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The T-Class of Time - Frequency Distributions:
Time-Only Kernels with Amplitude Estimation
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° School of Engineering Systems, Queensland University of Technology
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Abstract

This paper presents a class of time - frequency distributions (TFDs) characterized
by time-lag kernels which are functions of time only. If the parameters of the time-
only kernels are properly chosen, their corresponding TFDs, the T-distributions, are
more efficient than their two-dimensional counterparts in terms of cross-terms sup-
pression while keeping a high energy concentration (resolution) around the IF law of
non-stationary signals. The proposed class is a subclass of Cohen’s Class of quadratic
TFDs. We have shown that separable time-lag kernels should be lag-independent (or:
time-only) for best resolution. In addition, non-parametric amplitude estimation is
possible directly from the T-distributions in case of FM signals, a property that is
not verified by other TFDs. Two examples of the T-distributions are given and their
performance is compared to other TFDs with numerical examples using synthetic
and real-life signals.

Key words: Time - frequency analysis, non-parametric amplitude estimation,
multicomponent signals, resolution, cross-terms, Gaussian noise.

PACS: 07.50.Qx

1. Introduction

Time-frequency analysis is used to deal with nonstationary signals as it re-
veals the time-varying characteristics of their spectra and the multicomponent
nature of such signals, while the classical Fourier techniques are insufficient in
this respect. Joint time - frequency representations (a.k.a time - frequency
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distributions, TFDs) are transformations that describe the energy density
of the signal simultaneously in time and frequency. Most important TFDs
are members of the quadratic (bilinear) class [1]-[4]. The early examples of
the quadratic class include the spectrogram and the Wigner-Ville distribu-
tion (WVD). This class has originated from the work of Wigner in 1932 [5],
formulated with the analytic signal by Ville in 1948 [6], then generalized by
the work of Cohen in quantum physics in 1966 [7], hence it is also known
as Cohen’s Class. However, quadratic TFDs of multicomponent signals suffer
from the presence of cross-terms [1]-[11], which can obscure the real features of
interest in the signal. The time - frequency resolution (energy concentration)
is an important issue for both mono- and multicomponent signals, especially
for non-parametric IF estimation [1]. For instance, the Wigner-Ville distribu-
tion (WVD) gives optimal resolution for linear monocomponent FM signals
but it is suboptimal for non-linear FM [1,8], and it suffers from significant
cross-terms for multicomponent signals.

Considerable efforts have been made to define TFDs which reduce the effect
of cross-terms while improving the time - frequency resolution (e.g. [9]-[13]).
This led to the so-called reduced interference distributions (RIDs), the L-class
and signal - dependent optimal time - frequency representations. The general

formula for Cohen’s Class of quadratic TFDs for a time signal s(t) is given by
[1,2]

o) = [ | g, m) AW, 1) Ndvr )

where (v, 7) is the Doppler-lag or the ambiguity domain, g(v, 7) is the Doppler-
lag kernel of the distribution p(t, f) and A(v, 7) is the signal ambiguity func-
tion given by

Alv,T) = /_O;s(u + %)3*(14 - g)eﬂm’“du (2)

The analytic signal z(t) associated with the signal s(¢) is normally used in
the above expressions to remove the aliasing effects [1,2]. The properties of a
quadratic TFD are completely determined by its kernel. It is well-known in
the literature that the kernel should have the shape of a two-dimensional low-
pass filter so as to attenuate the cross-terms that exist away from the origin in
the ambiguity domain and preserve the auto-terms that concentrate around
the origin of this domain [2,14,15]. When a low-pass kernel is utilized, there
is always a tradeoff between the resolution and cross-terms reduction.

The problem of non-parametric instantaneous frequency (IF) estimation for
multi-component FM signals is an important issue in signal processing [16].
Adaptive techniques for IF estimation for mono- and multicomponent signals
have been proposed and analyzed [17-19|. These techniques depend on the
amplitude estimation of the signal components. Also amplitude estimation is of
general interest in signal processing. Hence, it is of benefit in time - frequency



analysis that a non-parametric amplitude estimation is possible from the TFD.
In [19] we have proposed that a TFD can support amplitude estimation for
the signal components if its kernel in the time-lag domain, which is the inverse
Fourier transform (v — t) of the Doppler-lag kernel g(v, 1), is a function of
time only:.

In this paper we analyze quadratic TFDs with time-only kernels, hence the
name T-distributions (initial ideas on this T - Class of TFDs appeared in [20]
and [21]). It is worth noting that the T - Class is a subclass of Cohen’s Class
of time-frequency distributions. Two important members of the T-class are
studied and compared to other efficient TFDs that have similar kernel shape
in the time direction. In addition to their simpler structure, it appeared that
time-only kernels are more efficient than their two-dimensional counterparts.
Amplitude estimation is considered with numerical examples under noise-free
and noisy conditions.

2. Rationale

We discuss the motivation behind the introduction of time - frequency dis-
tributions with time-only kernels. Any quadratic time-frequency distribution
(TFD) is completely characterized by its time - lag kernel G(¢,7) or Doppler
- lag kernel g(v,7) [1]. The time-lag kernel G(t,7) of any quadratic TFD is
defined as follows

G(t,r) = /

—00

o0

gv.m)e Py = F {g(v. 7)) 3)

where F is the Fourier transform. The Doppler-lag kernel is usually low-pass,
real, and even in ¢t and 7, where we assume these properties to be satisfied
in this paper. Using eqs(1), (2), and (3) we can express the time - frequency
distribution of the analytic signal z(¢) as follows

plt. ) = F Gt ) K(t7) (@)

where K (t,7) = z(t + 5)z*(t — 3) is the instantaneous autocorrelation and (*)
¢

is the convolution in the time domain.

Since the proposed time-only kernels represent a special case of separable
time-lag kernels, we will discuss the latter first in the next subsection.

A. Separable Time-Lag Kernels

Suppose we have a time-lag kernel separable along the time and the lag do-
mains as follows

G(t,7) = A)0(7) ()

where \ and 6 are continuous and L2-integrable functions of time and lag,



respectively. High time - frequency is a main point of interest for any TFD.
To test the TFD with the above kernel for resolution, we apply it to a complex
sinusoid z(t) = exp(j27 f,t), where by using eq.(4), we reach the following

ot f) = [ [Nt —w)(r) exp{—j2n(f = fo)r}dudr = MO(f ~ £,) (6)

where

M= [ Nu)du, O(f) = F {6(r)}. (™)

T—f

In order to have an ideal (maximum) energy concentration, we should have a
Dirac delta function along the IF of the signal as follows

p(t, f) = o(f = fo) (8)

where ¢ is the Dirac delta function. Using the above relations, this result
implies that
0(r) =1/M (9)

hence we have the following kernel
G(t,7)=6(t) = O)/M, g(v,7)=g(v)= F H{AO)}/M  (10)

where G(t, ) should now be a time-only kernel. Hence for best performance
in resolution and cross-terms reduction, a separable time-lag kernel should be
a time-only one. This is the proposed general formula for all time-only kernels,
and the corresponding TFDs will be called accordingly as the T-distributions.
Another factor of major importance in designing TFDs is their behavior in
reducing cross-terms when analyzing multicomponent signals. Multicompo-
nent signals appear in many applications, e.g., biomedical signals or signals
from natural phenomena. To see the performance of the above time-only ker-
nel in cross-terms reduction for multicomponent signals, we consider a signal
composed of the sum of two complex sinusoids as follows

2(t) = ay exp{j(2m fit + 01)} + as exp{j (27 fot 4+ 02)} (11)

where a1, as are real constants that represent the amplitudes, and #; and 6,
are phase constants. Complex sinusoids are already in the analytic form. Using
egs. (4), (10), and (11), we have the TFD of the above two-component signal
as follows

P(t:f)_a15(f f1>+a25(f f2)
+2arag g(fi — f2) cos{2n(fi — f2)t + 61 — 02} 6(f —

f1-2Ff2) (12)

where there is ideal concentration (Dirac delta function) about the auto - terms



in the time - frequency plain. Cross-terms appear with a controlling factor
g(f1 — f2). It is worth noting that the well - known Wigner-Ville distribution
(WVD) also utilizes a time - only kernel G(t,7) = G(t) = §(t) (whose time-lag
counterpart is g(v, 7) = g(v) = 1), but it has significant oscillatory cross-terms
without a controlling factor (they can be larger in amplitude than the auto-
terms, causing a confusion in signal analysis). The T - distributions use a low
- pass time - only kernel (in the time-lag domain) other than 6(¢); and this will
result in controlling the cross-terms by the low-pass function g. In the case
of two complex sinusoids above we have the controlling factor g(f; — f2) with
cross-terms reduction depending on the shape of the low-pass function g and
the frequency separation f; — fy. Unlike the Choi - Williams and other two -
dimensional kernel distributions which spread the cross-terms in the frequency
domain, T - distributions have them more concentrated but attenuated relative
to the auto-terms. This would be more evident in practical implementation
where the delta functions above are converted by the discrete implementation
into finite peaks. Another approach for separable kernels appeared in [15].

Although this derivation of high-resolution and cross-terms reduction does
not include noise (interference), we used the result that noise will cause cross-
terms with the original information-bearing signal (see [1]), hence, if the TFD
is better in noise-free cross-terms reduction, we can conclude that it is better
in noisy environments as well.

B. Properties of the T-Distributions

We examine the T-distributions against the following desirable properties of
TEFD’s are explained in [1], [2], and [23]. A newly proposed instantaneous
frequency property and the property of amplitude estimation will also be
discussed.

B.1 Realness:

Since G(t) is a real and even function of ¢, we have g(v) real and even in v
[22]. This will give a real TFD p(t, f).

B.2 Time-Shift and Frequency Shift Invariance:

Since g(v, 7) is independent of time ¢ and frequency f, p(t, f) satisfies the time
shift and frequency shift invariance properties.

B.3 Frequency Marginal and Group Delay:

A T - distribution p(¢, f) satisfies the frequency marginal property since, us-
ing eqs.(7) and (10), we have g(0,7) = g(0) = 1 V7. Now the group delay



property, [[tp(t, f)dt/ [ p(t, f)dt] = t,(f), is satisfied by the proper choice of
g such that [0g(v,T)/0V] |,—o= 0 V7.

B.4 Frequency Support:

The frequency support property is also satisfied since [ g(v,7)e/>/7dr =
g(¥)a(f) = 0 for [f| > |v|/2.

B.5 Time Support:

The time support property entails that p(t, f) = 0 for [¢t| > ¢, if the signal
s(t) = 0 for |t| > t,. Hence, we must have G(¢,7) = 0 in the region |t| > g
[2,23]. Like the Choi-Williams distribution (CWD) and the Spectrogram, this

condition is not exactly satisfied by the T - distributions, but it is approxi-
mately true for most of the region || > % in the time - lag domain (due to

the low-pass shape of G(t, 7) that substantially decays when |¢| > @)

B.6 Reduced Interference and Resolution:

This property is satisfied by the T - distributions where they had high resolu-
tion (delta function for sinusoids) with a cross-terms reduction factor as shown
in subsection (2-A) above for the case of two-sinusoids multicomponent signal.

B.7 Time Marginal and Instantaneous Frequency:

The instantaneous frequency f;(t) of a monocomponent signal s(¢) is the sinu-
soidal frequency that instantaneously fits the frequency of the signal, defined
mathematically as follows [16]

fi(t) = 1 dot)

= 1
2m  dt (13)

where z(t) = a(t)e’*®) is the analytic signal associated with s(t). Tradition-
ally a time - frequency distribution p(t, f) is looked upon as analogous to a
probability distribution, hence it was imposed that the first moment of p(¢, f)
with respect to f must equal the instantaneous frequency f;(t), leading to
the conditions ¢g(v,0) = 1 Vv and 9g(v,7)/0T |,—0= 0 Vv [23]. But many
important TFDs (the spectrogram, Page, and Rihaczek distributions, for ex-
ample) do not satisfy these conditions [2]|. If the time-frequency distribution
does not satisfy one of the marginals, the analogy with a probability distribu-
tion will no longer be true, and the traditional definition of the IF property
will no longer be valid. Hence, in [20], we postulated the following general IF



property that would be applicable to practical signal analysis: at any time
instant ¢, the time - frequency distribution p(¢, f) should have an absolute
maximum at f = i%&ﬂ. This is the actual important characteristic needed

for IF estimation in practice.

The T - distributions do not satisfy the time marginal, hence do not satisfy the
traditional condition for the instantaneous frequency. But at any time ¢, the
T-distributions have absolute maxima at f = %%&t) for sinusoids and linear
FM signals. This is the basis for IF estimation using TFDs. For non-linear FM
signals this IF estimate will be biased, and best IF estimation is achieved in

this case by adaptive methods [17-19].

OO IF Property: At any time ¢, the T-distributions have absolute maxima at
the frequency f = 1 do(t

%T) for sinusoids and linear FM signals z(t) = a 61'¢(t)7
a being a constant or slowly varying function of time.

Proof: The T-distribution p(t, f) of the signal z(¢) can be written as follows

p(t, f)= |a|2/_ /_ e I2ITG(t — u, ) AT/ =0T/ gy g

o oo 5710 Ay e 6 (u)
= |a|2/ / e IITG(t—u) e (k odd) dudT
—00J =0

where Taylor series expansion has been used for the term ell?(u+7/2)=¢(u=7/2)]
around the point ¢(u). If we assume relatively small higher-order phase deriva-
tives ¢ (t), k > 3, we reach at the following approximation

!/

6, 1) = Jal? [ G~ u) 6 [56 (u) — f) du = |aP Gt — ()0 (S) (14)

where 1 is the inverse of 5-¢', i.e., 5-¢ (¥(f)) = f. We assume that ¢'(f) does
not have a high peak at any frequency f. Since we assumed that all time-only
kernels have low-pass shapes and are even in the variable £, we note that
G(t — ¥(f)) should have a peak at ¢t = ¢(f). Hence, the absolute maximum
of p(t, f) for any time t would be at ¢(f) = ¢, or f = i& (t), which is the
instantaneous frequency of the FM signal z(¢). For non - linear FM signals, the
energy peak of p(t, f) would be biased from the instantaneous frequency due

to the effect of the higher - order derivatives in the term Z?;:d% ) %gb(k) (u),

in which the major factor is ¢ (u) [17,18]. Therefore at the instants of rapid
change in the IF law, the bias is not negligible and eq.(14) would not be an
accurate approximation unless a suitable lag windowing is used.

For linear FM (LFM) signals, the phase derivatives above the third are all zero,
ie., o®(t) = 0 for k > 3. For the general LFM signal z(t) = aei27(fot+ 5,



where f, and (3, are constants, we have the following structure for the T-
distributions

plt, ) = T laPG Lt = 57 = 1) (15

which has an absolute maximum at f = f, + (,t, the instantaneous frequency
of the linear FM signal z(¢).

The above proof is applicable to any T - distribution p(t, f) on condition that
it is even in t and that its time - lag kernel is chosen to be of a low-pass
shape. The proof is also applicable to slowly varying amplitudes a(t) as per
the Bedrosian Theorem [1]. OJ

B.8 Amplitude Estimation:

In many applications it is necessary to extract the amplitude of the FM signal
from its TFD. This can be more important when the signal under consideration
is multicomponent, where there is no way to get the individual amplitudes
except using time-frequency analysis. The T - distributions as explained in
eq.(14) above enable amplitude estimation for FM signals using an estimate for
¥ from the peak of p(t, f). This estimation of ¢ is more accurate in the linear
parts of TFD. For a single component FM signal of the form z(t) = a e7*®,
we can estimate its amplitude alternatively as follows [17]

a1 2
ac = an::l |z(nT)| (16)

For multicomponent FM signals, the task is a bit more complicated. We con-
sider the following signal

M
2(t) = a,ei® ™ (17)
q=1

where the amplitudes of the individual components {a,} are constant. The
individual IF laws are given by [1]

fralt) = =10

I N 18
ot T (18)

For the above signal, we have the following relationship [19]

M ) 1 N )
> Jagf? = 5 X |=(n)] (19)
qg=1 n=1

where N is the total number of samples and the hat ~ refers to the estimated
values. In practice it is more accurate in case of multicomponent signals to find



the ratio between the components amplitudes, while the sum of the squares
of the component amplitudes can be obtained from the signal in the time
domain according to eq.(19). The ratio between the component amplitudes
can be estimated. Assume that the ratio of the ¢! amplitude to the first
amplitude is 7, = |a,|/|ai1|, then we have the following estimates

M
g |* = 72s,/{1 + D7} (20)
7=2

where s, = Zé\il |a,|>. Using approximations for the T-distributions as per
eq.(14), we can estimate the ratio r, at the peaks (ridges) around the ¢ and
the first components, P,(¢, f) and P (¢, f), as follows

72 = mean P‘f(t’f) mean Pl(t’ﬁ
2= megn (120 g T30 o1

We can use the peak trajectory to estimate gb;(t) and ¢, (t), from which the
quantities ¢, (f) and ¢} (f) can be estimated. It is better not to include the
start and the end parts of the TFD in the estimation using eq.(21). Also the
regions of rapid change in the IF law should be excluded as eq.(14) would not
be an accurate approximation to the TFD there due to the effect of higher-
order phase derivatives.

In the next section we study two members of the T - class.
3. Exponential and Hyperbolic Time - Only Kernels

In this section we present two time-only kernels and compare their perfor-
mance with other well - known kernels using numerical examples. Amplitude
estimation is also considered.

A. The Exponential Time - Only Kernel

The Choi - Williams distribution CW (t, f) was a significant step in time-
frequency analysis where it opened the way for optimizing resolution with
cross-terms reduction [9]. The kernel of the Choi - Williams distribution (CWD)
in the Doppler-lag domain is g(v,7) = exp(—4r?v?7?/0), with its time-lag

counterpart given by
G(t, 1) = \/0/47T7’2€_Ut2/472 (22)

where o is a real parameter that will control the resolution and the cross-
terms reduction. This two-dimensional exponential kernel has shown excel-
lent performance in reducing cross-terms while keeping high resolution, with
a compromise between these two requirements decided by the parameter o.



Based on this work, we propose a time - frequency distribution T,(t, f) with
exponential time-only kernel as follows

G(t.7) = G(t) = \Jn/me (23)

where 7) is a real parameter and \/77/7 is a normalization factor as it appears
in eqs.(7-10). Using an argument similar to that in the Appendix, it can be
shown that when 7 approaches oo, the exponential T - distribution T,(, f)
will approach the Wigner - Ville distribution (WVD).

Now we examine the performance of this kernel in resolution (energy concen-
tration) and cross-terms reduction using various examples and compare the
performance of the corresponding exponential T - distribution (ETD) with
the Choi - Williams distribution.

Example 1: The Sum of Two Complex Sinusoids

The exponential T - distribution T, (¢, f) of the signal z(¢) given in eq.(11) can
be written as follows

ht

Te(t’ f) = CL% 5(f - fl) + a% 5(f - f2) + 2a1a2An(t) 5(f 9

) (24)

where
_772(1‘1*1'2)2

A(t)=e ncos<27r(f1 — fo)t+ 01 — 92)

If n is small, the cross-terms can be reduced so that they are negligible com-
pared with the auto - terms. If 7 — oo, we have exp{—72(f1 — f2)?/n} ap-
proaches 1 and T,(¢, f) approaches W (t, f). The relative reduction in cross -
terms is clearer in the above formula than the formula of CWD [9]. To see the
efficiency of this cross - terms reduction compared to the two - dimensional
exponential time - lag kernel in the practical implementation, we consider next
a more complicated signal and compare T.(¢, f) with CW (¢, f).

Example 2: Multicomponent Linear FM Signals

For linear FM signals, we compare the performance of T, (¢, f) with CW (, f)
using the sum of two linear FM signals

z(nT) _ ej27r[0.1(nT)+0.0008(nT)2} + 6j27r[0.3(nT)+0.0008(nT)2}

Figure 1 shows the discrete versions of T.(¢, f) with parameter n = 0.01 and
the Choi-Williams distribution CW (¢, f) with parameter ¢ = 20 for the above
signal, with total length NV = 64 and sampling interval 7" = 1 at the discrete
time instant n = t/T° = 30. Note that for both TFD’s there is a compro-
mise between the two requirements: resolution and cross - terms reduction.

10



— T(300)
\

o
3

| ----cw(zo,)
|

o
>

The normalized TFD

o
©

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
normalized frequency, f

Fig. 1. Performance comparison between the discrete versions of T,(¢, f) for n = 0.01
and CW (¢, f) for o = 20 using a two - component linear FM signal with N = 64 and
sampling instant 7' = 1 at the time instant ¢ = 30. Due to the inherent compromise
between high resolution and cross-terms suppression, changing these parameters will
improve one of these two requirements at the expense of the other.

Changing the parameter of the TFD results in improving one of the above
requirements at the expense of the other.

Example 3: Multicomponent Real - Life Signals

In this example we compare the one-dimensional exponential kernel with the
Choi - Williams two - dimensional exponential kernel using a non - linear
FM real-life signal, a bat signal. As shown in Figure 2, The cross - terms in
CW (t, f) can obscure the weak component (far right). In this comparison we
used o = 30 for CW (¢, f) and n = 0.05 for T.(t, f), with total signal length
N = 400 and sampling interval 7' = 1.

Example 4: A Comparison with WVD: Linear FM Signals

It is well - known that the Wigner - Ville distribution W (¢, f) is ideal for a
mono-component linear FM signal since it gives a delta function around the
IF law of such a signal. The proposed exponential T - distribution 7,(¢, f) has
a performance comparable to that of WVD for linear FM signals as shown
in Figure 3 using the signal z(nT) = /2r0-1(nT)+0.0008(nT)’] with total signal
length N =64, T =1, n = 0.01 at the discrete time instant n = t/T = 30.

Example 5: Amplitude Estimation
We investigate the amplitude ratio estimate for a multicomponent FM signal
under noise - free and noisy conditions using the component peaks (ridges) of

T.(t, f). Two-component FM signal with non - linear IF laws is considered as
follows

11
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Fig. 2. Performance comparison between T,(t, f) for n = 0.05 (above) and CW (¢, f)
for o = 30 (below) using a bat signal. The total signal length is N = 400 and the
sampling interval is T = 1.

z(nT) _ alejzw[47+2.5sinh—l(lo(nT—og))] + a2€j27r[30+2.5sinh_1(20(nT—O.8))] + e(t)

where €(t) is a complex-valued white Gaussian noise with independent iden-
tically distributed (i.i.d.) real and imaginary parts with total variance o2. If
r = aj/as and 7 is the estimated value of the ratio r as per eq.(21), then the
estimation error can be found as follows

e = | —)/rl. (25)

The estimation error for different values of r and signal - to - noise ratios is
shown in Figure 4. We used the exponential T - distribution T,(¢, f) with a

12
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Fig. 3. Performance comparison between T¢(¢, f) for n = 0.01 and W (¢, f) using a
mono-component linear FM signal at the time instant ¢ = 30. Total signal length
is N = 64 and the sampling interval is T' = 1. Ripples appear due to finite signal
length, which is equivalent to time and lag windowing. However, T, (¢, f) performs
better than W (¢, f) in reducing these ripples, although the latter is slightly better
in resolution.

total number of samples N = 128, T" = 1, and control parameter n = 0.01.
For the amplitudes ratio estimate we used the following formula:

.2
7 = | max {P(t, max {P»(t, 26
| max (Pt B/ max (Pa(t, B} (26)
where we used the linear regions L; and Ly of the IF laws, with 3; and [
representing the approximate slopes of the IF laws as functions of time in the
linear regions Ly and Ly as per eq.(15).

It is worth noting that less overall root - mean - squared error over all ratios
is obtained for higher values of the signal - to - noise ratio (SNR). In the
above example, the RMS values of error for noise - free, SINR=30 dB, and
SNR=15 dB are 0.0357, 0.0363, and 0.0411, respectively. There is a non-zero
error even in the noiseless case due to windowing and discretization of the
TFD (calculating its value using windowing and finite summations). Another
source of error may emerge when there is no linear part in the IF law of the
signal, where in this case the bias in the estimate of @Z)/( f) would be large as
the effect of higher-order derivatives of the IF law would be non-negligible.

B. The Hyperbolic Time - Only Kernel
The hyperbolic time - only kernel was proposed in [19,20] as follows

G(t,7) = G (t) = ko/ cosh®(t) (27)
where « is a real positive number and k, is a normalization factor given by

ko = [, 1/ cosh?(t) = I'(2a) /22~ 'T%(a) (T stands for the gamma function).
However, the T - distribution associated with this kernel, the hyperbolic T -
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Fig. 4. The amplitudes ratio estimation error for a two - component non - linear FM
signal with different values of the signal - to - noise ratio (SNR). The distribution
Te(t, f) is used with a total number of samples N = 128, T'= 1, and n = 0.01
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Fig. 5. Performance comparison between the ETD T,(¢, f) for n = 0.015 and the
HTD Ty(t, f) for a = 0.1 using a two-component linear FM signal at the time
instant ¢ = 30. The total signal length is NV = 64 and the sampling interval is T' = 1.
The parameters are arranged such that both TFDs have the same resolution. Slight
reduction in cross-terms and ripples is obtained by T¢(¢, f).

distribution (HTD) Tj(¢, f), has a performance slightly inferior to that of
T.(t, f) discussed in the previous subsection as shown in Figure 5. As o« — o0,
we have Gi'(t,7) — 6(t) and T),(¢, f) approaches the Wigner-Ville distribution
W (t, f) (see Appendix).

Example 6: Instantaneous Frequency Estimation

We investigate the performance of the above T - distributions in IF estimation
of FM signals and compare that to the performance of WVD and CWD. A
complex linear FM signal was used as follows z(t) = a ¢/*®), ¢(t) = 27 (f,t +
Bt?/2), with a = 1, f, = 20 Hz, and 3 = 0.5. The signal length was N = 512
samples, and the sampling frequency was f, = N Hz. The exponential T -
distribution (ETD) was used with parameter n = 0.01, the hyperbolic T -
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distribution (HTD) was used with parameter a = 0.1, while the CWD was
used with parameter ¢ = 19. The instantaneous frequency was calculated
using R

Fi(t) = anglmax p(t, )] 5 0 f < £,/2 (28)

at the mid of the signal, i.e., at the time instant n = N/2 (where the TFD is
most accurate), then an estimate was taken as the average of these calcula-
tions over 1000 Monte Carlo simulations. Figure 6 shows that the above two
T - distributions (which have similar performance represented by the solid
curve) surpass WVD and CWD in robustness; they give the minimum esti-
mation variance that is close to the Cramer - Rao Bound, especially at low
SNRs, where the performance curves of both WVD and CWD deteriorate
significantly.

_30
Ny
-40fy

_s0-

..

-60

HTD,a =0.1 —
[ETD,n=0.00 TS 7]

Variance of IF estimate, dB

—gol

—90}-

SNR, dB

Fig. 6. Instantaneous frequency estimation of a linear FM signal using different
TFDs. The T - distributions (solid curve) surpass WVD and CWD in robustness
where they give the minimum variance, especially at low SNRs.

5. Conclusions

In this paper we have presented a sub-class of Cohen’s Class of time - fre-
quency distributions (TFDs) that has interesting properties. The kernels of
the proposed class are time-only in the continuous time-lag domain. We have
analyzed separable time - lag kernels and proved that for best performance,
these kernels should be lag-independent. If their parameters are properly cho-
sen, time-only kernels (and their corresponding TFDs: the T - distributions)
are efficient in optimizing the two requirements: cross-terms reduction and
high energy concentration around the IF law of the signal signal. Numerical
examples have shown that time-only kernels are more efficient than their two-
dimensional counterparts in this respect. Two distributions of this class are
studied and numerical comparisons are made using synthetic and real - life
signals. In addition to their superior performance in resolution and cross-terms
reduction, non-parametric amplitude estimation is possible directly from the
T - distributions in case of FM signals, a merit that does not exist in other
TFDs. The performance of the amplitude estimator is studied for a two - com-
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ponent non - linear FM signal under noise - free condition and in the presence
of additive Gaussian noise.
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Appendix
We here prove that when a approaches infinity, the hyperbolic time-only kernel

Gy (t) approaches 6(t). Similar reasoning can be applied to the exponential time
- only kernel G7(t). It is more convenient here to use the following formula [24]

['(2a) = 22T ()T (o + ;)/ﬁ
Hence, the hyperbolic time-lag kernel can be written as
Gy (1) = T(a + 5)/ VAT (a)cosh® (1
The Stirling’s asymptotic formula states that [25]

I(z) — V2r Q;IJF%Q*IJF% as r— o0, 0<f<1

Using this formula and taking the natural logarithm of Gy (t) we have

1
log Gy (t) — a(% + 2log o e—t) as o — o0.
1
Noting that lim 8% _ (L’Hopital’s rule), we have
a— 00 «
—o0o t#0

lim log G;'(t) =
e oo t=0.

Hence, when a — oo, G (t) is zero everywhere except at ¢ = 0 where it is
infinite. Since we have G5'(—t) = G;'(t) Vo and

/‘”g;;(t) dt =1 Ya

then we can say that
Gy(t) — o(t) as a — oo.
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