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DEFINABILITY AND STABILITY OF MULTISCALE

DECOMPOSITIONS FOR MANIFOLD-VALUED DATA.

PHILIPP GROHS AND JOHANNES WALLNER

Abstract. We discuss multiscale representations of discrete manifold-valued data. As it
turns out that we cannot expect general manifold-analogues of biorthogonal wavelets to
possess perfect reconstruction, we focus our attention on those constructions which are based
on upscaling operators which are either interpolating or midpoint-interpolating. For definable
multiscale decompositions we obtain a stability result.
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1. Introduction

1.1. The problem area. The correct multiscale representation of manifold-valued data is a
basic question whenever one wishes to eliminate the arbitrariness in choosing coordinates for
such data, and to avoid artifacts caused by applying linear methods to the ensuing coordinate
representations of data. This question appears to have been proposed first by D. Donoho [2].
The detailed paper [11] describes different constructions, including most of ours, and states
results inferred from numerical experiments, but without giving proofs. A series of papers,
starting with [12], has since dealt with the systematic analysis of upscaling operations on
discrete data – also known under the name subdivision rules – in the case that data live in
Lie groups, Riemannian manifolds, and other nonlinear geometries. Regarding smoothness
of limits, a satisfactory solution has been achieved by means of the method of proximity in-
equalities which also play a role in the present paper. Multiscale decompositions in particular
have been investigated by [6] (characterizing smoothness by decay of detail coefficients) and
[8] (stability).

The present paper studies multiscale decompositions which are analogous to linear biorthog-
onal wavelets and reviews the known examples based on interpolatory and midpoint-inter-
polating subdivision rules including the simple Haar wavelets. It turns out, however, that it
seems unlikely that a rather general way of defining manifold analogues of linear construc-
tions can have perfect reconstruction, which is the first main result of this paper, even if it
turns out to be rather vague. For those multiscale decompositions which exist, we show a
stability theorem which represents the second main result of the paper. We further discuss
averaging procedures which work in manifolds equipped with an exponential mapping and
which generalize the well known Riemannian center of mass. This discussion does not contain
substantial new results, but it is included because we need this construction for the definition
of nonlinear up- and downscaling rules, as well as for converting continuous data to discrete
data in the first place.

1.2. Biorthogonal wavelets revisited. We begin by briefly reviewing the notion of biorthog-
onal Riesz wavelets, but we are content with the properties relevant for the following sections.
We start with real-valued sequences α = (αi)i∈Z with finite support which are called filters
and define the upscaling rule, or subdivision rule associated with the filter α by

(Sαc)k :=
∑

l∈Z
αk−2lcl.

Here c : Z → V is any sequence with values in a vector space. The transpose of the upscaling
rule (we skip the definition of transpose) shall be the downscaling rule D associated with the
filter β, via

(Dβc)k :=
∑

l∈Z
βl−2kcl.

Upscaling and downscaling commutes with the left shift operator (Lc)k = ck+1 in the following
way:

SαL = L2Sα, DβL
2 = LDβ .

The most basic rules are defined by the delta sequence: Sδ inserts zeros between the elements
of the original sequence, and Dδ deletes every other element. All rules can be expressed in
terms of Sδ, Dδ, and convolution:

Sδc = (. . . , c0, 0, c1, 0, c2, . . . ), Dδc = (. . . , c0, c2, c4, . . . )

=⇒ Sαc = (Sδc) ∗ α, Dβc = Dδ(c ∗ β).
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We suppress the indices α, β from now on. We assume a further upscaling rule R and a
downscaling rule Q which shall be high pass filters in contrast to low-pass filters S and D.1

Any sequence c(j), which is interpreted as data at level j may be recursively decomposed
into a low-frequency-part c(j−1) (data at level j − 1) and a high-frequency-part d(j) (details
at level j) by letting

(1) c(j−1) = Dc(j), d(j) = Qc(j).

This process can be iterated in order to obtain a pyramid consisting of coarse data c(0) and
wavelet coefficients d(1), . . . , d(j). Data at level j shall be be reconstructed by

(2) c(j) = Sc(j−1) +Rd(j),

which works precisely if the so-called quadrature mirror filter equation,

(3) SD +RQ = id,

holds. It makes sense to require certain further (‘biorthogonality’) properties like QR =
id. In particular, high pass downscaling should annihilate everything generated by low pass
upscaling:

(4) QS = 0.

An important consequence of the previous properties is that we can rewrite (1) in the form

(5) c(j−1) = Dc(j), d(j) = Q(c(j) − Sc(j−1)).

There are many examples of biorthogonal wavelet decompositions. In the following we give
some examples.

1.3. Examples: interpolating and midpoint-interpolating schemes.

Example 1.1. An upscaling scheme is called interpolating, if it keeps the original data, which
is expressed by

(Sc)2k = ck ⇐⇒ DδS = id.

For interpolating schemes, downscaling is simply D = Dδ. Then detail coefficients are the
difference between data c and the prediction gained via upscaling of Dc. With the left shift
operator, we can write

Qc = DL(c− SDc).

If we define detail coefficients via (5), then we can also employ the modified downscaling
operator

Qmodif = DL.

Reconstruction works via a basic upscaling rule:

R = L−1Sδ

It is easy to check that we have indeed perfect reconstruction. An example is furnished by
the four-point scheme [4] defined by α{−3,...,3} = (− 1

16 , 0,
9
16 , 1,

9
16 , 0, −

1
16). The action

c(j−1) = Dc(j) of the decimation operator is consistent with the interpretation of discrete

data c
(j)
k as samples of a continuous function f(t) at the parameter value t = 1

2j
k.

1usually formulated in terms of Fourier transforms.
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Example 1.2. The Haar scheme is defined by the rules

S = (L+ id)Sδ, D =
1

2
Dδ(L+ id), R = (id− L)Sδ, Q =

1

2
Dδ(id− L),

which operate as follows:

Sc = (. . . , c0, c0, c1, c1, . . . ),

Rd = (. . . , d0,−d0, d1,−d1, . . . ),

Dc = (. . . ,
c0 + c1

2
,
c2 + c3

2
, . . . ),

Qc = (. . . ,
c0 − c1

2
,
c2 − c3

2
, . . . ).

Example 1.3. A subdivision scheme S is called midpoint-interpolating, if it is a right inverse
of the decimation operator D which computes midpoints and which is also used for the Haar
wavelets of Example 1.2:

DS = id, where Dc = (. . . ,
c0 + c1

2
,
c2 + c3

2
, . . . ).

The detail coefficients are the difference between that actual data c and the imputation SDc
found by upscaling the decimated data. Since c− SDc is by construction in the kernel of D
(i.e., is an alternating sequence), it contains redundant information. We thus complete our
definitions by letting

Qc = Dδ(c− SDc) = (. . . , (c − SDc)0, (c− SDc)2, . . . ),

Rd = (id − L)Sδd = (. . . , d0,−d0, d1,−d1, . . . ).

If we define detail coefficients via (5), then a much simpler downscaling operator for details
can be employed:

Qmodif = Dδ.

The action c(j−1) = Dc(j) of the decimation rule is consistent with the interpretation of

discrete data c
(j)
k as an average of continuous data over the interval 1

2j
· [k, k + 1].

The defining relation implies that any such S can be turned into an interpolating subdivi-

sion rule S̃ by adding one round of midpoint computation:

S̃ =
1

2
(L+ id)S.

S̃ is interpolatory, since DδS̃ = 1
2(DδL + Dδ) = DS = id. The relation S = 2(L + id)−1S̃

leads to a way of finding midpoint-interpolating schemes from interpolatory ones, since it can
be turned into an effective computation by the use of symbols [5]. For more information on
that kind of schemes, see e.g. [3].

2. Biorthogonal decompositions for manifold-valued data

2.1. Manifold analogues of linear elementary constructions. The main idea to apply
the previous constructions to manifold-valued data is to find replacements for the elementary
operations they are composed of. These are the operations − (“vector is difference of points”),
+ (“point plus vector is a point”), and computing the weighted average of points, which again

yields a point. As to which kind of data are points and which are vectors, data c(j) at level j
shall be manifold-valued sequences of points, while detail coefficients d(j) shall be sequences
with values in vector spaces associated with the manifold.
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For data with values in a Lie group G, with associated Lie algebra g, we let

p⊕ v := p exp(v), q ⊖ p := log(p−1q) ∈ g,

where exp is the group exponential function and log is its inverse. For matrix groups, we
have exp(x) =

∑
k≥0 x

k/k! as usual (see e.g. [1] for Lie theory). In a surface or Riemannian
manifold M , we use the exponential mapping expp which maps a vector v in the tangent
space TpM to the endpoint of a geodesic of length ‖v‖ which emanates from p with initial
tangent vector v:

p⊕ v := expp(v), q ⊖ p := exp−1
p (q) ∈ TpM.

We have thus found analogues ⊕ and ⊖ of the + and − operations, respectively. An average
with weights of total sum 1 is in Euclidean space equivalently definable by

(6) m =
∑

αjxj ⇐⇒
∑

αj(xj −m) = 0 ⇐⇒
∑

αj dist(xj ,m)2 = min .

The middle definition carries over to both Lie groups and Riemannian manifolds (provided
m is unique, which it locally is):

(7)
∑

αj(xj ⊖m) = 0.

In Riemannian manifolds, this average is the same as the one defined by the right hand
condition. These constructions have been employed to define operations on manifold-valued
data before, in particular subdivision processes. For more details the reader is referred to [8].

Another way of redefining averages is by means of an auxiliary base point: In a vector
space, we have ∑

αj = 1 =⇒
∑

αjxj = x+
∑

αj(xj − x),

for any choice of x. This leads to the definition

(8) x⊕
(∑

αj(xj ⊖ x)
)

of manifold average which involves the choice of an additional base point.

Example 2.1. It is not difficult to see that the weights α0 = α1 = 1
2 lead to a symmetric

average m = µ(x0, x1) = x0 ⊕ 1
2 (x1 ⊖ x0) = x1 ⊕ 1

2(x0 ⊖ x1), which can be taken as the
manifold-midpoint of x0 and x1. It fulfills the balance condition (x1 ⊖m) + (x0 ⊖m) = 0.

An obvious generalization, where the averaging process possibly works with a continuum
of values is defined as follows: Consider a set X which is equipped with some probability
measure. For instance we could take the unit interval X = [0, 1] with Lebesgue measure. The
weighted average m of data (f(t))t∈X with values in a vector space is defined by the following
equivalent definitions

(9) m =

∫

X

f(x) ⇐⇒

∫

X

(f(x)−m) = 0 ⇐⇒

∫

X

dist(f(x),m)2 = min .

In the case that X is the integers, and the measure means giving each i ∈ Z the weight αi,
then this definition reduces to (6). Also the integral version of the average can be made to
work for manifold-valued data, by defining m via

(10)

∫

X

(f(x)⊖m) = 0.
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In the Riemannian case, which has been thoroughly discussed by Karcher [9], this is equivalent
to

∫
X
dist(f(x),m)2 = min. It is then called the Riemannian center of mass (see Section IX.2

of [10]).

2.2. Manifold versions of filters. We now define nonlinear analogues of the up- and down-
scaling rules S,D,Q,R. In order to distinguish them from the corresponding nonlinear rules,
we write the latter as Slin, Dlin, Qlin, Rlin. The symbols S,D,Q,R denote nonlinear up- and
downscaling operators which like the linear ones commute with the left shift operator in the
following way:

SL = L2S, DL2 = LD, RL = L2R, QL2 = LQ.

We now decompose manifold-valued data ‘at level j’, which are denoted by the symbol c(j)

in a manner similar to (5):

(11) c(j−1) = Dc(j) d(j) = Q
(
c(j) ⊖ SDc(j)

)
.

By iteration we arrive at data c(0) at the coarsest scale together with a pyramid of detail
coefficients d(1), . . . , d(j). In order to obtain perfect reconstruction via

(12) c(j) = Sc(j−1) ⊕Rd(j)

we impose the following condition on the nonlinear operators which could be interpreted as
a nonlinear quadrature mirror filter equation:

(13) SDc⊕ (RQ(c⊖ SDc)) = c for all c.

2.3. Examples: interpolating and midpoint-interpolating schemes.

Example 2.2. (manifold version of Example 1.2) We show how the Haar scheme can be
made to work in groups and in Riemannian manifolds. With the midpoint µ(p, q) of Example
2.1 we let

Sc = Slinc = (. . . , c0, c0, c1, c1, . . . ),

Dc = (. . . , µ(c0, c1), µ(c1, c2), . . . )

while Q = Qlin and R = Rlin. Indeed, c⊖ SDc is an alternating sequence of vectors, and the
detail coefficients associated with data c are given by

d = Qlin(c⊖ SDc)

= Qlin(. . . , c0 ⊖ µ(c0, c1), c1 ⊖ µ(c0, c1), c2 ⊖ µ(c2, c3), . . . ),

= (. . . , c0 ⊖ µ(c0, c1), c2 ⊖ µ(c2, c3), . . . ).

It is obvious that with this definition, SDc⊕Rd = c, so we have perfect reconstruction.

Example 2.3. (manifold version of Example 1.1) To find a nonlinear analogue S of a linear
upscaling rule defined by affine averages, we can employ geometric averages instead. In this
way the interpolating scheme Slin = Sα can be transferred to the geometric setting, by letting

(Sc)2k = ck,
∑

r∈Z
α2r+1

(
ck−r ⊖ (Sc)2k+1

)
= 0.

The remaining rules can be taken from the linear case (using the fact that the simplest rules
can be applied to any sequence, as its elements do not undergo computations).

D = Dlin = Dδ, Q = Qlin = Qmodif = LDδ, R = Rlin = L−1Sδ.

From the interpolating property of S we see that we have perfect reconstruction.
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Example 2.4. (manifold version of Example 1.3) In order to make a midpoint-interpolating
rule Slin work on manifolds, we define an upscaling operator S which retains the crucial
property that ck is the midpoint of (Sc)2k and (Sc)2k+1. For this purpose we use (8). We
introduce the following notation for sequences c, v and a point x ∈M :

(c⊖ x)k := ck ⊖ x, (x⊕ v)k := x⊕ vk,

and define

(Sc)2k = ck ⊕ (Slin(c⊖ ck))2k, (Sc)2k+1 = ck ⊕ (Slin(c⊖ ck))2k+1.

It is clear from (c ⊖ ck)k = 0 and the midpoint-interpolating property of Slin, that S is also
midpoint-interpolating:

µ
(
(Sc)2k, (Sc)2k+1

)
= ck.

We use the same downscaling operators Q, D as in the Haar case of Example 2.2, which yields

d
(j)
k = (c(j) ⊖ Sc(j−1))2k.

By midpoint interpolation, c(j−1) and d(j) together determine the original data c(j): With
the geodesic reflection σx(y) of y in the point x defined by

σx(y) = x⊕
(
− (y ⊖ x)

)
or, locally equivalently, µ(y, σx(y)) = x,

we have

c
(j)
2k = (Sc(j−1))2k ⊕ d

(j)
k , c

(j)
2k+1 = σ

c
(j−1)
k

(
c
(j)
2k

)
.

This construction is already contained in [11]. A nonlinear upscaling operator R which effects

exactly this construction via c(j) = c(j−1) ⊕Rd(j) necessarily depends on the data and may
be defined by

(Rd)2k = dk, (Rd)2k+1 = σ
c
(j−1)
k

(
(Sc(j−1))2k ⊕ d

(j)
k

)
⊖ Sc

(j)
2k+1.

In Riemannian geometry we cannot further simplify this expression. In the case of matrix
groups, we employ the fact that σx(y) = xy−1x and that successive points with indices
2k, 2k + 1 of Sc are converted into each other by geodesic reflection in the point ck:

(Rd)2k+1 = log
[(

Sc
(j−1)
2k+1

)−1(
c
(j−1)
k

)(
Sc

(j−1)
2k exp d

(j)
k

)−1(
c
(j−1)
k

)]

= log
[(
c
(j−1)
k

)−1(
Sc

(j−1)
2k

)
exp

(
− d

(j)
k

)(
Sc

(j−1)
2k

)−1(
c
(j−1)
k

)]

= −Ad
(c

(j−1)
k )−1(Sc

(j−1)
2k )

(
d
(j)
k

)
= −Ad

exp
(
(Sc

(j−1)
2k )⊖ (c

(j−1)
k )

)
(
d
(j)
k

)

= −Ad
exp

(
Slin(c

(j−1) ⊖ c
(j−1)
k )2k

)
(
d
(j)
k

)
.

Here we have used the notation Adg(v) = gvg−1. Note that in abelian groups and especially
in Euclidean space, where g ⊕ v = g + v, this formula reduces to Rd2k+1 = −Rd2k.
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2.4. On the general feasibility of the construction. The examples of geometric and
nonlinear multiscale decompositions given above are special cases, which are based on in-
terpolatory subdivision rules, or at midpoint-interpolating rules. It is not clear how perfect
reconstruction can be achieved in general. We shall presently see that there are some basic
obstructions which disappear in the linear case. For simplicity we consider only periodic se-
quences, because then the upscaling and downscaling rules have a finite-dimensional domain
of definition.

Prop. 2.5. Smooth rules S,D,Q,R can lead to detail coefficients with perfect reconstruction
for periodic data c ∈ M2n only if the rank of the mapping c 7→ c ⊖ SDc equals n · dimM ,
which is half the generic rank of such a mapping.

Proof. Equation (13), which expresses perfect reconstruction, is equivalent to

RQx = x, where x = c⊖ SDc.

It follows that the mapping c 7→ c ⊖ SDc = RQ(c ⊖ SDc) has rank ≤ n · dimM , because
Q, mapping 2n data items to n detail coefficients, has this property. As to the mapping
c 7→ SDc, its rank does not exceed n ·dimM , because D has this property. In case the rank is
less than n ·dimM , the mapping idM2n : c 7→ SDc⊕ (c⊖SDc) would have rank < 2n ·dimM ,
a contradiction. �

The condition of rank n ·dimM which is necessary for perfect reconstruction as mentioned
in Prop. 2.5 is unlikely to be satisfied if both upscaling by S and downscaling by D are defined
via geometric averaging rules derived from linear rules Sα and Dβ . The following discussion
of derivatives should make this clear: We have

(14)
∑

l
αk−2l(cl ⊖ Sck) = 0,

∑
l
βl−2k(cl ⊖Dck) = 0,

and we are interested in the change in (SDc)k if each cl undergoes a 1-parameter variation.
We use the abbreviations φ and ψ for the derivatives of ⊖ with respect to the first and second
argument, respectively. In the Lie group case, where all tangent vectors are represented
by elements of the Lie algebra g, both φ and ψ are linear endomorphisms of g. In case of
Riemannian manifolds, where ⊖ :M ×M → TM , both φ,ψ map to Tp⊖q(TM). As the next
formula shows it is not necessary to look closer at this abstract tangent space, because we
always combine ψ−1 with φ and the image of φ occurs only implicitly. Differentiation of (14)
implies that

d

dt
(Dc)k = −

(∑
l
βl−2kψcl,Dck

)−1(∑
l
βl−2kφcl,Dck

d

dt
cl

)
.

and further

d

dt
(SDc)k =

(∑
l
αk−2lψDcl,SDck

)−1

·
(∑

l
αk−2lφDcl,SDck

(∑
r
βr−2lψcr,Dcl

)−1(∑
r
βr−2lφcr,Dcl

d

dt
cr
))
.

The precise form of this equation is not relevant, but by observing that the differentials of ⊖
have to be evaluated at many more independent locations than the desired rank n · dimM
would suggest, it is clear that only very special filters can lead to rank n · dimM . The
situation in the linear case is different: The differentials of ⊖ are constant, and the condition
that the previous formula defines a mapping of rank n is an algebraic condition involving the
coefficients of filters α, β.
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Similar considerations show that also the so-called log-exponential construction, where a
nonlinear rule is constructed via (8) (see Ex. 2.4) do not in general yield the rank condition
expressed by Prop. 2.5.

3. Stability analysis

The point of going through the trouble of decomposing a signal is that one expects many

detail coefficients d
(k)
l to be small and therefore to be negligible. This is the basis of thresh-

olding in order to compress data, which makes sense only if one can control the change in
reconstructed data if we change the detail coefficients by resetting some of them to zero.
Similarly, quantizing data will result in deviation from the original. Again, it is important to
control that change. It is the purpose of this section to establish a stability result for nonlinear
rules which applies to such situations.

3.1. Coordinate representations of nonlinear rules. For the stability analysis we trans-
fer all manifold operations to a local coordinate chart. This is justified only if the construc-
tions we are going to analyze are local. The linear upscaling and downscaling rules defined
previously have this property, and so have the nonlinear ones mentioned in the examples
above.

The operators ⊕, ⊖ are replaced by their respective coordinate representations, which are
denoted by the same symbols and which are defined in open subsets of suitable coordinate
vector space: We assume that ⊕ maps from V ×W into V , and ⊖ maps from V × V into W .
Besides smoothness they are assumed to fulfill the compatibility condition

(15) p⊕ (q ⊖ p) = q.

We further assume that ⊕, ⊖ are Lipschitz functions, i.e., there exist constants A,B with

(16) A‖p − q‖ ≤ ‖p ⊖ q‖ ≤ B‖p− q‖.

Locally this is always the case. Our analysis of stability requires that the operators S,D,Q,R
(we do not introduce new symbols for their coordinate representations) fulfill some reasonable
assumptions which are listed below. Notation makes use of the symbol “.” which means that
there is a uniform constant such that the left hand side is less than or equal to that constant
times the right hand side. For a sequence w = (wi)i∈Z we use the notation ‖w‖ := supi∈Z ‖wi‖.

• Boundedness of Q,R: The mappings Q, R operate on W -valued sequences w, which
are generated as the difference of point sequences. They are supposed to satisfy ‖Qw‖,
‖Rw‖ . ‖w‖, with respect to some norm W is equipped with.

• Reproduction of constants: For constant data we require that Sc = c and Dc = c.
• Each of S,R,D,Q shall be as smooth as is needed (in general a little more than C1

will suffice).
• First-order linearity of S,D on constant data: For constant sequences we require that

(17) dS
∣∣
c
= Slin, dD

∣∣
c
= Dlin

for some low-pass upscaling and downscaling operators Slin, Dlin operating on V -val-
ued sequences, and where Slin is a convergent subdivision rule. The only exception
shall be Haar case, where Slin = Sδ shall be the splitting rule (see Ex. 1.1). This
condition is natural when one considers S,D as geometric analogues of linear con-
structions which are defined by replacing affine averages by geometric averages, or by
replacing the + and − operations by ⊕ and ⊖.
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3.2. Stability Results. The aim of this section is to prove the following stability theorem:

Theorem 3.1. Suppose that S,D,Q,R are upscaling and downscaling operators which fulfill
the nonlinear version (13) of the quadrature mirror filter equation, and which also fulfill the

technical conditions listed above. Consider a data pyramid (c(j))j≥0 with c(j−1) = Dc(j) which
enjoys the weak contractivity property

(18) ‖∆cj‖ . µj (µ < 1).

Then the reconstruction procedure of data c(j) at level j from coarse data c(0) and details
d(1), . . . , d(j) is stable in the sense that there are constants D, E1, E2 such that for all j and

any further data pyramid c̃(i) with details d̃(i) we have

‖c(0) − c̃(0)‖ ≤ E1, ‖d(k) − d̃(k)‖ ≤ E2µ
k for all k(19)

=⇒ ‖c(j) − c̃(j)‖ ≤ D
(
‖c(0) − c̃(0)‖+

∑j

k=1
‖d(k) − d̃(k)‖

)
.(20)

The assumption of decay given by (18) is fulfilled for any finite data pyramid (simply adjust
the constant which is implied by using the symbol “.”).

3.3. Proofs. The remaining part of this section is devoted to the proof of this statement.
Our arguments closely follow the ones in [8] which will enable us to occasionally skip over
some purely technical details and focus on the main ideas.

The crux is to show that the differentials of the reconstruction mappings are uniformly
bounded. We shall go about this task by using perturbation arguments. The justification of
this approach lies in the fact that by our assumptions the nonlinear reconstruction procedure
agrees with a linear one up to first order on constant data. Indeed, our assumptions already
imply that S satisfies a proximity condition with Slin in the sense of [12]:

Lemma 3.2. With the above assumptions we have the inequalities

‖Sc− Slinc‖ . ‖∆c‖2, ‖Dc−Dlinc‖ . ‖∆c‖2.(21)

Proof. We use a first order Taylor expansion of S. For any constant sequence e we have
Sline = Se = e, so

Sc = Se+ dS|e(c− e) +O(‖c − e‖2)

= e+ Slin(c− e) +O(‖c− e‖2) = Slinc+O(‖c− e‖2).

Since S and Slin are local operators we may choose e such that

‖c− e‖ . ‖∆c‖.

This proves the first equation. The proof of the second one is the same. �

We now show that for all initial data c(j) with exponential decay of ‖∆c(j)‖, the associated
detail coefficients experience the same type of decay.

Lemma 3.3. Assume that (18) holds for (c(j))j≥0. Then

(22) ‖d(j)‖ . µj.
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Proof. We use the boundedness ofQ and Lemma 3.2 to estimate the norm of detail coefficients:

‖d(j)‖ = ‖Qc(j) ⊖ Sc(j−1)‖ . ‖c(j) ⊖ Sc(j−1)‖ . ‖c(j) − Sc(j−1)‖

≤ ‖c(j) − SlinDc
(j)‖+ ‖Slinc

(j−1) − Sc(j−1)‖

. ‖c(j) − SlinDlinc
(j)‖+ ‖Slin(Dc

(j) −Dlinc
(j))‖+ ‖Slinc

(j−1) − Sc(j−1)‖

. ‖c(j) − SlinDlinc
(j)‖+ µ2j .

It remains to estimate ‖c(j) − SlinDlinc
(j)‖. Reproduction of constants implies that for any

constant sequence e,

‖c(j) − SlinDlinc
(j)‖ = ‖c(j) − e+ SlinDlin(c

(j) − e)‖ . ‖c(j) − e‖.

By the locality of Slin and Dlin we can pick e such that ‖c(j) − e‖ . ‖∆c(j)‖. This concludes
the proof. �

For later use we record the following two facts. The first one is a perturbation theorem
which has been shown in [12].

Theorem 3.4. Assume that Slin is a convergent linear subdivision scheme and that S satisfies
dS|c = Slin for all constant data c. Then there exists µ < 1 such that

(23) ‖∆Sjc‖ . µj

for all initial data c with ‖∆c‖ small enough.

We do not want to go into details concerning the precise meaning of ‘small enough’. The
reader who is interested in the considerable technical subtleties arising from this restriction
and also the fact that S is usually not globally defined is referred to our previous work [7, 8, 6]
where these issues are rigorously taken into account and the appropriate bounds for ‖∆c‖ are
derived.

The second result is also a perturbation result which has been shown in [8].

Lemma 3.5. Let Ai, Ui be operators on a normed vector space. Assume exponential decay
‖Ui‖ . µi, for some µ < 1. Then uniform boundedness of ‖A1 · · ·Ak‖ implies uniform
boundedness of ‖(A1 + U1) · · · (Ak + Uk)‖.

We continue with the proof of Theorem 3.1 by showing that the decay property (18) we

assumed for the data pyramid c(j) also holds for the perturbed data pyramid c̃(j).

Lemma 3.6. Under the assumptions of Theorem 3.1, further assume that Slin is a convergent
subdivision scheme. Then there exist constants s1, s2 such that for all j, and any choice of
data c̃(j) we have

(24) ‖∆c̃(0)‖ ≤ s1, ‖d̃(k)‖ ≤ s2µ
k for all k =⇒ ‖∆c̃(j)‖ . (µ+ ε)j .

Here for each ε > 0 the implied constant is uniform.

Proof. (Sketch) We make the simplifying assumption that for all initial data c which occur in
the course of the proof we have

(25) ‖∆Sc‖ ≤ µ‖∆c‖.

This is no big restriction as it can be shown that such an equation always holds for some
iterate SN of S and initial data with ‖∆c‖ small enough, provided Slin is convergent [12]. In
case that only

‖∆Sc‖ ≤ µ̄‖∆c‖



12 PHILIPP GROHS AND JOHANNES WALLNER

for some µ̄ ∈ (µ, 1) we make the initial µ larger. This does not change the substance of
Theorem 3.1. With the Lipschitz constants r, r′ defined by ‖Rc‖ ≤ r‖c‖, ‖a⊕b−a‖ ≤ r′‖a⊕b‖
we now estimate:

‖∆c̃(1)‖ ≤ ‖∆S c̃(0)‖+ 2‖(S c̃(0) ⊕Rd̃(1))− S c̃(0)‖

≤ µ‖∆c̃(0)‖+ 2r′‖Rd̃1‖ ≤ µs1 + 2rr′s2µ

Iteration of this argument gives the inequality

‖∆c̃(n)‖ ≤ s1µ
n + 2nrr′s2µ

n . (µ+ ε)n

for all ε > 0, which we wanted to show. In case (25) does not hold for S, but only for
an iterate SN , a similar argument is required which we would like to skip. The reason for
requiring s1, s2 to be ‘small enough’ is that (25) usually only holds for data c in some set

PM,δ := {c | ck ∈M ∀k, and ‖∆c‖ < δ}.

In general we need to ensure that all c(i)’s lie in the set PM,δ if the only information on the
data is the size of detail coefficients. This rather technical step is where we the restrictions
on the constants s1, s2 come in. We chose to skip the technical details regarding this issue,
since we do not find them particularly enlightening and they have already been treated in full
detail in previous work [8, 6, 7]. �

We are finally in a position to prove Theorem 3.1.

Proof (of Theorem 3.1). The mapping which computes data c(k) at level k by way of recon-
struction is denoted by Pk. We use the following notation and definition:

Xj := (c(0), d(1), . . . , d(k)) ∈ ℓ(V )× ℓ(W )k(26)

Pk(Xk) := SPk−1(Xk−1)⊕Rd(k), P0 = id.(27)

We first treat the case that Slin is a convergent subdivision scheme and later deal with the
Haar case.

Observe that we can without loss of generality assume that both ‖∆c(0)‖ and the implied

constant in (22) are arbitrarily small. This is because we can simply do a re-indexing (c′)(i) =

c(i+j0) and we assumed exponential decay of ∆c(j). in particular,

‖∆c(0)‖ ≤ f1 < s1, ‖d(k)‖ ≤ f2µ
k, f2 < s2,

with the constants s1, s2 from Lemma 3.6. By Lemma 3.3, ‖d(j)‖ is likewise of exponential
decay. By the same argument we can make the implied constant arbitrarily small.

Pick the constants E1, E2 such that f1 + E1 ≤ s1 and f2 + E2 ≤ s2, and consider coarse

data c̃(0) and detail coefficients d̃(1), . . . , d̃(j) which obey the assumption (19) made in the

statement of the theorem. Lemma 3.6 implies that we have exponential decay of ‖∆c̃(j)‖.
The estimates gathered so far enable us to show that there exists a constant C such that

for all j, k and all perturbed arguments

X̃j = (c̃(0), d̃(1), . . . , d̃(j)),

we have the bound

(28)
∥∥∥

∂

∂d(k)

∣∣∣
X̃j

Pj

∥∥∥,
∥∥∥

∂

∂c(0)

∣∣∣
X̃j

Pj

∥∥∥ ≤ C.
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Indeed, using the chain rule on the recursive definition (27), we see that

(29)
∂

∂c(0)

∣∣∣
X̃j

Pj =
(
d1⊕

∣∣
(SPj−1,Rd (j))

)(
dS

∣∣
c̃ (j−1)

)( ∂

∂c(0)

∣∣∣
X̃j−1

Pj−1

)
.

Our assumptions on smoothness (here: ⊕ is C2) and the compatibility relation (15) together
imply that

d1⊕
∣∣
(S c̃ (j−1),Rd (j))

= d1⊕
∣∣
(S c̃ (j−1),0)

+
(
d1⊕

∣∣
(S c̃ (j−1),Rd (j))

− d1⊕
∣∣
(S c̃ (j−1),0)

)
= I + Vj

with ‖Vj‖ . ‖Rd(j)‖ . µj. In order to estimate the term dS
∣∣
c̃ (j−1) , we note that dS = Slin

implies that ‖dS
∣∣
c
− Slin‖ . ‖∆c‖ for all initial data c, see [8]. Hence we can write

dS
∣∣
c̃ (j−1) = Slin +Wj, where ‖Wj‖ . ‖c̃(j−1)‖ . (µ + ε)j

for any ε > 0. It is a well known fact that for a convergent subdivision scheme Slin, there is a

constant M with supj ‖S
j
lin
‖ ≤ M . The previous discussion and iterative application of (29)

implies

∂

∂c(0)

∣∣∣
X̃j

Pj = (Slin + U1) · · · (Slin + Uj), where ‖Uk‖ . (µ+ ε)k.

Now we invoke Lemma 3.5 and see that indeed the partial derivatives of Pk with respect to

c̃(0) at X̃j are uniformly bounded, independent of j. The derivatives with respect to d̃k can
be handled in an analogous manner. This shows (28), from which it is easy to see (20).

Having concluded the proof in the case that Slin is a convergent subdivision scheme, we
turn to the Haar case. It is analogous, but because we have S = Slin we do not need the
perturbation inequalities at all to estimate differentials (in particular we do not need Lemma
3.6). �

Remark 3.7. The only place where the constants E1, E2 come into play is the assumption
(25) which is usually only satisfied for data in some set PM,δ – see the discussion in the proof
of Lemma 3.6. It is easy to see that if S is defined and contractive for all initial data, then
the constants E1, E2 can be arbitrarily large.

4. Obtaining discrete data

4.1. Convolution and smoothing of manifold-valued data. Here we are going to in-
vestigate further properties of the geometric average which was defined by Equations (7)
and (10). They will become important in Section 4.2. This material is already contained in
Karcher’s paper [9] as far as surfaces and Riemannian geometry are concerned. Here we also
show the extension to Lie groups, which is not difficult once the Riemannian case is known.

Convolution with a function ψ with
∫
ψ = 1 can be interpreted as an average. This applies

to multivariate functions as well as to univariate ones, which are our main concern. In order
to fit the previous definitions, we give an equivalent construction of the convolution g ∗ψ for
vector-valued functions g, and at the same time a definition of (f ∗©ψ)(u) for manifold-valued
functions f : Rd →M .

m = (g ∗ ψ)(u) ⇐⇒ m =
∫
Rd g(x)ψ(u − x) dx ⇐⇒

∫
Rd(g(x) −m)ψ(u− x) dx = 0,(30)

m = (f ∗© ψ)(u) ⇐⇒
∫
Rd(f ⊖m)ψ(u− x)dx = 0.(31)
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The even more general case where the domain of functions are manifolds has been discussed
in [9]. It turns out that basically any nonnegative kernel function ψ supported in the cube
[−1, 1]d can be used for smoothing in the following way: For each ρ > 0, we let

(32) fρ = f ∗© ψρ, where ψρ(x) =
1

ρd
ψ
(x
ρ

)
.

We want to show that f and its differential df are approximated by fρ and dfρ as ρ approaches
zero. The proofs consist of revisiting the proofs given in [9] which apply to the Riemannian
case.

Theorem 4.1. Consider the smoothed functions fρ defined by a function f : Rd →M and a
kernel ψ as above. Then

limρ→0 f
ρ = f, limρ→0 df

ρ = df.

In case f is Lipschitz differentiable, then this convergence is linear.

Proof. We skip convergence of fρ and show only convergence of dfρ. The proof is in the spirit
of Lemma 4.2 and Theorem 4.4 of [9], the difference being that the domain of f is a vector
space. We define V : Rd ×M → R

dimM by letting

V (u, p) :=
∫
(f(x)⊖ p)ψρ(u− x)dx.

By definition, V (u, fρ(u)) = 0. This implies the following equation of derivatives:

(33) d1Vu,fρ(u) +D2Vu,fρ(u) ◦ df
ρ
u = 0.

The capital D indicates the fact that in the Riemannian case we employ a covariant derivative.
The partial derivatives of V have the form

d1
∣∣
u,p
V (u̇) =

d

dt

∣∣∣
t=0

∫ (
f(y)⊖ p

)
ψρ(u(t)− y)dy

=
d

dt

∣∣∣
t=0

∫ (
f(x− u+ u(t))⊖ p

)
ψρ(u− x)dx,

D2

∣∣
u,p
V (ṗ) =

D

dt

∣∣∣
t=0

∫ (
f(x)⊖ p(t)

)
ψρ(u− x)dx

Using the functions Ep,q(q̇) = −D
dt
(p⊖ q(t)) and Fp,q(ṗ) =

d
dt
(p(t)⊖ q), we get

(34) d1
∣∣
u,p
V (u̇) +D2

∣∣
u,p
V (ṗ) =

∫ (
Ff(x),p(dfx(u̇))− Ef(x),p(ṗ)

)
ψρ(u− x)dx.

It is shown in [9] that in the Riemannian case the functions Ep,q and Fp,q can be bounded in
terms of sectional curvature K, and the parallel transport operator Ptto

from
:

Ep,q(v) = v +R, Fp,q(v) = Ptqp(v) +R′,

where ‖R‖ ≤ ‖v‖const(minK,maxK) · dist(p, q)2 and ‖R′‖ ≤ ‖Fp,q(v)‖const(max |K|) ·
dist(p, q)2. Letting p = fρ(u) and ṗ = dfρ(u̇), we convert (33) and (34) into the integral

0 =

∫ (
Pt

fρ(u)
f(x) dfx(u̇) +R′(x)− dfρ(u̇)−R(x)

)
ψρ(u− x)dx,

without indicating the dependence of the remainder terms R, R′ on x. The assumption that
f is C1 implies that for all x with contribute to the integral (i.e., ψρ(u − x) 6= 0), we have
x → u, dfx(u̇) → dfu(u̇), f

ρ(x) → f(u), Pt → id, R → 0, R′ → 0. Observe that all these
limits have at least linear convergence rate, provided df is Lipschitz. With

∫
ψ = 1, we obtain

limρ→0(dfx + dfρ)(u̇) → 0,
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where the limit is linear if df is Lipschitz. This concludes the proof in the Riemannian case.
In the Lie group case, it is not difficult the compute the derivatives Ep,q(ṗ) and Fp,q(q̇) by

means of the Baker-Campbell-Hausdorff formula which says log(exey) = x+ y+ 1
2 [x, y]+ · · · ,

where the dots indicate terms of third and higher order expressible by Lie brackets. When
p and q = pez undergo 1-parameter variations of the form p(t) = petw and q(t) = qetw with
w ∈ g, then

p(t)⊖ q = log(ezetw) = z + tw +
1

2
[z, tw] + . . .

p⊖ q(t) = log(e−twez) = −tw + z +
1

2
[−tw, z] + . . .

This implies

Fp,q(w) = w +
1

2
[z, w] + · · · ,

Ep,q(w) = w +
1

2
[w, z] + · · ·

Similar to the Riemannian case above, we convert (33) and (34) into the integral
∫ (

dfx(u̇) +
1

2

[
fρ(u)⊖ f(x), dfx(u̇) + dfρ(u)

]
− dfρ(u) + · · ·

)
ψρ(u− x) dx = 0

in the Lie algebra. The same arguments imply x→ u, fρ(x) → f(u), dfx(u̇) → dfu(u̇), and as
a consequence dfρ → df as ρ→ 0. This concludes the proof of Theorem 4.1 in the Lie group
case. �

4.2. The passage from continuous to discrete data. In the analysis of multiscale de-
compositions one frequently assumes an infinite detail pyramid. In practice a vector-valued or
manifold-valued function f(t) which depends on a parameter t ∈ R is given be finitely many
measurements. Such measurements might be samples at parameters ti = ih, for some small h;
or measurements might be modeled as averages of the form f ∗© φ(· − ih)i∈Z where φ is some
kernel with

∫
φ = 1 and supp(φ) small (in fact physics excludes the kind of measurement we

called samples and permits only φ to approach the Dirac delta).
In the linear case any multiscale decomposition based on midpoint-interpolation and espe-

cially the Haar scheme are well adapted to deal with averages: The decimation operator D
in this case is consistent with the definition of discrete data as follows:

ψ (j) = 2j1[0,1](2
j · ) = 2j1[0,2−j ], f (j) = f ∗ ψ (j), c(j) = f (j)

∣∣
2−jZ

=⇒ c(j−1) = Dc(j).

We have no analogous relation for manifold-valued multiscale decompositions. Nevertheless
we may let

f (j) = f ∗© ψ (j), c(j) = f (j)
∣∣
2−jZ

.

In view of Theorem 4.1, this yields discrete data whose discrete derivatives ∆c(j) approximate
the derivatives of f . Assuming f to be C2, we have

∆c
(j)
k := 2j

(
c
(j)
k+1 − c

(j)
k

)
=⇒ ∆c

(j)
k =

d

dt
f (j)

∣∣
k2−j +O(2−j) =

d

dt
f
∣∣
k2−j +O(2−j).

The previous equation is to be interpreted in any smooth coordinate chart of the manifold
under consideration.
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