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1 Introduction

Echenique (2004) identifies a potential concern about the possibility of strategic comple-

ments in extensive form games. Using a natural definition of strategic complements for

such games (each player’s payoff function satisfies standard notions of quasisupermodu-

larity and single crossing property in every subgame), he gives several examples showing

that games that should intuitively exhibit strategic complementarities do not satisfy this

definition. He also gives examples of simple extensive form games that cannot be made

into extensive form games with strategic complements. He concludes that extensive form

games with strategic complementarities are a very restrictive class of games.

We explore the extent of this restrictiveness in the context of two stage, 2× 2 games.

In particular, we inquire if this restrictiveness is due to the assumption of quasisupermod-

ularity and single crossing property (which are typical sufficient conditions for strategic

complements in games)? Or, is it related to the more fundamental notion of strategic

complements (in terms of increasing best responses)?

We find that the restrictiveness imposed by quasisupermodularity and single crossing

properties is particularly severe, in the sense that the set of two stage, 2 × 2 games in

which payoffs satisfy these conditions has measure zero. We also explore the more general

question of when such games exhibit strategic complements (in the sense of increasing

best responses) and find that the set of such games has infinite measure.1

Our results are based on a detailed study of the notion of strategic complements in

1Such a distinction does not hold for normal form games in general, as can be shown readily for the

case of 2 × 2 games, where the set of games in which payoffs satisfy quasisupermodularity and single

crossing properties has infinite measure.
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two stage, 2 × 2 games, and a characterization of when a player exhibits strategic com-

plements in such games. This yields conditions on payoff functions that allow us to write

(uncountably) many such extensive form games with strategic complements. Moreover,

as steps in the development of the main results, we show that strategic complements im-

plies a particular structure for best choices in the first and second stage games. This is

important to characterize strategic complements.

The notion of subgame strategic complements used here is consistent with the notion

of increasing extended best responses in Echenique (2004), and therefore, his result that

the set of subgame perfect Nash equilibria is a nonempty, complete lattice continues to

hold in the class of games considered here.

As is well-known, the problem of characterizing strategic complements in general ex-

tensive form games remains intractable.2 As two stage, 2× 2 games are a basic building

block for multi-stage games and infinitely repeated games, our results may help other

researchers to explore more general cases. In particular, our results show the need to go

beyond a direct adaptation of quasisupermodularity and single crossing property as used

in Echenique (2004). In this regard, the lemmas below shed useful light on the structure

of best responses that are consistent with strategic complements.

In order to present ideas more concretely, we consider an explicit example in the next

section. The section after that defines the general framework and presents the main result

characterizing strategic complements. The section after that formalizes the connection to

2The reader may get a flavor of additional complexities related to Markov strategies and transition

probabilities in infinite horizon models, as discussed in Amir (1996), Curtat (1996), and Balbus, Reffett,

and Woźny (2014).
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Echenique (2004).

2 Example

Consider the following two stage, 2 × 2 game. In the first stage, a 2 × 2 game (denoted

game 0) is played in which player 1 can take actions in {A0

1
, A0

2
} and player 2 can take

actions in {B0

1
, B0

2
}. For each player, assume that action 1 is lower than action 2, that is,

A0

1
≺ A0

2
and B0

1
≺ B0

2
. The normal form is given in figure 1.
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Figure 1: Stage One Game

In the second stage, another 2 × 2 game is played depending on first stage outcome.

If first stage outcome is (A0

1
, B0

1
), then game 1 (top left game in the figure 2) is played,

if outcome is (A0

1
, B0

2
), then game 2 (top right) is played, if outcome is (A0

2
, B0

1
), then

game 3 (bottom left) is played, and if outcome is (A0

2
, B0

2
), then game 4 (bottom right)

is played. In each game n = 1, 2, 3, 4, suppose action 1 is lower than action 2, that is,

An

1
≺ An

2
and Bn

1
≺ Bn

2
.

The extensive form of the overall two stage game is depicted in figure 3 (assuming a

discount factor of δ = 0.8).

In this two stage game, a strategy for player 1 is a 5-tuple s = (s0, s1, s2, s3, s4), where
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Figure 2: Stage Two Games

for each n = 0, 1, 2, 3, 4, sn ∈ {An

1
, An

2
}. The strategy space for player 1 is the collection of

all strategies, denoted S, and is endowed with the product order. It is a (complete) lattice

in the product order.3 Similarly, a strategy for player 2 is a 5-tuple t = (t0, t1, t2, t3, t4),

where for each n = 0, 1, 2, 3, 4, tn ∈ {Bn

1
, Bn

2
}. The strategy space for player 1 is the

collection of all strategies, denoted T , and is endowed with the product order. It is also

a (complete) lattice in the product order. We denote payoffs from a strategy profile (s, t)

by u1(s, t) for player 1 and u2(s, t) for player 2, as usual.

This makes the game into a lattice game (each player’s strategy space is a lattice), and

we can inquire if this game exhibits strategic complements. In other words, is the best

response of one player increasing (in the lattice set order)4 in the strategy of the other

player?

Notice that the component games are very well behaved in terms of monotone com-

3We use standard lattice theoretic concepts. Useful references are Milgrom and Shannon (1994) and

Topkis (1998).
4See next section for the (standard) definition.
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Figure 3: Extensive Form of Two Stage Game

parative statics. Each of the games 0, 1, 2, and 3 has a strictly dominant action for

each player, and game 4 is a classic coordination game with two strict Nash equilibria.

Therefore, it is natural to expect that there are strategic complements in the two stage

game.

Indeed, as shown below in more generality, this game does exhibit strategic comple-

ments. Moreover, it is straightforward to check that this game has two subgame perfect

Nash equilibria, one given by ŝ∗ = (A0

1
, A1

1
, A2

2
, A3

2
, A4

1
) and t̂∗ = (B0

1
, B1

1
, B2

2
, B3

2
, B4

1
), and

the other given by s̃∗ = (A0

1
, A1

1
, A2

2
, A3

2
, A4

2
) and t̃∗ = (B0

1
, B1

1
, B2

2
, B3

2
, B4

2
), and the set of

subgame perfect Nash equilibria is a complete lattice.

Nevertheless, this game does not satisfy the definition of an extensive form game

with strategic complementarities used in Echenique (2004). For example, the payoff

function of player 1 is not quasisupermodular.5 Consider ŝ = (A0

1
, A1

1
, A2

2
, A3

1
, A4

1
), s̃ =

(A0

2
, A1

1
, A2

1
, A3

1
, A4

1
), and t̂ = (B0

2
, B1

1
, B2

1
, B3

1
, B4

1
). In this case, player 1 payoff is u1(ŝ ∨

5See section 3 for the (standard) definition of a quasisupermodular function.
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s̃, t̂) = 8 = u1(s̃, t̂), and therefore, quasisupermodularity implies 13 = u1(ŝ, t̂) ≤ u1(ŝ ∧

s̃, t̂) = 5, a contradiction.

As shown below in theorems 1 and 2, this example is one of a large class of two

stage, 2 × 2 games that exhibit strategic complements but do not satisfy Echenique’s

definition. Indeed, we show that the set of such games that satisfy Echenique’s definition

has measure zero, whereas the set of such games that exhibit strategic complements has

infinite measure.

3 General Framework

Consider a general two stage, 2 × 2 game (denoted Γ). In the first stage, a 2 × 2 game

(denoted game 0) is played in which player 1 can take actions in {A0

1
, A0

2
} and player 2

can take actions in {B0

1
, B0

2
}. In the second stage, another 2×2 game is played depending

on first stage outcome. If first stage outcome is (A0

1
, B0

1
), then game 1 is played, in which

player 1 can take actions in {A1

1
, A1

2
} and player 2 can take actions in {B1

1
, B1

2
}. If outcome

is (A0

1
, B0

2
), then game 2 is played, in which player 1 can take actions in {A2

1
, A2

2
} and

player 2 can take actions in {B2

1
, B2

2
}. If outcome is (A0

2
, B0

1
), then game 3 is played, in

which player 1 can take actions in {A3

1
, A3

2
} and player 2 can take actions in {B3

1
, B3

2
}. If

outcome is (A0

2
, B0

2
), then game 4 is played, in which player 1 can take actions in {A4

1
, A4

2
}

and player 2 can take actions in {B4

1
, B4

2
}. The extensive form of Γ is depicted in figure

4, with general payoffs at terminal nodes. When there is no confusion, we use the term

game for such a two stage, 2 × 2 game. The set of all such games is identified naturally

with R
16 × R

16. Throughout the paper, we view Euclidean space as a standard measure
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space with the Borel sigma-algebra and Lebesgue measure.

 

                  

 

 

                                             

 

                                                 

                                   

 

                                     

                                    

 

 

Figure 4: General Two Stage, 2× 2 Game

In each component game of a two stage, 2 × 2 game, suppose action 1 is lower than

action 2, that is, for n = 0, 1, 2, 3, 4, An

1
≺ An

2
and Bn

1
≺ Bn

2
. A strategy for player 1 is a

5-tuple s = (s0, s1, s2, s3, s4), where for each n = 0, 1, 2, 3, 4, sn ∈ {An

1
, An

2
}. The strategy

space for player 1 is the collection of all strategies, denoted S, and is endowed with the

product order. Notice that S is a complete lattice in the product order. Similarly, a

strategy for player 2 is a 5-tuple t = (t0, t1, t2, t3, t4), where for each n = 0, 1, 2, 3, 4,

tn ∈ {Bn

1
, Bn

2
}. The strategy space for player 2 is the collection of all strategies, denoted

T , and is endowed with the product order. The strategy space T is a complete lattice

in the product order. This makes Γ into a lattice game (each player’s strategy space is a

lattice). We denote payoffs from a strategy profile (s, t) as u1(s, t) for player 1 and u2(s, t)

for player 2, as usual.

We shall formulate conditions under which such games exhibit strategic complements,

defined in terms of increasing best responses, as usual. Player 1 exhibits strategic
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complements , if best response of player 1, denoted BR1(t), is increasing in t in the

lattice set order (denoted ⊑).6 That is, ∀t̂, t̃ ∈ T , t̂ � t̃ =⇒ BR1(t̂) ⊑ BR1(t̃).

Similarly, we may define when player 2 exhibits strategic complements . The game Γ

is a game with strategic complements , if both players exhibit strategic complements.

Notice that strategic complements is defined for best response sets in the overall game.

As shown by a closer analysis of examples in Echenique (2004) and in more detail here,

this is the hard case. When we want to include strategic complements in subgames, we

shall assume that second-stage subgames exhibit strategic complements. As those are

standard 2×2 games, conditions under which they exhibit strategic complements are well

known.

In the remainder of this section, we make the assumption that payoffs to different final

outcomes are different. Such a two stage, 2×2 game is termed a game with differential

payoffs to outcomes . This assumption is sufficient to prove the results in this paper.

Theoretically, the set of two stage, 2 × 2 games with differential payoffs to outcomes is

open, dense, and has full (Lebesgue) measure in R
16 × R

16 (the set of all such games).

The next three lemmas are important because they show implications of strategic

complements in the class of games studied here. In addition to their contribution to prove

theorem 1, these lemmas may help researchers to explore more general cases.

Lemma 1. Consider a game with differential payoffs to outcomes and suppose player 1

exhibits strategic complements.

For every t̂, t̃ ∈ T , for every ŝ ∈ BR1(t̂), and for every s̃ ∈ BR1(t̃), if t̂0 = t̃0, then

6The lattice set order is the standard set order on lattices: A ⊑ B means that ∀a ∈ A, ∀b ∈ B,

a ∧ b ∈ A and a ∨ b ∈ B. It is sometimes termed the Veinott set order, or the strong set order.
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ŝ0 = s̃0.

Proof. Notice first that the assumption of differential payoffs to outcomes has the fol-

lowing implications for the structure of best responses. For every t ∈ T , and for every

ŝ, s̃ ∈ BR1(t), the subgame reached on the path of play for profile (ŝ, t) is the same as the

subgame reached on the path of play for profile (s̃, t). Moreover, the actions played by

each player in the subgame reached on the path of play for profile (ŝ, t) are the same as

the actions played by each player in the subgame reached on the path of play for profile

(s̃, t). Furthermore, every s ∈ S that has the same actions as ŝ on the path of play for

profile (ŝ, t) is also a member of BR1(t).

To prove the lemma, fix t̂, t̃ ∈ T , ŝ ∈ BR1(t̂), and s̃ ∈ BR1(t̃).

Suppose first that t̂0 = t̃0 = B0

1
, and suppose that ŝ0 = A0

1
and s̃0 = A0

2
. Notice

that the structure of the best response of player 1 implies that s̃′ = (A0

2
, A1

2
, A2

2
, s̃3, A4

2
) ∈

BR1(t̃). Form t = (B0

2
, t̃1, t̃2, t̃3, t̃4) and consider s ∈ BR1(t). Then t̃ � t, and using

strategic complements for player 1, it follows that s̃′∨s ∈ BR1(t). In particular, subgame

4 is reached with profile (s̃′ ∨ s, t), and therefore, s′ = (A0

2
, A1

1
, A2

1
, A3

1
, A4

2
) ∈ BR1(t).

Moreover, t̃ � t implies s′ = s′ ∧ s̃′ ∈ BR1(t̃). Notice that on path of play for profile

(s′, t̃), subgame 3 is reached and the action played by player 1 in subgame 3 is A3

1
.

Consider ŝ ∈ BR1(t̂) and notice that the structure of best response of player 1 implies

that ŝ′ = (A0

1
, ŝ1, A2

1
, A3

1
, A4

1
) ∈ BR1(t̂). Let t = t̂ ∧ t̃ and consider s ∈ BR1(t). As t � t̂,

strategic complements for player 1 implies that s ∧ ŝ′ ∈ BR1(t). Notice that on path

of play for profile (s ∧ ŝ′, t), subgame 1 is reached, and therefore, the structure of best

response for player 1 implies that s′ = (A0

1
, s1 ∧ ŝ1, A2

2
, A3

2
, A4

2
) ∈ BR1(t). Using t � t̃
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and strategic complements for player 1 implies that s′∨ s̃′ ∈ BR1(t̃). Notice that on path

of play for profile (s′ ∨ s̃′, t̃), subgame 3 is reached and the action played by player 1 in

subgame 3 is A3

2
. As shown above, this is different from the action played by player 1 on

path of play for profile (s′, t̃), contradicting that both s′ and s′ ∨ s̃′ are best responses of

player 1 to t̃. The case where ŝ0 = A0

2
and s̃0 = A0

1
is proved similarly.

Now suppose t̂0 = t̃0 = B0

2
, and suppose that ŝ0 = A0

1
and s̃0 = A0

2
. As subgame 2 is

reached on path of play for profile (ŝ, t̂), it follows that ŝ′ = (A0

1
, A1

1
, ŝ2, A3

1
, A4

1
) ∈ BR1(t̂).

Form t = (B0

1
, t̂1, t̂2, t̂3, t̂4) and consider s ∈ BR1(t). Then t � t̂, and using strategic

complements for player 1, it follows that ŝ′ ∧ s ∈ BR1(t). In particular, subgame 1 is

reached with profile (s∧ŝ′, t), and therefore, s′ = (A0

1
, A1

1
, A2

2
, A3

2
, A4

1
) ∈ BR1(t). Moreover,

t � t̂ implies s′ = s′ ∨ ŝ′ ∈ BR1(t̂). Notice that on path of play for profile (s′, t̂), subgame

2 is reached and the action played by player 1 in subgame 2 is A2

2
.

Consider s̃ ∈ BR1(t̃) and notice that the structure of best response of player 1 implies

that s̃′ = (A0

2
, A1

2
, A2

2
, A3

2
, s̃4) ∈ BR1(t̃). Let t = t̂ ∨ t̃ and consider s ∈ BR1(t). As t̃ � t,

strategic complements for player 1 implies that s̃′ ∨ s ∈ BR1(t). Notice that on path

of play for profile (s̃′ ∨ s, t), subgame 4 is reached, and therefore, the structure of best

response for player 1 implies that s′ = (A0

2
, A1

1
, A2

1
, A3

1
, s4 ∨ s̃4) ∈ BR1(t). Using t̂ � t

and strategic complements for player 1 implies that ŝ′∧ s′ ∈ BR1(t̂). Notice that on path

of play for profile (ŝ′ ∧ s′, t̂), subgame 2 is reached and the action played by player 1 in

subgame 2 is A2

1
. This is different from the action played by player 1 on path of play for

profile (s′, t̂), contradicting that both s′ and ŝ′∧s′ are best responses of player 1 to t̂. The

case where ŝ0 = A0

2
and s̃0 = A0

1
is proved similarly.

Lemma 1 shows that in the class of games considered here, strategic complements for
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player 1 implies that if a fixed first stage action is part of player 1’s best response to t̂,

then for every player 2 strategy t̃ that has the same first stage action as t̂, every best

response of player 1 must play the same fixed first stage action, and therefore, lead to the

same subgame in stage two.

Lemma 2. Consider a game with differential payoffs to outcomes and suppose player 1

exhibits strategic complements.

(1) If there exists t̂ ∈ T and ŝ ∈ BR1(t̂) such that t̂0 = B0

1
and ŝ0 = A0

2
, then for every

t ∈ T and for every s ∈ BR1(t), s0 = A0

2
.

(2) If there exists t̂ ∈ T and ŝ ∈ BR1(t̂) such that t̂0 = B0

2
and ŝ0 = A0

1
, then for every

t ∈ T and for every s ∈ BR1(t), s0 = A0

1
.

Proof. Notice that the assumption of differential payoffs to outcomes implies the following

about the structure of best responses: For every t ∈ T , and for every ŝ, s̃ ∈ BR1(t),

ŝ0 = s̃0. To prove statement (1), fix t̂ ∈ T and ŝ ∈ BR1(t̂) such that t̂0 = B0

1
and ŝ0 = A0

2
.

Form t = (B0

1
, B1

1
, B2

1
, B3

1
, B4

1
) ∈ T and let s ∈ BR1(t). Then by the previous lemma,

s0 = ŝ0 = A0

2
. Now fix arbitrarily t ∈ T and s ∈ BR1(t). As t � t, strategic complements

implies that s ∨ s ∈ BR1(t). As s0 = A0

2
, it follows that (s ∨ s)0 = A0

2
. Finally, as noted

above, differential payoffs implies that s0 = (s ∨ s)0 = A0

2
, as desired. Statement (2) is

proved similarly.

Part (1) of this lemma shows that if playing the higher action in the first stage is ever

a best response of player 1 to player 2 playing the lower action in the first stage, then for

every player 2 strategy t, playing the higher action must be a best response of player 1.

Similarly, part (2) of this lemma shows that if playing the lower action in the first stage

is ever a best response of player 1 to player 2 playing the higher action in the first stage,

11



then for every player 2 strategy t, playing the lower action must be a best response of

player 1.

Lemma 3. Consider a game with differential payoffs to outcomes and suppose player 1

exhibits strategic complements.

(1) If there exists t̂ ∈ T and ŝ ∈ BR1(t̂) such that t̂0 = B0

1
and ŝ0 = A0

1
, then for every

t ∈ T and for every s ∈ BR1(t), if t0 = B0

1
then s1 = A1

1
.

(2) If there exists t̂ ∈ T and ŝ ∈ BR1(t̂) such that t̂0 = B0

1
and ŝ0 = A0

2
, then for every

t ∈ T and for every s ∈ BR1(t), if t0 = B0

1
then s3 = A3

1
.

(3) If there exists t̂ ∈ T and ŝ ∈ BR1(t̂) such that t̂0 = B0

2
and ŝ0 = A0

2
, then for every

t ∈ T and for every s ∈ BR1(t), if t0 = B0

2
then s4 = A4

2
.

(4) If there exists t̂ ∈ T and ŝ ∈ BR1(t̂) such that t̂0 = B0

2
and ŝ0 = A0

1
, then for every

t ∈ T and for every s ∈ BR1(t), if t0 = B0

2
then s2 = A2

2
.

Proof. To prove statement (1), fix t̂ ∈ T and ŝ ∈ BR1(t̂) such that t̂0 = B0

1
and

ŝ0 = A0

1
. Fix arbitrarily t ∈ T , s ∈ BR1(t) such that t0 = B0

1
. By lemma 1, s0 = A0

1
,

and therefore, s′ = (A0

1
, s1, A2

1
, A3

1
, A4

1
) ∈ BR1(t). Let t = (B0

2
, t1, t2, t3, t4) ∈ T and

s ∈ BR1(t). Structure of best responses implies that s′ = (s0, A1

1
, s2, A3

1
, s4) ∈ BR1(t).

Moreover, t � t and strategic complements implies that s′∧s′ ∈ BR1(t) and consequently,

structure of best responses implies that s1 = (s′ ∧ s′)1 = A1

1
.

To prove statement (2), fix t̂ ∈ T and ŝ ∈ BR1(t̂) such that t̂0 = B0

1
and ŝ0 = A0

2
. Fix

arbitrarily t ∈ T , s ∈ BR1(t) such that t0 = B0

1
. By lemma 1, s0 = A0

2
, and therefore,

s′ = (A0

2
, A1

2
, A2

2
, s3, A4

2
) ∈ BR1(t). Let t = (B0

2
, t1, t2, t3, t4) ∈ T and s ∈ BR1(t). By

previous lemma, s0 = A0

2
, and therefore, s′ = (A0

2
, A1

1
, A2

1
, A3

1
, s4) ∈ BR1(t). Moreover,

t � t and strategic complements imply that (A0

2
, A1

1
, A2

1
, A3

1
, A4

2
∧ s4) = s′ ∧ s′ ∈ BR1(t)
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and consequently, structure of best responses implies that s3 = (s′ ∧ s′)3 = A3

1
.

Statements (3) and (4) are proved similarly.

Lemma 3 presents a very useful characteristic of strategic complements in this setting.

Whenever a particular subgame is reached on the best response path, lemma 3 locates

the unique action that must be chosen in that subgame to be consistent with strategic

complements. For example, statement (1) says that if subgame 1 is ever on the best

response path, then whenever there is a chance to reach subgame 1 (that is, t0 = B0

1
),

player 1 must play A1

1
in subgame 1. This helps to characterize strategic complements in

theorem 1 below. Notice that similar lemmas hold for player 2.

In order to make theorem 1 more accessible, it is useful to define when an action

dominates another action, not just in a given subgame, but across subgames as well. For

m,n ∈ {1, 2, 3, 4}, and for k, ℓ ∈ {1, 2}, action Am

k
dominates action An

ℓ
, if subgames

m and n can be reached under the same stage one action for player 2, and regardless of

which action player 2 plays in subgame n, action Am

k
in subgame m gives player 1 a higher

payoff than An

ℓ
.

Notice that this definition allows comparison of actions within the same subgame,

or between subgames 1 and 3, or between subgames 2 and 4. It does not apply to

comparisons between subgames 1 and 4, or subgames 2 and 3, because these cannot be

reached under the same stage one action by player 2, and therefore, those comparisons

are irrelevant. In particular, a statement of the form A1

1
dominates A1

2
means that player

1 payoffs satisfy a1
1
> a1

3
and a1

2
> a1

4
, a statement of the form A1

1
dominates A3

1
means

that min{a1
1
, a1

2
} > max{a3

1
, a3

2
}, and a statement of the form A1

1
dominates A3

2
means

that min{a1
1
, a1

2
} > max{a3

3
, a3

4
}. Consequently, the statement A1

1
dominates A1

2
, A3

1
, and
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A3

2
is equivalent to a1

1
> a1

3
, a1

2
> a1

4
, and min{a1

1
, a1

2
} > max{a3

1
, a3

2
, a3

3
, a3

4
}. Here is the

main theorem.

Theorem 1. Consider a game with differential payoffs to outcomes.

The following are equivalent.

1. Player 1 has strategic complements

2. Exactly one of the following holds

(a) A1

1
dominates A1

2
, A3

1
, and A3

2
, and A2

2
dominates A2

1
, A4

1
, and A4

2

(b) A1

1
dominates A1

2
, A3

1
, and A3

2
, and A4

2
dominates A4

1
, A2

1
, and A2

2

(c) A3

1
dominates A3

2
, A1

1
, and A1

2
, and A4

2
dominates A4

1
, A2

1
, and A2

2

Proof. For this proof, let T = {t ∈ T : t0 = B0

1
} and T = {t ∈ T : t0 = B0

2
}.

For sufficiency, suppose player 1 has strategic complements.

As case 1, suppose there exists t̂ ∈ T , there exists ŝ ∈ BR1(t̂) such that ŝ0 = A0

2
.

Then lemma 3(2) implies that action A3

1
dominates action A3

2
for player 1 in subgame 3.

Moreover, by lemma 1 and lemma 3(2), whenever player 2 plays B0

1
in the first-stage game,

player 1 chooses to reach subgame 3 over subgame 1, and then to play A3

1
in subgame 3,

regardless of player 2 choice in the second-stage game. Therefore, A3

1
dominates A1

1
and

A1

2
. Furthermore, lemma 2(1) implies that for every t ∈ T and s ∈ BR1(t), if t0 = B0

2
,

then s0 = A0

2
, and therefore, lemma 3(3) implies that action A4

2
dominates action A4

1
for

player 1 in subgame 4. Reasoning as above, A4

2
dominates A2

1
and A2

2
, and therefore,

statement 2(c) holds.
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As case 2, suppose for every t̂ ∈ T , for every ŝ ∈ BR1(t̂), ŝ = A0

1
. Then lemma 3(1)

implies that action A1

1
dominates A1

2
for player 1 in subgame 1, and reasoning as above,

it follows that A1

1
dominates A3

1
and A3

2
in subgame 3. Now consider T . As subcase 1,

suppose there exists t̃ ∈ T , there exists s̃ ∈ BR1(t̃) such that s̃0 = A0

1
. Then lemma 3(4)

implies that action A2

2
dominates A2

1
for player 1 in subgame 2, and that A2

2
dominates

A4

1
and A4

2
. Therefore, statement 2(a) holds. As subcase 2, suppose for every t̃ ∈ T , for

every s̃ ∈ BR1(t̃), s̃0 = A0

2
. Then lemma 3(3) implies that action A4

2
dominates A4

1
, and

that A4

2
dominates A2

1
and A2

2
in subgame 2. Therefore, statement 2(b) holds.

The reasoning above shows that one of the statements 2(a), 2(b), or 2(c) holds. It

is easy to check that no more than one statement holds, because the statements are

mutually exclusive. (In particular, A2

2
dominates A4

2
implies A4

2
does not dominate A2

2
,

A1

1
dominates A3

1
implies that A3

1
does not dominate A1

1
, and so on.)

For necessity, suppose exactly one of 2(a), 2(b), or 2(c) holds. Suppose statement 2(a)

holds. In this case, A1

1
dominates A1

2
, A3

1
, and A3

2
implies that for every t ∈ T , player 1

chooses to reach subgame 1 over subgame 3 and to play A1

1
in subgame 1. In other words,

for every t ∈ T , player 1’s best response is given by

BR1(t) = {(A0

1
, A1

1
, s2, s3, s4) ∈ S : sn ∈ {An

1
, An

2
}, n = 2, 3, 4}.

Notice that this is a sublattice of S. Similarly, A2

2
dominates A2

1
, A4

1
, and A4

2
implies that

for every t ∈ T , player 1 chooses to reach subgame 2 over subgame 4, and to play A2

2
in

subgame 2. In other words, for every t ∈ T , player 1’s best response is given by

BR1(t) = {(A0

1
, s1, A2

2
, s3, s4) ∈ S : sn ∈ {An

1
, An

2
}, n = 1, 3, 4}.

Notice that this is a sublattice of S as well.
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Now consider arbitrary t̂, t̃ ∈ T such that t̂ � t̃. If t̂0 = t̃0, then BR1(t̂) = BR1(t̃),

and therefore, BR1(t̂) ⊑ BR1(t̃). And if t̂0 = B0

1
and t̃0 = B0

2
, then it is easy to check

that BR1(t̂) ⊑ BR1(t̃). Thus, player 1 exhibits strategic complements.

The cases where statement 2(b) or 2(c) holds are proved similarly.

Notice that a similar characterization holds for player 2 has strategic complements.

As shown above, it is easy to write the conditions in statements 2(a), (b), and (c) in

terms of the corresponding payoffs, and these conditions are easy to satisfy (see proof of

theorem 2 below). Therefore, this characterization yields uncountably many examples of

two stage, 2 × 2 games with strategic complements.7 For reference, the example above

satisfies statement 2(a) of the theorem.

4 Comparison to Echenique (2004)

Echenique (2004) defines an extensive form game with strategic complementarities as an

extensive form game in which each player’s payoff function satisfies quasisupermodularity

(in own strategy) and single crossing property in (own strategy; other players’ strategy)

in all subgames. For consistency in comparison, we shall first restrict the definition to the

overall game and then include stage two subgames.

Player 1 payoff function u1 : S × T → R is quasisupermodular (in s), if for every

t ∈ T and for every s, s′ ∈ S, u1(s ∧ s′, t) < (≤) u1(s, t) =⇒ u1(s
′, t) < (≤) u1(s ∨ s′, t).

Player 1 payoff function u1 : S × T → R satisfies single crossing property in (s; t),

if for all t, t′ ∈ T such that t ≺ t′ and for all s, s′ ∈ S such that s ≺ s′, u1(s, t) < (≤

7The case with strategic complements in subgames is similar. Details are presented in the next section.
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) u1(s
′, t) =⇒ u1(s, t

′) < (≤) u1(s
′, t′). These are defined similarly for player 2 payoff

function u2. A two stage, 2 × 2 game satisfies Echenique complementarity , if the

payoff function of each player is quasisupermodular in own strategy and satisfies single

crossing property in (own strategy; other player strategy).

In order to state the following lemma, it is useful to recall when an action weakly

dominates another action in a given subgame. For n ∈ {1, 2, 3, 4} and for k, ℓ ∈ {1, 2},

action An

k
weakly dominates action An

ℓ
, if regardless of which action player 2 plays

in subgame n, playing action An

k
in subgame n gives player 1 a weakly higher payoff than

An

ℓ
. This definition shows that a statement like A2

1
weakly dominates A2

2
is equivalent to

a2
1
≥ a2

3
and a2

2
≥ a2

4
.

Lemma 4. Consider a two stage, 2 × 2 game that satisfies Echenique complementarity.

For player 1,

(1) A2

1
weakly dominates A2

2
, and A2

2
weakly dominates A2

1

(2) A3

1
weakly dominates A3

2
, and A3

2
weakly dominates A3

1

Proof. For the first statement, consider the following strategies: ŝ = (A0

1
, A1

1
, A2

2
, A3

1
, A4

1
),

s̃ = (A0

2
, A1

1
, A2

1
, A3

1
, A4

1
), t̂ = (B0

2
, B1

1
, B2

2
, B3

1
, B4

1
), and t̃ = (B0

2
, B1

1
, B2

1
, B3

1
, B4

1
). In this

case, u1(ŝ ∨ s̃, t̂) = a4
1
= u1(s̃, t̂), and therefore, quasisupermodularity implies a2

4
=

u1(ŝ, t̂) ≤ u1(ŝ ∧ s̃, t̂) = a2
2
. Moreover, u1(ŝ ∨ s̃, t̃) = a4

1
= u1(s̃, t̃), and therefore, qua-

sisupermodularity implies a2
3
= u1(ŝ, t̃) ≤ u1(ŝ ∧ s̃, t̃) = a2

1
. This shows that A2

1
weakly

dominates A2

2
.

For the other part, consider the following strategies: ŝ = (A0

1
, A1

1
, A2

1
, A3

1
, A4

1
), s̃ =

(A0

1
, A1

1
, A2

2
, A3

1
, A4

1
), t̂ = (B0

1
, B1

1
, B2

1
, B3

1
, B4

1
), and t̃ = (B0

2
, B1

1
, B2

1
, B3

1
, B4

1
). Notice that

ŝ ≺ s̃ and t̂ ≺ t̃. In this case, u1(ŝ, t̂) = a1
1
= u1(s̃, t̂), and therefore, single crossing
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property implies a2
1
= u1(ŝ, t̃) ≤ u1(s̃, t̃) = a2

3
. Now consider the same ŝ and s̃, and the

following t̂ = (B0

1
, B1

1
, B2

2
, B3

1
, B4

1
) and t̃ = (B0

2
, B1

1
, B2

2
, B3

1
, B4

1
). Again, notice that ŝ ≺ s̃

and t̂ ≺ t̃. In this case, u1(ŝ, t̂) = a1
1
= u1(s̃, t̂), and therefore, single crossing property

implies a2
2
= u1(ŝ, t̃) ≤ u1(s̃, t̃) = a2

4
. This shows that A2

2
weakly dominates A2

1
.

The second statement is proved similarly.

Statement 1 shows that a2
1
= a2

3
and a2

2
= a2

4
, and therefore, in every two stage,

2×2 game, quasisupermodular and single crossing property require that player 1 must be

indifferent between actions A2

1
and A2

2
in subgame 2, essentially eliminating any strategic

role for player 1 actions in subgame 2. Statement 2 shows that player 1 must be indifferent

between actions A3

1
and A3

2
in subgame 3, eliminating a strategic role for player 1 actions

in subgame 3. A similar lemma holds for player 2. This yields the following theorem.

Theorem 2. (1) In the set of two stage, 2×2 games with differential payoffs to outcomes,

the set of games that satisfy Echenique complementarity is empty.

(2) In the set of all two stage, 2× 2 games, the set of games that satisfy Echenique com-

plementarity has (Lebesgue) measure zero.

(3) In the set of all two stage, 2× 2 games, the set of games that satisfy strategic comple-

ments has infinite (Lebesgue) measure.

Proof. For the first statement, if a game satisfies Echenique complementarity, then lemma

4(1) shows that a2
1
= a2

3
and a2

2
= a2

4
, contradicting differential payoffs to outcomes.

The second statement follows, because the set of games with differential payoffs to

outcomes has full (Lebesgue) measure and the first statement here shows that the set of

games satisfying Echenique complementarity lies in the complement of this set.
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The third statement follows because the set of games that satisfy conditions 2(a),

2(b), and 2(c) in theorem 1 has infinite (Lebesgue) measure. For example, in condition

2(a), A1

1
dominates A1

2
, A3

1
, and A3

2
is equivalent to a1

1
> a1

3
, a1

2
> a1

4
, and min{a1

1
, a1

2
} >

max{a3
1
, a3

2
, a3

3
, a3

4
}, and A2

2
dominates A2

1
, A4

1
, and A4

2
is equivalent to a2

3
> a2

1
, a2

4
> a2

2
,

and min{a2
3
, a2

4
} > max{a4

1
, a4

2
, a4

3
, a4

4
}. Therefore, the set of payoffs satisfying condition

2(a) includes the following set.

(a1
1
, a1

2
, a1

3
, a1

4
) ∈ (20,+∞)× (15, 16)× (13, 14)× (10, 11) ⊂ R

4

(a2
1
, a2

2
, a2

3
, a2

4
) ∈ (10, 11)× (13, 14)× (15, 16)× (20,+∞) ⊂ R

4

(a3
1
, a3

2
, a3

3
, a3

4
) ∈ (0, 1)× (2, 3)× (5, 6)× (8, 9) ⊂ R

4

(a4
1
, a4

2
, a4

3
, a4

4
) ∈ (0, 1)× (2, 3)× (5, 6)× (8, 9) ⊂ R

4

The product of these sets has infinite Lebesgue measure in R
16. Therefore, the set of games

satisfying condition 2(a) has infinite measure. Consequently, the set of games satisfying

player 1 has strategic complements has infinite measure. Similarly, it can be shown that

the set of games satisfying player 2 has strategic complements has infinite measure.

Theorem 2 may be extended to include complementarity in subgames, as follows. A

two stage, 2 × 2 game satisfies subgame Echenique complementarity , if it satisfies

Echenique complementarity, and in each of the four 2× 2 subgames in stage 2, the payoff

function of each player is quasisupermodular in own strategy and satisfies single crossing

property in (own strategy; other player strategy). We define a notion of subgame strategic

complements similarly. A two stage, 2 × 2 game satisfies subgame strategic comple-

ments , if it exhibits strategic complements, and in each of the four 2 × 2 subgames in

stage 2, the best response of each player is increasing (in the lattice set order) in the other

player’s strategy.
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Corollary 1. (1) In the set of two stage, 2×2 games with differential payoffs to outcomes,

the set of games that satisfy subgame Echenique complementarity is empty.

(2) In the set of all two stage, 2×2 games, the set of games that satisfy subgame Echenique

complementarity has (Lebesgue) measure zero.

(3) In the set of all two stage, 2×2 games, the set of games that satisfy subgame strategic

complements has infinite (Lebesgue) measure.

Proof. The first two statements follow immediately from the corresponding statements in

theorem 2. For the third statement, notice that the infinite measure set listed in the proof

of theorem 2 is constructed to also satisfy subgame strategic complements. In particular,

games with payoffs in that set have the property that for player 1, action A1

1
, A2

2
, A3

2
, and

A4

2
are dominant in stage two subgames 1, 2, 3, and 4, respectively. A similar statement

holds for player 2.

Finally, the next theorem follows immediately by noting that subgame strategic com-

plements implies increasing extended best response correspondences, as used in Echenique

(2004), and to apply his corresponding result.

Theorem 3. In every two stage, 2× 2 game with subgame strategic complements, the set

of subgame perfect Nash equilibria is a nonempty, complete lattice.

Proof. Apply theorem 9 in Echenique (2004) by noting that its proof only requires

nonempty, increasing best responses in every subgame, which is satisfied here.
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