (α, τ) : V →
A × RI is unique, and the mechanism m implements it in the mechanism stage. This

occurs because for any v ∈ V , (α(v), τ(v)) is uniquely determined as (a, t) that satisfies

(a, t, v) ∈ G(θ) for θ ∈ Θ with V θ = {v}. Moreover, this unique α has to be efficient because

for each v ∈ V , α(v) ∈ arg max
a∈A

∑
i∈I vi(a) holds for the cost types θ with V θ = {v}.
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Next, we examine two cases where (α, τ) is not strategy-proof and (α, τ) is strategy-proof.

Here, strategy-proofness of (α, τ) is defined in the standard way: for any i ∈ I, v ∈ V and

ṽi ∈ Vi, vi(α(ṽi, v−i))− τi(ṽi, v−i) ≤ vi(α(v))− τi(v). In either case, we can find an inefficient

investment equilibrium in the entire game without ex post investments induced by m, which

is a contradiction.

[1] When (α, τ) is not strategy-proof.

In this case, there are i ∈ I, v ∈ V and ṽi ∈ Vi such that

vi(α(ṽi, v−i))− τi(ṽi, v−i) > vi(α(v))− τi(v). (11)

By the richness condition of Θ, we can find cost types θ ∈ Θ such that

V θi = {vi, ṽi},

V θj = {vj} for all j ∈ I \ {i},

ci(vi, θi) = max
{
0, vi(α(v))− τi(v)−

(
ṽi(α(ṽi, v−i))− τi(ṽi, v−i)

)}
,

ci(ṽi, θi) = max
{
0, ṽi(α(ṽi, v−i))− τi(ṽi, v−i)−

(
vi(α(v))− τi(v)

)}
, and

cj(vj, θj) = 0 for all j ∈ I \ {i}.

First, consider any mechanism m that implements (α, τ) in the mechanism stage, and

consider i’s incentive in the ex ante investment stage. The ex ante utility from choosing vi is

−ci(vi, θi)+vi(α(v))−τi(v), and that from choosing ṽi is −ci(ṽi, θi)+ṽi(α(ṽi, v−i))−τi(ṽi, v−i).

The difference is

−ci(vi, θi) + vi(α(v))− τi(v)−
{
− ci(ṽi, θi) + ṽi(α(ṽi, v−i))− τi(ṽi, v−i)

}
= vi(α(v))− τi(v)−

(
ṽi(α(ṽi, v−i))− τi(ṽi, v−i)

)
− (ci(vi, θi)− ci(ṽi, θi))

= 0.

Therefore, vi and ṽi are indifferent for i, and both (α(v), τ(v), v) ∈ SPE(θ,m) and (α(v), τ(v), (ṽi, v−i)) ∈
SPE(θ,m) hold.

Next, consider whether v and (ṽi, v−i) are chosen by G. For v, the social welfare is∑
j∈I

{
− cj(vj, θj) + vj(α(v))

}
= −ci(vi, θi) +

∑
j∈I

vj(α(v)).

And for (ṽi, v−i), the social welfare is

−ci(ṽi, θi) + ṽi(α(ṽi, v−i)) +
∑

j∈I\{i}

vj(α(ṽi, v−i)).
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The difference between these two is:

−ci(vi, θi) +
∑
j∈I

vj(α(v))−
{
− ci(ṽi, θi) + ṽi(α(ṽi, v−i)) +

∑
j∈I\{i}

vj(α(ṽi, v−i))
}
(12)

≥
∑
j∈I

vj(α(ṽi, v−i))− ṽi(α(ṽi, v−i))−
∑

j∈I\{i}

vj(α(ṽi, v−i))− (ci(vi, θi)− ci(ṽi, θi)) (13)

= vi(α(ṽi, v−i))− ṽi(α(ṽi, v−i))− (ci(vi, θi)− ci(ṽi, θi)) (14)

> vi(α(v))− τi(v) + τi(ṽi, v−i)− ṽi(α(ṽi, v−i))− (ci(vi, θi)− ci(ṽi, θi)) (15)

= 0, (16)

in which the inequality in (13) follows from the efficiency of α; and the inequality in (15) fol-

lows from equation (11). Therefore, we have (α(v), τ(v), v) ∈ G(θ,m), but (α(v), τ(v), (ṽi, v−i)) /∈
G(θ,m). This contradicts G(θ) = SPE(θ,m).

[2] When (α, τ) is strategy-proof.

We embed the example in Section 3 into any problem.23 Consider any (α, τ) that is

efficient and strategy-proof. Suppose {i, j} ⊆ I and {ai, aj} ⊆ A. By the assumption of V

and Θ, we can find cost types θ ∈ Θ such that

V θi = {x1l{a=ai} : x ∈ [0, κ]},

V θj = {x1l{a=aj} : x ∈ [0, κ]},

V θk = {0} for any k ∈ I \ {i, j},

ci(x1l{a=ai}, θi) =
5

3κ
x2, for any x ∈ [0, κ],

cj(x1l{a=aj}, θj) =
5

2κ
x2, for any x ∈ [0, κ], and

ck(0, θk) = 0 for all k ∈ I \ {i, j}.

for some κ > 0.

First, consider G(θ). If ai is chosen, i’s optimal choice of valuation should be

arg max
x∈[0,κ]

{
− 5

3κ
x2 + x

}
=

3

10
κ.

If aj is chosen, j’s optimal choice of valuation should be

arg max
x∈[0,κ]

{
− 5

2
x2 + x

}
=

1

5
κ.

23The parameters are equivalent to the example in Section 3 if κ = 10.

39



The social welfare achieved by ( 3
10
κ1l{a=ai}, 0) is − 3

20
κ + 3

10
κ = 3

20
κ and the social welfare

achieved by (0, 1
5
κ1l{a=ai}) is− 1

10
κ+ 1

5
κ = 1

10
κ. Thus, {(ai, τ( 3

10
κ1l{a=ai}, 0), (

3
10
κ1l{a=ai}, 0))} =

G(θ) should hold.

Then consider any mechanismm that implements (α, τ) in the mechanism stage. We show

that (aj, τ(0,
1
5
κ1l{a=aj}), (0,

1
5
κ1l{a=aj})) ∈ SPE(θ,m). First, it is clear that the valuation of

j is a best response to i’s choice 0. Next, given v̄j ≡ 1
5
κ1l{a=aj},

arg max
vi∈V θi

{
− ci(vi, θi) + vi(α(vi, v̄j)) + v̄j(α(vi, v̄j))

}
= 0

holds. This occurs because given j’s valuation v̄j = 1
5
κ1l{a=aj}, the equation is maximized

when aj is chosen and i does not make any investments. Since (α, τ) is efficient and strategy-

proof, τi(·, v̄j) is written as a Groves function (Green and Laffont, 1977): τi(vi, v̄j) = g(v̄j)−
v̄j(α(vi, v̄j)). Hence,

arg max
vi∈V θi

{
− ci(vi, θ̃i) + vi(α(vi, v̄j))− τi(vi, v̄j)

}
= arg max

vi∈V θi

{
− ci(vi, θ̃i) + vi(α(vi, v̄j))− g(v̄j) + v̄j(α(vi, v̄j))

}
= arg max

vi∈V θi

{
− ci(vi, θ̃i) + vi(α(vi, v̄j)) + v̄j(α(vi, v̄j))

}
= 0

should hold for any cost type θ̃i ∈ Θi, which means that 0 is the best response for i, and

hence, we have (aj, τ(0,
1
5
κ1l{a=aj}), (0,

1
5
κ1l{a=aj})) ∈ SPE(θ,m). However, this contradicts

G(θ) = SPE(θ,m).

A.4 Proof of Proposition 3

For any efficient allocation rule α, consider the following transfer rule τ :

τi(u) = ui(α(u))−
1

n

∑
i∈I

ui(α(u)).
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It is clear that τ is budget-balanced. Then, we show that (α, τ) is commitment-proof. For

any i ∈ I, u ∈ U , ũi ∈ Ui,[
ũi(α(ũi, u−i))− τi(ũi, u−i)

]
−

[
ui(α(u))− τi(u)

]
−max

{
0,max

a∈A

{
ũi(a)− ui(a)

}}
=

1

n

{
ũi(α(ũi, u−i)) +

∑
j∈I\{i}

uj(α(ũi, u−i))
}
− 1

n

∑
i∈I

ui(α(u))−max
{
0,max

a∈A

{
ũi(a)− ui(a)

}}
=

1

n

{
ũi(α(ũi, u−i))− ui(α(ũi, u−i)) +

∑
i∈I

ui(α(ũi, u−i))−
∑
i∈I

ui(α(u))
}

−max
{
0,max

a∈A

{
ũi(a)− ui(a)

}}
≤ 1

n

{
ũi(α(ũi, u−i))− ui(α(ũi, u−i))

}
−max

{
0,max

a∈A

{
ũi(a)− ui(a)

}}
≤ 1

n
max

{
0,max

a∈A

{
ũi(a)− ui(a)

}}
−max

{
0,max

a∈A

{
ũi(a)− ui(a)

}}
= −n− 1

n
max

{
0,max

a∈A

{
ũi(a)− ui(a)

}}
≤ 0,

where the first inequality holds from the efficiency of α. Thus, this (α, τ) is commitment-

proof and the proof is done.

A.5 Proof of Proposition 4

Take any discount factor δ ∈ (0, 1) and fix it.

Since (α, τ) is strategy-proof, it satisfies Bayesian incentive compatibility for any (θ, v, σ).

As in the if part in Theorem 1, since the equilibrium ex post investment choice of every agent

is always socially efficient, it suffices to show that for any θ ∈ Θ, the PBE ex ante investments

are characterized by Zθ.

Consider the investment game induced by (α, τ) given δ, and consider any agent i ∈ I

and her cost type θi ∈ Θi. Every agent’s ex post investment strategy is fixed to the PBE

strategy µ∗, and let us take any arbitrary ex ante investment strategies σ−i ∈ Σ−i of other

agents. Take any v0i ∈ Zθi and any vi ∈ V θi \ Zθi . We can show that v0i gives a strictly

higher utility than vi for agent i of cost type θi. To see this, the ex ante utility from (vi, µ
∗
i )
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given σ−i is written as:

δ
∑

θ−i∈Θ−i

p(θ−i|θi)
[
µ∗
i (vi, σ−i(θ−i), α(u

θi,vi , uθ−i,σ−i(θ−i)), θi)(α(u
θi,vi , uθ−i,σ−i(θ−i))) (17)

−τi(u
θi,vi , uθ−i,σ−i(θ−i))− ci(µ

∗
i (vi, σ−i(θ−i), α(u

θi,vi , uθ−i,σ−i(θ−i)), θi), θi)
]

(18)

−(1− δ)ci(vi, θi) (19)

< δ
∑

θ−i∈Θ−i

p(θ−i|θi)
[
µ∗
i (vi, σ−i(θ−i), α(u

θi,vi , uθ−i,σ−i(θ−i)), θi)(α(u
θi,vi , uθ−i,σ−i(θ−i))) (20)

−τi(u
θi,vi , uθ−i,σ−i(θ−i))− ci(µ

∗
i (vi, σ−i(θ−i), α(u

θi,vi , uθ−i,σ−i(θ−i)), θi), θi)
]

(21)

= δ
∑

θ−i∈Θ−i

p(θ−i|θi)
[
uθi,vi(α(uθi,vi , uθ−i,σ−i(θ−i)))− τi(u

θi,vi , uθ−i,σ−i(θ−i))− ci(vi, θi)
]
(22)

≤ δ
∑

θ−i∈Θ−i

p(θ−i|θi)
[
uθi,vi(α(uθi,vi , uθ−i,σ−i(θ−i)))− τi(u

θi,vi , uθ−i,σ−i(θ−i)) (23)

−max
{
0,max

a∈A

{
uθi,vi(a)− uθi,v

0
i (a)

}}]
(24)

≤ δ
∑

θ−i∈Θ−i

p(θ−i|θi)
[
uθi,v

0
i (α(uθi,v

0
i , uθ−i,σ−i(θ−i)))− τi(u

θi,v
0
i , uθ−i,σ−i(θ−i))

]
(25)

= δ
∑

θ−i∈Θ−i

p(θ−i|θi)
[
µ∗
i (v

0
i , σ−i(θ−i), α(u

θi,v
0
i , uθ−i,σ−i(θ−i)), θi)(α(u

θi,v
0
i , uθ−i,σ−i(θ−i))) (26)

−τi(u
θi,v

0
i , uθ−i,σ−i(θ−i))− ci(µ

∗
i (v

0
i , σ−i(θ−i), α(u

θi,v
0
i , uθ−i,σ−i(θ−i)), θi), θi)

]
, (27)

in which the last equation (26)-(27) is the ex ante utility from (v0i , µ
∗
i ) given σ−i. The

inequality in (20) holds because ci(vi, θi) > 0 and δ < 1; the equality in (22) follows from

the definition of uθi,vi ; the inequality in (23) follows from Lemma 1; the inequality in (25)

follows from the fact that (α, τ) is commitment-proof because it is strategy-proof; and the

equality in (26) follows from the definition of uθi,v
0
i . Therefore, for any strategies σ−i of

other agents, the PBE ex ante investment for i of cost type θi is characterized by Zθi , which

implies F (θ) = PBE(θ, α, τ, δ) for any θ ∈ Θ, and the proof is done.
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