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Abstract

In this paper a new integrated observer-based fault estimation and accommodation strategy for discrete-
time piecewise linear (PWL) systems subject to actuator faults is proposed. A robust estimator is designed to
simultaneously estimate the state of the system and the actuator fault. Then, the estimate of fault is used to
compensate for the effect of the fault. By using the estimate of fault and the states, a fault tolerant controller
using a PWL state feedback is designed. The observer-based fault-tolerant controller is obtained by the
interconnection of the estimator and the state feedback controller. We show that separate design of the state
feedback and the estimator results in the stability of the overall closed-loop system. In addition, the input-to-
state stability (ISS) gain for the closed-loop system is obtained and a procedure for minimizing it is given.
All of the design conditions are formulated in terms of linear matrix inequalities (LMI) which can be solved
efficiently. Also, performance of the estimator and the state feedback controller are minimized by solving
convex optimization problems. The efficiency of the method is demonstrated by means of a numerical
example.
& 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

There is an increasing demand on safety, reliability and performance of modern industrial
systems. A fault in the system might deteriorate the performance of the system or lead to the loss
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of the system functionality or stability. In some instances, it might result in hazardous events.
Therefore, it is very important to design control systems that can tolerate occurrence of some
faults during the operation while guaranteeing stability and functionality of the system and
maintaining an acceptable performance. Such controllers are called fault-tolerant. The area of
fault-tolerant control (FTC) has attracted a lot of attentions in the past two decades, see review
papers [2,18,11] and books [9,3].
Broadly speaking, FTC systems are divided into two categories: passive (PFTC) and active

(AFTC). In PFTC, the FTC system does not react to the occurrence of a fault in the sense that the
structure and parameters of the controller are pre-designed and fixed such that it can tolerate a set
of faults without any change in the controller. This means that the fault tolerant controller
provides a common solution to the problem of control design for the normal system as well as the
faulty systems. Therefore, the PFTC solution is usually a conservative solution. Moreover, when
some severe faults are taken into account, a common solution may not always exist and if it
exists, it usually yields a low performance. On the other hand in AFTC, the controller reacts to
the occurrence of faults and changes the parameters and/or the structure of the controller. A fault
detection and estimation module is used to detect and estimate the fault when it occurs. Then,
based on the information about the occurred fault, a supervisory controller changes the control
law or the structure of the controller, in the case of severe faults, such that the faulty system with
the new controller is stable and provides an acceptable performance. AFTC can usually provide a
better performance because it changes or modifies the controller based on the characterizations of
the occurred fault.
In the past three decades many methods have been developed for AFTC and PFTC of discrete-

event or continuous systems. For a review of these methods, the interested reader is referred to [3].
But many of the industrial systems include both discrete and continuous behaviors. These class of
systems are called hybrid systems. Hybrid systems are systems that include both continuous and
discrete behaviors and a non-trivial interaction between continuous evolution and discrete
transitions. Generally speaking, a hybrid system consists of several modes of behavior. In each
mode the system has a continuous dynamic. Transition between these modes might be for example
state-dependent, time- dependent, input dependent or based on occurrence of some external events
or a combination of these conditions. Hybrid systems appear in many practical engineering
applications such as mechanical systems, chemical processes, embedded systems, manufacturing
and traffic control.
FTC of hybrid systems has attracted some research in recent years. For example see the book

by Yang and Jiang [29]. But the research in this area is still at its infancy and there is a need for
more research in this area. PWL systems are an attractive class of hybrid systems. This is because
PWL framework proposes an efficient way to describe the dynamic of systems exhibiting
switching between a number of linear systems where switching is state-dependent [13,7].
In many nonlinear systems this switching is because of PWL components such as dead-zone,
saturation, hysteresis, etc. These nonlinearities appear in many industrial applications and can be
efficiently modeled by a PWL system. For example, in [26] it is shown that many practical
systems such as mechanical motion systems with friction can be efficiently modeled as PWL
systems. Moreover, PWL systems can approximate nonlinear systems effectively [21].
Furthermore, in [7] it is shown that discrete-time piecewise affine systems are equivalent to
other classes of hybrid systems such as mixed logical dynamical systems and linear
complementary systems under mild well-posedness assumption. Also, system identification
methods such as [24,6,19] can be used to identify a PWL model of a nonlinear system. PWL
systems have been recently used for modeling and control of systems in different application
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domains. For example in [27] a PWL model of a pitch controlled wind turbine is obtained using
clustering based techniques. In [22,8] PWL systems are used for modeling and control of prostate
cancer. In [23] a PWL model of a live-stock building is used for control and reconfigurability
analysis.

Closely related to PWL systems are switched systems. An important problem in stability of
switched systems is determining restrictions on minimum time between switches (dwell-time),
see [4,5] and references therein. Ref. [28] considers the problem of fault-tolerant control for
nonlinear switched systems with periodic switching signal. Authors assume that the switching
sequence is fixed and there is a series of prescribed dwell-times between switches. A PWL
system can be viewed as a switched linear system where switching is based on the partitioning of
the state space. In PWL systems switching occurs if the state of the system enters a new partition
meaning that the switching times and period between them cannot be assumed fixed or given a
priori since they depend on the dynamic of the system in each mode.

There are very few methods available in the literature for fault detection and fault-tolerant
control of PWL systems. Motivated by this fact, in this paper, we address the problem of fault
estimation and fault tolerant control for PWL systems. Fault tolerant control of PWL systems
using model predictive control by means of mixed integer programming is investigated in [17].
A mixed logical dynamical modeling framework is used for modeling of hybrid systems and the
problem is solved using mixed integer optimization. However, these approaches suffer from high
computational complexity. In [25], a guaranteed cost PFTC method for piecewise affine (PWA)
systems in discrete-time using piecewise Lyapunov functions is proposed. The controller can
tolerate partial loss of actuator gains while guaranteeing a specific level of performance.
Sufficient conditions in terms of LMIs for the existence of the controller are given. An important
step in design of an AFTC is to check if the system is reconfigurable with respect to a given fault.
Reconfigurability analysis for piecewise affine systems in discrete-time against actuator faults
using state feedback is investigated in [23], where only complete loss of actuators is considered.
A control reconfiguration method for PWA continuous-time systems is proposed in [20,21].
In these works, it is assumed that the fault has already been detected and estimated correctly.
The aim is to stabilize the faulty closed-loop by inserting a reconfiguration block between the faulty
plant and the nominal controller without applying any changes to the nominal controller. A fault
detection and identification method for bimodal slab PWL systems with partial loss of actuator gains is
proposed in [16]. The constant partial gain loss in actuators is estimated using an observer.

In this work, we consider the problem of fault estimation and active fault tolerant control of
multi-modal PWL systems using an observer-based output feedback PWL controller. In contrast
to [25] our method in this paper is an active FTC method since we estimate the fault and
compensate for its effect. Moreover, in this paper we assume that the controller is output-based
since in practice usually full state variables are not available for feedback. In contrast to [16] our
work is not limited to bimodal systems. Moreover, Ref. [16] only considers fault detection and
estimation while in our work we also address the problem of fault estimation and FTC for PWL
systems. The contributions of this paper are as follows:
�

P
d
jf
First, a robust state and fault estimator for the PWL system is designed that can
simultaneously estimate the states of the system and actuator faults effectively. Sufficient
conditions in terms of LMIs for ISS of the estimator are given. Moreover, the ISS gains of the
system with respect to disturbance are obtained and can be minimized by solving a convex
optimization problem with LMI constraints. The proposed method can deal with constant as
well as time-varying actuator faults.
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�

P
d
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Second, the estimation of the fault is used to compensate the effect of fault on the input.
A PWL state feedback which uses the estimation of the state from the estimator is designed.
We provide sufficient conditions in terms of LMIs for the ISS of the controller. Furthermore,
the ISS gains of the feedback controller with respect to disturbances and estimation error are
obtained which can be minimized by solving a number of optimization problems with LMI
constraints.
�
 Third, we show that separate design of the estimator and the controller yields ISS of the
closed-loop system. The closed-loop system remains stable after occurrence of a fault. We
obtain the ISS gain for the overall closed-loop system with respect to the disturbance and
estimation error and show that this gain could be minimized by minimizing the corresponding
gains for the estimator and state feedback controller.

This paper is organized as follows. Notation and preliminaries are given in Section 2. Section 3 gives
the system description. In Section 4, the simultaneous fault and state estimator is presented. In Section
5, we present the state feedback controller with the fault compensator. In Section 6, we discuss the
design and stability properties of the overall observer-based fault-tolerant control method. Section 7
demonstrates the method a numerical example. Conclusions are given in Section 8.

2. Preliminaries

The field of real numbers, the set of nonnegative reals and the set of nonnegative integers are
respectively denoted by R;RZ0;N. For any xARn, xT stands for its transpose and ‖x‖¼

ffiffiffiffiffiffiffi
xTx

p
denotes its Euclidean norm. Also, the i-th entry of x is denoted by xi. The infinity norm of x
denoted by ‖x‖1 is given by maxijxj. Given a sequence fvðkÞgkAN, its supremum norm i.e
supkAN‖vðkÞ‖ is denoted by ‖v‖1.
A function γ : RZ 0-RZ0 is a class K function if it is continuous, strictly increasing, and

γð0Þ ¼ 0. γ is a class K1 function if it is a class K function and also it satisfies γðsÞ-1 as
s-1. A function β is a class KL function if for each fixed kARZ0, the function βð�; kÞAK,
and for each fixed sARZ 0, the function βðs; �Þ is decreasing and βðs; kÞ-0 as k-1. In the
following we recall definitions of input-to-state stability for nonlinear discrete-time system [12].
Consider the following nonlinear discrete-time system:

xðk þ 1Þ ¼ f ðxðkÞ; vðkÞÞ; ð1Þ
where xðkÞARn is the state, and vðkÞARd is an unknown input disturbance.

Definition 1. The nonlinear system (1) is called Input-to-state stable (ISS) with respect to the
input v if there exist a KL-function β and a class K-function γ such that for each initial condition
xð0ÞARn and all inputs fvðkÞgkAN, all solutions of the system satisfy

‖xðkÞ‖rβð‖xð0Þ‖; kÞ þ γð‖v‖1Þ ð2Þ

The function γ is called the ISS gain of Eq. (1) with respect to the input v.

Theorem 1 (Jiang and Wang [12], Lazar and Heemels [14]). Let V : Rn-RZ0 be a
continuous function. If there exist a class K1 functions α1 and α2 such that

α1ð‖x‖ÞrVðxÞrα2ð‖x‖Þ; 8xARn ð3Þ
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and if there exist a class K1 function α3 and a K function s such that

Vðf ðx; vÞÞ�VðxÞr�α3ð‖x‖Þ þ sð‖x‖Þ; 8xARn; 8vARd; ð4Þ
then, the system (1) is ISS with respect to the input v. Furthermore, let α1ðsÞ ¼ asλ; α2ðsÞ ¼ bsλ;
α3ðsÞ ¼ csλ, where a; b; c are positive constants with crb, then

βðs; kÞ ¼ α�1
1 ð2ρkα2ðsÞÞ; γðsÞ ¼ α�1

1
2sðsÞ
1�ρ

� �
; ð5Þ

where ρ¼ 1�c=bA ½0; 1Þ.

A function V that satisfies Eqs. (3) and (4) is called an ISS-Lyapunov function for the system (1).

3. Piecewise linear systems

We consider a PWL discrete-time system of the following form:

xðk þ 1Þ ¼ AixðkÞ þ BiuðkÞ þ Eif ðkÞ þ DiwðkÞ; ð6Þ

yðkÞ ¼CixðkÞ for yðkÞARi; iAI ; ð7Þ
where xðkÞARn is the state, uðkÞARm is the control input, f ðkÞARr represents the actuator fault,
wðkÞARd is the disturbance input, yðkÞARp is the measured output. Ai;Bi;Ei;Ci are constant
real matrices with appropriate dimensions. fRigsi ¼ 1DRp denotes a partition of the output space
into a number of polyhedral regions Ri; iAI ¼ f1;…; sg. Each polyhedral region is given by

Ri ¼ fyjHiyrhig: ð8Þ
All possible switchings from region Ri to Rj are represented by the set S

S≔fði; jÞjyðkÞARi; yðk þ 1ÞARjg: ð9Þ
4. Simultaneous state and fault estimation

In this section, we focus on the estimation of the states of the system and the fault using a
PWL observer such that the estimation error converges to zero and at the same time the effect of
the disturbance input on the fault estimation error is attenuated. The estimation of the states is
later used for design of an observer-based controller and the estimate of the fault is used for
compensating the effect of the fault. To simultaneously estimate the fault and the states, the
estimate of the fault is augmented to the system as an additional state. Therefore, we have the
following PWL augmented fault estimator:

x̂ðk þ 1Þ ¼ Aix̂ðkÞ þ BiuðkÞ þ Eif̂ ðkÞ þ LiðyðkÞ�ŷðkÞÞ;
ŷðkÞ ¼ Cix̂ðkÞ for yðkÞARi; iAI ;
f̂ ðk þ 1Þ ¼ f̂ ðkÞ þ FiðyðkÞ�ŷðkÞÞ; ð10Þ

where x̂ðkÞARn is the estimated state, ŷðkÞARp is the estimated output, and f̂ ðkÞARr

is the estimated fault. LiARn�p and FiARr�p, i¼ 1;…; s are observer gains to be designed. The
following estimation errors are defined:

exðkÞ ¼ xðkÞ�x̂ðkÞ; ð11Þ
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ef ðkÞ ¼ f ðkÞ�f̂ ðkÞ; ð12Þ
then, the dynamic of the state estimation error is governed by

exðk þ 1Þ ¼ xðk þ 1Þ�x̂ðk þ 1Þ ¼ ðAi�LiCiÞexðkÞ þ Eiðf ðkÞ�f̂ ðkÞÞ þ DiwðkÞ
¼ ðAi�LiCiÞexðkÞ þ Eief ðkÞ þ DiwðkÞ ð13Þ

Also, for the dynamic of the fault estimation error we have

ef ðk þ 1Þ ¼ f ðk þ 1Þ�f̂ ðk þ 1Þ ¼ f ðk þ 1Þ�f̂ ðkÞ�FiCixðkÞ þ FiCix̂ðkÞ
¼ f ðk þ 1Þ�f ðkÞ þ f ðkÞ�f̂ ðkÞ�FiCiðxðkÞ�x̂ðkÞÞ ¼ ef ðkÞ�FiCiexðkÞ þ Δf ðkÞ;

ð14Þ
where Δf ðkÞ ¼ f ðk þ 1Þ�f ðkÞ. Therefore, the dynamics of the error system is given by

exðk þ 1Þ
ef ðk þ 1Þ

" #
¼

Ai�LiCi Ei

�FiCi I

" #
exðkÞ
ef ðkÞ

" #
þ Di 0

0 I

� � wðkÞ
Δf ðkÞ

" #
ð15Þ

To simplify the notation, let

~eðkÞ ¼
exðkÞ
ef ðkÞ

" #
; ~Ai ¼

Ai Ei

0 I

� �
; ~Li ¼

�Li
�Fi

" #
;

~Ci ¼ ½Ci 0�; ~Di ¼
Di 0

0 I

� �
; vðkÞ ¼

wðkÞ
Δf ðkÞ

" #
: ð16Þ

Then, the dynamic of the estimation error is described by

~eðk þ 1Þ ¼ ð ~Ai þ ~Li ~CiÞ þ ~DivðkÞ; for yðkÞARi: ð17Þ
In this system, both the original disturbance w and the variation of the fault in case of a time-
varying fault would affect the system as a disturbance v. The goal is to design the observer gains
~Li; such that the system is ISS with respect to the v and to find the corresponding ISS gain.

Theorem 2. If there exist symmetric matrices Pi ¼ PT
i 40, matrices Gi; and Ui; i¼ 1;…; s and

a scalar svZ1 such that the following set of LMIs are satisfied:

Pj�Gi�GT
i 0 Gi

~Ai þ Ui ~Ci Gi ~Di

n �I I 0

n n �Pi 0

n n n �svI

2
66664

3
77775o0; 8 i; jAS; ð18Þ

then, the estimation error system (17) is ISS with respect to v with ISS gain γSðsÞ ¼ svs.
The observer gains are obtained by

~Li ¼G�1
i Ui: ð19Þ

Moreover, Vð~eðkÞÞ ¼ ~eðkÞTPi ~eðkÞ; iARi; iAI is an ISS Lyapunov function which satisfies

‖~eðkÞ‖2rVð~eðkÞÞrsv‖~eðkÞ‖2; ð20Þ

Vð~eðk þ 1ÞÞ�Vð~eðkÞÞr�‖~eðkÞ‖2 þ sv‖vðkÞ‖2; ð21Þ
for all ~eðkÞARnþr; vARd.
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Proof. If Eq. (18) is satisfied then, we have

�I I

I �Pi

" #
o0: ð22Þ

Using Schur complement, it implies that Pi4I. Also, Eq. (18) implies

Pj�Gi�GT
i Gi

n �svI

" #
o0: ð23Þ

This implies that Gi þ GT
i �Pj4svGiGT

i Z0. From the fact that GiP�1
j GT

i ZGi þ GT
i �Pj, it

follows that GiP�1
j GT

i Zs�1
v GiGT

i : Therefore, PjosvI, and we have Pi4I which together result
in Eq. (20).

Now to prove Eq. (21), we use the relation GiP�1
j GT

i ZGi þ GT
i �Pj again which implies that

feasibility of Eq. (18) is a sufficient condition for the feasibility of following matrix inequality

�GiP�1
j GT

i 0 Gi
~Ai þ Ui ~Ci Gi ~Di

n �I I 0

n n �Pi 0

n n n �svI

2
66664

3
77775o0 8 i; jAS; ð24Þ

Pre- and post-multiplying the above inequality with diagfG�1
i ; I; I; Ig and its transpose and noting

that ~Li ¼G�1
i Ui, we get

�P�1
j 0 ~Ai þ ~Li ~Ci ~Di

n �I I 0

n n �Pi 0

n n n �svI

2
66664

3
77775o0 8 i; jAS; ð25Þ

Applying the Schur complement to the above matrix inequality yields

�Pi 0

0 �svI

" #
�

ð ~Ai þ ~Li ~CiÞT I

~D
T
i

0 I

2
64

3
75 �Pj 0

0 �I

� � ~Ai þ ~Li ~Ci ~Di

I 0

" #
o0; ð26Þ

which is equal to

ð ~Ai þ ~Li ~CiÞTPjð ~Ai þ ~Li ~CiÞ�Pi þ I ð ~Ai þ ~Li ~CiÞTPj ~Di

n ~DiPj ~Di�svI

" #
o0 ð27Þ

Pre- and post-multiplying the above inequality with ½~eðkÞT vðkÞT �T and its transpose gives

ðð ~Ai þ ~Li ~CiÞ~eðkÞ þ ~DivðkÞÞTPjðð ~Ai þ ~Li ~CiÞ~eðkÞ þ ~DivðkÞÞ�~eðkÞTPi ~eðkÞ
r�~eðkÞT ~eðkÞ þ svvðkÞTvðkÞ: ð28Þ

Since ~eðk þ 1Þ ¼ ð ~Ai þ ~Li ~CiÞ~eðkÞ þ ~DivðkÞ, the above inequality can be rewritten as

ð~eðk þ 1ÞÞTPjð~eðk þ 1ÞÞ�~eðkÞTPi ~eðkÞr�~eðkÞT ~eðkÞ þ svvðkÞTvðkÞ: ð29Þ
which is equal to Eq. (21). Therefore, based on Theorem 1, the error system is ISS with respect
to v. Now, we move to the calculation of the ISS gain. The inequality (21) together with Eq. (20)
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gives

Vð~eðk þ 1ÞÞrVð~eðkÞÞð1� 1
sv
Þ þ sv‖vðkÞ‖2: ð30Þ

Applying Eq. (30) for k¼0 up to k¼k in an inductive manner gives

Vð~eðkÞÞrVð~eð0ÞÞ 1� 1
sv

� �k

þ sv ∑
k�1

l ¼ 0
1� 1

sv

� �k�l�1

‖vðlÞ‖2

r 1� 1
sv

� �k

Vð~eð0ÞÞ þ s2v‖vðlÞ‖21: ð31Þ

Since from Eq. (20) Vð~eð0ÞÞrsv‖~eð0Þ‖2, the above inequality implies

‖~eðkÞ‖r ffiffiffiffiffi
sv

p
1� 1

sv

� �k=2

‖~eð0Þ‖þ sv‖v‖1: ð32Þ

This proves that the system is ISS with respect to v with the ISS gain γSðsÞ ¼ svs; sARZ 0. □

To minimize the ISS gain, the following optimization problem is solved.

min
Pi ;Gi ;Ui

sv

s:t: Eq: ð18Þ ð33Þ
The above optimization problem is a convex optimization problem with a set of LMI

constraints which can be solved efficiently using available softwares such as YALMIP/SeDuMi
or YALMIP/LMILAB [15].

5. Fault accommodation

The state estimation is used by a PWL feedback control to stabilize the system and the
estimate of the fault is used to compensate for the effect of the fault by adding a correction term
to the input of the system to generate the desired control input that stabilize the faulty system.
Before proceeding, we state the following assumption.

Assumption 1. rankðBi;EiÞ ¼ rankðBiÞ.
Lemma 1 (Jiang et al. [10]). Under Assumption1, there exist a matrix Bn

i ARm�n such that

ðI�BiB
n

i ÞEi ¼ 0: ð34Þ

To stabilize the faulty system, the following PWL output feedback strategy with fault
compensator is introduced:

uðkÞ ¼ Kix̂ðkÞ�Bn

i Eif̂ ðkÞ for yðkÞARi; iAI ; ð35Þ
where the term Bn

i Eif̂ ðkÞ is added to the input to compensate for the effect of the fault. Eqs. (35)
and (6) together with x̂ðkÞ ¼ xðkÞ�exðkÞ imply

xðk þ 1Þ ¼ AixðkÞ þ BiuðkÞ þ Eif ðkÞ þ DiwðkÞ
¼ AixðkÞ þ BiKix̂ðkÞ�BiB

n

i Eif̂ ðkÞ þ Eif ðkÞ þ DiwðkÞ
¼ ðAi þ BiKiÞxðkÞ�BiKiexðkÞ�BiB

n

i Eif̂ ðkÞ þ Eif ðkÞ þ DiwðkÞ
¼ AixðkÞ�BiB

n

i Eif̂ ðkÞ þ Eif ðkÞ þ Eif̂ ðkÞ�Eif̂ ðkÞ þ DiwðkÞ�BiKiexðkÞ
¼ AixðkÞ þ ðI�BiB

n

i ÞEif̂ ðkÞ þ Eief ðkÞ þ DiwðkÞ�BiKiexðkÞ
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¼ AixðkÞ þ ½Di Ei�
wðkÞ
ef ðkÞ

" #
�BiKiexðkÞ; ð36Þ

where Ai ¼ Ai þ BiKi. Denote

Di ¼ ½Di Ei�; wðkÞ ¼
wðkÞ
ef ðkÞ

" #
: ð37Þ

Then, the dynamics of the faulty system with fault compensator is given by

xðk þ 1Þ ¼ AixðkÞ þ DiwðkÞ�BiKiexðkÞ; for yðkÞARi; iAI : ð38Þ
In the following we investigate the ISS of the above system.

Theorem 3. If there exist symmetric matrices Qi ¼QT
i and matrices Yi for iAI and scalars

sxwZ1 and η40 such that

�Qj 0 AiQi þ BiYi Di �BiYi

0 �I Qi 0 0

n n �Qi 0 0

n n n �sxwI 0

n n n n �sxwI

2
6666664

3
7777775
o0 8ði; jÞAS; ð39Þ

QiZηI; 8 iAI ; ð40Þ
then, the closed-loop system (38) is ISS with respect to w; ef , and ex with ISS gain
γKðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η�3sxw

p
s. The controller gains Ki are given by

Ki ¼ YiQ
�1
i : ð41Þ

Moreover, VðxðkÞÞ ¼ xðkÞTPixðkÞ; iARi; iAI with Pi ¼Q�1
i is an ISS Lyapunov function for

the closed-loop system (38) which satisfies

‖xðkÞ‖2rVðxðkÞÞrη�1‖xðkÞ‖2; ð42Þ

Vðxðk þ 1ÞÞ�VðxðkÞÞr�‖xðkÞ‖2 þ η�2sxw
wðkÞ
exðkÞ

" #�����
�����
2

; ð43Þ

for all xðkÞARn; ½wðkÞT ef ðkÞT exðkÞT �TARdþrþn.

Proof. If Eq. (39) is feasible, then it holds that

�I Qi

n �Qi

" #
o0; ð44Þ

which by using Schur complement implies that Q�1
i 4I. Also, feasibility of Eq. (40) implies that

Q�1
i rη�1I. Therefore, feasibility of Eqs. (39) and (40) implies Eq. (42). Note that

IrQ�1
i rη�1I implies that ηo1. Post- and pre-multiplying Eq. (39) by diagfI; I;Q�1

i ; I;Q�1
i g
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and its transpose and using the relation Ki ¼ YiQ�1
i we get

�Qj 0 Ai þ BiKi Di �BiKi

0 �I I 0 0

n n �Q�1
i 0 0

n n n �sxwI 0

n n n n �sxwQ�2
i

2
6666664

3
7777775
o0 8ði; jÞAS; ð45Þ

From Eq. (40), we have that: Q�2
i rη�2I. Therefore, if the above matrix inequality is feasible, it

implies that the following inequality is also feasible:

�Qj 0 Ai þ BiKi Di �BiKi

0 �I I 0 0

n n �Q�1
i 0 0

n n n �sxwI 0

n n n n �η�2sxwI

2
6666664

3
7777775
o0 8ði; jÞAS; ð46Þ

Using Schur Complement we get

Q�1
i þ I 0 0

n �sxwI 0

n n �η�2sxwI

2
64

3
75

þ½ðAi þ BiKiÞT D
T
i �ðBiKiÞT �T ½Q�1

j �½Ai þ BiKi Di �BiKi�o0 ð47Þ
Pre- and post-multiplying the above inequality with ½xðkÞT wðkÞT eðkÞT �T and its transpose and
knowing that xðk þ 1Þ ¼ ðAi þ BiKiÞxðkÞ þ DiwðkÞ�BiKieðkÞ we get

xðk þ 1ÞTQ�1
j xðk þ 1Þ�xðkÞQ�1

i xðkÞ
r�xðkÞTxðkÞ þ sxwwðkÞTwðkÞ þ η�2sxweðkÞTeðkÞ ð48Þ

Since ηr1, it is true that η�2sxwZsxw. Therefore, we have

xðk þ 1ÞTQ�1
j xðk þ 1Þ�xðkÞQ�1

i xðkÞrη�2sxw½wðkÞT exðkÞT �
wðkÞ
exðkÞT

" #
; ð49Þ

which is equal to Eq. (43). Therefore, based on the Theorem 1, the closed-loop system is ISS
with respect to wðkÞ and ex(k). The ISS gain is calculated using the same procedure as we used
for the estimation error system. In this case γKðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η�3sxw

p
s. □

To minimize the ISS gain for the state feedback controller, the following optimization problem
must be solved.

min
Qi ;Yi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η�3sxw

p

s:t:
Eq: ð39Þ
Eq: ð40Þ

(
ð50Þ
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The above optimization problem is not convex, but it can be efficiently solved by performing a
line search in η and minimizing for sxw.

6. Observer-based fault accommodation

In this section, we show that if we design the controller and the fault estimator separately
based on the conditions provided in the previous sections, then the overall closed-loop system
which consists of the plant, the estimator, and the controller is stable after occurrence of a fault.

The dynamics of the closed-loop systems is given by

xðk þ 1Þ
~eðk þ 1Þ

" #
¼

Ai þ BiKi ½Ei �BiKi�
0 ~Ai þ ~Li ~Ci

" #
xðk þ 1Þ
~eðk þ 1Þ

" #
þ

Di 0

Di 0

0 I

2
64

3
75 wðkÞ

Δf ðkÞ

" #
: ð51Þ

Theorem 4. If there exists an estimator that satisfies the hypotheses of Theorem2 and there
exists a state feedback controller that satisfied the hypotheses of Theorem3, then the closed-loop
system (51) is ISS with respect to ½ wðkÞΔf ðkÞ� before and after a fault event at time kf.

Proof. We consider the following candidate Lyapunov function

VμðxðkÞ; ~eðkÞÞ ¼ VxðxðkÞÞ þ μVeð~eðkÞÞ; ð52Þ
with μ40 for the closed-loop system. From Eqs. (21) and (43), we have

Vμðxðk þ 1Þ; ~eðk þ 1ÞÞ�VμðxðkÞ; ~eðkÞÞr�‖xðkÞ‖2 þ sxw‖wðkÞ‖2 þ η�2sxw‖exðkÞ‖2
�μ‖~eðkÞ‖2 þ μsv‖wðkÞ‖2 þ μsv‖Δf ðkÞ‖2

r�‖xðkÞ‖2 þ sxw‖wðkÞ‖2 þ sxw‖ef ðkÞ‖2 þ η�2sxw‖exðkÞ‖2
�μ‖exðkÞ‖2�μsv‖ef ðkÞ‖2 þ μsv‖wðkÞ‖2 þ μsv‖Δf ðkÞ‖2

r�‖xðkÞ‖2 þ ðη�2sxw�μÞ‖exðkÞ‖2 þ ðsxw�μÞ‖ef ðkÞ‖2
þðsxw þ μsvÞ‖wðkÞ‖2 þ μsv‖Δf ðkÞ‖2:

If μZη�2sxw þ 1, then we have that

Vμðxðk þ 1Þ; ~eðk þ 1ÞÞ�VμðxðkÞ; ~eðkÞÞ
r�‖xðkÞ‖2�‖exðkÞ‖2�‖ef ðkÞ‖2 þ ðsxw þ μsvÞ‖wðkÞ‖2 þ μsv‖Δf ðkÞ‖2: ð53Þ

Since ‖½xT ~eT �T‖2 ¼ ‖x‖2 þ ‖~e‖2, we have

Vμðxðk þ 1Þ; ~eðk þ 1ÞÞ�VμðxðkÞ; ~eðkÞÞr�
xðkÞ
~eðkÞ

" #�����
�����
2

þ ðsxw þ μsvÞ‖wðkÞ‖2 þ μsv‖Δf ðkÞ‖2:

ð54Þ
Moreover,

‖wðkÞ‖2r‖½wðkÞT Δf ðkÞT �T‖;
and likewise

‖Δf ðkÞ‖2r‖½wðkÞT Δf ðkÞT �T‖:
Therefore, it is concluded that

Vμðxðk þ 1Þ; ~eðk þ 1ÞÞ�VμðxðkÞ; ~eðkÞÞ
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r�
xðkÞ
~eðkÞ

" #�����
�����
2

þ 2ðsxw þ μsvÞ
wðkÞ
Δf ðkÞ

" #�����
�����
2

ð55Þ

Also, since μ41, we have that

xðkÞ
~eðkÞ

" #�����
�����
2

r‖xðkÞ‖2 þ ‖~eðkÞ‖r‖xðkÞ‖2 þ μ‖~eðkÞ‖2rVμðxðkÞ; ~eðkÞÞ ð56Þ

Furthermore,

VμðxðkÞ; ~eðkÞÞrη�1‖xðkÞ‖2 þ μsv‖~eðkÞ‖2

rmaxðη�1; μsvÞ‖xðkÞ‖2 þmaxðη�1; μsvÞ‖eðkÞ‖2rmaxðη�1; μsvÞ
xðkÞ
~eðkÞ

" #�����
�����
2

ð57Þ

Because μZη�2sxw þ 1, and η�1Z1;sxwZ1 it holds that μsvZη�1 which means
maxðη�1; μsvÞ ¼ μsv. Therefore, we have that

xðkÞ
~eðkÞ

" #�����
�����
2

rVμðxðkÞ; ~eðkÞÞrμsv
xðkÞ
~eðkÞ

" #�����
�����
2

: ð58Þ

Using Theorem 1 with the above inequality together with Eq. (6), it is concluded that the closed-
loop system is ISS with respect to w(k) and Δf ðkÞ. Using Eq. (5), the functions β and γ are
calculated as

βðs; kÞ ¼
ffiffiffi
2

p
1� 1

μsv

� �k=2 ffiffiffiffiffiffiffi
μsv

p
s ð59Þ

γðsÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μsvðsxw þ μsvÞs

p
□ ð60Þ

It is of interest to minimize the ISS gain. To minimize the ISS gain, we have to find the
minimum of the function f ðμ;sxw;svÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μsvðsxw þ μsvÞ

p
. It is clear that to minimize the

function, μ;sxw;sv must be minimized. Minimum of μ is obtained when it is chosen as
η�2sxw þ 1. Therefore, the minimization of gain could obtained by separately minimizing
η�2sxw;sv.

7. Illustrative example

We consider the following PWL system which is an extension of the example in [1] by
considering the given partition and introducing actuator fault. The system consists of the
following four modes:

A1 ¼
0:7786 0:9908 0:1270

0:1616 0:8443 0:8144

0:9214 0:9747 0:7825

2
64

3
75; A2 ¼

0:3984 0:3263 0:7764

0:7806 0:9886 0:1297

0:8814 0:4718 0:3110

2
64

3
75;

A3 ¼
0:3049 0:4247 0:8979

0:8448 0:2485 0:6921

0:7558 0:9160 0:3636

2
64

3
75; A4 ¼

0:1194 0:3964 0:2454

0:1034 0:2515 0:4983

0:6981 0:8655 0:2403

2
64

3
75;
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B1 ¼
0:2485 0:7409

0:2501 0:5257

0 0

2
64

3
75; B2 ¼

0:2722 0:6055

0:1576 0:1580

0 0

2
64

3
75;

B3 ¼
0:4945 0:3020

0:9237 0:9118

0 0

2
64

3
75; B4 ¼

0:9894 0:7205

0:1709 0:1519

0 0

2
64

3
75;

C1 ¼ ½0:3815 0:6916 0:7183�; C2 ¼ ½0:0591 0:8258 0:4354�;
C3 ¼ ½0:5204 0:8010 0:9708�; C4 ¼ ½0:6995 0:3081 0:8767�;

D1 ¼
0:05

0:05

0:05

2
64

3
75; D2 ¼D3 ¼D4 ¼D1: ð61Þ

The regions Ri are given as

R1 ¼ fyj0ryr1g; R2 ¼ fyj�1ryr0g;
R3 ¼ fyjyo�1g; R4 ¼ fyj1oyg: ð62Þ

We mention that all the matrices A1;…;A4 are unstable. We consider both constant and time
varying faults. It is assumed that the fault only affects the first input channel, therefore we have

E1 ¼
0:2485

0:2501

0

2
64

3
75; E2 ¼

0:2722

0:1576

0

2
64

3
75; E3 ¼

0:4945

0:9237

0

2
64

3
75; E4 ¼

0:9894

0:1709

0

2
64

3
75: ð63Þ

It is obvious that rankðBi;EiÞ ¼ rankðBiÞ and therefore Assumption 1 is satisfied. The state and
fault estimator is obtained using the optimization problem (33). The minimum value for sv is
obtained as 10.99 and the observer gains are given by

L1 ¼
�1:9079

�1:4416

�1:6296

2
64

3
75; L2 ¼

�1:1845

�1:9045

�1:1197

2
64

3
75; L3 ¼

�1:2281

�1:8913

�1:1280

2
64

3
75; L4 ¼

�1:1555

�1:5605

�1:4480

2
64

3
75;

ð64Þ
and

F1 ¼�1:6767; F2 ¼�1:8221; F3 ¼�1:2807; F4 ¼�1:1898: ð65Þ
To design the controller we use Theorem 3. Fig. 1 shows how the ISS gain for the controller
changes with respect to the parameter η. The minimum ISS gain is obtained with η¼ 0:25. For
values of η less than 0.25 the LMIs are not feasible. The following gains of the controllers are
obtained:

K1 ¼
4:8065 �2:2163 �10:1497

�3:0243 �0:9664 2:9298

� �
; K2 ¼

�8:9979 �10:8573 0:4423

3:0291 4:1599 �1:5940

� �
;

K3 ¼
�0:5384 �2:3396 �3:7325

�0:5699 1:8380 2:9377

� �
; K4 ¼

3:3276 5:9447 12:1102

�4:9775 �9:0021 �17:0469

� �
:

ð66Þ
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To minimize the gain of the overall closed-loop system η�2sxw must be minimized which follows
a similar pattern as shown in Fig. 2. Therefore, the minimum ISS gain of the overall closed-loop
system is obtained using Eq. (60) as 948.
We consider two different faults. In the first case, we consider the following constant fault:

f 1ðkÞ ¼
0 kr50

2 k450
:

�
ð67Þ

Fig. 3 shows the closed-loop output of the system when the fault is not compensated using the
estimation of the fault. As it can be seen the origin of the faulty system is not ISS. Using the
proposed method, the effect of fault is compensated by adding an appropriate term to the input of
the system. The states of the system with fault compensation are depicted in Fig. 4. By
compensating the effect of fault, the origin of the closed-loop system is ISS. Fig. 5 shows the
simulation result for estimating the fault using the gains obtained as explained above and Fig. 6
shows the states and their estimation. As it can be seen both the fault and states are estimated
efficiently.
Fig. 2. Minimum values of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η�2sxw

p
for a line search in η.

Fig. 1. ISS gain for the controller for a line search in η.
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Fig. 3. Top: states of the system without compensating for the fault, Bottom: active mode of the system.

Fig. 4. Top: states of the system with fault compensation, Bottom: active mode of the system.

Fig. 5. Fault f and its estimate f̂ .
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Fig. 6. States of the system (solid lines) and their estimates (dashed lines).
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For the second scenario we consider a time varying fault

f ðkÞ ¼
0 kr50

cos ðk=15Þ k450
:

(
ð68Þ

Fig. 7 shows the fault and its estimate. Figs. 8 and 9 show the states and mode of the system
without and with fault compensation. As the simulation results show, a time-varying fault is also
estimated efficiently and then compensated. In the case of time-varying fault variation of fault
Δf ðkÞ would act as a disturbance for both fault estimation and compensation. As a result the
performance of the method depends on the rate of variation of the fault. Based on our simulations
if the fault is changing fast, then there would be a considerable error in the estimation. This error
would act as a disturbance for fault compensation with degrades the performance of the system.
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Fig. 8. Top: states of the system, x without compensating for the fault, Bottom: active mode of the system.

Fig. 9. Top: states of the system, x with fault compensation, Bottom: active mode of the system.
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8. Conclusion

The problem of fault estimation and fault tolerant control for discrete-time piecewise linear
systems is considered in this paper. An observer based active fault tolerant control strategy against
actuator faults is proposed in this paper. An observer is designed such that it estimates
simultaneously the state of the system and the actuator fault. The estimate of the fault is then used
to compensate for the effect of fault by adding a term to the output of a PWL feedback controller.
As a result the closed-loop system is an observer based active fault tolerant controller which
stabilizes the system in the sense of input-to-state stability. We provide sufficient conditions for ISS
of the PWL estimator and feedback controller in terms of LMI conditions. We show that these ISS
gains could be minimized by solving a convex optimization problem with LMI constrains. Then,
we show that separate design of the estimator and feedback controller guarantees the ISS of the
Please cite this article as: S.M. Tabatabaeipour, T. Bak, Robust observer-based fault estimation and accommodation of
discrete-time piecewise linear systems, Journal of the Franklin Institute. (2013), http://dx.doi.org/10.1016/j.

jfranklin.2013.08.021

dx.doi.org/10.1016/j.jfranklin.2013.08.021
dx.doi.org/10.1016/j.jfranklin.2013.08.021
dx.doi.org/10.1016/j.jfranklin.2013.08.021
dx.doi.org/10.1016/j.jfranklin.2013.08.021


S.M. Tabatabaeipour, T. Bak / Journal of the Franklin Institute ] (]]]]) ]]]–]]]18
overall closed-loop system. The ISS gain for the overall closed-loop systems is obtained in terms of
the ISS gains of the estimator and feedback controller and we discuss how to minimize the ISS gain
of the overall closed-loop system. Finally the efficiency of the algorithm with respect to both
constant and time-varying fault is demonstrated using a numerical example. Future direction of this
research is to include the problem of sensor fault reconstruction and compensation.
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