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Abstract: In this paper, the problem of robust fault detection filter (RFDF) design for a 

class of linear systems with some nonlinear perturbations and mixed neutral and 

discrete time-varying delays is investigated. By using a descriptor technique, 

Lyapunov-Krasovskii functional and a suitable change of variables, new required 

sufficient conditions are established in terms of delay-dependent linear matrix 

inequalities (LMIs) to synthesize the residual generation scheme. Based on Luenberger 

type observers, the explicit expression of the filters is derived for the fault such that 

both asymptotic stability and a prescribed level of disturbance attenuation are satisfied 

for all admissible nonlinear perturbations. A numerical example is provided to 

demonstrate the effectiveness and the applicability of the proposed method.  
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1. INTRODUCTION 

There is an increasing demand for dynamic systems to become safer, more reliable and more economical 

in operation. This requirement extends beyond the normally accepted safety-critical systems e.g., nuclear 

reactors, aircraft and many chemical processes, to systems such as autonomous vehicles and some process 

control systems where the system availability is vital [37]. The field of fault diagnosis for dynamic 

systems (including fault detection and isolation) has become an important topic of research in the past 

three decades (see for instance [1]-[2], [5], [9], [11], [22] and the references therein). In the fault 

diagnosis scheme based on an adaptive observer, a fault cannot only be detected but also be 

approximated, and the fault estimate can be further used in fault-tolerant control. On the basis of an 

adaptive observer, Jiang et al. in [24] and Wang and Daley in [43] presented schemes that could deal with 

state fault only. Using the augmented error technique, Wang et al. in [44] proposed another scheme that 

could estimate actuator and sensor gain faults occurring simultaneously or sequentially. Combining 

adaptive observer with neural networks used as nonlinear function approximators, for instance, 

Demetriou and Polycarpou in [8] and Vemuri and Polycarpou in [41] developed an on-line learning 

scheme to detect and estimate faults for nonlinear systems. In [40], Trunov and Polycarpou generalized 

this scheme to detect and estimate both state and output faults in the presence of modelling uncertainties. 

Compared with the schemes of available in [24], [43]-[44], the one of the reference [40] is more general. 

On the other hand, time-delay exists widely in practice (see for instance [7], [21], [32], [35] and the 

references therein). Delay (or memory) systems represent a class of infinite-dimensional systems largely 

used to describe propagation and transport phenomena or population dynamics (see for instance [20], 

[29]-[30] and [33]). Delay differential systems are assuming an increasingly important role in many 

disciplines like economic, mathematics, science, and engineering. For instance, in economic systems, 

delays appear in a natural way since decisions and effects are separated by some time interval. The 

presence of a delay in a system may be the result of some essential simplification of the corresponding 

process model. The delay effects problem on the stability of systems including delays in the state and/or 

input is a problem of recurring interest since the delay presence may induce complex behaviours 

(oscillation, instability, bad performances) for the schemes (see for instance [21], [29], [33], [36] and 

[45]). Large delays in some reaction processes of chemical industries or time-delays induced by long-

distance transportation and communication might cause the closed-loop systems unstable and deteriorate 

the control performance. On the contrary to the intensive investigation of robust fault diagnosis for 

uncertain systems and fault diagnosis for nonlinear systems, which have achieved much progress in recent 

years ([12] and [42]), the works on fault diagnosis for time-delay systems are very few. 
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On the research of fault diagnosis for linear time-delay systems, Yang and Saif in [47] first proposed a 

scheme of actuator and sensor fault diagnosis using an unknown input observer and a technique of input 

estimation for systems with time-delays only in the state. In this work, modeling uncertainties were not 

considered and some assumptions on the system’s structure decomposition were unreasonable. For 

systems with state and input time-delays, Ding et al. in [10] designed a robust fault detection filter that 

guaranteed both sensitivity to faults and insensitivity to disturbances. In the scheme of the reference [50], 

the influence of disturbances on the residual was further decreased using the idea of integrated design of 

∞H  filter and unknown input observer. Based on an adaptive observer, Jiang et al. in [24] developed a 

scheme to estimate abrupt state fault for linear (nonlinear) systems with only state time-delays, and no 

uncertainties were considered. For systems with constant time-delays in inputs and outputs only, Zhang et 

al., in [49] presented a state fault detection method based on parity space. Recently, a geometric approach 

for fault detection and isolation of retarded and neutral time-delay systems was developed in [34]. The 

time-delays investigated above are either in the state, the derivative of the state or in the input/output, 

neither in both of them or in the derivative of state. In practice, a system may involve time-delays in 

states, inputs/outputs and the derivative of states, and the influences of modeling uncertainties, noises and 

disturbances are perhaps not negligible (see for instance [3]-[4], [13], [17]-[19], [23], [26]-[28], [36], [39] 

and [46]). Furthermore, from the published results in [1]-[2], [9], [25] and [34], it appears that general 

results pertaining to robust fault detection of linear systems with mixed neutral and discrete time-varying 

delays, some nonlinear perturbations and an ∞H  performance criteria, which are infinite dimensional 

systems in essence, are few and restricted, despite its practical importance, mainly due to the 

mathematical difficulties in dealing with such mixed delays and nonlinearities. Hence, it is our intention 

in this paper to tackle such an important yet challenging problem. 

In this paper, we are concerned to develop a new delay-dependent stability criterion for robust fault 

detection filter (RFDF) problem of linear systems subjected to mixed neutral and discrete time-varying 

delays and some nonlinear perturbations which satisfy the Lipschitz conditions. The contribution of this 

paper is three-fold: first, this paper extends previous works on RFDF problem and derives some new 

theoretical results; second, this paper shows how the RFDF problem can be reduced to a convex problem 

with additional degrees of freedom to design a RFDF; third, by introducing a descriptor technique, using 

Lyapunov-Krasovskii functional and a suitable change of variables, we establish new required sufficient 

conditions in terms of delay-dependent linear matrix inequalities (LMIs) under which the desired RFDFs 

exist, and derive the explicit expression of these filters based on Luenberger type observers to satisfy both 

asymptotic stability and an ∞H  performance condition. Furthermore, the incorporation of generated 
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residual signal constraints increases the computational effort of the filter but also improves its estimation 

accuracy and the desired RFDF can be constructed through a convex optimization problem, which can be 

solved by using standard numerical algorithms. Finally, a numerical example is given to illustrate the 

proposed design method. 

Notations. The superscript ''T  stands for matrix transposition; nℜ  denotes the n-dimensional Euclidean 

space; mn×ℜ  is the set of all real m  by n  matrices. .  refers to the Euclidean vector norm or the induced 

matrix 2-norm. }{col  and )(Asym  represent, respectively, a column vector and the matrix TAA + . 

)(min Aλ  and )(max Aλ  denote, respectively, the smallest and largest eigenvalue of the square matrix A . The 

notation 0>P  means that P  is real symmetric and positive definite; the symbol ∗  denotes the elements 

below the main diagonal of a symmetric block matrix. In addition, ),0[2 ∞L  is the space of square-

integrable vector functions over ),0[ ∞ . Matrices, if the dimensions are not explicitly stated, are assumed 

to have compatible dimensions for algebraic operations. 

 

2. PROBLEM DESCRIPTION 

We consider a class of continuous linear systems with some nonlinear perturbations and mixed neutral 

and discrete time-varying delays described by 
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where ntx ℜ∈)( , ),0[)( 2 ∞∈ sLtw , mtu ℜ∈)( , ztz ℜ∈)(  and pty ℜ∈)(  are corresponded to state vector, 

disturbance input, control inputs, controlled outputs and measurements, respectively. The term ltf ℜ∈)(  

corresponds to fault modes and fE  is called fault signature which is assumed known. ))(,(1 txth , 

)))((,(2 ttxth τ− , )))((,(3 tdtxth −  and ))(,(4 txth  are time-varying vector-valued functions which are unknown 

and present the nonlinear parameter perturbations. The time-varying function )(tϕ  is continuous vector 

valued initial function and the parameters )(tτ  and )(td  are time-varying delays satisfying 

21 )(,)(0 ττττ ≤≤≤ tt                                                            (2a) 

1)(,)(0 21 <≤≤≤ dtddtd  .                                                     (2b) 

with },max{ 11 dτκ = . 

One can define a difference operator nnCD ℜ→ℜ− )],0,([: κ  such that 
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))(()( 2 tdtxAtxDxt −−=                                                             (3) 

Definition 1. [21] The difference operator D  is said to be stable if the zero solution of the homogeneous 

difference equation :])0,([{,0,0 0 κ−∈Φ∈Ψ=≥= CxtDxt }0=Φ∇  is uniformly asymptotically stable. 

The stability of the difference operator D  is necessary for the stability of the system (1). Therefore, 

throughout the paper, the following assumption is needed to enable the application of Lyapunov’s method 

for the stability of neutral systems. 

A1) It follows from [21] that a delay-independent sufficient condition for the asymptotic stability of the 

system (1) is that all the eigenvalues of the matrix 2A  are inside the unit circle, i.e. 1)( 2max <Aλ . 

Furthermore, we make the following assumption for the nonlinear perturbation functions in (1). 

A2) The nonlinear function nn
ih ℜ→ℜ×ℜ:  are continuous and satisfy 0)0,( =thi  and the Lipschitz 

condition, i.e., )(),(),( 0000 yxUythxth iii −≤−  for all nyx ℜ∈00 , and iU  are known matrices.  

Remark 1. The model (1) can describe a large amount of well-known dynamical systems with time-

delays, such as the delayed Logistic model, the chaotic models with time-delays, the artificial neural 

network models with time-delays, and the predator-prey model with delays (see for instance [16] and 

[48]). 

In this paper, the authors’ attention will be focused on the fault detection by a Luenberger type observer, 

the so-called robust fault detection filter (RFDF) with the following state-space equations 
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where )(tr  is the so-called generated residual signal and the state-space matrices VH ,  of the appropriate 

dimensions are the filter design objectives to be determined. In the absence of )(tw  and )(tf , it is required 

that 

∞→→− tastxtx 0)(ˆ)(
2

                                                        (5) 

where ntx ℜ∈)(ˆ  is the estimation of )(tx  and )(ˆ)()](,),(),([)( 21 txtxtetetete T
n −==   is the estimation error. 

Then, the error dynamics between (1) and (4) can be expressed by 
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where )}(),({:)(ˆ tftwcoltw = , ],[:ˆ
fw CDD = , ],[:ˆ

ffww HCEHDBB −−= , −= ))(,())(,( 11 txthtetψ   

))()(,(1 tetxth − , )))(())((,()))((,()))((,( 222 ttettxthttxthttet ττττψ −−−−−=− , −−=− )))((,()))((,( 33 tdtxthtdtet ψ   

)))(())((,(3 tdtetdtxth −−−   and ))()(,())(,())(,( 444 tetxthtxthtet −−=ψ .  

From A2), the Mean Value theorem and the Leibniz-Newton formula, i.e., ∫
−
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where ξ  is a point on the straight line between )(te  and ))(( tte τ− , which may be different for different 

rows of )(2 ξψ .  

Remark 2. It is noting that, from the equation (7), one can obtain 
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thus, the Lipschitz constant of (.)2ψ  can be estimated by )(max 2 ξψ
ξ

 . 

Therefore, from the equation (7), the estimation dynamics (6) can be represented in a descriptor model 

form as 
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where  )(: 2 ξψ=S . 

Definition 2. The RFDF error dynamics (4) is said  

1. to achieve asymptotic stability in the Lyapunov sense for 0)(ˆ =tw  if the error dynamics (6) are 

asymptotically stable for all admissible nonlinear perturbations. 

2. to guarantee ∞H  performance condition if under zero initial conditions, 
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    holds for all bounded energy disturbances and a prescribed positive value γ .                                                            

The fault detection problem we address here is as follows: Given a prescribed level of disturbance 

attenuation 0>γ , find the RFDF of the type (4) in the sense of Definition 2.  

Before ending this section, we recall a well-known lemma, which will be used in the proof of our main 

results. 

Lemma 1. [36] For any arbitrary column vectors )(,)( tbta , matrices )(tΦ , H ,U  and W  the following 

inequality holds: 
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3. RFDF DESIGN 

In this section, the fault diagnosis problem presented in the previous section is investigated such that a 

sufficient condition is derived for the existence of the RFDF (4). The approach employed here is to 

develop a criterion for the existence of such filters is based on the LMI approach combined with the 

Lyapunov method. In the literature, extensions of the quadratic Lyapunov functions to the quadratic 

Lyapunov-Krasovskii functionals have been proposed for time-delayed systems (see for instance the Refs. 

[6], [14], [16], [20], [31], [35] and the references therein). We choose a Lyapunov-Krasovskii functional 

candidate for the error dynamics (6a) as 
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In the following theorem, we state our main results. 
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Then there exists a RFDF of the type (4) which achieve the asymptotic stability and the ∞H  performance 

condition, simultaneously, in the sense of Definition 2. Moreover, the matrix H  of the RFDF can be 

found by computing HPH T ˆ)(: 1
2

−= . 

 

Proof. Differentiating )(1 tV  in t  along the trajectory of the error dynamics (6a) we obtain  
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subject to the LMI (13b). The time derivative of the second and third terms of )(tV are, respectively, as 
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where derivative of )(tV  is evaluated along the trajectory of the error dynamics (6a). It is well known that 

the performance condition (10) is that the inequality 0)](ˆ),([ <twteJ  for every ),0[)(ˆ 2 ∞∈ sLtw  results in a 

function )(tV , which is strictly radially unbounded (see for instance [51]). 

From (14)–(18) we obtain 
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)()())(,())(,(0 1111 teUUtetettet TTT +−≤ ψψ                                                 (20a) 

))(())(()))((,()))((,(0 2222 tteUUttettetttet TTT τττψτψ −−+−−−≤                          (20b) 

))(())(()))((,()))((,(0 3333 tdtUUtdttdtttdtt TTT −−+−−−≤ ηηηψηψ                      (20c) 

)()())(,())(,(0 4444 teUUtetettet TTT +−≤ ψψ                                              (20d) 

Moreover, from the Leibniz-Newton formula and (6a), the following equation holds for any matrix M  

with appropriate dimension, 

0))())(()(()(2
)(

=−−− ∫
−

t

tt

T dsstteteMt
τ
ητυ                                             (21) 

where },,,{: 821 MMMcolM =  and 

)}(ˆ)),(,())),((,())),((,()),(,()),(()),((),({:)( 4321 twtettdttttettettdtttetcolt ψηψτψψητηϑ −−−−=          (22) 

By adding the right- and the left- hand sides of (20)-(21), respectively, to (19) and using the property 

0)()(
)(

1
4 ≥∫

−

−

tt

t

T dssQs
τ

τ

ηη , it follows that 

∫
−

−− ++−+Π≤
t

tt

TTTTTTT dsQsMtQQsMttMMQttwteJ
)(

4
1

44
1

41 ))()(())()(()()ˆ()()](ˆ),([
τ

ηϑηϑϑτϑ        (23) 

where the matrix Π̂  is given by 

































Π∗∗∗∗∗∗∗
ΠΠ∗∗∗∗∗∗

−∗∗∗∗∗
−∗∗∗∗

−∗∗∗
Π∗∗

−−−−−−Π∗

ΠΠΠΠ

=Π

88

7877

33

87654322

181732121211

ˆ
ˆˆ
00
000
0000
00000ˆ

ˆ
ˆˆˆˆˆˆˆˆ

ˆ

I
I

I

MMMMMM
EJPEJPEJPAJP

TTTTTT
h

TT
h

TT
h

TTTT

                          (24) 

with  
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TTTT MJMAJPU 21112
ˆˆ +−+−=Π , }{)1(ˆ

2221222 MsymUUQ T −+−−=Π τ , 

h
TTT

h
TT VCVCJHCJP 217

ˆˆ +−=Π , h
TT

h VCVCI +−=Π 77
ˆ , DVVCJBJP TTTTT ˆˆˆˆ

218 +=Π , 

332233 )1(ˆ UUQd T+−−=Π , DVVC TT
h

ˆˆ
78 =Π , DVVDI TT ˆˆˆ

88 +−=Π , 

},{})ˆ{(}{ˆ
2441122111111111 Λ++++++−−+=Π UUUUVCVCCCQdiagHJMJAJPUsymAPsym TTTTTTTT τ . 

Thus, if the inequality  

01
41 <+Π − TMMQτ                                                              (25) 

holds, it follows from 0)](ˆ),([ 0)(ˆ ≤
≡twtwteJ  that 0)( ≤tV

dt
d  or )0()( VtV ≤ . Then, from (11), it can be 

deduced 

2
22

2
21

0

1

0

43max

0

)0(
2max

0

)0(
1max

2
21max

0

1

0

43

0

)0(
2

0

)0(
11

)()()()()()()()()()(

)()()()()()()()0()0()0(

ησϕσ

θθηθηληηλλϕλ

θθηθηηη

ττ

ττ

+≤

++++≤

++++=

∫ ∫∫∫

∫ ∫∫∫

−−−

−−−

s

T

d

TT

s

T

d

TTT

dsdQQdsssQdsseseQP

dsdQQdssQsdsseQseePeV

 

where )()(: 1max11max1 QhP λλσ +=  and ))(5.0)((: 43max
2
12max12 QQhQd ++= λλσ . Then, we have: 

2
22

2
21

2
21min )()( ησϕσϕλ +≤≤ tVP . 

Therefore, we conclude that the error dynamics (6a) are asymptotically stable. Notice that the matrix 

inequality (25) includes multiplication of filter matrices and Lyapunov matrices which are unknown and 

occur in nonlinear fashion. Hence, the inequality (25) cannot be considered an LMI problem. In the 

literature, more attention has been paid to the problems having this nature, which called bilinear matrix 

inequality (BMI) problems [38]. In the sequel, by considering 23 PP ε= , introducing change of variable 

HPH T
2

ˆ =  and applying Schur Complement Lemma, the matrix inequality (25) is converted into LMI 

(13a) and can be solved via convex optimization algorithms. It is also easy to see that the inequality (25) 

implies 0ˆ
11 <Π . Hence by Proposition 4.2 in [14], the matrix P  is nonsingular. Then, according to the 

structure of the matrix P  in (12), the matrix 2P  is also nonsingular. ■ 

Remark 3. It is worth noting that the LMIs (13) are linear in the set of matrices 812 ,,,,ˆ,, MMUHVP  , 

4111 ,,,, QQHP  and the scalar 2γ . This implies that the scalar 2γ  can be included as one of the 

optimization variables in LMIs (13) to obtain the minimum disturbance attenuation level. Then, the 

optimal solution to the RFDF design can be found by solving the following convex optimization problem 

.:)13( 2γλ

λ

=withLMIstosubject

Min
                                                         (26) 
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Remark 4. If we are interested in further simplification in the structure of the system (1), the nonlinear 

perturbations (.)),( xthi  can be eliminated from the system in (1) by considering 0(.)),( ≡xthi , or 

equivalently 0(.)),( ≡etiψ , then the LMI (13a) can be simplified to yield the following LMI 

0
ˆ

00
0

33

8322

218131211

<























−∗∗∗∗
−∗∗∗

Π∗∗
−−Π∗
ΠΠΠΠ

I
VDI

MM
VCJ

TT

TT

TTT

 

In this case, the matrices 7654 ,,, MMMM are eliminated from the LMI variables in Theorem 1. 

Remark 5. (Polytopic uncertainty) Consider the matrices of the system (1a) are not exactly known, 

except that they are within a compact set ],,,,,,,,[ 32121 wfhhh BEEEEBAAC=Ω , we assume that 

∑
=

Ω=Ω
N

j
jjs

1
 for some scalars js  satisfying 1,10

1
=≤≤ ∑

=

N

j
jj ss , where the N  vertices of the polytope are 

described by ],,,,,,,,[ )()()(
3

)(
2

)(
1

)()(
2

)(
1

)( j
w

j
f

j
h

j
h

j
h

jjjj
j BEEEEBAAC=Ω  (see for instance [20]). In order to take 

into account the polytopic uncertainty in the system (1), we derive the following result from applying the 

same transformation that was used in deriving Theorem 1. 

 

Theorem 2. Under A1)-A2), for given scalars 0,, 11 >dτγ , 2τ , 2d ,ε , if the uncertainty set Ω  is polytopic 

with vertices jΩ , Nj ,,2,1 = , then the system described by (1)-(2) and the RFDF (4) is asymptotically 

stable and satisfies the ∞H  performance condition, simultaneously, in the sense of Definition 2 if there 

exist some matrices 812 ,,,,ˆ,, MMUHVP   and positive-definite matrices ,,, 111 QHP 4,Q  such that LMIs 

(13) are satisfied for all 

NjBEEEEBAACBEEEEBAAC j
w

j
f

j
h

j
h

j
h

jjjj
wfhhh ,,2,1],,,,,,,,,[],,,,,,,,[ )()()(

3
)(

2
)(

1
)()(

2
)(

1
)(

32121 ==  

Then, the matrix H  of the RFDF can be found by computing HPH T ˆ)(: 1
2

−= . 

 

Proof. It follows directly from the proof of Theorem 1 and using properties of polytopic uncertainties in 

Remark 5. ■ 

 

Remark 6. The reduced conservatism of Theorems 1-2 benefit from the construction of the Lyapunov-

Krasovskii functional in (11), introducing some free weighting matrices to express the relationship among 

the system matrices, utilizing the Leibniz-Newton formula for nonlinear perturbation functions in (7) and 

neither the model transformation approach nor any bounding technique are needed to estimate the inner 
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product of the involved crossing terms (see for instance [6], [14] and [20]). It can be easily seen that 

results of this paper is quite different from existing results in [1] and [5] in the following perspectives: a) 

the structures in [1] and [5] consider, respectively, a retarded time-delay systems (with a constant discrete 

delay) and a delay-free linear parameter-varying system and in compare to our case do not center on 

mixed time-delays, i.e., the results in [1] and [5] can not be directly applied to the systems with different 

neutral and discrete delays and nonlinear perturbations. b) in this paper, the derived sufficient conditions 

are convex and neutral-delay-dependent and discrete-delay-dependent, which make the treatment in the 

present paper more general with less conservative in compare to the results in [1] which are independent 

of the discrete delay.  

 

4. EXAMPLE 

In this section, we will verify the proposed methodology by giving an illustrative example. We solved 

LMIs (13) by using Matlab LMI Control Toolbox [15], which implements state-of-the-art interior-point 

algorithms and is significantly faster than classical convex optimization algorithms. The example is given 

below.  

 
                                                (a)                                                                    (b) 

Fig. 1. The phase trajectories: a) plot 21 xx − , b) plot 51 xx − . 

 

Consider the system (1) with the following state-space matrices for an aircraft model 
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

























=

0.1000-00000
020.2000-08.8000-00
0020.2000-000
0039.570077.5300-00

0.001757.0900001.0500-2.5500
0.0091-169.6600-002.5500-1.0500-

A ; 

TB ]0-4.4944,0,,0,0,0[= ; T
hh EE ]0,1,0,0,1,0[31 == ;  

T
hE ]0,1,0,0,0,1[2 = ; T

wB ]0,1,1,1,0,1[= ; IA 01.02 = ;  

T
fE ]00,-0.0200,,0,-0.5500,3.5500[= ; AA 01.01 = ; 



















=

0000.01000.0700-0.2600
0000.0600-0.09000.0300

0.0026-49.5100-000.5900-0.4800-
0000.07000.09000.0100-

2C ; 

0==== wfh DCCD ; IC 3
1 10= ; )4,,2,1(),1)(1)((5.0))(,( =−−+= itxtxtxthi . 

The delays )1()1()()( tt eetdt −− +−==τ  are time varying and satisfy 1)()(0 ≤=≤ tdtτ  and 5.0)()( ≤= tdt τ . 

With the above parameters, the model exhibits the chaotic behaviours such the phase trajectories of the 

system are depicted in Figure 1. 

 
Fig. 2. Exogenous input. 

 

With the above parameters and by Theorem 1 for 1.0,25.0 == εγ , filter gains are found by solving LMIs 

(13) as follows: 
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

























=

0.3175-0.68430.0142-0.3668-
0.23600.18160.06871-0.4174-
0.0042-0.0065-0.02545-0.2365
0.3175-0.68430.0059-0.3688

0.03520.0916-0.0014-0.1254-
1.51280.2267-0.00460.7093

106H , 

[ ]0068.00015.00456.02871.0104 −=V . 

For simulation purpose, an exogenous disturbance input, shown in Figure 2, is set as 

0,
1

1)( ≥
+

= t
t

tw  

and actuator fault modes of the elevator, i.e., step fault inputs shown in Figure 3, are imposed on the 

system and the control signal is assumed to be )sin()( ttu = .  

 
Fig. 3. Residual signals generated by RFDF. 

 

Figure 3 shows the residual signals obtained with the filter for two different bounds of neutral delays. It 

can be seen that clearly by monitoring the fault estimates, it would be possible to detect fault behaviours.  

Remark 7. In the case of without time-delays and nonlinear perturbations, this example, the aircraft 

model, was studied in the framework of a linearized parameter varying model in [5], where satisfactory 

results as fault detection and isolation have been obtained. In this case, the operation of the RFDF can be 

tested by simulation when applying, e.g., two step fault modes. In Figure 4 it can be seen that the RFDF 
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follows two fault inputs more closely than the other filter in [5] and the result shows a perfect decoupling 

of the fault effects in the fault detection similar to the results in [5]. 

 

 
Fig. 4. Residual signals generated by RFDF in the case of 0))(,( =txthi  and 0)()( == tdtτ . 

 

5. CONCLUSION 

The problem of robust fault detection filter (RFDF) design was presented to identify faults for a class of 

linear systems with some nonlinear perturbations and mixed neutral and discrete time-varying delays. By 

using a descriptor technique, Lyapunov-Krasovskii functional and a suitable change of variables, new 

required sufficient conditions were established in terms of delay-dependent linear matrix inequalities to 

synthesize the residual generation scheme. Based on Luenberger type observers, the explicit expression of 

the filters was derived for the fault such that both asymptotic stability and a prescribed level of 

disturbance attenuation are satisfied for all admissible nonlinear perturbations. The existence of the RFDF 

is presented in terms of LMI formulation, which can be obtained conveniently by using Matlab LMI 

toolbox. The proposed method has proven its effectiveness in simulation of an aircraft model. The RFDF 

was able to quickly and correctly identify the faults. 
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