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Abstract

We study the house allocation with existing tenants model (Abdulkadiroğlu and
Sönmez, 1999) and consider rules that allocate houses based on priorities. We introduce
a new acyclicity requirement and show that for house allocation with existing tenants
a top trading cycles (TTC ) rule is consistent if and only if its underlying priority
structure satisfies our acyclicity condition. Next we give an alternative description of
TTC rules based on ownership-adapted acyclic priorities in terms of two specific rules,
YRMH-IGYT (you request my house - I get your turn) and efficient priority rules,
that are applied in two steps. Moreover, even if no priority structure is a priori given,
we show that a rule is a top trading cycles rule based on ownership-adapted acyclic
priorities if and only if it satisfies Pareto-optimality, individual-rationality, strategy-
proofness, consistency, and either reallocation-proofness or non-bossiness.

JEL classification: C78, D47, D70, D78.

Keywords: consistency, house allocation, matching, strategy-proofness, top trading
cycles.

1 Introduction

We consider the allocation of indivisible objects when agents have preferences over the objects
and objects possibly have priorities for the agents. This problem occurs in many applications,
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e.g., for school choice, the allocation of social or university housing to tenants, or kidney
exchange. In many applications, some of the agents additionally have existing claims for an
object that have to be respected. When allocating social housing, there might be existing
tenants that already occupy a housing unit, but may want to switch if they can obtain a unit
that they prefer, while new applicants have to be newly assigned to a vacant unit. When
assigning teachers to jobs (Combe et al., 2018), employed teachers may have the option to
be reassigned to a new job, while new teachers have to be assigned to their first job. In
many school choice districts students have a right to attend a neighborhood school that has
to be respected in the assignment.

These situations are captured by the model of house allocation problems with existing
tenants which is introduced by Abdulkadiroğlu and Sönmez (1999): A finite set of houses
has to be allocated to a finite set of agents without using monetary transfers. Each agent is
either a tenant who occupies a house or an applicant, and each house is either occupied or
vacant. Furthermore, each agent has strict preferences over all houses and the so-called null
house (or outside option). An outcome for a house allocation problem with existing tenants
is a matching that assigns to each agent either a real house or his outside option, such that
no real house is assigned to more than one agent. A rule selects a matching for each house
allocation problem with existing tenants.

The model of house allocation problems with existing tenants is a hybrid of two models,
housing markets and house allocation problems. A house allocation problem with existing
tenants reduces to a housing market (Shapley and Scarf, 1974) if there are no applicants
and no vacant houses, i.e., all agents are tenants and all houses are occupied. A house
allocation problem with existing tenants reduces to a house allocation problem (Hylland
and Zeckhauser, 1979) if there are no tenants and no occupied houses, i.e., all agents are
applicants and all houses are vacant.

Ideally, any rule used in practice to allocate indivisible objects, with or without exist-
ing claims, would be efficient, strategically robust and fair. In the case of housing markets,
efficiency in the form of Pareto optimality,1 strategical robustness in the form of strategy-
proofness2, and fairness in the limited sense that existing rights are respected, can be
achieved by the top-trading cycles rule (Ma, 1994; Roth, 1982). However, for more gen-
eral settings and for fairness in the stronger sense of no justified envy (or stability),3 no
rule satisfying all three desiderata exists (Ergin, 2002). Since no ideal allocation rule exists,
it is important to study the trade-offs of the various properties that represent efficiency,
fairness, and strategic robustness. This research agenda uses the axiomatic method (see
Thomson, 2001) to understand the various normative trade-offs when implementing certain

1A rule is Pareto-optimal if the matching chosen by the rule is such that there is no other matching that
makes some agents better off without hurting the others.

2A rule is strategy-proof if no agent can ever benefit by misrepresenting his preferences unilaterally.
3A matching eliminates justified envy if whenever an agent prefers another agent’s match to his own,

he has a lower priority than the other agent for that house. Existing rights of tenants are incorporated by
giving each tenant top priority at the house that he occupies. A matching is stable if it eliminates justified
envy, is individually-rational, and non-wasteful (see Balinski and Sönmez, 1999).
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types of rules instead of others. To place our paper within this research agenda, we would
like to refer to the characterizations of deferred acceptance mechanisms (Ehlers and Klaus,
2014, 2016; Kojima and Manea, 2010) and immediate acceptance mechanisms (Doğan and
Klaus, 2018; Kojima and Ünver, 2014): in all those characterizations the priorities (or more
generally, choice functions) are obtained together with the rule using a set of normative
criteria that reflect our desiderata. Similar characterizations for top trading cycles rules,
without exogenously fixed priorities, have not been established yet. We are interested in
completing the research agenda of a full normative understanding of standard house alloca-
tion and school choice rules. To this end, in this paper, we study rules that allocate houses
to agents for house allocation problems with existing tenants with a particular focus on top
trading cycles (TTC) rules.

Next, we survey the state of the art of the axiomatic approach for housing market, house
allocation, and house allocation with existing tenants problems. Then, we formulate the
exact research question we tackle in this paper and explain our results against the background
of the literature.

Related Literature

Our paper is related to studies that consider not only house allocation problems with existing
tenants but also housing markets and house allocation problems. We first look at some key
results for housing markets and house allocation problems.

An important question that emerged in both the literature on housing markets as well as
house allocation problems is the characterization of rules that allocate houses in a Pareto-
optimal and strategy-proof way. For housing markets, Roth and Postlewaite (1977, The-
orem 2’) showed that the core of a housing market4 is unique and it is the outcome of
the top trading cycles (TTC) algorithm.5 Roth (1982) showed that the core/TTC rule is
strategy-proof, and Bird (1984) showed that it is also group strategy-proof.6 Ma (1994,
Theorem 1) characterized the core/TTC rule of a housing market by Pareto-optimality,
individual-rationality (for tenants),7 and strategy-proofness; see also Sönmez (1999, Corol-
lary 3) and Svensson (1999, Theorem 2).

For house allocation problems, Svensson (1999, Theorem 1) showed that a rule satisfies
strategy-proofness, non-bossiness8, and neutrality9 if and only if it is a simple serial dictator-

4A matching for a housing market is in the core (or core stable) if no subset of agents exists such that
some of them strictly benefit by reallocating their occupied houses among themselves, without hurting other
agents in the group.

5The TTC algorithm was defined in Shapley and Scarf (1974) and attributed to David Gale.
6A rule is group strategy-proof if no group of agents can ever benefit by misrepresenting their preferences.
7A rule for housing markets satisfies individual-rationality (for tenants) if no agent is assigned a house

that is worse for him than his occupied house.
8A rule satisfies non-bossiness if an agent by changing his preferences gets the same allocation under

the rule, then the change in his preferences does not affect the allocation of other agents, and therefore the
allocation of each agent by the rule remains the same.

9A rule for house allocation problems is neutral if the matching selected by the rule is independent of
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ship rule.10 The following two research contributions show what can happen when neutrality
is dropped in house allocation problems.

Pápai (2000) introduced hierarchical exchange rules : hierarchical exchange rules extend
the way TTC rules work by specifying ownership rights for the houses in an iterative hier-
archical manner and by allowing for associated iterative top trades. Pápai (2000) showed
that a rule for house allocation problems satisfies Pareto-optimality, strategy-proofness, non-
bossiness, and reallocation-proofness11 if and only if it is a hierarchical exchange rule.12 Pycia
and Ünver (2017, Theorem 1) extended this result by providing a full characterization of the
class of Pareto-optimal, strategy-proof, and non-bossy rules, called trading cycles (TC) rules.
The set of TC rules extends the set of hierarchical exchange rules by allowing agents to not
only own houses throughout the iterative trading cycles allocation procedure but to also
have a different “control right” called “brokerage” (a broker cannot necessarily consume a
brokered house directly himself but he can trade it for another house he desires).

Another important precursor of our study is the work of Sönmez and Ünver (2010) on
YRMH-IGYT (you request my house - I get your turn) rules introduced by Abdulkadiroğlu
and Sönmez (1999). Sönmez and Ünver (2010, Theorem 1) showed that a rule for house
allocation problems with existing tenants satisfies Pareto-optimality, individual-rationality,
strategy-proofness, weak neutrality,13 and consistency if and only if it is a YRMH-IGYT
rule. YRMH-IGYT rules are essentially simple serial dictatorship rules that adapt to the
ownership rights of tenants. Therefore, one question that motivated our work was what rules
emerge for house allocation problems with existing tenants when dropping weak neutrality.

For house allocation problems, if consistency14 is considered in addition to Pareto-
optimality and (group) strategy-proofness, then rules based on acyclic priorities become
focal.For house allocation with quotas problems, which reduce to house allocation problems

when the quota of each house is one, Ergin (2002) and Kesten (2006) studied allocation
rules and their properties in relation to (acyclic) priorities. Ergin (2002, Theorem 1) showed
that for the agents-proposing deferred acceptance rule (Gale and Shapley, 1962) based on a
priority structure π, denoted by DAπ, the following are equivalent: DAπ is Pareto-optimal,

the names of the houses.
10A simple serial dictatorship determines a matching based on an exogenously given ordering of the agents

such that the first agent chooses his favorite house, the second agents chooses his favorite house among those
that remain, etc.

11A rule for house allocation problems is reallocation-proof if there do not exist two agents who gain by
first misreporting their preferences and then swapping their assigned houses, such that neither of the two
agents can change his assignment by misreporting alone.

12A rule satisfies strategy-proofness and non-bossiness if and only if it satisfies group strategy-proofness
(Pápai, 2000).

13A rule for house allocation problems with existing tenants is weakly neutral if it is independent of the
names of the vacant houses.

14A rule for house allocation problems is consistent if the following holds: suppose that after houses are
allocated according to the rule, some agents leave the house allocation problem with their assigned houses.
Then, if the remaining agents were to allocate the remaining houses according to the rule, each of them
would receive the same house.
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DAπ is group strategy-proof, DAπ is consistent, and π is Ergin acyclic. Kesten (2006, The-
orems 1 and 2) strengthened Ergin’s acyclicity condition in two ways and showed that the
TTC rule based on the priority structure is the agents-proposing deferred acceptance rule
based on the priority structure if and only if the priority structure is Kesten acyclic, and the
TTC rule based on the priority structure is consistent if and only if the priority structure
is strongly Kesten acyclic. Ergin (2002) and Kesten (2006) use different notions of acyclic-
ity that coincide for house allocation problems. Furthermore, in their studies the priority
structure is exogenously given. However, the class of TTC rules based on priority struc-
tures is a subclass of the hierarchical exchange rules studied by Pápai (2000). Hence, under
group strategy-proofness and reallocation-proofness, priorities can endogenously arise. This
is also the case under consistency ; Ehlers and Klaus (2006, Proposition 2 and Theorem 1)
characterized efficient priority rules15 for house allocation problems by Pareto-optimality,
strategy-proofness, and reallocation-consistency.16 Ehlers and Klaus (2007) and Velez (2014)
characterize a slightly larger class of rules by weakening the characterizing properties either
to consistency (Ehlers and Klaus, 2006) or to versions of Pareto-optimality and consistency
that pertain to two agent (reduced) problems only. Ergin’s (2000, Theorem 1 and Corol-
lary 1) results imply that a rule for house allocation problems satisfies Pareto-optimality,
neutrality, and consistency if and only if it is a simple serial dictatorship rule (he uses
somewhat weaker properties to show his result).

Table 1 summarizes the properties of various house allocation rules that we have just
reviewed (some of them characterize the respective rules).

Our Paper

Motivated by these previous works, we extend the analysis of Pareto-optimal, strategy-proof,
and consistent rules to the more general model of house allocation with existing tenants. We
observe that in house allocation problems with and without exiting tenants, requiring (weak)
neutrality together with these properties results in simple serial dictatorship rules (here we
interpret the YRMH-IGYT rules as ownership adapted simple serial dictatorship rules). We
explore what happens when (weak) neutrality is dropped.

First, we extend the notion of (Ergin/Kesten) acyclicity to house allocation problems
with existing tenants and show that a TTC rule based on ownership-adapted priorities17 is
consistent18 if and only if the priority structure is acyclic (Theorem 1). Moreover, a TTC rule

15A rule is an efficient priority rule if it is an agents-proposing deferred acceptance rule based on an Ergin
acyclic priority structure.

16A rule for house allocation problems is reallocation-consistent if the following holds: suppose that after
houses are allocated according to the rule some agents are removed from the problem with their assigned
houses, then, if these removed agents were to allocate their assigned houses (the removed houses) among
themselves according to the rule, each of them would receive the same house.

17Priorities are ownership-adapted if each tenant has top priority at his occupied house.
18A rule for house allocation problems with existing tenants is consistent if the following holds: suppose

that after houses are allocated according to the rule we remove some agents with their assignments and some
unassigned houses from the problem in a way that the reduced problem contains the occupied houses of all
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House allocation rules PO IR SP NB RP RCON NEU

simple serial dictatorship 3 3 3 3 3 3 3

efficient priority 3 3 3 3 3 3

hierarchical exchange 3 3 3 3 3

trading cycles 3 3 3 3

Notation:
PO stands for Pareto-optimality,
IR stands for individual-rationality,
SP stands for strategy-proofness,
NB stands for non-bossiness,
RP stands for reallocation-proofness,
RCON stands for reallocation-consistency, and
NEU stands for neutrality.

Table 1: House allocation rules and their properties.

based on ownership-adapted acyclic priorities can be interpreted as a two-step rule where
the first rule is an almost YRMH-IGYT rule and the second rule is an efficient priority rule
of Ehlers and Klaus (2006) (Proposition 2).

For house allocation problems consistency implies non-bossiness and hence the set of
rules satisfying Pareto-optimality, individual-rationality, strategy-proofness, and consistency
is a (strict) subset of the trading cycles (TC) rules defined and characterized by Pycia and
Ünver (2017). However, for house allocation problems with existing tenants consistency does
not imply non-bossiness and we show that the class of rules that satisfy Pareto-optimality,
individual-rationality, strategy-proofness, and consistency is neither a sub- nor a superset of
Pycia and Ünver’s trading cycles rules (Example 6). However, by adding either reallocation-
proofness (Theorem 2) or non-bossiness (Theorem 3), we reduce the class of rules to the set
of TTC rules based on ownership-adapted acyclic priorities.

One small but important difference between the model considered by Svensson (1999),
Pápai (2000), Velez (2014), and Pycia and Ünver (2017) and our model, apart from the
presence of tenants, lies in how the “not receiving a house” or outside option is treated. In
our model the outside option can be freely ranked by agents and hence they can divide the
set of houses into acceptable and unacceptable houses while in the previously mentioned
papers all houses are acceptable, i.e., the outside option is ranked last by default. Due to
this difference one has to be careful when comparing results for these models.

Table 2 summarizes the properties of various house allocation with existing tenants rules
that we have just reviewed (some of them characterize the respective rules).

remaining tenants, i.e., we never remove an occupied house without its tenant. Then, if the remaining agents
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House allocation with PO IR SP NB RP CON WNEU

existing tenants rules

YRMH-IGYT 3 3 3 3 3 3 3

TTC based on acyclic priorities∗ 3 3 3 3 3 3

Example 6 3 3 3 3

hierarchical exchange∗ 3 3 3 3 3

trading cycles∗ 3 3 3 3

Notation:
PO stands for Pareto-optimality,
IR stands for individual-rationality,
SP stands for strategy-proofness,
NB stands for non-bossiness,
RP stands for reallocation-proofness,
CON stands for consistency, and
WNEU stands for weak neutrality.
∗ indicates that rules are adapted to give all tenants their corresponding ownership rights.

Table 2: House allocation with existing tenants rules and their properties.

The paper is organized as follows. In Section 2 we introduce the house allocation with
existing tenants model and basic properties of rules. In Section 3 we introduce priority struc-
tures and TTC rules, and show that a TTC rule based on ownership-adapted priorities sat-
isfies Pareto-optimality, individual-rationality, group strategy-proofness, and reallocation-
proofness (Proposition 1). Furthermore, in Subsection 3.1 we show that a TTC rule based
on ownership-adapted priorities is consistent if and only if the priority structure is acyclic
(Theorem 1). We also show (Subsection 3.2) that any TTC rule based on ownership-adapted
acyclic priorities can be described as a two-step rule where the first rule is an almost YRMH-
IGYT rule and the second rule is an efficient priority rule (Proposition 2). In Section 4 we
first demonstrate that Pareto-optimality, individual-rationality, strategy-proofness, and con-
sistency neither imply reallocation-proofness nor non-bossiness (Example 6). Then, we state
and prove our characterizations of TTC rules that are based on ownership-adapted acyclic
priorities by Pareto-optimality, individual-rationality, strategy-proofness, consistency, and
either reallocation-proofness (Theorem 2) or non-bossiness (Theorem 3).

were to allocate the remaining houses according to the rule, each of them would receive the same house.
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2 House Allocation with Existing Tenants and Basic

Properties

We mostly follow Sönmez and Ünver (2010) in this section. Let I be a finite set of potential
agents and H be a finite set of potential houses. We assume that |I| ≥ 3 and |H| ≥ 2.
Let h0 denote the null house. We interpret the null house as the outside option of an agent if
he does not receive any house. We fix a global ownership structure h : I → H∪{h0}. An
agent i ∈ I is either a tenant, i.e., he already occupies a house h(i) ∈ H, or an applicant,
i.e., h(i) = h0. No two agents can occupy the same house in H, i.e., for each i, j ∈ I with
h(i) = h(j) 6= h0 we have i = j. Let IT denote the set of potential tenants and IA the set
of potential applicants; the set of potential agents I is partitioned into the sets IT and
IA.19

For each agent i ∈ I and set of houses H ⊆ H, let R(i,H) denote the set of all linear
orders over H ∪ {h0}.20 For each agent i ∈ I, we interpret Ri ∈ R(i,H) as agent i’s
(strict) preferences over houses in H and the null house h0; e.g., for h, h′, h′′ ∈ H, [Ri :
h Pi h

′ Pi h0 Pi h
′′ Pi . . .] means that agent i would first like to have house h, then to have

h′, and then i would prefer to have the null house h0 rather than house h′′, etc. An agent
i ∈ I finds a house h ∈ H acceptable if h Pi h0. We assume that every tenant i ∈ IT
finds the house that he already occupies acceptable, i.e., h(i) Pi h0. Hence, for tenants the
set of preferences R(i,H) is smaller than for applicants. Let R(I,H) denote the set of all
preference profiles over H ∪ {h0} for agents in I, i.e., R(I,H) =

∏
i∈I R(i,H).

Given R ∈ R(I,H) and Ĩ ⊆ I, let RĨ denote the preference profile (Ri)i∈Ĩ ; it is the

restriction of R to the set of agents Ĩ. We also use the notation R−Ĩ = RI\Ĩ and
R−i = RI\{i}.

A house allocation problem with existing tenants is a list (I,H,R), where

(i) I ⊆ I is a finite set of agents,

(ii) H ⊆ H is a finite set of houses such that for each tenant i ∈ I ∩ IT , h(i) ∈ H, and

(iii) R = (Ri)i∈I ∈ R(I,H) is a preference profile.

Note that by (ii), if a tenant is present, then so is the house he occupies.

Throughout the paper we will consider the domain of all house allocation prob-
lems with existing tenants (as introduced by Abdulkadiroğlu and Sönmez, 1999). We
will abbreviate the term house allocation problem with existing tenants simply as
problem.

19In contrast to Sönmez and Ünver (2010) we do not require that there exists at least one house that is
not occupied by a potential tenant, i.e., we do not require |H| > |IT |.

20A linear order over H ∪ {h0} is a binary relation R̂ that is antisymmetric (for each h, h′ ∈ H ∪ {h0}, if

h R̂ h′ and h′ R̂ h, then h = h′), transitive (for each h, h′, h′′ ∈ H ∪ {h0}, if h R̂ h′ and h′ R̂ h′′, then h R̂ h′′),

and complete (for each h, h′ ∈ H ∪{h0}, hR̂h′ or h′ R̂h). By P̂ we denote the asymmetric part of R̂. Hence,

given h, h′ ∈ H ∪ {h0}, h P̂ h′ means that h is strictly preferred to h′; h R̂ h′ means that h P̂ h′ or h = h′

and that h is weakly preferred to h′.
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Given a problem (I,H,R), IT = IT ∩ I denotes the set of tenants, IA = I \ IT = IA∩ I
denotes the set of applicants, HO = {h(i)}i∈IT denotes the set of occupied houses, and
HV = H \HO denotes the set of vacant houses.

A problem is called a problem with only applicants when there are no tenants and
hence no occupied houses, i.e., IT = ∅ and HO = ∅. A problem with only applicants
is traditionally called a house allocation problem (house allocation problems were first
analyzed in Hylland and Zeckhauser, 1979).

A problem is called a problem with only tenants when there are no applicants and no
vacant houses, i.e., IA = ∅ and HV = ∅. A problem with only tenants is traditionally called
a housing market (housing markets were first introduced by Shapley and Scarf, 1974).

A matching for a problem (I,H,R) is a function µ : I → H ∪ {h0} such that no two
agents are assigned to the same house in H, i.e., for each h ∈ H, |µ−1(h)| ≤ 1 (the null
house can be assigned to more than one agent). Given a matching µ for problem (I,H,R)
and an agent i ∈ I, µ(i) ∈ (H ∪ {h0}) denotes the house agent i is matched to under µ and
is referred to as the allotment of agent i. For each agent i ∈ I and matchings µ, µ′, we
let µ Ri µ

′ if and only if µ(i) Ri µ
′(i), i.e., agents only care about their own allotments but

not how the remaining houses are allocated.

A rule φ is a function that associates with each problem (I,H,R) a matching φ(I,H,R).
Given a problem (I,H,R), an agent i ∈ I, and a rule φ, φi(I,H,R) denotes the allotment
of agent i at matching φ(I,H,R). For a group of agents I ′ ⊆ I we define φI′(I,H,R) :=⋃
i∈I′ φi(I,H,R).

The first property of a rule we introduce is the well-known condition of Pareto-optimality.

Definition 1 (Pareto-Optimality). A matching µ is Pareto-optimal for problem (I,H,R)
if there is no other matching µ′ for problem (I,H,R) such that for each agent i ∈ I, µ′ Ri µ
and for some j ∈ I, µ′ Pj µ. A rule φ is Pareto-optimal if it only assigns Pareto-optimal
matchings.

Next, we introduce voluntary participation conditions based on the idea that no tenant
can be forced to be assigned a house that is worse than the house he already occupies and
no agent can be forced to be matched to a house that is unacceptable to him.

Definition 2 (Individual-Rationality). A matching µ is individually-rational for tenants
for problem (I,H,R) if for each tenant i ∈ IT , µ(i) Ri h(i). A matching µ is individually-
rational for problem (I,H,R) if for each agent i ∈ I, µ(i) Ri h(i). A rule φ is individually-
rational (for tenants) if it only assigns individually-rational (for tenants) matchings.

Note that Pareto-optimality and individual-rationality for tenants together imply
individual-rationality (since every tenant finds his occupied house acceptable and if an ap-
plicant receives an unacceptable allotment, then we can make him better off by assigning
the null house to him without making any other agent worse off). For simplicity we use the
stronger notion of individual-rationality but we could use the weaker version of individual-
rationality for tenants throughout.

9



The well-known non-manipulability property strategy-proofness requires that no agent
can ever benefit from misrepresenting his preferences.

Definition 3 (Strategy-Proofness). A rule φ is strategy-proof if for each problem

(I,H,R), each agent i ∈ I, and each preference relation R̃i ∈ R(i,H),

φi(I,H,R)Ri φi(I,H, (R̃i, R−i)).

The next property was introduced by Pápai (2000) to exclude joint preference manip-
ulation by two individuals who plan to swap objects ex post under the condition that the
collusion changed both their allotments and is self enforcing in the sense that neither agent
changes his allotment in case he misreports while the other agents reports the truth.

Definition 4 (Reallocation-Proofness). A rule φ is reallocation-proof if for each problem

(I,H,R) and each pair of agents i, j ∈ I, there exist no preference relations R̃i ∈ R(i,H)

and R̃j ∈ R(j,H) such that

φj(I,H, (R̃i, R̃j, R−{i,j}))Ri φi(I,H,R),

φi(I,H, (R̃i, R̃j, R−{i,j})) Pj φj(I,H,R),

and
φk(I,H,R) = φk(I,H, (R̃k, R−k)) 6= φk(I,H, (R̃i, R̃j, R−{i,j})) for k = i, j.

Next, we formulate a consistency notion for house allocation with existing tenants (as in-
troduced by Sönmez and Ünver, 2010): if some agents leave a house allocation problem with
existing tenants with their allotments and possibly some unassigned houses are removed, as
long as no tenant is left behind while his occupied house is removed, the rule should allocate
the remaining houses among the agents who did not leave in the same way as in the original
house allocation problem with existing tenants. For problems with only applicants, consis-
tency for house allocation problem with existing tenants implies reallocation-consistency16 as
introduced by Ehlers and Klaus (2006) as well as the standard consistency14 property (e.g.,
Ehlers and Klaus, 2007; Ergin, 2000, 2002). We introduce some notation before defining
consistency.

For each agent i ∈ I, preference relation Ri ∈ R(i,H), and set of houses Ĥ ⊆ H,

let RĤ
i ∈ R(i, Ĥ) denote the restriction of Ri to houses in Ĥ ∪ {h0}, i.e., for each

h, ĥ ∈ Ĥ ∪{h0}, hRĤ
i ĥ if and only if hRi ĥ. Given fixed H ⊆ H, Ĥ  H, and Ri ∈ R(i,H),

we denote the restriction of Ri to houses in (H \ Ĥ)∪ {h0} by R−Ĥi , i.e., R
H\Ĥ
i = R−Ĥi . For

each Î ⊆ I and Ĥ ⊆ H, let RĤ
Î

= (RĤ
i )i∈Î denote the restriction of preference profile

R to agents in Î and houses in Ĥ ∪ {h0}.
Given a problem (I,H,R), Î ⊆ I, and Ĥ ⊆ H, (Î , Ĥ, RĤ

Î
) is the restriction of (I,H,R)

to agents in Î and houses in Ĥ∪{h0}. The restricted problem (Î , Ĥ, RĤ
Î

) is a reduced

problem if the occupied house of each tenant in Î belongs to Ĥ, that is, for each i ∈ ÎT ,
h(i) ∈ Ĥ.
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Definition 5 (Consistency). A rule φ is consistent if for each problem (I,H,R) and each

removal of a set of agents Î  I together with their allotments under φ, Ĥ = φÎ(I,H,R),

and some unassigned houses H̃ ⊆ H that results in a reduced problem (I \ Î , H \ (Ĥ ∪
H̃), R

−(Ĥ∪H̃)

−Î
), it follows that for each agent i ∈ (I \ Î),

φi(I,H,R) = φi(I \ Î , H \ (Ĥ ∪ H̃), R
−(Ĥ∪H̃)

−Î
).

For problems with only applicants, a well-known property that is implied by consistency,
called non-bossiness, requires that whenever a change in an agent’s preference relation does
not bring about a change in his allotment, it does not bring about a change in anybody’s
allotment (Satterthwaite and Sonnenschein, 1981).

Definition 6 (Non-Bossiness). A rule φ is non-bossy if for each problem (I,H,R), each

agent i ∈ I, and each preference relation R̃i ∈ R(i,H), if

φi(I,H,R) = φi(I,H, (R̃i, R−i)),

then
φ(I,H,R) = φ(I,H, (R̃i, R−i)).

Remark 1 (Consistency does not imply Non-Bossiness). For problems with only ap-
plicants we can easily see why consistency implies non-bossiness: If an applicant unilaterally
changes his preferences such that he receives the same allotment, then, since this allotment
is a vacant house, in each of the two problems he can leave with his allotment and two
reduced problems in the domain of house allocation problems result. These two problems
are identical and hence have to have the same matching. Thus, by consistency, also the
matchings in the two original problems have to have been identical.

For house allocation problems with existing tenants, consistency does not imply non-
bossiness anymore. The reason is that if an agent i now unilaterally changes his preferences
such that he receives the same allotment, and this allotment is an occupied house, when
leaving with only the occupied house, its tenant would be left behind and hence the resulting
reduced problems are not in the domain of house allocation with existing tenants problems.
Thus, consistency has no bite. One then could try to remove the smallest set of tenants
together with agent i such that a well-defined house allocation with existing tenants problems
results. However, the set of removed tenants or their allotments need not be the same and
different reduced house allocation with existing tenants problems might result. Again, we
cannot conclude that the matchings in the two original problems have to have been identical.

We will show in Section 4, Example 6 that even if we also assume Pareto-optimality,
individual-rationality, and strategy-proofness, consistency does not imply non-bossiness.

Strategy-proofness and non-bossiness are equivalent to group strategy-proofness (see,
e.g., Pápai, 2000).
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Definition 7 (Group Strategy-Proofness). A rule φ is group strategy-proof if for each

problem (I,H,R), there is no group of agents Ĩ ⊆ I and no preference profile R̃ ∈ R(Ĩ , H),

such that for all i ∈ Ĩ,
φi(I,H, (R̃, R−Ĩ)Ri φi(I,H,R)

and for some j ∈ Ĩ,
φj(I,H, (R̃, R−Ĩ) Pj φj(I,H,R).

A recent survey (Thomson, 2016) discusses many other logical relationships of non-
bossiness with well-known normative or strategic properties.

3 Priority Structures and Top Trading Cycles Rules

For I ⊆ I let ΠI denote all one-to-one functions from {1, . . . , |I|} to I. For the set of all
agents I and each house h ∈ H, πh ∈ ΠI denotes the priority ordering for house h. Here
agent πh(1) has the top priority at house h, agent πh(2) has the second priority at h, and so
on. By a slight abuse of notation we will also denote the inverse function (πh)−1 by πh such
that for an agent i ∈ I, πh(i) ∈ {1, . . . , |I|} denotes his rank in the priority. For a subset
of agents I ⊆ I we define the restriction of πh to I to be a one-to-one function πhI ∈ ΠI

such that πhI (i) < πhI (j) if and only if πh(i) < πh(j); πhI (i) indicates the rank of agent i in
set I. A priority structure is a list π ≡ {πh | πh ∈ ΠI}h∈H of priority orderings, one for
each house in H. For a set of agents I ⊆ I, πI ≡ {πhI }h∈H denotes a restricted priority
structure. Note that πI = π.

For each problem (I,H,R) and each priority structure π we define the top trading
cycles (TTC) rule based on priority structure π recursively using Gale’s top trading
cycles (TTC) algorithm (Shapley and Scarf, 1974, attributed the TTC algorithm that
finds a core allocation in housing markets to David Gale):

Input. A problem (I,H,R) and a priority structure π.

Step 1. Let I1 := I and H1 := H. We construct a (directed) graph with the set of nodes
I1 ∪H1 ∪ {h0}. For each agent i ∈ I1 we add a directed edge to his most preferred house in
H1 ∪ {h0}. For each directed edge (i, h) (i ∈ I1 and h ∈ H1) we say that agent i points to
house h. For each house h ∈ H1 we add a directed edge to the highest ranked agent in I1 in
its priority ordering, i.e., to πhI1(1). For the null house we add a directed edge to each agent
in I1.

A trading cycle is a directed cycle in the graph. Given the finite number of nodes, at
least one trading cycle exists for the graph. We assign to each agent in a trading cycle the
house he points to and remove all trading cycle agents and houses. We define I2 to be the
set of remaining agents and H2 to be the set of remaining houses and, if I2 6= ∅, we continue
with Step 2. Otherwise we stop.

In general at Step t we have the following:
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Step t. We construct a (directed) graph with the set of nodes It ∪Ht ∪ {h0} where It ⊆ I
is the set of agents that remain after Step t− 1 and Ht ⊆ H is the set of houses that remain
after Step t− 1.

For each agent i ∈ It we add a directed edge to his most preferred house in Ht ∪ {h0}.
For each house h ∈ Ht we add a directed edge to the highest ranked agent in It in its priority
ordering, i.e., to πhIt(1). For the null house we add a directed edge to each agent in It.

At least one trading cycle exists for the graph and we assign to each agent in a trading
cycle the house he points to and remove all trading cycle agents and houses. We define It+1

to be the set of remaining agents and Ht+1 to be the set of remaining houses and, if It+1 6= ∅,
we continue with Step t+ 1. Otherwise we stop.

Output. The TTC algorithm terminates when all agents in I are assigned a house in
H ∪ {h0} (it takes at most |I| steps). We denote the house in H ∪ {h0} that agent i ∈ I
obtains in the TTC algorithm by ϕπi (I,H,R).

The TTC rule based on priority structure π, ϕπ, associates with each problem
(I,H,R) the matching determined by the TTC algorithm.

We say that a priority structure π is adapted to the ownership structure if each
tenant has top priority at his own house, i.e., for each i ∈ IT , πh(i)(1) = i.

Any priority structure π can be adapted to the ownership structure by moving every
tenant to the top of the priority ordering of his own house without changing the ordering of
other agents. Formally, for each priority structure π ≡ {πh | πh ∈ ΠI}h∈H the ownership-
adapted priority structure π̂ ≡ {π̂h | π̂h ∈ ΠI}h∈H is such that

(a) for each vacant house h ∈ H, π̂h := πh and

(b) for each occupied house h(i) ∈ H,

π̂h(i)(1) = i and

for each j, k ∈ I \ {i}, π̂h(i)(j) < π̂h(i)(k) if and only if πh(i)(j) < πh(i)(k).

Given a problem (I,H,R), a priority structure π, and a matching µ, we say that µ
violates the priority of agent i ∈ I for house h ∈ H if there exists an agent j ∈ I
such that µ(j) = h, πh(i) < πh(j), and h Pi µ(i), i.e., agent i has higher priority for house
h than agent j but j receives h and i justifiably envies j. A rule φ adapts to a priority
structure π if for each problem (I,H,R), φ(I,H,R) does not violate the priority of any
agent for any house.

All TTC rules based on ownership-adapted priority structures are Pareto-optimal,
individually-rational, group strategy-proof, and reallocation-proof.

Proposition 1 (ϕπ: Pareto-Optimality, Individual-Rationality, Group Strate-
gy-Proofness, Reallocation-Proofness). For each priority structure π that is adapted to
the ownership structure, the TTC rule based on π, ϕπ, satisfies Pareto-optimality, individual-
rationality, group strategy-proofness, and reallocation-proofness.

Proof. Individual-rationality of ϕπ follows from the facts that π is adapted to the ownership
structure and no agent points to a house that is unacceptable for him at any step of the TTC
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algorithm. Pareto-optimality and group strategy-proofness follow from the well-known fact
that TTC rules satisfy these properties. In particular, each TTC rule based on a priority
structure is a “hierarchical exchange rule” and therefore satisfies Pareto-optimality, group
strategy-proofness, and reallocation-proofness (see Pápai, 2000).

3.1 Acyclic Priorities, Top Trading Cycles Rules, and Consistency

For more general house allocation problems where each house can have multiple identical
copies, the house allocation with quotas model (also known as school choice model), Ergin
(2002) and Kesten (2006) introduced acyclicity conditions for priority structures that coincide
for problems with only applicants. We extend their acyclicity notion to house allocation
problems with existing tenants.

Definition 8 (Acyclicity). For a set of agents I ⊆ I and a restricted priority structure πI
that is adapted to the ownership structure, πI is acyclic if for agents i, j, k ∈ I and houses
h, h′ ∈ H such that h′ is not owned by any of the three agents, i.e., h′ /∈ {h(i), h(j), h(k)},

πh(i) < πh(j) < πh(k) implies [πh
′
(i) < πh

′
(k) or πh

′
(j) < πh

′
(k)].

As already mentioned above, for problems with only applicants our definition of acyclicity
coincides with Ergin and Kesten acyclicity.21

The following is an example of an (ownership-adapted) acyclic priority structure.

Example 1 (An Acyclic Priority Structure). Table 3 gives an example of an (ownership-
adapted) acyclic priority structure π for a problem with three tenants a, b, c, five applicants
d, e, f, g, i and eight houses h(a), h(b), h(c), h1, h2, h3, h4, h5.

n πh(a)(n) πh(b)(n) πh(c)(n) πh1(n) πh2(n) πh3(n) πh4(n) πh5(n)

1 a b c d d d d d
2 d d d b b b b b
3 b c b c c c c c
4 c a e e a a e e
5 e e a a e e a a
6 f g f f f f g f
7 g f g g g g f g
8 i i i i i i i i

Table 3: An acyclic priority structure.

21In general, if a priority structure is Kesten acyclic, then it is also Ergin acyclic (note that in the more
general house allocation with quotas model additional “scarcity conditions” are used to define Ergin and
Kesten cycles).
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The next example illustrates the TTC rule with the acyclic priority structure of Example 1
(Table 3).

Example 2 (TTC Rule based on Acyclic Priorities). Let I = {a, b, c, d, e, f, g, i} and
H = {h(a), h(b), h(c), h1, h2, h3, h4, h5}. Agents IT = {a, b, c} are tenants. Consider the
preference profile R ∈ R(I,H) defined as in Table 4.

Ra Rb Rc Rd Re Rf Rg Ri

h1 h1 h(b) h(c) h1 h1 h1 h1

h2 h(b) h(c) h0 h(c) h2 h(a) h2

h(a) h5 h4 h0 h3

h0 h0 h0

Table 4: A preference profile.

We consider the TTC assignment with priority structure π given in Table 3 for problem
(I,H,R). Table 5 gives the set of agents and houses present in the steps of the TTC and
the top trading cycles that form in each step.

t It Ht ∪ {h0} trading cycles in Step t

1 {a, b, c, d, e, f, g, i} {h(a), h(b), h(c), h1, h2, h3, h4, h5, h0} [d, h(c), c, h(b), b, h1]
2 {a, e, f, g, i} {h(a), h2, h3, h4, h5, h0} [a, h2], [e, h5]
3 {f, g, i} {h(a), h3, h4, h0} [f, h4, g, h(a)]
4 {i} {h3, h0} [i, h3]

Table 5: Steps of the TTC algorithm.

In the final assignment µ = ϕπ(I,H,R), we have µ(a) = h2, µ(b) = h1, µ(c) = h(b),
µ(d) = h(c), µ(e) = h5, µ(f) = h4, µ(g) = h(a), and µ(i) = h3.

Next, one could think that to obtain acyclic priorities for problems with existing tenants
one can take any acyclic priority structure for problems with only applicants and adapt it to
the ownership structure. However, the following example shows that this might not result
in acyclic priorities for problems with existing tenants and that the associated TTC rule
violates consistency.

Example 3 (Cyclic Priorities when Adapted to Ownership and Inconsistency).
Let (I,H,R) be a problem where I = {i, j, k}, H = {h, h′}, and πh(i) < πh(j) <
πh(k) and πh

′
(j) < πh

′
(i) < πh

′
(k). Note that if none of the agents in I is a tenant of

any house in H, then πI is acyclic for agents i, j, k and houses h, h′.
Now assume that agent k is the tenant of house h, i.e., h = h(k), while house h′ is

vacant. Then, the ownership-adapted priority structure π̂ is such that π̂h(k)(k) < π̂h(k)(i) <
π̂h(k)(j) and π̂h

′
(j) < π̂h

′
(i) < π̂h

′
(k), which is not acyclic anymore. We now show that with

the TTC based on the ownership adapted but cyclic priorities π̂ is not consistent.
Assume that preferences R = (Ri, Rj, Rk) are such that
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• Ri : h(k) Pi h0 Pi h
′,

• Rj : h(k) Pj h0 Pj h
′, and

• Rk : h′ Pk h(k) Pk h0.

The TTC rule based on the priority structure π̂ for problem (I,H,R) results in allotments
ϕπ̂i (I,H,R) = h0, ϕπ̂j (I,H,R) = h(k), and ϕπ̂k(I,H,R) = h′.

We now consider the reduced problem (I ′, H ′, R′) obtained from (I,H,R) by removing
agent k with his allotment ϕπ̂k(I,H,R) = h′ (h′ is a vacant house). Therefore, I ′ = {i, j},
H ′ = {h(k)} (now h(k) is vacant), and preferences are R′ = (RH′

i , R
H′
j ). The TTC rule based

on the priority structure π̂ for problem (I ′, H ′, R′) results in allotments ϕπ̂i (I ′, H ′, R′) = h(k)
and ϕπ̂j (I ′, H ′, R′) = h0. For agent j we have ϕπ̂j (I,H,R) = h(k) 6= h0 = ϕπ̂j (I ′, H ′, R′).
Hence, the TTC rule based on (cyclic) priority structure π̂ violates consistency.

The fact that the TTC rule based on a cyclic priority structure in Example 3 is not
consistent is not a coincidence: any TTC rule based on ownership-adapted priorities is
consistent if and only if the priority structure is acyclic.

Theorem 1 (ϕπ: Consistency ⇔ π is Acyclic). Let π be a priority structure that is
adapted to the ownership structure. Then, the TTC rule based on π, ϕπ, is consistent if and
only if π is acyclic.

Proof. Let π be a priority structure that is adapted to the ownership structure.

Only If Part: Assume that ϕπ is consistent. We show that then π is acyclic.
Assume for the sake of contradiction that π is cyclic. Hence, there exist agents i, j, k ∈ I

and houses h, h′ ∈ H with h′ /∈ {h(i), h(j), h(k)} such that

πh(i) < πh(j) < πh(k)

and
πh
′
(k) < πh

′
(i) and πh

′
(k) < πh

′
(j).

Since π is adapted to the ownership structure, if h ∈ {h(i), h(j), h(k)}, then h = h(i) (since
among the three agents agent i has the top priority for house h).

Consider the problem (I,H,R) where I = {i, j, k}, H∪{h0} = {h, h′, h(i), h(j), h(k), h0},
and preferences are such that

• Ri : h′ Pi h Ri h(i) Pi . . .,

• Rj : h Pj h
′ Pj h(j) Pj . . ., and

• Rk : h Pk h(k) Pk . . ..

Then, the TTC rule ϕπ assigns h′ to i, h to k (because agent i has the top priority for house
h, agent k has the top priority for house h′, and then they trade), and h(j) to j. Next,
consider the reduced problem (I ′, H ′, RH′

I′ ) where agent i leaves with his allotment h′, i.e.,
I ′ = {j, k} and H ′ ∪ {h0} = {h, h(i), h(j), h(k), h0}. Now, the TTC rule ϕπ assigns h to j
(because agent j has the top priority for house h in I ′ and house h is the best house among
H ′ for agent j) and h(k) to k; contradicting consistency.
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If Part: Assume that π is acyclic. We show that then ϕπ is consistent.
Consider a problem (I,H,R) and remove a set of agents Î ( I together with their allot-

ments Ĥ as well as some unassigned houses H̃ to obtain a reduced problem (I ′, H ′, RH′

I′ ) =(
I \ Î , H \ (Ĥ ∪ H̃), R

−(Ĥ∪H̃)

−Î

)
; that is, the occupied houses of tenants in I ′ are in H ′: for

each i ∈ I ′T , h(i) ∈ H ′. We will show that for each j ∈ I ′, ϕπj (I,H,R) = ϕπj (I ′, H ′, RH′

I′ ).
It suffices to consider the following four cases (all other cases can be obtained by iteratively
applying these four cases):

Case 1. Only one unassigned house is removed: for h ∈ HV and h 6∈ ϕπI (I,H,R), Î = ∅,
Ĥ = ∅, and H̃ = {h}.
Case 2. An applicant who is assigned the null house is removed: for i ∈ IA with ϕπi (I,H,R) =

h0, Î = {i}, Ĥ = {h0}, and H̃ = ∅.
Case 3. A “trading cycle” [i0, h(i1), i1, . . . , iK , h(i0)] is removed: for 0 ≤ k ≤ K with

ϕπik(I,H,R) = h(ik+1) (modulo K + 1), Î = {i0, . . . , iK} ⊆ IT , Ĥ = {h(i0), . . . h(iK)} ⊆ HO,

and H̃ = ∅.
Case 4. A recipient of a vacant house is removed together with his allotment: for h ∈ HV

with ϕπi (I,H,R) = h, Î = {i}, Ĥ = {h}, and H̃ = ∅.
In Case 1, note that during any step of the TTC algorithm with priorities π applied to

the problem (I,H,R), no agent points to house h; otherwise h would be assigned. Thus,
removing house h from the problem does not change the outcome of the algorithm and
ϕπ(I,H,R) = ϕπ(I ′, H ′, RH′

I′ ).

In Case 2, note that during any step of the TTC algorithm with priorities π applied
to the problem (I,H,R), agents who point to h0 can obtain it independently of whether i
points to it or not. Thus, removing agent i from the problem does not change the outcome
of the algorithm for agents in I \ {i} and ϕπ−i(I,H,R) = ϕπ−i(I

′, H ′, RH′

I′ ).

In Case 3, consider a preference profile R̃ ∈ R(I,H) such that R̃−Î = R−Î and for each

i ∈ Î and each h ∈ H ′ \ {ϕπi (I,H,R), h(i)} we have

• R̃i : ϕπi (I,H,R) P̃i h(i) P̃i h.

Starting from problem (I,H,R), if any of the agents i ∈ Î changes his preferences from Ri

to R̃i, by strategy-proofness of the TTC rule, he will receive the same allotment before and
after. Then, by non-bossiness of the TTC rule, the allotments of all other agents will also
not change. This argument can be applied step by step for all agents in Î to move from
problem (I,H,R) to problem (I,H, R̃). Hence, by group strategy-proofness of the TTC

rule, we have ϕπ(I,H, R̃) = ϕπ(I,H,R). By the definition of preferences R̃, in the first step

of the TTC algorithm with priorities π applied to the problem (I,H, R̃), the trading cycle
[i0, h(i1), i1, . . . , iK , h(i0)] forms. After allocating houses according to this trading cycle and
after removing it, the problem becomes the reduced problem (I ′, H ′, RH′

I′ ). Note that other

trading cycles that formed in Step 1 for problems (I,H, R̃) will form again in Step 1 for the

reduced problem (I ′, H ′, RH′

I′ ). Thus, for each i ∈ I ′ we have ϕπi (I,H, R̃) = ϕπi (I ′, H ′, RH′

I′ ).

Since ϕπ(I,H,R) = ϕπ(I,H, R̃) this concludes the proof for Case 3.
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In Case 4, consider a preference profile R̃ ∈ R(I,H) such that R̃i = Ri and for each

j ∈ I ′ = I \ {i} preferences R̃j are obtained from Rj by making house h unacceptable, i.e.,

h(j) P̃j h while leaving preferences over H ′ = H \ {h} unchanged and thus R̃H′

I′ = RH′

I′ .
Starting from problem (I,H,R), if any of the agents j ∈ I ′ changes his preferences from

Rj to R̃j, by strategy-proofness of the TTC rule, he will receive the same allotment before
and after. Then, by non-bossiness of the TTC rule, the allotments of all other agents will
also not change. This argument can be applied step by step for all agents in I ′ to move from
problem (I,H,R) to problem (I,H, R̃). Hence, by group strategy-proofness of the TTC rule,

we have ϕπ(I,H, R̃) = ϕπ(I,H,R). During the TTC algorithm with priorities π applied to

the problem (I,H, R̃), a trading cycle including i and h forms. Let [i0, h0, i1, h1, . . . , iK , hK ]
with i0 = i, h0 = h be this trading cycle and t the step in which it forms.

By the definition of preferences R̃, the same trading cycles form in the first t− 1 steps of
the TTC algorithm with priorities π applied to the two problems (I,H, R̃) and (I ′, H ′, R̃H′

I′ ).
Next, we consider Step t of the TTC algorithm with priorities π in the two problems.

If K = 1, i.e., if agent i points to h and house h points to i in Step t in problem
(I,H, R̃), then the only difference between the two problems is that in problem (I,H, R̃)
we have an additional trading cycle consisting of i and h. Otherwise, the same trading
cycles form in the two problems. Moreover, in the consecutive Steps t + 1, t + 2, . . . the
same trading cycles form in the two problems. Thus, for each j ∈ I ′ = I \ {i}, we have

ϕπj (I ′, H ′, RH′

I′ ) = ϕπj (I,H, R̃) = ϕπj (I,H,R).

If K > 1, then we show that in Step t of the TTC algorithm applied to (I ′, H ′, RH′

I′ )
the trading cycle i1, h1, . . . , iK , hK forms. If this is true, then it follows immediately that all
other trading cycles in the two problems are the same and moreover, in the consecutive Steps
t+ 1, t+ 2, . . . the same trading cycles form in the two problems. To show that trading cycle
i1, h1, . . . , iK , hK forms, it suffices to show that hK points to i1 in Step t of the TTC algorithm
applied to problem (I ′, H ′, RH′

I′ ). Suppose not and house hK points to an agent j 6= i1. Then,
πhK (i0) < πhK (j) < πhK (i1). Note however that πh0(i1) < πh0(j) and πh0(i1) < πh0(i0), since
otherwise h0 = h would not point to i1 in Step t of the TTC algorithm with priorities π
applied to problem (I,H, R̃). Thus, there is a cycle in π, contradicting its acyclicity.

3.2 A Representation of TTC Rules based on Ownership-Adapted
Acyclic Priorities as Two-Step Rules

We show that a TTC rule based on ownership-adapted acyclic priorities can be decomposed
into a so-called two-step rule where the first rule is an almost YRMH-IGYT rule and the
second rule is an efficient priority rule (Proposition 2). We first introduce the class of efficient
priority rules.

A rule adapts to the priority structure if and only if it chooses stable matchings, or
equivalently, no justified envy occurs (see Balinski and Sönmez, 1999, Lemma 2). A rule is an
efficient priority rule if the assignment of houses to agents are determined by the agents-
proposing deferred acceptance rule and it adapts to an (Ergin) acyclic priority structure.
Since Ergin and Kesten acyclicity coincide for problems with only applicants, by Kesten
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(2006, Theorem 1) the agents-proposing deferred acceptance rule based on acyclic priorities
is the TTC rule based on acyclic priorities. Hence, for problems with only applicants, the
class of efficient priority rules is the subclass of TTC rules where for each problem with
only applicants there is either one agent with the highest priority for all houses or there are
two agents who share the first and second priorities of each house, i.e., the acyclic priority
structure π is such that

• for each problem with only applicants (I,H,R) there is an agent i ∈ I such that for
each h ∈ H, πhI (1) = i, or there are two agents i, j ∈ I such that for each h ∈ H,
{πhI (1), πhI (2)} = {i, j}.

Hence, at each step of the TTC algorithm, each trading cycle contains at most two agents and
two houses. That is, at each step of the TTC algorithm, either the top priorities of remaining
houses are assigned to exactly one agent (a dictator) or the top priorities of remaining houses
are divided between two agents. If there is an agent (a dictator) who has top priority for
all remaining houses then he gets his best house among the remaining houses. If the top
priorities of remaining houses are divided between two agents, then, at that step of the TTC
algorithm, either (i) both agents get a house for which they have the top priority, or (ii)
they swap two houses for which they have top priorities, or (iii) only one of them gets one
of his top priority houses and the other gets nothing. In the last case, the agent who gets
nothing becomes a dictator at the next step of the TTC algorithm because of acyclicity of
the priority structure.

For problems with only applicants, Ehlers and Klaus (2006, Proposition 2 and Theorem 1)
characterized the class of efficient priority rules by Pareto-optimality, strategy-proofness, and
reallocation-consistency.

For more general house allocation problems with existing tenants, TTC rules based on
ownership-adapted acyclic priorities have the property that at each step of the TTC algo-
rithm at most two applicants and two vacant houses are involved in a trading cycle. A very
natural subclass of TTC rules based on ownership-adapted acyclic priorities is the class of
rules where at each step of the TTC algorithm, at most one trading cycle involving a va-
cant house appears and this trading cycle contains at most one applicant and at most one
vacant house. This class was introduced under the name of YRMH-IGYT (you request
my house - I get your turn) rules by Abdulkadiroğlu and Sönmez (1999). Sönmez and
Ünver (2010) showed that a rule satisfies Pareto-optimality, individual-rationality, strategy-
proofness, weak neutrality, and consistency if and only if it is a YRMH-IGYT rule.

The class of YRMH-IGYT rules is the subclass of TTC rules based on ownership-adapted
acyclic priorities where for each problem there is a single agent who has top priority at each
vacant house, i.e., the priority structure π is such that

(i) for each problem (I,H,R) and for each i ∈ IT , π
h(i)
I (1) = i and

(ii) for each problem (I,H,R) there exists an agent i ∈ I such that for each h ∈ HV ,
πhI (1) = i.

Another way to describe the set of YRMH-IGYT rule is as follows. Let π be a serial
dictatorship priority structure. Then, for any h, h′ ∈ H, πh = πh

′
, i.e., every house has the
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same priority ordering. Let π̂ denote the priority structure obtained from π by adapting it
to the ownership structure. It is easy to see that, since π is a serial dictatorship priority
structure, π̂ is acyclic. Then, a rule φ is a YRMH-IGYT rule if and only if there exists a
serial dictatorship priority structure π such that φ = ϕπ̂.

Next we give an alternative description of TTC rules based on ownership-adapted acyclic
priorities in terms of two specific rules, YRMH-IGYT and efficient priority rules, that are
applied in two steps. That is, the class of TTC rules based on ownership-adapted acyclic
priorities is equivalent to a class of two-step rules. Essentially, these rules can be described
as follows: The agents are split into two groups, where the first group contains all tenants and
some applicants and the second group consists of only applicants. In the first step, houses
are allocated to the first group of agents according to - essentially - the YRMH-IGYT rule.
In the second step, houses that have not been allocated in the first step are allocated to the
second group of agents according to an efficient priority rule.

We used the term “essentially” in the previous paragraph, because the allocation in the
first step is generated according to a rule that might slightly differ from a YRMH-IGYT
rule because we allow for the possibility that two agents have top priority at different vacant
houses in steps of the TTC where only these two agents are left in the problem.

Formally, we define a TTC rule ϕπ based on ownership-adapted acyclic priorities π to be
an almost YRMH-IGYT rule if

(i) for each problem (I,H,R) and for each i ∈ IT , π
h(i)
I (1) = i and

(ii) for each problem (I,H,R) with |I| > 2 there exists an agent i ∈ I such that for each
h ∈ HV , πhI (1) = i.

That is, for each problem each tenant has the top priority for his own house and for each
problem with more than two agents there exists an agent who has top priority for all vacant
houses. This means that at each step of the TTC algorithm a tenant has the top priority for
his own house and at each step of the TTC algorithm with more than two remaining agents
there exists an agent who has top priority for all remaining vacant houses. Note that then
the difference between a YRMH-IGYT rule and an almost YRMH-IGYT rule is that for the
latter rule, the underlying priorities are only almost serial dictatorship priorities because the
two lowest ranked agents might share ownership of remaining vacant houses. For problems
with a large number of agents, such a rule behaves essentially like a YRMH-IGYT rule.

Example 4 (An almost YRMH-IGYT rule). Consider agents I := {a, b, c, d, e} with
IT = {a, b, c}, houses {h(a), h(b), h(c), h1, h2, h3, h4, h5} and the following priority structure:

Note that the TTC algorithm based on Table 6 priorities assigns allotments equal to
the YRMH-IGYT rule for any Step t with |It| > 2. However, for a last Step t with It =
{a, e}, the TTC algorithm might assign different allotments because agents a and e have
different priorities at different vacant houses (the YRMH-IGYT rule would assign priorities
dictatorially at that step as well).
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n πh(a)(n) πh(b)(n) πh(c)(n) πh1(n) πh2(n) πh3(n) πh4(n) πh5(n)

1 a b c d d d d d
2 d d d b b b b b
3 b c b c c c c c
4 c a e e a a e e
5 e e a a e e a a

Table 6: An acyclic priority structure: the top part of the priorities of Table 3.

Definition 9 (Two-Step Rules). A rule φ is a two-step rule if there are

• a partition of the set of agents I = I1∪I2 such that the first group contains all tenants
IT ⊆ I1 and

• rules φ1 and φ2 such that

rule φ1 is an almost YRMH-IGYT rule that is defined for all problems (I,H,R) with
I ⊆ I1 and

rule φ2 is an efficient priority rule that is defined for all problems (I,H,R) with I ⊆ I2,

and these rules are applied in two steps as follows:

Step 1. for each problem (I,H,R) and each i ∈ I1 := I1 ∩ I we have φi(I,H,R) =
φ1
i (I1, H,RI1) and

Step 2. for each i ∈ I2 := I2 ∩ I we have φi(I,H,R) = φ2
i (I2, H \ Ĥ, RI2) where Ĥ :=

φ1
I1

(I1, H,RI1).

Example 5 (A TTC Rule based on Ownership-Adapted Acyclic Priorities as a
Two-Step Rule). We reconsider the TTC rule based on ownership-adapted acyclic priorities
π defined by Table 3 that we discussed in Example 2. It can be reinterpreted as a two-step
rule as follows: To determine the first group of agents I1, we consider the lowest priority
that any tenant has for any house. For the priorities π given in Table 3, this lowest priority
of 5 is given to tenant a (e.g., for house h1). Then, we consider all agents that have as least
as high a priority at all houses: I1 := {j ∈ I | πh(j) ≤ 5 for all h ∈ H} = {a, b, c, d, e}. The
remaining agents form the second group I2 := {f, g, i}.

The rule φ1 is the almost YRMH-IGYT rule based on Table 6 priorities previously de-
scribed in Example 4. Rule φ2 is now defined through the (acyclic) priorities consisting of
the last three rows of Table 3:

n πh(a)(n) πh(b)(n) πh(c)(n) πh1(n) πh2(n) πh3(n) πh4(n) πh5(n)

1 f g f f f f g f
2 g f g g g g f g
3 i i i i i i i i

Table 7: An acyclic priority structure: the bottom part of the priorities of Table 3.
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Note that for any problem (I,H,R) with I ⊆ I2 the TTC rule based on Table 7 priorities
is an efficient priority rule.

We now show that the correspondence between TTC rules based on ownership-adapted
acyclic priorities and two-step rules holds in general.

Proposition 2 (Characterizing TTC Rules based on Ownership-Adapted Acyclic
Priorities as Two-Step Rules). The class of TTC rules based on ownership-adapted
acyclic priorities is the class of two-step rules.

Proof. Let ϕπ be a TTC rule based on ownership-adapted acyclic priorities π. Consider the
lowest priority assigned to a tenant at π, i.e., m := maxh∈H,i∈IT π

h(i). Let i∗ ∈ IT be a tenant
and h∗ ∈ H be a house such that πh

∗
(i∗) = m. We define the set I1 to be the set of agents who

have higher or equal priority for house h∗ than agent i∗, i.e., I1 := {j ∈ I | πh∗(j) ≤ m}.
The set I2 is the set of agents who have lower priority for house h∗ than agent i∗, i.e.,
I2 := {j ∈ I | πh∗(j) > m} = I \ I1. By definition, the two sets are disjoint, we have
IT ⊆ I1 and I = I1 ∪ I2.

First we show that agents in I1 have higher priority than agents in I2 at all houses,
i.e., for each h ∈ H we have I1 = {j ∈ I | πh(j) ≤ m} and I2 = {j ∈ I | πh(j) > m}.
Consider j ∈ I1 \ {i∗} and k ∈ I2 and assume by contradiction that there is a house
h ∈ H with πh(k) < πh(j). Since πh

∗
(j) < πh

∗
(i∗) < πh

∗
(k) and k /∈ IT , acyclicity and

πh(k) < πh(j) imply that πh(i∗) < πh(k) < πh(j). Moreover, since πh(i∗) < πh(k) < πh(j)
and πh

∗
(j) < πh

∗
(i∗), acyclicity implies that h∗ is occupied with j as a tenant. Since i∗’s

priority at h∗ is the lowest priority of any tenant at any house, tenant j cannot have lower
priority at h than i∗ has at h∗, i.e., πh(j) ≤ πh

∗
(i∗). Thus, there exists an agent ` with

πh
∗
(j) < πh

∗
(`) < πh

∗
(i∗) < πh

∗
(k) and πh(i∗) < πh(k) < πh(j) < πh(`). But then agents

k, j, ` with houses h, h∗ form a cycle; a contradiction.
Next let k ∈ I2 and suppose there is a house h ∈ H with πh(k) < πh(i∗). We may

assume that there is another agent j ∈ I1 with πh
∗
(j) < πh

∗
(i∗) and πh(i∗) < πh(j).

Otherwise i∗ would have lower priority at h than at h∗. But since k /∈ IT , we immediately
get a contradiction with acyclicity.

Second, we show that the rule ϕπ restricted to problems with agents in I1 is an almost
YRMH-IGYT rule and restricted to problems with agents in I2 is an efficient priority rule.
This will imply that ϕπ is a two-step rule. Thus, we have to show that

• for each problem (I,H,R) with I ⊆ I1 and |I| > 2 there is an agent i ∈ I such that
for each h ∈ HV , πhI (i) = 1,

• for each problem (I,H,R) with I ⊆ I2 there is an agent i ∈ I such that for h ∈ H,
πhI (1) = i, or there are two agents i, j ∈ I such that for each h ∈ H, {πhI (1), πhI (2)} =
{i, j}.

Since I2 contains only applicants and the priority structure π is acyclic, the second item
follows immediately from the fact that for problems with only applicants the class of TTC
rules based on acyclic priorities is the class of efficient priority rules.
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Recall that i∗ is a tenant who is assigned the lowest priority at π for some houses and
such a house is h∗. To show the first item, consider the problem (I ′, H ′, R′) with I ′ = I∪{i∗},
H ′ = H ∪ {h(i∗), h∗} and R′ arbitrary. Let j := π

h(i∗)
I′ (2). We claim that at any h ∈ HV we

have πhI (j) = 1. The claim trivially holds if h = h(i∗). If h 6= h(i∗), then by acyclicity we
have πhI′(1) ∈ {i∗, j}. If πhI′(1) = j, then also πhI (1) = j and we are finished. Thus, it suffices
to show that πhI′(1) = i∗ yields a contradiction. Since |I| > 2, there is an agent k 6= i∗, j
in the problem (I ′, H ′, R′). Since I ′ ⊆ I1 and i∗ has lowest priority among agents in I1 at
house h∗, we have πh

∗
(k) < πh

∗
(i∗) and πh

∗
(j) < πh

∗
(i∗). Thus, if πhI′(i

∗) = 1, then we have
a cycle involving houses h, h∗ and agents i∗, j, k and hence, a contradiction.

Finally, let φ be a two-step rule induced by rules φ1 and φ2. Let π1 be the priority
structure associated with rule φ1 and π2 be the priority structure associated with rule φ2.
Define a priority structure π as the concatenation of the two priority structures, i.e., for each
h ∈ H we let

πh(i) =

{
π1,h(i), if i ∈ I1

π2,h(i) + |I1|, if i ∈ I2.

Since π1 and π2 are acyclic priority structures, priority structure π is acyclic as well. More-
over, φ = ϕπ.

4 Pareto-Optimality, Group Strategy-Proofness, Con-

sistency, and Reallocation-Proofness

In the introduction we reviewed several classes of rules for house allocation with and without
tenants and their properties, see Tables 1 and 2. We observed that (weak) neutrality is the
key property that distinguishes simple serial dictatorship and YRMH-IGYT rules from other
rules. For house allocation rules various sets of rules have been characterized by subsets of
the following properties: Pareto-optimality, strategy-proofness, non-bossiness (Pycia and
Ünver, 2017), and reallocation-proofness (Pápai, 2000) or reallocation-consistency (Ehlers
and Klaus, 2006). For house allocation with existing tenants only one characterization of
the YRMH-IGYT rules using (weak) neutrality is known (Sönmez and Ünver, 2010). We
aim to understand what rules emerge without (weak) neutrality.

First, recall that for house allocation problems, Ehlers and Klaus (2006) characterized ef-
ficient priority rules for house allocation problems by Pareto-optimality, strategy-proofness,
and reallocation-consistency. Since efficient priority rules are a subset of hierarchical ex-
change rules (Pápai, 2000) and of trading cycles rules (Pycia and Ünver, 2017), Pareto-
optimality, strategy-proofness, and reallocation-consistency22 imply reallocation-proofness
and non-bossiness. We first show that this is not the case for house allocation problems
with existing tenants. In the next example we define a rule, φ̃, for problems with one

22Note that consistency for house allocation problems with existing tenants implies reallocation-
consistency for problems when no tenants are present.
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tenant and at least two applicants and show that it satisfies Pareto-optimality, individual-
rationality, strategy-proofness, and consistency but that it violates reallocation-proofness
and non-bossiness.

Example 6 (A Rule that is Consistent but neither Non-Bossy nor Realloca-
tion-Proof). Let I be the set of potential agents with IT = {i} and {j, k} ⊆ IA. Let H
be the set of potential houses such that h(i) is the only occupied house. We consider two
priority structures π and π̃ defined below.

We let πI\{i,j,k} = π̃I\{i,j,k} be an acyclic priority structure.

Let π{i,j,k} be a priority structure (for agents i, j, and k) defined by

πh(i)(i) < πh(i)(k) < πh(i)(j), and for each vacant house h ∈ H, πh(j) < πh(i) < πh(k).

Let π̃{i,j,k} be a priority structure (for agents i, j, and k) defined by

π̃h(i)(i) < π̃h(i)(k) < π̃h(i)(j), and for each vacant house h ∈ H, π̃h(i) < π̃h(j) < π̃h(k).

Hence, π̃h(i) = πh(i) but priorities of vacant houses differ. We let π be the concatenation of
π{i,j,k} and πI\{i,j,k} and π̃ be the concatenation of π̃{i,j,k} and π̃I\{i,j,k}. Note that agents i,
j, and k are the highest ranked agents under priorities π and π̃.

For each problem (I,H,R), I ⊆ I and H ⊆ H, we partition R(I,H) = R1(I,H)∪R2(I,H)
into two sets as follows:

• If i, k ∈ I we let R2(I,H) be the set of all profiles R ∈ R(I,H) such that one of the
two following statements is true:

1. agent k ranks h(i) best and i does not rank h(i) best;

2. agent k ranks h(i) second best and both agents i and k rank the same house best.

We let R1(I,H) = R(I,H) \ R2(I,H).

• If i /∈ I or k /∈ I, then we let R1(I,H) = R(I,H) and R2(I,H) = ∅.
We use the partition of preference profiles to define our rule φ̃ as follows: For each problem
(I,H,R),

φ̃(I,H,R) =

{
ϕπ̃(I,H,R), if i, k ∈ I, and R ∈ R2(I,H)

ϕπ(I,H,R), otherwise,

that is, if agents i and k are present and preferences R belong to R2(I,H), we use the TTC
rule based on π̃ and otherwise we use the TTC rule based on π. We prove in Appendix A that
rule φ̃ satisfies Pareto-optimality, individual-rationality, strategy-proofness, and consistency
but neither reallocation-proofness nor non-bossiness.
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4.1 A Characterization of TTC Rules based on Ownership-
Adapted Acyclic Priorities with Reallocation-Proofness

Our next main result is that TTC rules based on ownership-adapted acyclic priorities are
the only rules that satisfy Pareto-optimality, individual-rationality, strategy-proofness, con-
sistency, and reallocation-proofness.

Theorem 2 (A Characterization of ϕπ with Reallocation-Proofness). A rule φ satis-
fies Pareto-optimality, individual-rationality, strategy-proofness, reallocation-proofness, and
consistency if and only if there exists an ownership-adapted acyclic priority structure π such
that φ = ϕπ.

Note that for the only-if-part of Theorem 2 it suffices to require reallocation-proofness
only for pairs of agents that contain at least one tenant (see proof of Lemma 4). Furthermore,
the proof of Theorem 2 reveals that in the characterization, reallocation-proofness is not
needed if I = IA.

We prove Theorem 2 through a sequence of lemmata (which we prove in Appendix B).
Throughout the remainder of this section we assume that rule φ satisfies Pareto-optimality,
individual-rationality, strategy-proofness, reallocation-proofness,23 and consistency.

Using Pareto-optimality and individual-rationality, we derive a priority structure π =
(πh)h∈H from φ.

For each house h ∈ H we call a preference profile at which each agent likes house h best
and only finds houses in {h, h(i)} individually-rational a version of a maximal conflict
preference profile for h. Formally, Rh ∈ R(I,H) is a version of a maximal conflict
preference profile for h if for each i ∈ I and h′ ∈ H \ {h, h(i)} we have

• Rh
i : h Rh

i h(i) P h
i h
′.

Note that there can be multiple versions of a maximal conflict preference profile for h that
differ in the ranking of houses that are not individually-rational. After we have defined πh we
will show that the definition is independent of which versions of maximal conflict preference
profiles we choose.

We consider the problem (I,H, Rh) where Rh is some version of a maximal conflict
preference profile. By Pareto-optimality, for some i ∈ I we have φi(I,H, Rh) = h. We
assign the top priority of house h to agent i, i.e., πh(1) = i.

Note that, by individual-rationality, if house h is occupied by a tenant i, then agent i will
have the top priority at house h, i.e., if for some i ∈ IT , h = h(i), then πh(i)(1) = i. Hence,
the priority structure π we are constructing will be adapted to the ownership structure, i.e.,
for each i ∈ IT , πh(i)(1) = i.

We next remove agent πh(1) = i and consider the remaining maximal conflict problem (I\
{i},H, Rh

−i). Again, by Pareto-optimality, for some j ∈ I \{i} we have φj(I \{i},H, Rh
−i) =

23However, note that reallocation-proofness is used only in the proof of Lemma 4 and, by the use of
Lemma 4, in Lemma 5.
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h. We assign the second priority of house h to agent j, i.e., πh(2) = j. We next remove
agent πh(2) = j and consider the remaining maximal conflict problem (I \{i, j},H, Rh

−{i,j}),
etc. We iterate in this way until we have considered all agents in I. In this way we obtain
a priority ordering πh for each h ∈ H.

Next, we establish a sequence of lemmata about properties of π.

Lemma 1 (Maximal Conflict Preference Profile Independence). Each version of a
maximal conflict preference profile for a house together with rule φ induces the same priority
ranking for the house.

From now on, we simply refer to maximal conflict preference profiles with the under-
standing that it does not matter which version is used.

Lemma 2 (Consistent Reduction of Maximal Conflict Preference Profiles). Let
i, j ∈ I be two different agents and house h ∈ H. Consider a problem (I,H,R) such that
I = {i, j}, {h, h(i), h(j)} ⊆ H ∪ {h0}, and R ∈ R(I,H) is a maximal conflict preference
profile for h restricted to I and H. Then, πh(i) < πh(j) implies φi(I,H,R) = h and
φj(I,H,R) = h(j).

Lemma 3 (Acyclicity for Vacant Houses). Let i, j, k ∈ I be three different agents and
assume that houses h, h′ ∈ H are not owned by any of them, i.e., h, h′ 6∈ {h(i), h(j), h(k)}.
Then,

πh(i) < πh(j) < πh(k) implies [πh
′
(i) < πh

′
(k) or πh

′
(j) < πh

′
(k)].

Lemma 4 (Acyclicity for Occupied Houses). Let i, j, k ∈ I be three different agents
and assume that house h(i) ∈ H is occupied by agent i and house h′ ∈ H is not owned by
any of the three agents, i.e., h′ 6∈ {h(i), h(j), h(k)}. Then,

πh(i)(i) < πh(i)(j) < πh(i)(k) implies [πh
′
(i) < πh

′
(k) or πh

′
(j) < πh

′
(k)].

Lemmata 3 and 4 together imply that our constructed priority structure π is acyclic.
We are now ready to start proving that if a rule φ satisfies Pareto-optimality, individual-
rationality, strategy-proofness, reallocation-proofness, and consistency, then it is a TTC rule
based on ownership-adapted acyclic priorities, i.e., φ = ϕπ. To this end, we first show that
φ adapts to the priority structure π for top priority agents.

Lemma 5 (Top Priority Adaptation). For each problem (I,H,R), if agent i ∈ I has the
top priority in I for a vacant house h ∈ HV , i.e., for each j ∈ I \ {i}, πh(i) < πh(j), then
φi(I,H,R)Ri h.

We now prove that rule φ is the TTC rule ϕπ.

Proposition 3 (φ = ϕπ). If a rule φ satisfies Pareto-optimality, individual-rationality,
strategy-proofness, reallocation-proofness, and consistency, then it is the TTC rule that is
based on the ownership-adapted acyclic priority structure π, i.e., φ = ϕπ.
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Proof. Let (I,H,R) be a problem. We show that ϕπ(I,H,R) = φ(I,H,R). First note that
by consistency, it suffices to consider the first step of TTC rule ϕπ(I,H,R): Once we have
shown that for each trading cycle that forms in the first step, each agent in the cycle obtains
the same allotment under ϕπ and φ, we can consider the reduced problem (I ′, H ′, R′) where
these agents are removed together with their allotments under ϕπ and φ. Then, when we
subsequently consider the first step of ϕπ(I ′, H ′, R′), by consistency of ϕπ (which follows
from Lemmata 3 and 4 and Theorem 1), each trading cycle that forms in the first step of
ϕπ(I ′, H ′, R′) also forms in the second step of ϕπ(I,H,R) and vice versa. Thus, if in each
trading cycle that forms in the first step of ϕπ(I ′, H ′, R′) the agents in the cycle obtain the
same allotment under ϕπ and φ, then in each trading cycle that forms in the second step of
ϕπ(I,H,R) the agents in the cycle obtain the same allotment under ϕπ and φ, and so on.

Thus, consider a trading cycle that forms in the first step of ϕπ(I,H,R), consisting
of agents i0, . . . , iK and houses ϕπi0(I,H,R), . . . , ϕπiK (I,H,R). Note that each agent ik ∈
{i0, . . . , iK} prefers ϕπik(I,H,R) most among houses in H. For every ik ∈ {i0, . . . , iK} we

define preferences R̃ik ∈ R(ik, H) such that

• R̃ik : ϕπik(I,H,R) P̃ik ϕ
π
ik−1

(I,H,R) R̃ik h(ik) R̃ik . . . (modulo K + 1),

e.g., by moving ϕπik−1
(I,H,R) just after ϕπik(I,H,R) and, if ϕπik−1

(I,H,R) 6= h(ik) (i.e.,
when ϕπik−1

(I,H,R) is vacant), by moving h(ik) just after ϕπik−1
(I,H,R) without changing

the ordering of other houses.

First, we consider the preference profile R0 = (R̃{i0,...,iK}, R−{i0,...,iK}).

Let 0 ≤ k ≤ K. If ϕπik−1
(I,H,R) = h(ik) (modulo K + 1), then by individual-rationality,

we have φik(I,H,R0)Rik ϕ
π
ik−1

(I,H,R) and φik(I,H,R0) ∈ {ϕπik−1
(I,H,R), ϕπik(I,H,R)}. If

ϕπik−1
(I,H,R) 6= h(ik), then ϕπik−1

(I,H,R) is a vacant house and agent ik has the top prior-

ity for it. Hence, by Lemma 5, we have φik(I,H,R0) Rik ϕ
π
ik−1

(I,H,R) and φik(I,H,R0) ∈
{ϕπik−1

(I,H,R), ϕπik(I,H,R)}. To summarize, for each 0 ≤ k ≤ K, φik(I,H,R0) ∈
{ϕπik−1

(I,H,R), ϕπik(I,H,R)} (modulo K + 1). So, φ{i0,...,iK}(I,H,R
0) = ϕπ{i0,...,iK}(I,H,R).

By Pareto-optimality, for each ik ∈ {i0, . . . , iK}, φik(I,H,R0) = ϕπik(I,H,R).

Next, let l1 ∈ {i0, . . . , iK}, and consider the preference profile R1 =

(R̃{i0,...,iK}\{l1}, R−({i0,...,iK}\{l1})) = (Rl1 , R
0
−l1). We start by showing that φl1(I,H,R

1) =

ϕπl1(I,H,R). That is, when agent l1 changes his preferences from R̃l1 to Rl1 at the pref-
erence profile R0, house ϕπl1(I,H,R) is still assigned to him under rule φ at the changed
preference profile R1. By strategy-proofness we have φl1(I,H,R

1) Rl1 φl1(I,H,R
0). Since

φl1(I,H,R
0) = ϕπl1(I,H,R) is agent l1’s best house at preference profiles R0 and R1,

we have φl1(I,H,R
1) = φl1(I,H,R

0) = ϕπl1(I,H,R). By individual-rationality, for each
ik ∈ {i0, . . . , iK} \ {l1}, φik(I,H,R1) ∈ {ϕπik−1

(I,H,R), ϕπik(I,H,R)} (modulo K + 1). So,

φ{i0,...,iK}(I,H,R
1) = ϕπ{i0,...,iK}(I,H,R). By Pareto-optimality, for each ik ∈ {i0, . . . , iK},

φik(I,H,R1) = ϕπik(I,H,R).

Now, let l2 ∈ {i0, . . . , iK} \ {l1}, and we consider the preference profile R2 =

(R̃{i0,...,iK}\{l1,l2}, R−({i0,...,iK}\{l1,l2})) = (Rl2 , R
1
−l2). We first show that φl2(I,H,R

2) =

ϕπl2(I,H,R). That is, when agent l2 changes his preferences from R̃l2 to Rl2 at the pref-
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erence profile R1, house ϕπl2(I,H,R) is still assigned to him under rule φ at the changed
preference profile R2. By strategy-proofness we have φl2(I,H,R

2) Rl2 φl2(I,H,R
1). Since

φl2(I,H,R
1) = ϕπl2(I,H,R) is agent l2’s best house at preference profiles R1 and R2, we have

φl2(I,H,R
2) = φl2(I,H,R

1) = ϕπl2(I,H,R).
Since the choice of agents {l1, l2} ⊆ {i0, . . . , iK} was arbitrary, we obtain by the same

argument changing the roles of l1 and l2 that φl1(I,H,R
2) = ϕπl1(I,H,R).

By individual-rationality, for each ik ∈ {i0, . . . , iK} \ {l1, l2}, φik(I,H,R2) ∈
{ϕπik−1

(I,H,R), ϕπik(I,H,R)} (modulo K + 1). So, φ{i0,...,iK}(I,H,R
2) = ϕπ{i0,...,iK}(I,H,R).

By Pareto-optimality, for each ik ∈ {i0, . . . , iK}, φik(I,H,R2) = ϕπik(I,H,R).

We continue to replace the preferences of agents in {i0, . . . , iK} \ {l1, l2} one at a time as
above and reach the preference profile R such that for each ik ∈ {i0, . . . , iK}, φik(I,H,R) =
ϕπik(I,H,R).

Finally, recall that by Proposition 1, the TTC rule ϕπ satisfies Pareto-optimality,
individual-rationality, strategy-proofness, and reallocation-proofness and by Theorem 1 and
the acyclicity of π (Lemmata 3 and 4), ϕπ is consistent. The proof of Theorem 2 is now
complete. We prove the independence of properties used in the characterization (Theorem 2)
in Appendix D.

4.2 A Characterization of TTC Rules based on Ownership-
Adapted Acyclic Priorities with Non-Bossiness

Our last main result is that TTC rules based on ownership-adapted acyclic priorities are es-
sentially the only rules that satisfy Pareto-optimality, individual-rationality, group strategy-
proofness, and consistency.

Theorem 3 (A Characterization of ϕπ with Non-Bossiness). Let [|H| = 2 and IT =
∅], or [|H| = 3 and |IT | ≤ 1], or |H| ≥ 4. Then, a rule φ satisfies Pareto-optimality,
individual-rationality, strategy-proofness, non-bossiness, and consistency if and only if there
exists an ownership-adapted acyclic priority structure π such that φ = ϕπ.

If [|H| = 2 and IT = ∅], then I = IA and non-bossiness is not needed in the charac-
terization (because in the proof of Theorem 2, reallocation-proofness is used only to show
acyclicity of occupied houses, Lemma 4, which is not needed if I = IA). In Appendix E we
provide examples that show that the other restrictions on the number of potential houses in
Theorem 3 are necessary.

Throughout the remainder of this section we assume that either [|H| = 2 and IT = ∅], or
[|H| = 3 and |IT | ≤ 1], or |H| ≥ 4,24 and that rule φ satisfies Pareto-optimality, individual-
rationality, strategy-proofness, non-bossiness, and consistency. Recall that in the previous
section reallocation-proofness was used only in the proofs of Lemmata 4 and 5, hence we
can use the same construction of priority structure π and Lemmata 1, 2, and 3 remain
correct without reallocation-proofness. We prove Theorem 3 through a sequence of additional

24However, note that this assumption is used only in the proof of Lemma 8.
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lemmata (which we prove in Appendix C). First we introduce some terminology due to Pycia
and Ünver (2017).

In the following, we will assume that a pair (I,H) ∈ I ×H is such that for each tenant
i ∈ IT , h(i) ∈ H. Then, under rule φ, agent i ∈ I brokers* house h ∈ H at pair (I,H)
if for each preference profile R ∈ R(I,H) such that all agents rank house h top, the house
assigned to agent i, φi(I,H,R), is his second best house according to Ri (it is possible that
φi(I,H,R) = h0). The following lemma connects brokerage* to cycles in priority structure π.

Lemma 6 (Broker* Lemma). Let i, j, k ∈ I be three different agents and assume that
house h ∈ H is not owned by any of them, i.e., h 6∈ {h(i), h(j), h(k)}. If agent i is a tenant,
i.e., i ∈ IT ,

πh(i)(i) < πh(i)(j) < πh(i)(k), and πh(k) < πh(i), πh(j),

then under rule φ, agent j brokers* house h at each pair (I,H) with I = {i, j, k} and h ∈ H.

A first consequence of Lemma 6 is that cycles have a particular structure if they occur
at all.

Lemma 7. Let i, j, k ∈ I be three different agents and assume that house h ∈ H is not
owned by any of them, i.e., h 6∈ {h(i), h(j), h(k)}. If agent i is a tenant, i.e., i ∈ IT ,

πh(i)(i) < πh(i)(j) < πh(i)(k), and πh(k) < πh(i), πh(j),

then
πh(k) < πh(i) < πh(j)

and agent j is an applicant, i.e., j ∈ IA.

The two previous lemmata imply a version of Lemma 4 where reallocation-proofness is
replaced by non-bossiness.

Lemma 8 (Acyclicity for Occupied Houses, Non-Bossiness Version). Let i, j, k ∈ I
be three different agents and assume that house h(i) ∈ H is occupied by agent i and house
h′ ∈ H is not owned by any of the three agents, i.e., h′ 6∈ {h(i), h(j), h(k)}. Then,

πh(i)(i) < πh(i)(j) < πh(i)(k) implies [πh
′
(i) < πh

′
(k) or πh

′
(j) < πh

′
(k)].

With Lemma 8, we can now complete the proof of Theorem 3. By Proposition 1, the
TTC rule ϕπ satisfies Pareto-optimality, individual-rationality, strategy-proofness, and non-
bossiness, and by Theorem 1 and the acyclicity of π (Lemmata 3 and 8), ϕπ is consistent. For
the other direction, note that the proof of Proposition 3 only uses reallocation-proofness by
relying on Lemma 4, which uses reallocation-proofness in its proof. Thus replacing Lemma 4
by Lemma 8, we can use the same proof as for Proposition 3. We prove the independence
of properties used in the characterization (Theorem 3) in Appendix D.
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Appendix

A A Rule that is Strategy-Proof and Consistent but

neither Reallocation-Proof nor Non-Bossy

Note that the two rules ϕπ and ϕπ̃ defined in Example 6 are Pareto-optimal, individually-
rational, and strategy-proof. This immediately implies that φ̃ is Pareto-optimal, individually-
rational and can only be manipulated by agent i or agent k.

Rule φ̃ is Strategy-Proof. First we consider agent i. If R ∈ R2(I,H), then, since

φ̃(I,H,R) = ϕπ̃(I,H,R) and agent i is the highest ranked agent for all houses in H under
π̃, agent i obtains his best house, so he cannot gain by misreporting his preferences. So,
consider R ∈ R1(I,H). Suppose agent i reports R′i and R′ := (R′i, R−i). We consider two
cases, (i) R′ ∈ R1(I,H) and (ii) R′ ∈ R2(I,H).

(i): If R′ ∈ R1(I,H), then, since R,R′ ∈ R1(I,H), φ̃(I,H,R) = ϕπ(I,H,R), φ̃(I,H,R′) =
ϕπ(I,H,R′), and ϕπ is strategy-proof, agent i cannot gain by misreporting R′i.

(ii): If R′ ∈ R2(I,H), then either i ranks h(i) first under Ri but not under R′i, or i and k
rank different vacant houses first under R and the same vacant house first under R′. In the
first case, h(i) = φ̃i(I,H,R)Ri φ̃i(I,H,R

′) and i cannot improve by reporting R′i instead of

Ri. In the second case, since R′ ∈ R2(I,H), φ̃(I,H,R′) = ϕπ̃(I,H,R′), and i is the highest
ranked agent for all houses at π̃, i obtains his best house under R′i, and this best house (at
R′i) is not his best house under his original preferences Ri. However, in this case, house h(i)
is not the best house at Ri and agent i is the second ranked agent for all vacant houses at
π; so i obtains at least his second best house under Ri at φ̃(I,H,R) = ϕπ(I,H,R). This,

together with the fact that allotment φ̃i(I,H,R
′) is not the best house for agent i under Ri,

implies that agent i cannot benefit by reporting R′i instead of Ri.

Second, we consider agent k. If R ∈ R2(I,H), then agent k obtains house h(i), which is
either his best house or his second best house under Rk. If house h(i) is agent k’s second
best house, then his best house is also agent i’s best house. However, note that agent i
has higher priority than agent k for all houses under both π and π̃. Thus, agent k cannot
gain from misreporting his preferences in this case. So, consider R ∈ R1(I,H). Suppose
agent k reports R′k and R′ := (R′k, R−k). We consider two cases, (i) R′ ∈ R1(I,H) and (ii)
R′ ∈ R2(I,H).

(i): If R′ ∈ R1(I,H), then, since φ̃(I,H,R) = ϕπ(I,H,R), φ̃(I,H,R′) = ϕπ(I,H,R′), and
ϕπ is strategy-proof, agent k cannot gain by misreporting R′k.

(ii): If R′ ∈ R2(I,H), then agent k obtains house h(i) under φ̃(I,H,R′) = ϕπ̃(I,H,R′).
Since R /∈ R2(I,H), house h(i) is either not among k’s top two houses under Rk or h(i) is k’s
second best house under Rk and i and k have different best houses under R. In the first case,
by the definition of π, k receives at least his third best house under Rk and cannot improve
by reporting R′k instead of Rk. In the second case, if h(i) is agent k’s second best house

30



under Rk and agents i and k have different best houses under R, then by the definition of π,
agent k obtains his best house or second best house under Rk at φ̃(I,H,R) = ϕπ(I,H,R).
Thus, also in this case agent k cannot benefit from reporting R′k instead of Rk.

Rule φ̃ is Consistent. Consider a problem (I,H,R) and its reduced problem (I ′, H ′, R′).

If R ∈ R2(I,H), then either R′ ∈ R2(I ′, H ′) or we have π̃I′ = πI′ (recall that at R
agent k obtains house h(i) and he cannot leave with it while agent i remains). Thus,

φ̃(I,H,R) = ϕπ̃(I,H,R) and φ̃(I ′, H ′, R′) = ϕπ̃(I ′, H ′, R′). Since π̃ is acyclic, consistency of
ϕπ̃ follows from Theorem 1.

If R ∈ R1(I,H), then either R′ ∈ R1(I ′, H ′) or π̃I′ = πI′ (this latter case only occurs
when agent j leaves). However, now π has cycles, involving h(i), a vacant house h, and
agents i, j, and k. The only case where such a cycle might cause a problem is if in a
problem (I,H,R) agent i trades a vacant house h for his endowment h(i) with agent j, so
i obtains vacant house h and j obtains house h(i). In this case, if we remove agent i with
his allotment h, then for the reduced problem h(i) becomes a vacant house and agent k has
a higher priority than agent j for house h(i). However, since R ∈ R1(I,H), agent k ranks
neither h(i) as best at R nor h as best and h(i) as second best. Hence, h(i) is not a best
house for agent k at R′. So, in the reduced problem agents j and k both obtain their best
houses, which are different (and agent j obtains h(i)). The other cases can be handled as in
the acyclic case because the cycle in priorities π does not cause any “consistency problem”
(since it is not active when trading).

Rule φ̃ is not Reallocation-Proof. We consider (I,H,R) with I = {i, j, k}, {h, h(i)} ⊆
H, HO = {h(i)}, and the following preferences:

• Ri : h(i) Pi . . . ,

• Rj : h Pj h0 Pj . . . ,

• Rk : h Pk h0 Pk . . . ,

• R̃i : h Pi h(i) Pi . . . ,

• R̃k : h(i) Pk h0 Pk . . . .

Let R = (Ri, Rj, Rk) and R̃ = (R̃i, Rj, R̃k). Then, since R ∈ R1(I,H) and R̃ ∈ R2(I,H),

φ̃i(I,H,R) = h(i), φ̃j(I,H,R) = h, φ̃k(I,H,R) = h0,

φ̃i(I,H, R̃) = h, φ̃j(I,H, R̃) = h0, φ̃k(I,H, R̃) = h(i).

We now show that agents i and k by changing their preferences from (Ri, Rk) at R to (R̃i, R̃k)

at R̃ cause a violation of reallocation-proofness.

Consider agent i changing his preferences at R from Ri to R̃i. For the resulting preference
profile R1 = (R̃i, Rj, Rk) ∈ R1(I,H) we have φ̃i(I,H,R

1) = φ̃i(I,H,R) = h(i). Hence,
agent i does not change his allotment by unilaterally moving from R to R1.
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Consider agent k changing his preferences atR fromRk to R̃k. For the resulting preference
profile R2 = (Ri, Rj, R̃k) ∈ R1(I,H) we have φ̃k(I,H,R

2) = φ̃k(I,H,R) = h0. Hence, agent
k does not change his allotment by unilaterally moving from R to R2.

Finally, consider both agents i and k changing their preferences at the same time, moving
from R to R̃, and then swapping their allotments. Then, agent i receives the same allotment
φk(I,H, R̃) = h(i) = φi(I,H,R) while agent k is better off receiving φi(I,H, R̃) = hPk h0 =
φk(I,H,R); a contradiction to reallocation-proofness.

Rule φ̃ is Bossy. We consider (I,H,R) with I = {i, j, k}, {h, h′, h(i)} ⊆ H, HO = {h(i)},
and the following preferences:

• Ri : h Pi h
′ Pi h(i) Pi . . . ,

• Rj : h Pj h
′ Pj h(i) Pj h0 Pj . . . ,

• Rk : h Pk h
′ Pk h(i) Pk h0 Pk . . . ,

• R̂k : h P̂k h(i) P̂k h
′ P̂k h0 P̂k . . ..

Let R = (Ri, Rj, Rk) and R′ = (Ri, Rj, R̂k). Then, since R ∈ R1(I,H) and R′ ∈ R2(I,H),

φ̃i(I,H,R) = h′, φ̃j(I,H,R) = h, φ̃k(I,H,R) = h(i),

φ̃i(I,H,R
′) = h, φ̃j(I,H,R

′) = h′, φ̃k(I,H,R
′) = h(i).

Consider agent k changing his preferences at R from Rk to R̂k. For the resulting preference
profile R′ = (Ri, Rj, R̂k) we have φ̃k(I,H,R

′) = h(i) = φ̃k(I,H,R), i.e., agent k does not
change his allotment by unilaterally moving from R to R′. However, the allotments of agents
i and j change when agent k unilaterally moves from R to R′, i.e., φ̃i(I,H,R) = h′ 6= h =

φ̃i(I,H,R
′) and φ̃j(I,H,R) = h 6= h′ = φ̃j(I,H,R

′). Hence, the rule φ̃ is bossy.

B Proofs of Section 4.1 Lemmata

Proof of Lemma 1 (Maximal Conflict Preference Profile Independence). Let Rh

and R̄h be different versions of a maximal conflict preference profile for h and πh and π̄h be
the corresponding priority rankings obtained. We show that for each i ∈ {1, 2, . . . , |I|} we
have πh(i) = π̄h(i). We proceed by induction on i.

Induction Basis. Let i = 1 and suppose πh(1) 6= π̄h(1), φπh(1)(I,H, Rh) = h
but φπ̄h(1)(I,H, R̄h) = h. By individual-rationality, φπ̄h(1)(I,H, Rh) = h(π̄h(1)) and
φπh(1)(I,H, R̄h) = h(πh(1)).

First, consider the reduced problem (I,H,R) of (I,H, Rh) where I = {πh(1), π̄h(1)},
H ∪ {h0} = {h, h(πh(1)), h(π̄h(1)), h0} and R = (Rh)HI . By consistency, φπh(1)(I,H,R) = h.

Second, consider the reduced problem (I,H, R̄) of (I,H, R̄h) where I and H are defined
as before and R̄ = (R̄h)HI . By consistency, φπ̄h(1)(I,H, R̄) = h.
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Third, starting from (I,H,R), change agent πh(1)’s preferences to R̄πh(1).
By strategy-proofness, φπh(1)(I,H, (R̄πh(1), Rπ̄h(1))) = h. By individual-rationality,
φπ̄h(1)(I,H, (R̄πh(1), Rπ̄h(1))) = h(π̄h(1)).

Fourth, starting from (I,H, (R̄πh(1), Rπ̄h(1))) change agent π̄h(1)’s preferences to R̄π̄h(1).
This change results in preference profile R̄. By strategy-proofness, φπ̄h(1)(I,H, R̄) =
h(π̄h(1)). By Pareto-optimality, φπh(1)(I,H, R̄) = h; contradicting φπ̄h(1)(I,H, R̄) = h.

Induction Hypothesis. We assume that for each i′ ≤ i < |I| we have πh(i′) = π̄h(i′).

Induction Step. We show that πh(i+ 1) = π̄h(i+ 1). Suppose πh(i+ 1) 6= π̄h(i+ 1).

Consider the problem (I,H, Rh
I ) where I = I \ {πh(1), . . . , πh(i)} and the problem

(Ī ,H, R̄h
Ī
) where Ī = I \ {π̄h(1), . . . , π̄h(i)}. By the induction assumption I = Ī. Hence,

φπh(i+1)(I,H, Rh
I ) = h but φπ̄h(i+1)(I,H, R̄h

I ) = h. By individual-rationality, we have
φπ̄h(i+1)(I,H, Rh

I ) = h(π̄h(i+ 1)) and φπh(i+1)(I,H, R̄h
Ī
) = h(πh(i+ 1)).

First, consider the reduced problem (I ′, H ′, R) of (I,H, Rh
I ) where I ′ = {πh(i+ 1), π̄h(i+

1)}, H ′ ∪ {h0} = {h, h(πh(i + 1)), h(π̄h(i + 1)), h0} and R = (Rh)H
′

I′ . By consistency,
φπh(i+1)(I

′, H ′, R′) = h.
Second, consider the reduced problem (I ′, H ′, R̄) of (Ī ,H, R̄h

Ī
) where I ′ and H ′ are defined

as before and R̄ = (R̄h)H
′

I′ . By consistency, φπ̄h(i+1)(I
′, H ′, R̄) = h.

An analog argument as for the induction basis shows that when changing preferences
step by step from R to R̄, Pareto-optimality, individual-rationality, and strategy-proofness
imply that φπh(i+1)(I,H, R̄) = h; contradicting φπ̄h(i+1)(I,H, R̄) = h.

Proof of Lemma 2 (Consistent Reduction of Maximal Conflict Preference Profiles).
Let i, j ∈ I be two different agents and house h ∈ H and problem (I,H,R) be such that
I = {i, j}, {h, h(i), h(j)} ⊆ H ∪ {h0}, and R ∈ R(I,H) is a maximal conflict preference
profile for h restricted to I and H. We show that πh(i) < πh(j) implies φi(I,H,R) = h and
φj(I,H,R) = h(j).

Recall that πh is generated by a maximal conflict preference profile for h. By Lemma 1, it
is no loss of generality to assume that this maximal conflict preference profile is a preference
profile Rh ∈ R(I,H) such that R is its restriction to I and H, i.e., (Rh)HI = R.

By our construction to calibrate πh, there exists a set of agents Ĩ :=(
I \ {πh(1), . . . , πh(l)}

)
such that i, j ∈ Ĩ, agent i has the highest priority for house h

in Ĩ, i.e., πh(l + 1) = i, and φi(Ĩ ,H, Rh
Ĩ
) = h. By individual-rationality, for all k ∈ Ĩ \ {i}

we have φk(Ĩ ,H, Rh
Ĩ
) = h(k); in particular, φj(Ĩ ,H, Rh

Ĩ
) = h(j).

Note that (I,H,R) is a reduced problem of (Ĩ ,H, Rh
Ĩ
) obtained by removing all agents

Ĩ \ {i, j} with their allotments
⋃
k∈
(
Ĩ\{i,j}

){h(k)} = H̃ and also by removing all unassigned

houses h̃ ∈ (H \ H̃) \ H that are not occupied by remaining agents i and j, i.e., h̃ /∈
{h(i), h(j)}. By consistency, φi(I,H,R) = φi(Ĩ ,H, Rh

Ĩ
) and φj(I,H,R) = φj(Ĩ ,H, Rh

Ĩ
).

Hence, φi(I,H,R) = h and φj(I,H,R) = h(j).

Proof of Lemma 3 (Acyclicity for Vacant Houses). Let i, j, k ∈ I be three differ-
ent agents and assume that houses h, h′ ∈ H are not owned by any of them, i.e., h, h′ 6∈
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{h(i), h(j), h(k)}. We show that πh(i) < πh(j) < πh(k) implies [πh
′
(i) < πh

′
(k) or πh

′
(j) <

πh
′
(k)].
Assume for the sake of contradiction that πh(i) < πh(j) < πh(k), πh

′
(k) < πh

′
(i)

and πh
′
(k) < πh

′
(j). Consider the problem (I,H,R) where I = {i, j, k}, H ∪ {h0} =

{h, h′, h(i), h(j), h(k), h0}, and preferences are such that

• Ri : h′ Pi h Pi h(i) Pi . . .,

• Rj : h Pj h(j) Pj . . ., and

• Rk : h Pk h
′ Pk h(k) Pk . . ..

By Pareto-optimality and individual-rationality, either φi(I,H,R) = h′ or φk(I,H,R) = h′.

Case 1. φi(I,H,R) = h′. By Pareto-optimality, either φj(I,H,R) = h or φk(I,H,R) = h.

Case 1.1. If φj(I,H,R) = h, then consider the reduced problem (I ′, H ′, RH′

I′ ) where agent j
leaves with his allotment h and furthermore (by individual-rationality) the unassigned house
h(j) is deleted from the problem, i.e., I ′ = {i, k} and H ′ ∪ {h0} = {h′, h(i), h(k), h0}. By
consistency, φi(I

′, H ′, RH′

I′ ) = h′. However, note that RH′

I′ is the restriction of a maximal
conflict preference profile for h′ to I ′ and H ′. Hence, by Lemma 2, πh

′
(k) < πh

′
(i) implies

φk(I
′, H ′, RH′

I′ ) = h′; a contradiction.

Case 1.2. If φk(I,H,R) = h, then consider the reduced problem (I ′, H ′, RH′

I′ ) where agent
i leaves with his allotment h′ and furthermore (by individual-rationality) the unassigned
house h(i) is deleted from the problem, i.e., I ′ = {j, k} and H ′ ∪ {h0} = {h, h(j), h(k), h0}.
By consistency, φk(I

′, H ′, RH′

I′ ) = h. However, note that RH′

I′ is the restriction of a maximal
conflict preference profile for h to I ′ and H ′. Hence, by Lemma 2, πh(j) < πh(k) implies
φj(I

′, H ′, RH′

I′ ) = h; a contradiction.

Case 2. φk(I,H,R) = h′. By Pareto-optimality, φj(I,H,R) = h. Consider the reduced prob-
lem (I ′, H ′, RH′

I′ ) where agent k leaves with his allotment h′ and furthermore (by individual-
rationality) the unassigned house h(k) is deleted from the problem, i.e., I ′ = {i, j} and
H ′ ∪ {h0} = {h, h(i), h(j), h0}. By consistency, φj(I

′, H ′, RH′

I′ ) = h. However, note that
RH′

I′ is the restriction of a maximal conflict preference profile for h to I ′ and H ′. Hence, by
Lemma 2, πh(i) < πh(j) implies φi(I

′, H ′, RH′

I′ ) = h; a contradiction.

Proof of Lemma 4 (Acyclicity for Occupied Houses). Let i, j, k ∈ I be three differ-
ent agents and assume that house h(i) ∈ H is occupied by agent i and house h′ ∈ H
is not owned by any of the three agents, i.e., h′ 6∈ {h(i), h(j), h(k)}. We show that
πh(i)(i) < πh(i)(j) < πh(i)(k) implies [πh

′
(i) < πh

′
(k) or πh

′
(j) < πh

′
(k)].

Assume for the sake of contradiction that πh(i)(i) < πh(i)(j) < πh(i)(k), πh
′
(k) < πh

′
(i),

and πh
′
(k) < πh

′
(j). Consider the problem (I,H,R) where I = {i, j, k}, H ∪ {h0} =

{h′, h(i), h(j), h(k), h0}, and preferences are such that

• Ri : h′ Pi h(i) Pi . . .,

• Rj : h(i) Pj h(j) Pj . . ., and

• Rk : h(i) Pk h
′ Pk h(k) Pk . . ..
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By Pareto-optimality and individual-rationality, either φi(I,H,R) = h′ or φk(I,H,R) = h′.

Case 1. φi(I,H,R) = h′. By Pareto-optimality, either φj(I,H,R) = h(i) or φk(I,H,R) =
h(i).

Case 1.1. If φj(I,H,R) = h(i), then φk(I,H,R) = h(k). Now, consider R̃i ∈ R(i,H),

R̃j ∈ R(j,H), and R̃k ∈ R(k,H) such that

• R̃i : h(i) P̃i . . .,

• R̃j : h′ P̃j h(j) Pk . . ., and

• R̃k : h′ P̃k h(k) Pk . . ..

First, consider R1 = (Ri, Rj, R̃k). By strategy-proofness, φk(I,H,R
1) = h(k) and by con-

sistency, φi(I,H,R
1) = h′ and φj(I,H,R

1) = h(i). Second, consider R2 = (R̃i, R̃j, R̃k). By
individual-rationality, φi(I,H,R

2) = h(i). Then, consistency, Lemma 2, and πh
′
(k) < πh

′
(j)

imply φk(I,H,R
2) = h′ and φj(I,H,R

2) = h(j). We now show that agents i and j by chang-

ing their preferences from (R̃i, R̃j) at R2 to (Ri, Rj) at R1 cause a violation of reallocation-
proofness.25

Consider agent i changing his preferences at R2 from R̃i to Ri. The resulting preference
profile R3 = (Ri, R̃j, R̃k) is the restriction of a maximal conflict preference profile for h′ to
I and H and Lemmata 1 and 2 together with πh

′
(k) < πh

′
(i) and πh

′
(k) < πh

′
(j) imply

φk(I,H,R
3) = h′ and φi(I,H,R

3) = φi(I,H,R
2) = h(i). Hence, agent i does not change his

allotment by unilaterally moving from R2 to R3.
Consider agent j changing his preferences at R2 from R̃j to Rj. The resulting preference

profile is R4 = (R̃i, Rj, R̃k). By individual-rationality, φi(I,H,R
4) = h(i). Hence, by

individual-rationality, φj(I,H,R
4) = h(j). Hence, agent j does not change his allotment by

unilaterally moving from R2 to R4.
Finally, consider both agents i and j changing their preferences at the same time, moving

from R2 to R1, and then swapping their allotments. Then, agent i receives the same allotment
φj(I,H,R

1) = h(i) = φi(I,H,R
2) while agent j is better off receiving φi(I,H,R

1) = h′ P̃j
h(j) = φj(I,H,R

2); a contradiction to reallocation-proofness.

Case 1.2. If φk(I,H,R) = h(i), then consider the reduced problem (I ′, H ′, RH′

I′ ) where agent
i leaves with his allotment h′, i.e., I ′ = {j, k} and H ′ ∪ {h0} = {h(i), h(j), h(k), h0}. By
consistency, φk(I

′, H ′, RH′

I′ ) = h(i). However, note that RH′

I′ is the restriction of a maximal
conflict preference profile for h(i) to I ′ and H ′. Hence, by Lemma 2, πh(i)(j) < πh(i)(k)
implies φj(I

′, H ′, RH′

I′ ) = h(i); a contradiction.

Case 2. φk(I,H,R) = h′. By individual-rationality, φi(I,H,R) = h(i), contradicting Pareto-
optimality (agents i and k would like to swap allotments).

Proof of Lemma 5 (Top Priority Adaptation). Suppose for the sake of contradiction
that there is a top priority violation at a vacant house for some problem. Let (I,H,R) be

25Note that this is the only step in our proofs that uses reallocation-proofness and we can see that for
this step to work, it would suffice to require reallocation-proofness only for pairs of agents that contain at
least one tenant.
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a smallest problem in terms of the number of agents such that the priority of a top ranked
agent at a vacant house is violated, i.e., such that there is an agent i ∈ I and a vacant house
h ∈ HV with πhI (1) = i but h Pi φi(I,H,R).

Let Rh
i ∈ R(i,H) be maximal conflict preferences for h restricted to H and define R0 :=

(Rh
i , R−i). Then, by strategy-proofness, agent i still does not receive house h when reporting

Rh
i . By Pareto-optimality, there is an agent j1 such that φj1(I,H,R

0) = h. Let Rh
j1
∈

R(j1, H) be maximal conflict preferences for h restricted to H and define R1 := (Rh
j1
, R0
−j1).

Then, by strategy-proofness, agent j1 still receives house h when reporting Rh
j1

. Thus,
φj1(I,H,R

1) = h. By individual-rationality, φi(I,H,R
1) = h(i).

Since (I,H,R) is a smallest problem with a top priority violation for a vacant house,
consistency implies that there are different agents j1, . . . , jK (possibly K = 1) such that
I = {i, j1, . . . , jK}, and φj1(I,H,R

1) = h, φj2(I,H,R
1) = h(j1) ∈ HO, φj3(I,H,R

1) =
h(j2) ∈ HO, . . . , φjK (I,H,R1) = h(jK−1) ∈ HO and either h(jK) = h0 or h(jK) ∈ HO (if
not, by consistency, we could reduce the problem and obtain a problem with fewer agents
and a top priority violation at a vacant house).

Case 1. K = 1 and I = {i, j1}. Recall that agents i and j1 have maximal conflict preferences
for h restricted to H, i.e., R1 is a maximal conflict preference profile for h restricted to I
and H. Hence, by Lemma 2, φi(I,H,R

1) = h; a contradiction.

Case 2. K > 1 and I = {i, j1, . . . , jK}. Let R
h(j1)
j2

∈ R(j2, H) be maximal conflict pref-

erences for h(j1) restricted to H and define R2 := (R
h(j1)
j2

, R1
−j2). By strategy-proofness,

φj2(I,H,R
2) = h(j1). This implies that φj1(I,H,R

2) = h (if not, then by individual-
rationality agent j1’s allotment would be his second best house h(j1), which is already
allocated to agent j2). By individual-rationality, φi(I,H,R

2) = h(i) (if agent i can-
not get his best house h, he must receive h(i)). By our assumption that (I,H,R) was
a minimal problem with a top priority violation at a vacant house and by consistency,
it now follows that {j3, . . . , jK} = {j′3, . . . , j′K} such that φj′3(I,H,R

2) = h(j2) ∈ HO,
φj′4(I,H,R

2) = h(j′3) ∈ HO, . . . , φj′K (I,H,R2) = h(j′K−1) ∈ HO and either h(j′K) = h0

or h(j′K) ∈ HO. To simplify notation, we will assume that for all k ∈ {3, . . . , K}, jk = j′k,
otherwise we can just rename agents.

Let R
h(j2)
j3

∈ R(j3, H) be maximal conflict preferences for h(j2) restricted to H and

define R3 := (R
h(j2)
j3

, R2
−j3). By strategy-proofness, φj3(I,H,R

3) = h(j2). This implies that
φj2(I,H,R

3) = h(j1) (if not, then by individual-rationality agent j2’s allotment would be
his second best house h(j2), which is already allocated to agent j3) and φj1(I,H,R

3) = h
(if not, then by individual-rationality agent j1’s allotment would be his second best house
h(j1), which is already allocated to agent j2). By individual-rationality, φi(I,H,R

3) = h(i)
(if agent i cannot get his best house h, he must receive h(i)). By our assumption that
(I,H,R) was a minimal problem with a top priority violation at a vacant house and by
consistency, it now follows that {j4, . . . , jK} = {j′4, . . . , j′K} such that φj′4(I,H,R

3) = h(j3) ∈
HO, φj′5(I,H,R

3) = h(j′4) ∈ HO, . . . , φj′K (I,H,R3) = h(j′K−1) ∈ HO and either h(j′K) = h0

or h(j′K) ∈ HO. To simplify notation, we will assume that for all k ∈ {4, . . . , K}, jk = j′k,
otherwise we can just rename agents.

We continue to replace the preferences of agents j4, . . . , jK with maximal conflict pref-
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erences (and renaming agents if necessary) until we reach a preference profile RK with

RK
i = Rh

i , RK
j1

= Rh
j1

, RK
j2

= R
h(j1)
j2

, . . . , RK
jK

= R
h(jK−1)
jK

, and φi(I,H,R
K) = h(i),

φj1(I,H,R
K) = h, φj2(I,H,R

K) = h(j1), φj3(I,H,R
K) = h(j2), . . . , φjK (I,H,RK) =

h(jK−1) and either h(jK) = h0 or h(jK) ∈ HO.

Next, consider R̂i that is obtained from RK
i = Rh

i by moving h(j1) between the best
house h and the second best house h(i), i.e.,

R̂i : h P̂i h(j1) P̂i h(i) R̂i h0 P̂i . . . .

By strategy-proofness, φi(I,H, (R̂i, R
K
−i)) 6= h and by individual-rationality,

φi(I,H, (R̂i, R
K
−i)) ∈ {h(i), h(j1)}.

If φi(I,H, (R̂i, R
K
−i)) = h(j1), then by individual-rationality and Pareto-optimality,

φj1(I,H, (R̂i, R
K
−i)) = h, φj2(I,H, (R̂i, R

K
−i)) = h(j2), φj3(I,H, (R̂i, R

K
−i)) = h(j3), . . . ,

φjK (I,H, (R̂i, R
K
−i)) = h(jK). Now, consider the reduced problem where agents j2, . . . , jK

leave with their allotments that are the houses they occupy, i.e., Î = {i, j1} and Ĥ =

H \ {h(j2), . . . , h(jK)}. By consistency, h P̂i φi(Î , Ĥ, (R̂i, R
K
−i)

Ĥ
Î

) = h(j1). But then that
reduced problem is a problem with fewer agents than problem (I,H,R) with a top priority
violation at a vacant house; a contradiction.

Hence, φi(I,H, (R̂i, R
K
−i)) = h(i) and by individual-rationality and Pareto-optimality,

φj1(I,H, (R̂i, R
K
−i)) = h. Since agent j1 owns house h(j1), πh(j1)(j1) < πh(j1)(i) and for each

2 ≤ k ≤ K, πh(j1)(j1) < πh(j1)(jk). If πh(j1)(j1) < πh(j1)(jk) < πh(j1)(i), then by acyclicity
(Lemmata 3 and 4) πh(j1) < πh(i) or πh(jk) < πh(i); contradicting that agent i has the top
priority for house h, i.e., πh(i) < πh(j1) and πh(i) < πh(jk). Hence, πh(j1)(j1) < πh(j1)(i) <
πh(j1)(jk) and agent i has the second highest priority for h(j1) (after agent j1 who has the
highest priority).

Now, consider the reduced problem where agents j1 leaves with his allotment house
h, i.e., Ĩ = I \ {j1} and H̃ = H \ {h} (note that now h(j1) ∈ H̃V ). By consistency,

φj2(Ĩ , H̃,
(
R̂i, R

K
−i

)H̃
Ĩ

) = h(j1). Furthermore, agent i now has the top priority for h(j1).

However, this is now a problem with fewer agents than problem (I,H,R) with a top priority
violation at a vacant house.

C Proofs of Section 4.2 Lemmata

Throughout this section we use that strategy-proofness and non-bossiness is equivalent to
group strategy-proofness.

Proof of Lemma 6 (Broker* Lemma). Let i, j, k ∈ I be three different agents and as-
sume that house h ∈ H is not owned by any of them, i.e., h 6∈ {h(i), h(j), h(k)}. We show
that if i ∈ IT , πh(i)(i) < πh(i)(j) < πh(i)(k), and πh(k) < πh(i), πh(j), then under rule φ,
agent j brokers* house h at each pair (I,H) with I = {i, j, k} and h ∈ H.
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Let I = {i, j, k}, H ⊆ H with {h, h(i), h(j), h(k)} ⊆ H ∪ {h0}, and R ∈ R(I,H) such
that each agent ranks h top. We show that φj(I,H,R) is j’s second ranked house.

Step 1. Let preferences R′ ∈ R(I,H) be such that

• R′i : h P ′i h(i) P ′i . . .,

• R′j : h P ′j h(i) P ′j h(j) P ′j . . .,

• R′k : h P ′k . . ..

We show that agent j gets his second best house, φj(I,H,R
′) = h(i).

Suppose not. Then, by individual rationality, [φi(I,H,R
′) = h or φi(I,H,R

′) = h(i)]
and φj(I,H,R

′) ∈ {h, h(j)}. More precisely, by Pareto-optimality, either [φi(I,H,R
′) = h,

φj(I,H,R
′) = h(j), and φk(I,H,R

′) = h(i)] or φi(I,H,R
′) = h(i).

In the first case, consider the reduced problem (I0, H0, R0) of (I,H,R′) where agent
i leaves with his allotment h, i.e., I0 = {j, k}, H0 := H \ {h} (with h(i) ∈ H0

V ), and
R0 = R′H0

I0
. By consistency, we have φj(I

0, H0, R0) = h(j) and φk(I
0, H0, R0) = h(i). Note

that for maximal conflict preferences R
h(i)
k ∈ R(k,H0) restricted to H0, preference profile

(R0
j , R

h(i)
k ) is a maximal conflict preference profile for h(i) restricted to I0 and H0. By

strategy-proofness, φk(I
0, H0, (R0

j , R
h(i)
k )) = h(i). However, πh(i)(j) < πh(i)(k). Thus, by

Lemma 2, we have a contradiction.
In the second case, φi(I,H,R

′) = h(i), we have either φj(I,H,R
′) = h or φk(I,H,R

′) =
h. If φj(I,H,R

′) = h, consider the reduced problem (I1, H1, R1) of (I,H,R′) where agent
i leaves with his allotment h(i), i.e., I1 = {j, k}, H1 := H \ {h(i)}, and R1 = R′H1

I1
.

By consistency, we have φj(I
1, H1, R1) = h and h P 1

k φk(I
1, H1, R1). Note that for

maximal conflict preferences Rh
k ∈ R(k,H1) restricted to H1, preference profile (R1

j , R
h
k)

is a maximal conflict preference profile for h restricted to I1 and H1. By strategy-
proofness, h P h

k φk(I
1, H1, (R1

j , R
h
k)). By Pareto-optimality, φj(I

1, H1, Rh) = h. However,
πh(k) < πh(j). Thus, by Lemma 2, we have a contradiction.

Thus, we may assume that φk(I,H,R
′) = h. Now, suppose that agent k changes his

preferences from R′k to R2
k ∈ R(k,H) such that

• R2
k : h(i) P 2

k h P
2
k h(k) P 2

k . . ..

Consider the problem (I,H,R2) with R2 = (R′i, R
′
j, R

2
k). As h = φk(I,H,R

′) P ′k
h(k), strategy-proofness implies that φk(I,H,R

2) ∈ {h, h(i)}. By individual-rationality,
φi(I,H,R

2) ∈ {h, h(i)}. Hence, by Pareto-optimality, φi(I,H,R
2) = h and φk(I,H,R

2) =
h(i). Then, by individual-rationality, φj(I,H,R

2) = h(j). Consider the reduced prob-
lem (I3, H3, R3) of (I,H,R2) where agent i leaves with his allotment h, i.e., I3 = {j, k},
H3 = H \ {h} (with h(i) ∈ H3

V ), and R3 = (R2)H
3

I3 . By consistency, φk(I
3, H3, R3) = h(i)

and φj(I
3, H3, R3) = h(j). Note however that R3 is a maximal conflict preference profile for

h(i) (restricted to I3 and H3) and that πh(i)(j) < πh(i)(k). Thus, by Lemma 2, we have a
contradiction.

We have now shown that φj(I,H,R
′) = h(i). By individual-rationality, φi(I,H,R

′) = h.

Step 2. Let preferences R′′ ∈ R(I,H) be such that all three agents rank h top and agent j
ranks h(i) second. By group strategy-proofness (for i and j), the result that φi(I,H,R

′) = h
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and φj(I,H,R
′) = h(i) for a profile R′ as in Step 1 implies that φi(I,H,R

′′) = h and
φj(I,H,R

′′) = h(i).

Step 3. Next we consider the general case of a profile R ∈ R(I,H) at which all three agents
rank h top, but agent j does not necessarily rank h(i) second.

If φj(I,H,R) = h, then by strategy-proofness agent j would also obtain h if Rj is replaced
by a profile R′′j where j ranks h top and h(i) second; this would contradict Step 2 which shows
that j then obtains h(i). Hence, φj(I,H,R) 6= h and Pareto-optimality implies that either
φj(I,H,R) is j’s second ranked or third ranked house. Suppose, for the sake of contradiction,
φj(I,H,R) is j’s third ranked house and denote by h′ ∈ H \ {h} his second ranked house
(note that h′ 6= h(i) by Step 2).

First, consider preferencesRj ∈ R(j,H) such that

Rj : hP j h(i)P j . . . .

Then, by Step 2, φi(I,H, (Ri,Rj, Rk)) = h and φj(I,H, (Ri,Rj, Rk)) = h(i).

Second, consider preferences R̃j ∈ R(j,H) such that

R̃j : h P̃j h
′ P̃j h(i) P̃j h(j) P̃j . . . .

By strategy-proofness, φj(I,H, (Ri, R̃j, Rk)) /∈ {h, h′}. Moreover, by strategy-proofness,

φj(I,H, (Ri, R̃j, Rk)) = h(i), since otherwise j could change preferences from R̃j toRj and

obtain h(i). As φj(I,H, (Ri, R̃j, Rk)) = h(i) = φj(I,H, (Ri,Rj, Rk)), non-bossiness implies

φi(I,H, (Ri, R̃j, Rk)) = h = φi(I,H, (Ri,Rj, Rk)).

Next, for maximal conflict preferences R̃i = Rh
i ∈ R(i,H) restricted to H, by group

strategy-proofness (for i and j), we have φ(I,H, (R̃i, R̃j, Rk)) = φ(I,H, (Ri, R̃j, Rk)).

Now, consider preferences R̂j ∈ R(j,H) such that

R̂j : h P̂j h
′ P̂j h(j) P̂j . . . .

By individual-rationality and strategy-proofness, φj(I,H, (R̃i, R̂j, Rk)) = h(j). By

individual-rationality φi(I,H, (R̃i, R̂j, Rk)) 6= h′ and therefore by Pareto-optimality,

φi(I,H, (R̃i, R̂j, Rk)) = h and φk(I,H, (R̃i, R̂j, Rk)) = h′. Consider the reduced problem

(I4, H4, R4) of (I,H, (R̃i, R̂j, Rk)) where agent j leaves with his allotment h(j). By con-
sistency, φi(I

4, H4, R4) = h and φk(I
4, H4, R4) = h′. Recall that R4

i are maximal con-
flict preferences for h restricted to H4. Hence, for each maximal conflict preference profile
Rh ∈ R(I4, H4) for h restricted to I4 and H4, by Pareto-optimality and strategy-proofness,
we then have φi(I

4, H4, Rh) = h and h P 4
k φk(I

4, H4, Rh). However, πh(k) < πh(i). Thus, by
Lemma 2, we have a contradiction.

Proof of Lemma 7. Let i, j, k ∈ I be three different agents and assume that house h ∈ H
is not owned by any of them, i.e., h 6∈ {h(i), h(j), h(k)}. We show that if i ∈ IT , πh(i)(i) <
πh(i)(j) < πh(i)(k), and πh(k) < πh(i), πh(j), then πh(k) < πh(i) < πh(j) and j ∈ IA.

First, by means of contradiction, assume that πh(j) < πh(i). Consider the problem
(I,H,R) with I = {i, j, k}, HV := {h}, and R ∈ R(I,H) such that
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• Ri : h Pi h(i) Pi . . .,

• Rj : h Pj h(i) Pj h(j) Pj . . .,

• Rk : h Pk h(k) Pk . . ..

By Lemma 6, under rule φ, agent j brokers* house h at pair (I,H) and hence φj(I,H,R) =
h(i). Then, by individual rationality, we have φi(I,H,R) = h and φk(I,H,R) = h(k).

Consider the reduced problem (I1, H1, R1) of (I,H,R) where agent k leaves with his
allotment h(k). By consistency, we have φi(I

1, H1, R1) = h and φj(I
1, H1, R1) = h(i).

Note that for maximal conflict preferences Rh
j ∈ R(j,H1) for h restricted to H1, prefer-

ence profile (R1
i , R

h
j ) is a maximal conflict preference profile for h restricted to I1 and H1. By

strategy-proofness, hP h
j φj(I

1, H1, (R1
i , R

h
j )). By Pareto-optimality, φi(I

1, H1, (R1
i , R

h
j )) = h.

However, πh(j) < πh(i). Thus, by Lemma 2, we have a contradiction. Hence, we have
πh(i) < πh(j).

Next we show that agent j is an applicant. Suppose not. Then, j is a tenant and
h(j) 6= h0. Consider the problem (I,H, R̃) with I = {i, j, k}, HV := {h}, and R̃ ∈ R(I,H)
such that

• R̃i : h P̃i h(i) P̃i . . .,

• R̃j : h P̃j h(j) P̃j . . .,

• R̃k : h P̃k h(j) P̃k h(k) P̃k . . ..

By Lemma 6, under rule φ, agent j brokers* house h at pair (I,H) and hence φj(I,H, R̃) =

h(j). Consider the reduced problem (I2, H2, R2) of (I,H, R̃) where agent j leaves with his
allotment h(j). Note that R2 is a maximal conflict preference profile for h restricted to I2

and H2. As πh(k) < πh(i), Lemma 2 implies that φk(I
2, H2, R2) = h. Thus, by consistency,

φk(I,H, R̃) = h and by individual-rationality, φi(I,H, R̃) = h(i).
Now consider R′ ∈ R(I,H) with

• R′i = R̃i : h P̃i h(i) P̃i . . .,

• R′j = R̃j : h P̃j h(j) P̃j . . .,

• R′k : h(j) P ′k h P
′
k h(k) P ′k . . ..

By strategy-proofness, φk(I,H,R
′) ∈ {h, h(j)}. If φk(I,H,R

′) = h, then by individual-

rationality, φ(I,H, R̃) = φ(I,H,R′), contradicting Pareto-optimality. Hence, φk(I,H,R
′) =

h(j) and by individual-rationality, φi(I,H,R
′) = h(i) and φj(I,H,R

′) = h.

Now consider R̂ ∈ R(I,H) with

• R̂i = R′i = R̃i : h P̃i h(i) P̃i . . .,

• R̂j : h P̂j h(i) P̂j h(j) P̂j . . .,

• R̂k : h P̂k h(j) P̂k h(k) P̂k . . ..

By Lemma 6, under rule φ, agent j brokers* house h at pair (I,H) and hence φj(I,H, R̂) =

h(i). By individual-rationality and Pareto-optimality this implies φi(I,H, R̂) = h and
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φk(I,H, R̂) = h(j). However, since moving from preference profile R̂ to R′ we have

φj(I,H,R
′) = h P̂j h(i) = φj(I,H, R̂) and φk(I,H,R

′) = h(j) = φk(I,H, R̂), we have a
violation of group strategy-proofness.

Proof of Lemma 8 (Acyclicity for Occupied Houses, Non-Bossiness Version).
Let i, j, k ∈ I be three different agents and assume that house h(i) ∈ H is occupied by agent
i and house h′ ∈ H is not owned by any of the three agents, i.e., h′ 6∈ {h(i), h(j), h(k)}.
Thus, [|H| = 3 and |IT | ≤ 1] or |H| ≥ 4 (since i ∈ IT , we cannot have [|H| = 2 and IT = ∅]).
We show that πh(i)(i) < πh(i)(j) < πh(i)(k) implies [πh

′
(i) < πh

′
(k) or πh

′
(j) < πh

′
(k)].

Assume for the sake of contradiction that πh(i)(i) < πh(i)(j) < πh(i)(k), πh
′
(k) < πh

′
(i),

and πh
′
(k) < πh

′
(j). As [|H| = 3 and |IT | ≤ 1] or |H| ≥ 4, there is a house h 6∈

{h(i), h(k), h′}. By Lemma 6, j is a broker* of h′ at (I,H). By Lemma 7 applied to
houses h(i) and h′, we have πh

′
(k) < πh

′
(i) < πh

′
(j) and j is an applicant, in particular, j

does not own h.
By Lemma 3 applied to houses h and h′, we have πh(k) < πh(j) or πh(i) < πh(j). In the

first case, if we have πh(k) < πh(i), then Lemma 7 applied to houses h(i) and h would imply
πh(k) < πh(i) < πh(j) and if we have πh(i) < πh(k), then πh(i) < πh(j). Hence, we may
assume that πh(i) < πh(j).

Consider the problem (I,H,R) with I = {i, j, k}, H ∪ {h0} = {h, h′, h(i), h(j), h(k), h0},
and preferences are such that

• Ri : h′ Pi h(i) Pi . . .,

• Rj : h Pj h(i) Pj h(j) Pj . . .,

• Rk : h′ Pk h(k) Pk . . ..

By Pareto-optimality we have φj(I,H,R) = h and either φi(I,H,R) = h′ or φk(I,H,R) =
h′. Consider the reduced problem (I ′, H ′, R′) of (I,H,R) where agent j leaves with his
allotment h, i.e., I ′ = {i, k}, H ′ = H \ {h}, and R′ = RH′

I′ . Note that R′ is a maximal
conflict preference profile for h′ (restricted to I ′ and H ′) and that πh

′
(k) < πh

′
(i). Thus,

Lemma 2 implies that φk(I
′, H ′, R′) = h′. Hence, consistency implies φk(I,H,R) = h′ and

φi(I,H,R) = h(i).
Consider the profile R1 = (R1

i , Rj, Rk) such that

• R1
i : h′ P 1

i h P
1
i h(i) P 1

i . . . .

By strategy-proofness and individual-rationality we have φi(I,H,R
1) ∈ {h(i), h}.

First, consider the case that φi(I,H,R
1) = h(i). By Pareto-optimality, we have

φj(I,H,R
1) = h and φk(I,H,R

1) = h′. Consider the reduced problem (I2, H2, R2) of
(I,H,R1) where agent k leaves with his allotment h′, i.e., I ′ = {i, j}, H2 = H \ {h′}. By
consistency, we have φj(I

2, H2, R2) = h and φi(I
2, H2, R2) = h(i). Note that at preference

profile R2, agent i has maximal conflict preferences for h restricted to H2. So, when we
consider a maximal conflict preference profile Rh ∈ R(I2, H2) for h restricted to I2 and
H2, only agent j changes his preferences from R2

j to Rh
j . Then, by strategy-proofness, we

also have φj(I
2, H2, Rh) = h and φi(I

2, H2, Rh) = h(i). However, as πh(i) < πh(j), this
contradicts Lemma 2.
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Next, consider the case that φi(I,H,R
1) = h. Then, by Pareto-optimality, we have

φj(I,H,R
1) = h(i). Now consider preference profile R3 ∈ R(I,H) such that

• R3
i : h′ Pi h(i) Pi . . .,

• R3
j : h′ Pj h(i) Pj h(j) Pj . . .,

• R3
k = Rk : h′ Pk h(k) Pk . . ..

By Lemma 6, under rule φ, agent j brokers* house h′ at pair (I,H). Hence, φj(I,H,R
3) =

h(i). Then, by individual-rationality, φi(I,H,R
3) = h′. However, φi(I,H,R

3) = h′ P 1
i

h = φi(I,H,R
1) and φj(I,H,R

3) = h(i) = φj(I,H,R
1), a violation of group strategy-

proofness.

D Independence of Properties in Theorems 2 and 3

For each of the examples introduced to establish independence below we indicate the property
of Theorem 2 or 3 it fails (while it satisfies all remaining properties).

Pareto-Optimality. The null rule φ0 assigns to each tenant his occupied house and to
each applicant the null house. Hence, for each problem (I,H,R) and each agent i ∈ I,
φ0
i (I,H,R) = h(i). The null rule φ0 satisfies individual-rationality, strategy-proofness, non-

bossiness, reallocation-proofness, and consistency, but it violates Pareto-optimality.

Individual Rationality (for Tenants). Let π be a priority structure such that for any
h, h′ ∈ H, πh = πh

′
, i.e., every house has the same priority ordering or serial dictatorship or-

dering. The serial dictatorship rule ϕπ now works as follows. For each problem (I,H,R),
the highest serial dictatorship priority agent in I, let’s say agent i, is assigned his best house
in H ∪ {h0}, the highest serial dictatorship priority agent in I \ {i}, let’s say agent j, is
assigned his best house in (H \ {ϕπi (I,H,R)}) ∪ {h0}, and so on. The serial dictatorship
rule ϕπ satisfies Pareto-optimality, strategy-proofness, non-bossiness, reallocation-proofness,
and consistency, but it violates individual-rationality for tenants since the serial dictatorship
priority structure is not adapted to the ownership structure.

Strategy-Proofness. Let π be a priority structure such that for any h, h′ ∈ H, πh = πh
′
,

i.e., every house has the same priority ordering or serial dictatorship ordering. Furthermore
assume that all tenants have higher priority than all applicants, i.e., for each house h ∈ H,
each tenant i ∈ IT , and each applicant j ∈ IA, πh(i) < πh(j). Let π̂ denote the priority
structure obtained from π by adapting it to the ownership structure. Note that at π̂, again,
all tenants have higher priority for all houses than all applicants and π̂ is acyclic.

We define rule φ̂ as follows. For each problem (I,H,R), we first consider the problem
consisting of tenants and all houses, i.e., we consider the problem (IT , H,RIT ), and we apply
the TTC rule ϕπ̂, i.e.,

for each i ∈ IT , φ̂i(I,H,R) = ϕπ̂i (IT , H,RIT ).
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Since the TTC rule ϕπ̂ is used, we have Pareto-optimality, individual-rationality, strategy-
proofness, non-bossiness, reallocation-proofness, and consistency among tenants.

Next, we apply the immediate acceptance algorithm to determine the matching for the

remaining reduced problem (I \ IT , H \ Ĥ, RH\Ĥ
I\IT ) where Ĥ = φ̂IT (I,H,R).

Immediate Acceptance Algorithm

Step 1: Each applicant applies to his favorite house in
(
H \ Ĥ

)
∪ {h0}. Each house in

H \Ĥ accepts the highest priority applicant and rejects all others. The null house h0 accepts
all applicants.

Step r ≥ 2: Each applicant who was rejected at Step r− 1 applies to his favorite house in(
H \ Ĥ

)
∪{h0} that did not reject him yet. Each house in H \ Ĥ not assigned in a previous

step accepts the highest priority applicant and rejects all others. Each house in H \ Ĥ
that was assigned in a previous step rejects all applicants and the null house h0 accepts all
applicants.

The algorithm terminates when each applicant in I \ IT is accepted by a house in(
H \ Ĥ

)
∪ {h0}. The matching where each agent is assigned the house that he was ac-

cepted by at the end of the algorithm is called the immediate acceptance matching and

denoted by IAπ̂(I \ IT , H \ Ĥ, RH\Ĥ
I\IT ). Hence,

for each i ∈ IA, φ̂i(I,H,R) = IAπ̂(I \ IT , H \ Ĥ, RH\Ĥ
I\IT ).

Any immediate acceptance rule is Pareto-optimal, individually-rational, non-bossy, and
consistent (Doğan and Klaus, 2018; Kojima and Ünver, 2014). Hence, we have Pareto-
optimality, individual-rationality, non-bossiness, and consistency among applicants. Since
the underlying priority structure for the immediate acceptance algorithm used here is a se-
rial dictatorship ordering, it is easy to see that we also have reallocation-proofness among
applicants.

Given the sequentiality of rule φ̂, first using rule ϕπ̂ for tenants and then rule IAπ̂ for ap-
plicants, it follows that φ̂ satisfies Pareto-optimality, individual-rationality, non-bossiness,
reallocation-proofness, and consistency. However, it is well-known that immediate accep-
tance rules are not strategy-proof. Hence, rule φ̂ is not strategy-proof.

Consistency. By Proposition 1, a TTC rule based on a cyclic priority structure that
is adapted to the ownership structure satisfies individual rationality, Pareto-optimality,
strategy-proofness, non-bossiness, and reallocation-proofness. By Theorem 1 it violates con-
sistency.

Reallocation-Proofness/Non-Bossiness. Example 6.
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E Trading Cycles with One Broker and One Vacant

House

In Theorem 3 we require that |H| ≥ 4, or [|H| = 3 and |IT | ≤ 1], or [|H| = 2 and IT = ∅].
A violation of the requirements implies that (i) [|H| = 3 and |IT | = 3], or (ii) [|H| = 3 and
|IT | = 2], or (iii) [|H| = 2 and |IT | = 2], or (iv) [|H| = 2 and |IT | = 1].

We now show that in all four cases, we may have additional rules that are Pareto-optimal,
individually-rational, group-strategy-proof, and consistent.26 They can be formulated as
Trading Cycles with One Broker (TC-OB) rules that are similar to the TC rules introduced
by Pycia and Ünver (2017, Appendix F) but adjusted to our model with the assumptions of
one broker and that agents can rank the null house arbitrarily (in Pycia and Ünver, 2017,
Appendix F, all houses are acceptable, but for some situations multiple brokers are allowed).

The TC-OB algorithm uses as input a structure of control rights, i.e., a family of
mappings c(I,H) : H → I ×{brokerage, ownership} for each pair (I,H). For agent i ∈ I with
c(I,H)(h) = (i, brokerage) we call i the broker of house h at pair (I,H). For agent i ∈ I with
c(I,H)(h) = (i, ownership) we call i the owner of house h at pair (I,H). If agent i either
brokers or owns h at (I,H), then i controls house h at pair (I,H). We assume that c is
such that for each (I,H) there is at most one broker.

Similarly, as in the TTC algorithm the TC-OB algorithm matches agents in a “cycle”
according to a prescribed set of rules. For a problem (I,H,R) and a structure of control
rights c with one broker, we construct a directed graph where each agent points to his most
preferred house, each house points to the agent who controls it, and the null house points to
each agent. A cycle in the directed graph is simple if one of the agents in the cycle owns
the house pointing to him or if an agent points to the null house.

For each problem (I,H,R) and each structure of control rights c with one broker, the
trading cycles with one broker (TC-OB) algorithm based on c is defined as follows:

Input. A problem (I,H,R) and a structure of control rights c with one broker.

Step 1. Let I1 := I and H1 := H. Each agent i ∈ I1 points to his most preferred house in
H1 ∪{h0}. Each house h ∈ H1 points to the agent in I1 who controls it according to c(I1,H1).
The null house h0 points to each agent in I1.

• Step 1(A). Matching Simple Trading Cycles. We assign to each agent in a simple
trading cycle the house he points to and remove all simple trading cycle agents and
houses (except the null house).

• Step 1(B). Forcing the Broker to Downgrade His Pointing. If there are no
simple trading cycles in Step 1(A), and only then, the algorithm works as follows
(otherwise we go to Step 2).

26If |I| = 3, then in cases (i) and (iii) non-bossiness is not needed in the characterization (because
acyclicity for occupied houses is vacuously satisfied). Hence, for Cases (i) and (iii) we additionally have to
have at least four possible agents.
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– If the broker is the only agent pointing at the brokered house, then he receives it
and we remove both.

– Otherwise, we force the broker to point to his next best house and return to
Step 1(A).

We define I2 to be the set of remaining agents and H2 to be the set of remaining houses and,
if I2 6= ∅, continue with Step 2. Otherwise we stop.

In general at Step t we have the following:

Step t. Each agent i ∈ It points to his most preferred house in Ht ∪ {h0}. Each house
h ∈ Ht points to the agent in It who controls it according to c(It,Ht). The null house h0

points to each agent in It.

• Step t(A). Matching Simple Trading Cycles. We assign to each agent in a simple
trading cycle the house he points to and remove all simple trading cycle agents and
houses (except the null house).

• Step t(B). Forcing the Broker to Downgrade His Pointing. If there are no
simple trading cycles in Step t(A), and only then, the algorithm works as follows
(otherwise we go to Step t+ 1).

– If the broker is the only agent pointing at the brokered house, then he receives it
and we remove both.

– Otherwise, we force the broker to point to his next best house and return to
Step t(A).

We define It+1 to be the set of remaining agents and Ht+1 to be the set of remaining houses
and, if It+1 6= ∅, continue with Step t+ 1. Otherwise we stop.

Output. The TC-OB algorithm terminates when all agents in I are assigned a house in
H∪{h0}. We denote the house in H∪{h0} that agent i ∈ I obtains in the TC-OB algorithm
by φci(I,H,R).

The TC-OB rule based on the structure of control rights c, φc, associates with
each problem (I,H,R) the matching determined by the TC-OB algorithm. Note that our
definition of the TC-OB algorithm slightly differs from that of Pycia and Ünver (2017,
Appendix F) because we accommodated arbitrary rankings of the null house and in Step t(B)
force the broker to downgrade his pointing when another agent points to the brokered house
and not just an owner. We now give examples of TC-OB rules that are Pareto-optimal,
individually-rational, strategy-proof, non-bossy, and consistent for each of our cases.

Example 7 (Case (i)). Consider I = {i, j, k, `}, IT = {i, k, `}, and H = {h(i), h(k), h(`)}.
Define the structure of control rights c with one broker as follows. For each pair (I,H) with
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|I| > 1 we let

c(I,H)(h(i)) =


(i, ownership) if i ∈ I,
(`, ownership) if i /∈ I, ` ∈ I,
(j, ownership) if i, ` /∈ I, j ∈ I,
(k, ownership) else,

c(I,H)(h(k)) =


(k, ownership) if k ∈ I,
(`, ownership) if k /∈ I, ` ∈ I,
(j, ownership) if k, ` /∈ I, j ∈ I,
(i, ownership) else,

and

c(I,H)(h(`)) =


(`, ownership) if ` ∈ I,
(j, brokerage) if I = {i, j, k},
(k, ownership) if I = {i, k} or I = {j, k},
(i, ownership) else.

Note that according to c, agents i, k, and ` have ownership rights over their endowments
in each problems where they are present. Hence, φc is individually-rational. Note that c
satisfies requirements (R1)-(R6) given in Pycia and Ünver (2017). Thus, similarly as in Pycia
and Ünver (2017, Theorem 8 in Appendix F) it follows that φc satisfies Pareto-optimality,
strategy-proofness, and non-bossiness.

Next we show that φc is consistent. It suffices to consider the case of a problem (I,H,R)
with I = {i, j, k} and H = H and a reduced problem (I ′, H ′, R′) obtained from (I,H,R)
by removing one agent with his allotment (all other cases are easy to check, since in these
cases the rule behaves like a TTC rule with acyclic priorities). Let µ = φc(I,H,R) and
µ′ = φc(I ′, H ′, R′).

We distinguish between four cases:

1. according to Ri, agent i ranks h(i) top,

2. according to Rk, agent k ranks h(k) top,

3. according to R, agent i ranks h(k) top and agent k ranks h(i) top,

4. according to R, agent i or agent k or both rank h(`) top.

Case 1. In this case, we have µ(i) = h(i) and in case that i ∈ I ′ we have µ′(i) = h(i). Thus,
for I ′ = {i, j} and I ′ = {i, k}, Pareto-optimality implies that agent j, or respectively agent
k, obtains the same allotment as before. It remains to consider the case that I ′ = {j, k} and
H ′ = {h(k), h(`)}. Moreover, it suffices to consider the case that j ranks h(`) above h(k) and
h0 and k ranks h(`) above h(k), because otherwise consistency follows by Pareto-optimality
and individual-rationality.

Then, in the TC-OB algorithm for (I,H,R), first a simple trading cycle with i and h(i)
forms (µ(i) = h(i)). Next, k points to h(`) and since I2 = {j, k}, h(`) points to k, and a
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simple trading cycle [k, h(`)] forms. Hence, k is assigned h(`) and j is either assigned h(k) or
h0, depending on which of the two he prefers (µ(k) = h(`) and µ(j) ∈ {h(k), h0}). In the TC-
OB algorithm for the reduced problem (I ′, H ′, R′), both j and k point to h(`) and similarly
as before both agents obtain the same allotments (µ′(k) = h(`) and µ′(j) ∈ {h(k), h0}).
Case 2. This case can be handled with a completely analogous argument to Case 1 by
switching the roles of agents i and k.

Case 3. In this case, in the TC-OB algorithm for (I,H,R), first the simple trading cycle
[i, h(k), k, h(i)] forms and hence we have µ(i) = h(k) and µ(k) = h(i). Thus, in the reduced
problem with I ′ = {i, k} and H ′ = {h(i), h(k)}, by Pareto-optimality both agents obtain
the same allotments (µ′(i) = h(k) and µ′(k) = h(i)).

Case 4. We consider the following subcases:

(a) according to Rj, j ranks h(i) above h(k) and h0,

(b) according to Rj, j ranks h(k) above h(i) and h0,

(c) according to Rj, j ranks h0 above h(i) and h(k).

Case 4(a). In this case, in the TC-OB algorithm for (I,H,R), either broker j points to
h(i), or j points to h(`) and, as agent i or agent k ranks h(`) top, is forced to downgrade
his pointing and points to h(i) afterwards. In either case, we have µ(j) = h(i). Thus, in
the reduced problem, we either have I ′ = {i, j} and H ′ = {h(i), h(`)} or I ′ = {j, k} and
H ′ = {h(i), h(k)}.

If I ′ = {i, j} and H ′ = {h(i), h(`)}, then in the TC-OB algorithm for (I ′, H ′, R′) agent i
points to h(`) and, since he has ownership according to c for (I ′, H ′), obtains h(`). Hence,
in this case both i and j obtain the same allotments.

If I ′ = {j, k} and H ′ = {h(i), h(k)}, then in the TC-OB algorithm for (I ′, H ′, R′) agent
j points to h(i), and since he has ownership according to c for (I ′, H ′), obtains h(i). Hence,
in this case both j and k obtain the same allotments.

Case 4(b). This case can be handled with a completely analogous argument to Case 4(a) by
switching the roles of agents i and k.

Case 4(c). In this case, in the TC-OB algorithm for (I,H,R), either broker j points to h0,
or j points to h(`) and, as agent i or agent k ranks h(`) top, is forced to downgrade his
pointing and points to h0 afterwards. Thus, j and h0 form a simple trading cycle. After this
cycle is resolved (µ(j) = h0), h(`) points to k. We consider two cases, (i) according to Rk,
agent k ranks h(`) top and we have µ(k) = h(`), or (ii) according to Rk, agent k ranks h(i)
top and we have µ(i) = h(`) and µ(k) = h(i).

Case 4(ci). According to Rk, agent k ranks h(`) top and we have µ(k) = h(`). We consider
the cases I ′ = {i, j} and H ′ = {h(i), h(k)}, I ′ = {i, k} and H ′ = {h(i), h(k), h(`)}, and
I ′ = {j, k} and H ′ = {h(k), h(`)}.

If I ′ = {i, j}, by Pareto-optimality we have µ′(j) = h0 and i obtains his favorite house
among h(i) and h(k), which is also his allotment under µ.

If I ′ = {i, k}, then k owns h(`) according to c at (I ′, H ′) and thus µ′(k) = h(`) and i
obtains his favorite house among h(i) and h(k), which is also his allotment under µ.
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If I ′ = {j, k}, then k owns h(`) at (I ′, H ′) and thus µ′(k) = h(`) and j obtains h0 which
is also his allotment under µ.

Case 4(cii). According to Rk, agent k ranks h(i) top and we have µ(i) = h(`) and µ(k) =
h(i). We consider the cases I ′ = {i, k} and H ′ = {h(i), h(k), h(`)} and I ′ = {j, k} and
H ′ = {h(i), h(k)}.

If I ′ = {i, k}, then by Pareto-optimality we have µ′(i) = h(`) = µ(i) and µ′(k) = h(i) =
µ(k).

If I ′ = {j, k}, then by Pareto-optimality we have µ′(j) = h0 = µ(j) and µ′(k) = h(i) =
µ(k).

Example 8 (Case (ii)). Consider I ′ = {i, j, k}, I ′T = {i, k}, and H′ = {h(i), h(k), h}. We
use the structure of control rights c and the TC-OB rule φc from Example 7 to construct a rule
φ′ as follows. For any problem (I,H,R) with I ⊆ I ′, H ⊆ H′ we let φ′(I,H,R) = φc(I,H,R)
with the interpretation that h = h(`). Individual-rationality, Pareto-optimality, group-
strategy-proofness, and consistency of φ′ follows from the previous analysis of Example 7.

Example 9 (Case (iii)). Consider I ′ = {i, j, k, `}, I ′T = {i, `}, and H′ = {h(i), h(`)}. We
use the structure of control rights c and the TC-OB rule φc from Example 7 to construct a
rule φ′ as follows. Recall that I = {i, j, k, `}, IT = {i, k, `}, and H = {h(i), h(k), h(`)}.

First, we map any problem (I ′, H ′, R′) ∈ I ′ ×H′ ×R(I ′, H ′) into a problem (I,H,R) ∈
I ×H×R(I,H) such that I = I ′, H = H ′ ∪ {h(k)}, and R is such that RH′ = R′, agents i
and j and ` rank h(k) last, and agent k ranks h(k) just above the null house.

Second, we define rule φ′ such that for each problem (I ′, H ′, R′) ∈ I ′ × H′ × R(I ′, H ′),
φ′(I ′, H ′, R′) = φc(I,H,R) with the modification that whenever at φc(I,H,R) agent k re-
ceived house h(k) he in fact receives the null house.

Individual-rationality, Pareto-optimality, group-strategy-proofness, and consistency of φ′

all now follow rather immediately from the fact that φc satisfies these properties.

Example 10 (Case (iv)). Consider I ′ = {i, j, k}, I ′T = {i}, and H′ = {h(i), h}. We use the
structure of control rights c and the TC-OB rule φc from Example 9 to construct a rule φ′ as
follows. For any problem (I,H,R) with I ⊆ I ′, H ⊆ H′ we let φ′(I,H,R) = φc(I,H,R) with
the interpretation that h = h(`). Individual-rationality, Pareto-optimality, group-strategy-
proofness, and consistency of φ′ follows from the previous discussion.

Finally, we show that our examples (Examples 7 - 10) of TC-OB rules are not equivalent
to TTC rules. For Case (i), let I = {i, j, k}, H = H (with HV = {h(`)}), and consider the
following preferences

• Ri : h(`) Pi h(i) Pi . . .,

• Rj : h(`) Pj h(i) Pj h(k) Pj h0,

• Rk : h(`) Pk h(k) Pk . . .,

• R′j : h(`) P ′j h(k) P ′j h(i) P ′j h0.
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Let R = (Ri, Rj, Rk) ∈ R(I,H) and R′ = (Ri, R
′
j, Rk) ∈ R(I,H). Note that at preference

profiles R and R′ the house h(`) is the top-ranked house by all agents in I. Hence, each
TTC rule assigns house h(`) to the same agent at profiles R and R′. However, the TC-
OB rule according to c assigns house h(`) to different agents at profiles R and R′, i.e.,
φci(I,H,R) = h(`) and φck(I,H,R

′) = h(`). Similar examples can easily be constructed for
the remaining Cases (ii), (iii), and (iv).
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Kojima, F. and Ünver, M. U. (2014): “The “Boston” School Choice Mechanism: An Ax-
iomatic Approach.” Economic Theory, 55: 515–544.
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