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Abstract

The paper surveys mathematical tools required for stability and convergence

analysis of modern sliding mode control systems. Elements of Filippov the-

ory of differential equations with discontinuous right-hand sides and its recent

extensions are discussed. Stability notions (from Lyapunov stability (1982) to

fixed-time stability (2012)) are observed. Concepts of generalized derivatives

and non-smooth Lyapunov functions are considered. The generalized Lyapunov

theorems for stability analysis and convergence time estimation are presented

and supported by examples from sliding mode control theory.

1. Introduction

During whole history of control theory, a special interest of researchers was

focused on systems with relay and discontinuous (switching) control elements

[1, 2, 3, 4]. Relay and variable structure control systems have found applications

in many engineering areas. They are simple, effective, cheap and sometimes they

have better dynamics than linear systems [2]. In practice both input and output

of a system may be of a relay type. For example, automobile engine control sys-
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tems sometimes use λ - sensor with almost relay output characteristics, i.e only

the sign of a controllable output can be measured [5]. In the same time, terris-

tors can be considered as relay ”actuators” for some power electronic systems

[6].

Mathematical backgrounds for a rigorous study of variable structure control

systems were presented in the beginning of 1960s by the celebrated Filippov the-

ory of differential equations with discontinuous right-hand sides [7]. Following

this theory, discontinuous differential equations have to be extended to differen-

tial inclusions. This extension helps to describe, correctly from a mathematical

point of view, such a phenomenon as sliding mode [3], [8], [6]. In spite of this,

Filippov theory was severely criticized by many authors [9], [10], [3], since it

does not describe adequately some discontinuous and relay models. That is

why, extensions and specifications of this theory appear rather frequently [10],

[11]. Recently, in [12] an extension of Filippov theory was presented in order

to study Input-to-State Stability (ISS) and some other robustness properties of

discontinuous models.

Analysis of sliding mode systems is usually related to a specific property,

which is called finite-time stability [13], [3], [14], [15], [16]. Indeed, the sim-

plest example of a finite-time stable system is the relay sliding mode system:

ẋ = − sign[x], x ∈ R, x(0) = x0. Any solution of this system reaches the ori-

gin in a finite time T (x0) = |x0| and remains there for all later time instants.

Sometimes, this conceptually very simple property is hard to prove theoreti-

cally. From a practical point of view, it is also important to estimate a time

of stabilization (settling time). Both these problems can be tackled by Lya-

punov Function Method [17, 18, 19]. However, designing a finite-time Lyapunov

function of a rather simple form is a difficult problem for many sliding mode

systems. In particular, appropriate Lyapunov functions for second order sliding

mode systems are non-smooth [20, 21, 22] or even non-Lipschitz [23, 24, 25].

Some problems of a stability analysis using generalized Lyapunov functions are

studied in [26, 27, 28, 29].

One more extension of a conventional stability property is called fixed-time
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stability [30]. In addition to finite-time stability it assumes uniform boundedness

of a settling time on a set of admissible initial conditions (attraction domain).

This phenomenon was initially discovered in the context of systems that are

homogeneous in the bi-limit [31]. In particular, if an asymptotically stable

system has an asymptotically stable homogeneous approximation at the 0-limit

with negative degree and an asymptotically stable homogeneous approximation

at the +∞-limit with positive degree, then it is fixed-time stable. An important

application of this concepts was considered in the paper [32], which designs a

uniform (fixed-time) exact differentiator basing on the second order sliding mode

technique. Analysis of fixed-time stable sliding mode system requires applying

generalized Lyapunov functions [30], [32].

The main goal of this paper is to survey mathematical tools required for

stability analysis of modern sliding mode control systems. The paper is orga-

nized as follows. The next section presents notations, which are used in the

paper. Section 3 considers elements of the theory of differential equations with

discontinuous right-hand sides, which are required for a correct description of

sliding modes. Stability notions, which frequently appear in sliding mode con-

trol systems, are discussed in Section 4. Concepts of generalized derivatives are

studied in Section 5 in order to present a generalized Lyapunov function method

in Section 6. Finally, some concluding remarks are given.

2. Notations

• R is the set of real numbers and R = R ∪ {−∞} ∪ {+∞}, R+ = {x ∈ R :

x > 0} and R+ = R+ ∪ {+∞}.

• I denotes one of the following intervals: [a, b], (a, b), [a, b) or (a, b], where

a, b ∈ R, a < b.

• The inner product of x, y ∈ Rn is denoted by 〈x, y〉 and ‖x‖ =
√
〈x, x〉.

• The set consisting of elements x1, x2, ..., xn is denoted by {x1, x2, ..., xn}.

• The set of all subsets of a set M ⊆ Rn is denoted by 2M .
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• The sign function is defined by

signσ[ρ] =


1 if ρ > 0,

−1 if ρ < 0,

σ if ρ = 0,

(1)

where σ ∈ R : −1 ≤ σ ≤ 1. If σ = 0 we use the notation sign[ρ].

• The set-valued modification of the sign function is given by

sign[ρ] =


{1} if ρ > 0,

{−1} if ρ < 0,

[−1, 1] if ρ = 0.

(2)

• x[α] = |x|α sign[x] is a power operation, which preserves the sign of a

number x ∈ R.

• The geometric sum of two sets is denoted by ”+̇”, i.e.

M1+̇M2 =
⋃

x1∈M1,x2∈M2

{x1 + x2}, (3)

where M1 ⊆ Rn,M2 ⊆ Rn.

• The Cartesian product of sets is denoted by ×.

• The product of a scalar y ∈ R and a set M ⊆ Rn is denoted by ”·” :

y ·M = M · y =
⋃
x∈M

{yx}. (4)

• The product of a matrix A ∈ Rm×n to a set M ⊆ Rn is also denoted by

”·”:

A ·M =
⋃
x∈M

{Ax}. (5)

• ∂Ω is the boundary set of Ω ⊆ Rn.

• B(r) = {x ∈ Rn : ‖x‖ < r} is an open ball of the radius r ∈ R+ with the

center at the origin. Under introduced notations, {y}+̇B(ε) is an open

ball of the radius ε > 0 with the center at y ∈ Rn.

4



• int(Ω) is the interior of a set Ω ⊆ Rn, i.e. x ∈ int(Ω) iff ∃r ∈ R+ :

{x}+ B(r) ⊆ Ω.

• Let k be a given natural number. Ck(Ω) is the set of continuous functions

defined on a set Ω ⊆ Rn, which are continuously differentiable up to the

order k.

• If V (·) ∈ C1 then ∇V (x) =
(
∂V
∂x1

, ..., ∂V∂xn

)T
. If s : Rn → Rm, s(·) =

(s1(·), ..., sm(·))T , si(·) ∈ C1 then ∇s(x) is the matrix Rn×m of the partial

derivatives
∂sj
∂xi

.

• Wn
I is the set of vector-valued, componentwise locally absolutely continu-

ous functions, which map I to Rn.

3. Discontinuous systems, sliding modes and disturbances

3.1. Systems with discontinuous right-hand sides

The classical theory of differential equations [33] introduces a solution of the

ordinary differential equation (ODE)

ẋ = f(t, x), f : R× Rn → Rn, (6)

as a differentiable function x : R → Rn, which satisfies (6) on some segment

(or interval) I ⊆ R. The modern control theory frequently deals with dynamic

systems, which are modeled by ODE with discontinuous right-hand sides [6, 34,

35]. The classical definition is not applicable to such ODE. This section observes

definitions of solutions for systems with piecewise continuous right-hand sides,

which are useful for sliding mode control theory.

Recall that a function f : Rn+1 → Rn is piece-wise continuous iff Rn+1

consists of a finite number of domains (open connected sets) Gj ⊂ Rn+1, j =

1, 2, ..., N ; Gi
⋂
Gj = ∅ for i 6= j and the boundary set S =

N⋃
i=1

∂Gj of measure

zero such that f(t, x) is continuous in each Gj and for each (t∗, x∗) ∈ ∂Gj there

exists a vector f j(t∗, x∗), possible depended on j, such that for any sequence
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(tk, xk) ∈ Gj : (tk, xk) → (t∗, x∗) we have f(tk, xk) → f j(t∗, x∗). Let functions

f j : Rn+1 → Rn be defined on ∂Gj according to this limiting process, i.e.

f j(t, x) = lim
(tk,xk)→(t,x)

f(tk, xk), (tk, xk) ∈ Gj , (t, x) ∈ ∂Gj .

3.1.1. Filippov definition

Introduce the following differential inclusion

ẋ ∈ K[f ](t, x), t ∈ R, (7)

K[f ](t, x) =


{f(t, x)} if (t, x) ∈ Rn+1\S,

co

( ⋃
j∈N (t,x)

{
f j(t, x)

})
if (t, x) ∈ S,

(8)

where co(M) is the convex closure of a set M and the set-valued index func-

tion N : Rn+1 → 2{1,2,...,N} defined on S indicates domains Gj , which have a

common boundary point (t, x) ∈ S, i.e.

N (t, x) = {j ∈ {1, 2, ..., N} : (t, x) ∈ ∂Gj} .

For (t, x) ∈ S the set K[f ](t, x) is a convex polyhedron.

Definition 1 ([7], page 50). An absolutely continuous function x : I → Rn

defined on some interval or segment I is called a solution of (6) if it satisfies

the differential inclusion (7) almost everywhere on I.

Consider the simplest case when the function f(t, x) has discontinuities on

a smooth surface S = {x ∈ Rn : s(x) = 0}, which separates Rn on two domains

G+ = {x ∈ Rn : s(x) > 0} and G− = {x ∈ Rn : s(x) < 0}.

Let P (x) be the tangential plane to the surface S at a point x ∈ S and

f+(t, x) = lim
xi→x,xi∈G+

f(t, xi) and f−(t, x) = lim
xi→x,xi∈G−

f(t, xi)

For x ∈ S the set K[f ](t, x) defines a segment connecting the vectors f+(t, x)

and f−(t, x) (see Fig. 1(a), 1(b)). If this segment crosses P (x) then the cross

point is the end of the velocity vector, which defines the system motion on the
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surface S (see Fig. 1(b)). In this case the system (7) has trajectories, which

start to slide on the surface S according to the sliding motion equation

ẋ = f0(t, x), (9)

where the function

f0(t, x) =
〈∇s(x), f−(t, x)〉 f+(t, x) + 〈∇s(x), f+(t, x)〉 f−(t, x)

〈∇s(x), f+(t, x)− f−(t, x)〉
(10)

is the velocity vector defined by a cross-point of the segment and the plane

P (x), i.e. f0(t, x) = µf+(t, x) + (1 − µ)f−(t, x) with µ ∈ [0, 1] such that

〈∇s(x), µf+(t, x) + (1− µ)f−(t, x)〉 = 0.

If∇s(x) 6⊥ µf−(t, x)+(1−µ)f+(t, x) for every µ ∈ [0, 1] then any trajectory

of (7) comes through the surface (see Fig. 1(a)) resulting an isolated ”switching”

in the right-hand side of (6).

(a) Switching case. (b) Sliding mode case.

Figure 1: Geometrical illustration of Filippov definition.

Seemingly, Filippov definition is the most simple and widespread definition of

solutions for ODE with discontinuous by x right-hand sides. However, this def-

inition was severely criticized by many authors [9], [3], [10] since its appearance

in 1960s. In fact, it does not cover correctly many real-life systems, which have

discontinuous models. Definitely, contradictions to reality usually are provoked

by model inadequacies, but some problems can be avoided by modifications of

Filippov definition.

7



Example 1. Consider the discontinuous control system ẋ1 = u,

ẋ2 = (εu2 + ε2|u| − ε)x2,
u = − sign[x1], (11)

where x1, x2 ∈ R are system states, ε ∈ R+ is some small parameter 0 < ε� 1,

u ∈ R is the relay control with the sign function defined by (1).

If we apply Filippov definition only to the first equation of (11), we obtain

the following sliding motion equation ẋ1 = 0 for x1 = 0, which implicitly implies

u = 0 for x1 = 0. So, the expectable sliding motion equation for (11) is ẋ1 = 0,

ẋ2 = −εx2,
for x1 = 0. (12)

However, considering Filippov definition for the whole system (11) we derive

f+(x1, x2) =

 −1

ε2x2

 for x1 → +0

f−(x1, x2) =

 1

ε2x2

 for x1 → −0

and the formula (10) for s(x) = x1 gives another sliding motion equation: ẋ1

ẋ2

 =
〈∇s(x), f−(t, x)〉 f+(t, x) + 〈∇s(x), f+(t, x)〉 f−(t, x)

〈∇s(x), f+(t, x)− f−(t, x)〉
=

 0

ε2x2


From the practical point of view the sliding motion equation (12) looks more

realistic. Indeed, in practice we usually do not have ideal relays, so the model

of switchings like (1) is just a ”comfortable” approximation of real ”relay” ele-

ments, which are continuous functions (or singular outputs of additional dynam-

ics [36]) probably with hysteresis or delay effects. In this case, a ”real” sliding

mode is, in fact, a switching regime of bounded frequency. An average value of

the control input

|u|average =
1

t− t0

∫ t

t0

|u(τ)|dτ, t > t0 : x1(t0) = 0

in the ”real” sliding mode is less than 1, particulary |u|average ≤ 1− ε (see [36]

for details). Hence, ε|u|2average+ε2|u|average−ε ≤ −ε2 and the system (11) has

8



asymptotically stable equilibrium point (x1, x2) = 0 ∈ R2, but Filippov definition

quite the contrary provides instability of the system.

Such problems with Filippov definition may appear if the control input u is

incorporated to the system (11) in nonlinear way. More detailed study of such

discontinuous models is presented in [11].

This example demonstrates two important things:

• Filippov defintion is not appropriate for some discontinuous models, since

it does not describe a real system motion.

• Stability properties of a system with discontinuous right-hand

side may depend on a definition of solutions.

Remark 1 (On Filippov regularization). The regularization of the ODE

system with discontinuous right-hand side can be also done even if the func-

tion f(t, x) in (6) is not piecewise continuous, but locally measurable. In this

case the differential inclusion (7) has the following right-hand side [7]:

K[f ](t, x) =
⋂
δ>0

⋂
µ(N)=0

co f(t, {x}+̇B(δ)\N),

where the intersections are taken over all sets N ⊂ Rn of measure zero (µ(N) =

0) and all δ > 0, co(M) denotes the convex closure of the set M .

3.1.2. Utkin definition (equivalent control method)

The modification of Filippov definition, which delivers an important impact

to the sliding mode control theory, is called the equivalent control method [3].

Consider the system

ẋ = f(t, x, u(t, x)), t ∈ R, (13)

where f : R × Rn × Rm → Rn is a continuous vector-valued function and a

piecewise continuous function

u : R× Rn → Rm, u(t, x) = (u1(t, x), u2(t, x), ..., um(t, x))T

has a sense of a feedback control.
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Assumption 1. Each component ui(t, x) is discontinuous only on a surface

Si = {(t, x) ∈ Rn : si(t, x) = 0},

where functions si : Rn+1 → R are smooth, i.e. si ∈ C1(Rn+1).

Introduce the following differential inclusion

ẋ ∈ f(t, x,K[u](t, x)), t ∈ R, (14)

where

K[u](t, x) = (K[u1](t, x), ...,K[um](t, x))T ,

K[ui](t,x)=


{ui(t, x)}, si(t, x) 6= 0,

co

 lim
(tj ,xj)→(t,x)

si(tj ,xj)>0

ui(tj ,xj), lim
(tj ,xj)→(t,x)

si(tj ,xj)<0

ui(tj ,xj)

 , si(t, x) = 0.

(15)

The set f(t, x,K[u1](t, x), ...,K[um](t, x)) is non-convex in general case [11].

Definition 2. An absolutely continuous function x : I → Rn defined on some

interval or segment I is called a solution of (13) if there exists a measur-

able function ueq : I → Rm such that ueq(t) ∈ K[u](t, x(t)) and ẋ(t) =

f(t, x(t), ueq(t)) almost everywhere on I.

The given definition introduces a solution of the differential equation (13), which

we call Utkin solution, since it follows the basic idea of the equivalent control

method introduced by V.I. Utkin [3], page 14 (see also [7], page 54).

Obviously, for (t, x(t)) /∈ S we have ueq(t) = u(t, x(t)). So, the only question

is how to define ueq(t) on a switching surface. The scheme presented in [3]

is based on resolving of the equation ṡ(t, x) = ∂s
∂t + ∇T s(x)f(t, x, ueq) = 0 in

algebraic way. The obtained solution ueq(t, x) is called equivalent control [3].

In order to show a difference between Utkin and Filippov definitions we

consider the system (13) with u ∈ R (m = 1) and a time-invariant switching

surface S = {x ∈ Rn : s(x) = 0}.
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Denote

u+(t, x) = lim
xj→x,s(xj)>0

u(t, xj) and u−(t, x) = lim
xj→x,s(xj)<0

u(t, xj),

f+(t, x) = f(t, x, u+(t, x)) and f−(t, x) = f(t, x, u−(t, x)).

The sliding mode existence condition

∃µ ∈ [0, 1] : ∇s(x) ⊥ µf−(t, x) + (1− µ)f+(t, x)

is the same for both definitions.

The sliding motion equation obtained by Filippov definition has the form

(9) recalled here by

ẋ = f0(t, x),

f0(t, x) =
〈∇s(x), f−(t, x)〉 f+(t, x) + 〈∇s(x), f+(t, x)〉 f−(t, x)

〈∇s(x), f+(t, x)− f−(t, x)〉
.

The corresponding vector f0(t, x) is defined by a cross-point of the tangential

plane at the point x ∈ S and a segment connecting the ends of the vectors

f+(t, x) and f−(t, x) (see Fig. 3(a)).

Utkin definition considers a set K[u](t, x), which is the convex closure of

a set of limit values of a discontinuous control function u(t, x). For different

u1, u2, u3, ... ∈ K[u](t, x) the vectors f(t, x, u1), f(t, x, u2), f(t, x, u3), ... end on

an arc connecting the ends of the vectors f+(t, x) and f−(t, x) (see Fig. 3(b)).

In this case the vector f(t, x, ueq) defining the right-hand side of the sliding

motion equation is derived by a cross-point of this arc and a tangential plane

at the point x ∈ S (see Fig. 3(b)), i.e.

ẋ = f(t, x, ueq(t, x)), x ∈ S, (16)

where ueq(t, x) ∈ K[u](t, x) : ∇s(x) ⊥ f(t, x, ueq(t, x)).

Sometimes Utkin definition gives quite strange, from mathematical point of

view, results, but they are very consistent with real-life applications.

Example 2. ([7]) Consider the system

ẋ = Ax+ bu1 + cu2, u1 = sign[x1], u2 = sign[x1], (17)
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where x = (x1, x2, ..., xn)T ∈ Rn, A ∈ Rn×n, c, b ∈ Rn, c 6= b. Filippov definition

provides the inclusion

ẋ ∈ {Ax}+̇(b+ c) · sign[x1], (18)

where +̇ is the geometric (Minkovski) sum of sets (see (3)), sign is the set-valued

modification of the sign function (see (2)) and the product of a vector to a set

is defined by (5).

If the functions u1 and u2 are independent control inputs, then Utkin defi-

nition gives

ẋ ∈ {Ax}+̇b · sign[x1]+̇c · sign[x1]. (19)

The right-hand sides of (18) and (19) coincide if the vectors c and b are collinear,

otherwise Filippov and Utkin definitions generate different set-valued mappings.

For example, if x = (x1, x2)T ∈ R2, A = 0, b = (−1, 0)T and c = (0,−1)T ,

then

a) Filippov definition gives K[f ](x) = [−1, 1]·

 1

1

 for x1 = 0, i.e.K[f ](x)

is a segment connecting the points (−1,−1) and (1, 1) (see Fig. 2(a)); the

corresponding sliding motion equation is

ẋ = 0 for x1 = 0;

b)Utkin definition generates the square box, i.e. K[f ](x) = [−1, 1] × [−1, 1]

for x1 = 0 (see Fig. 2(b)), so sliding motion equation has the form

ẋ =

 0

ueq(t)

 for x1 = 0,

where ueq : R→ R is an arbitrary locally measurable function such that |ueq(t)| ≤

1 for every t ∈ R.

Control inputs u1 and u2 are independent and relay elements are not identical

in practice. They can not switch absolutely synchronously. This admits a motion

of the system along the switching line x1 = 0. In this case, Utkin definition is

more adequate to reality than Filippov one.
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(a) Filippov definition. (b) Utkin definition.

Figure 2: Example of Filippov’s and Utkin’s sets.

3.1.3. Aizerman-Pyatnitskii definition

The Aizerman-Pyatnitskii definition covers solutions of both definitions con-

sidered above by means of introduction of the following differential inclusion

ẋ ∈ co f(t, x,K[u](t, x)), t ∈ R, (20)

for the system (13).

Definition 3 (Aizerman-Pyatnitskii definition ([10] and [7], page 55)).

An absolutely continuous function x : I → Rn defined on some interval or seg-

ment I is called a solution of (6) if it satisfies the differential inclusion (20)

almost everywhere on I.

Returning to the example considered above for u ∈ R (m = 1) Aizerman-

Pyatnitskii definition gives the inclusion

ẋ ∈ FSM (t, x) = co{f0(t, x), f(t, x, ueq(t, x))},

which describes the motion of the discontinuous system (13) in a sliding mode

(see Fig. 3(c) with fα ∈ FSM (t, x)).

A criticism of Aizerman-Pyatnitskii definition is related to nonuniqueness of

solutions even for simple nonlinear cases. However, if some stability property

is proven for Aizerman-Pyatnickii definition, then the same property holds for

both Filippov and Utkin solutions.
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(a) Filippov definition. (b) Utkin definition. (c) Aizerman-Pyatnitskii
definition.

Figure 3: The sliding motion for different definitions.

The affine control system is the case when all definitions may be equivalent.

Theorem 1 ([37], Theorem 14, page 44). Let a right-hand side of the sys-

tem (6) be affine with respect to control:

f(t, x) = a(t, x) + b(t, x)u(t, x),

where a : Rn+1 → Rn is a continuous vector-valued function, b : Rn+1 → Rn×m

is a continuous matrix-valued function and u : Rn+1 → Rm is a piecewise

continuous function u(t, x) = (u1(t, x), ..., um(t, x))T , such that ui has a unique

time-invariant switching surface si(x) = 0, si ∈ C1(Rn).

Definitions of Filippov, Utkin and Aizerman-Pyatnitskii are equivalent iff

det
(
∇T s(x)b(t, x)

)
6= 0 if (t, x) ∈ S, (21)

where s(x) = (s1(x), s2(x), ..., sm(x))T , ∇s(x) ∈ Rn×m is the matrix of partial

derivatives
∂sj
∂xi

and S is a discontinuity set of u(t, x).

The present theorem has the simple geometric interpretation for the single

input system. The affine control system is linear with respect to the control

input, which is the only discontinuous term of the right-hand side of the system

(6). In this case all regularization procedures provide the set-valued extension

depicted on Fig. 3(a). The condition (21) excludes non-uniqueness of this set-

valued extension for multi-input case. For example, the system considered in

Example 17 is affine, but it does not satisfy the condition (21).
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3.2. System disturbances and extended differential inclusion

Some modifications of presented definitions of solutions are required again

if a model of a dynamic system includes disturbances into considerations. For

example, the paper [12] extends Filippov definition to discontinuous disturbed

systems. It demonstrates that the presented extension is useful for ISS analysis.

The present survey is mostly oriented on sliding mode control systems. The

robustness of sliding mode control systems (at least theoretically) is related to

invariance of qualitative behavior of closed-loop system on matched disturbances

with some a priori known maximum magnitude [3], [8], [6]. This property usu-

ally allows reducing a problem of stability analysis of a disturbed discontinuous

sliding mode control system to a similar problem presented for an extended dif-

ferential inclusion. The idea explained in the next example was also used in

papers [15], [38].

Example 3. Consider the simplest disturbed sliding mode system

ẋ = −d1(t) sign[x] + d2(t), (22)

where x ∈ R, unknown functions di : R→ R are bounded by

dmin
i ≤ di(t) ≤ dmax

i , i = 1, 2, (23)

and the function sign[x] is defined by (1).

Obviously, all solutions of the system (22) belong to a solution set of the

following extended differential inclusion

ẋ ∈ −[dmin
1 , dmax

1 ] · sign[x] + [dmin
2 , dmax

2 ]. (24)

Stability of the system (24) implies the same property for (22). In particular,

for dmin
1 > max{|dmin

2 |, |dmax
2 |} both these systems have asymptotically stable

origins.

This example shows that the conventional properties, like asymptotic or fi-

nite stability, discovered for differential inclusions may provide ”robust” stability
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for original discontinuous differential equations. That is why, in this paper we do

not discuss ”robust” modifications of stability notions for differential inclusions.

Models of sliding mode control systems usually have the form

ẋ = f(t, x, u(t, x), d(t)), t ∈ R, (25)

where x ∈ Rn is the vector of system states, u ∈ Rm is the vector of control

inputs, d ∈ Rk is the vector of disturbances, the function f : Rn+m+k+1 → Rn

is assumed to be continuous, the control function u : Rn+1 → Rm is piecewise

continuous, the vector-valued function d : R → Rk is assumed to be locally

measurable and bounded as follows:

dmin
i ≤ di(t) ≤ dmax

i , (26)

where d(t) = (d1(t), d2(t), ..., dk(t))T , t ∈ R.

All further considerations deal with the extended differential inclusion

ẋ ∈ F (t, x), t ∈ R, (27)

where F (t, x) = co{f(t, x,K[u](t, x), D)}, the set-valued function K[u](t, x) is

defined by (15) and

D =
{

(d1, d2, ..., dk)T ∈ Rk : di ∈ [dmin
i , dmax

i ], i = 1, 2, ..., k
}
. (28)

The same extended differential inclusion can be used if the vector d (or its

part) has a sense of parametric uncertainties.

3.3. Existence of solutions

Let us recall initially the classical result of Caratheodory about existence of

solutions for ODEs with right-hand sides, which are discontinuous on time.

Theorem 2 ([33], Theorem 1.1, Chapter 2). Let the function

g : R× Rn → Rn

(t, x)→ g(t, x)

be continuous by x in Ω = {x0} + B(r), r ∈ R+, x0 ∈ Rn for any fixed t ∈ I =

[t0 − a, t0 + a], a ∈ R+, t0 ∈ R and it is measurable by t for any fixed x ∈ Ω. If
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there exists an integrable function m : R→ R such that ‖f(t, x)‖ ≤ m(t) for all

(t, x) ∈ I × Ω then there exists an absolutely continuous function x : R → Rn

and a number b ∈ (0, a] such that x(t0) = x0 and the equality

ẋ(t) = g(t, x(t))

hold almost everywhere on [t0 − b, t0 + b].

Introduce the following distances

ρ(x,M) = inf
y∈M
‖x− y‖, x ∈ Rn, M ⊆ Rn,

ρ(M1,M2) = sup
x∈M1

ρ(x,M2), M1 ⊆ Rn, M2 ⊆ Rn.
(29)

Remark, the distance ρ(M1,M2) is not symmetric, i.e. ρ(M1,M2) 6= ρ(M2,M1)

in the general case.

Definition 4. A set-valued function F : Rn+1 → 2R
n+1

is said to be upper

semi-continuous at a point (t∗, x∗) ∈ Rn+1 if (t, x)→ (t∗, x∗) implies

ρ(F (t, x), F (t∗, x∗))→ 0.

For instance, the function sign[x] defined by (2) is upper semi-continuous.

Theorem 3 ([7], page 77). Let a set-valued function F : G→ 2R
n

be defined

and upper semi-continuous at each point of the set

G = {(t, x) ∈ Rn+1 : |t− t0| ≤ a and ‖x− x0‖ ≤ b}, (30)

where a, b ∈ R+, t0 ∈ R, x0 ∈ Rn. Let F (t, x) be nonempty, compact and convex

for (t, x) ∈ G.

If there exists K > 0 such that ρ(0, F (t, x)) < K for (t, x) ∈ G then there

exists at least one absolutely continuous function x : R → Rn defined at least

on the segment [t0 − α, t0 + α], α = min{a, b/K}, such that x(t0) = x0 and the

inclusion ẋ(t) ∈ F (t, x(t)) holds almost everywhere on [t0 − α, t0 + α].

Filippov and Aizerman-Pyatnickii set-valued extensions of the discontinuous

ODE (see formulas (7) and (20)) and the extended differential inclusion (27)
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satisfy all conditions of Theorem 3 implying local existence of the corresponding

solutions.

The existence analysis of Utkin solutions is more complicated in general case.

Since the function f(t, x, u) is continuous, then for any measurable bounded

function u0 : I → Rm the composition f(t, x, u0(t)) satisfies all conditions of

Theorem 2 and the equation ẋ = f(t, x, u0(t)) has an absolutely continuous

solution x0(t), but u0(t) may not belong to the set K[u](t, x0(t)).

In some cases, the existence of Utkin solution can be proven using the cele-

brated Filippov’s lemma.

Lemma 1 ([39], page 78). Let a function f : Rn+m+1 → Rn be continuous

and a set-valued function U : Rn+1 → 2R
m

be defined and upper-semicontinuous

on an open set I × Ω, where Ω ⊆ Rn. Let U(t, x) be nonempty, compact and

convex for every (t, x) ∈ I × Ω. Let a function x : R → Rn be absolutely

continuous on I, x(t) ∈ Ω for t ∈ I and ẋ(t) ∈ f(t, x(t), U(t, x(t))) almost

everywhere on I.

Then there exists a measurable function ueq : R → Rm such that ueq(t) ∈

U(t, x(t)) and ẋ(t) = f(t, x(t), ueq(t)) almost everywhere on I.

If the differential inclusion (14) has a convex right-hand side then Theorem 3

together with Lemma 1 results local existence of Utkin solutions. If the set-

valued function f(t, x,K[u](t, x)) is non-convex, the existence analysis of Utkin

solutions becomes very difficult (see [11] for the details).

Some additional restrictions to right-hand sides are required for a prolonga-

tion of solutions. In particular, the famous Winter’s theorem (see, for example,

[40], page 515) about a non-local existence of solutions of ODE can be expanded

to differential inclusions.

Theorem 4 ([41], page 169). Let a set-valued function F : Rn+1 → Rn+1 be

defined and upper-semicontinuous in Rn+1. Let F (t, x) be nonempty, compact

and convex for any (t, x) ∈ Rn+1.
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If there exists a real valued function L : R+ ∪ {0} → R+ ∪ {0} such that

ρ(0, F (t, x)) ≤ L(‖x‖) and

∫ +∞

0

1

L(r)
dr = +∞,

then for any (t0, x0) ∈ Rn+1 the system (27) has a solution x(t) : x(t0) = x0

defined for all t ∈ R.

Based on Lyapunov function method, the less conservative conditions for pro-

longation of solutions are given below.

4. Stability and convergence rate

Consider the differential inclusion (27) for t > t0 with an initial condition

x(t0) = x0, (31)

where x0 ∈ Rn is given.

Cauchy problem (27), (31) obviously may not have a unique solution for a

given t0 ∈ R and a given x0 ∈ Rn. Let us denote the set of all solutions of Cauchy

problem (27), (31) by Φ(t0, x0) and a solution of (27), (31) by x(t, t0, x0) ∈

Φ(t0, x0).

Nonuniqueness of solutions implies two types of stability for differential in-

clusions (27): weak stability(a property holds for a solution) and strong stability

(a property holds for all solutions) (see, for example, [27], [13], [7]). Weak sta-

bility usually is not enough for robust control purposes. This section observes

only strong stability properties of the system (27). All conditions presented in

definitions below are assumed to be held for all solutions x(t, t0, x0) ∈ Φ(t0, x0).

4.1. Lyapunov, asymptotic and exponential stability

The concept of stability introduced in the famous thesis of A.M. Lyapunov

[17] is one of central notions of the modern stability theory. It considers some

nominal motion x∗(t, t0, x0) of a dynamic system and studies small perturba-

tions of the initial condition x0. If they imply small deviations of perturbed

motions from x∗(t, t0, x0) then the nominal motion is called stable. We study

different stability forms of the zero solution (or, equivalently, the origin) of the
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system (27), since making the change of variables y = x − x∗ we transform

any problem of stability analysis for some nontrivial solution x∗(t, t∗, x∗0) to the

same problem for the zero solution.

Assume that 0 ∈ F (t, 0) for t ∈ R, where F (t, x) is defined by (27). Then

the function x0(t) = 0 belongs to a solution set Φ(t, t0, 0) for any t0 ∈ R.

Definition 5 (Lyapunov stability). The origin of the system (27) is said to

be Lyapunov stable if for ∀ε ∈ R+ and ∀t0 ∈ R there exists δ = δ(ε, t0) ∈ R+

such that for ∀x0 ∈ B(δ)

1) any solution x(t, t0, x0) of Cauchy problem (27), (31) exists for t > t0;

2) x(t, t0, x0) ∈ B(ε) for t > t0.

If the function δ does not depend on t0 then the origin is called uniformly

Lyapunov stable. For instance, if F (t, x) is independent of t (time-invariant case)

and the zero solution of (27) is Lyapunov stable, then it is uniformly Lyapunov

stable.

Proposition 1. If the origin of the system (27) is Lyapunov stable then x(t) =

0 is the unique solution of Cauchy problem (27), (31) with x0 = 0 and t0 ∈ R.

The origin, which does not satisfy any condition from Definition 5, is called

unstable.

Definition 6 (Asymptotic attractivity). The origin of the system (27) is

said to be asymptotically attractive if for ∀t0 ∈ R there exists a set U(t0) ⊆ Rn :

0 ∈ int(U(t0)) such that ∀x0 ∈ U(t0)

• any solution x(t, t0, x0) of Cauchy problem (27), (31) exists for t > t0;

• lim
t→+∞

‖x(t, t0, x0)‖ = 0.

The set U(t0) is called attraction domain.

Finding the maximum attraction domain is an important problem for many

practical control applications.
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Definition 7 (Asymptotic stability). The origin of the system (27) is said

to be asymptotically stable if it is Lyapunov stable and asymptotically attractive.

If U(t0) = Rn then the asymptotically stable (attractive) origin of the system

(27) is called globally asymptotically stable (attractive).

Requirement of Lyapunov stability is very important in Definition 7, since

even global asymptotic attractivity does not imply Lyapunov stability.

Example 4 ([42], page 433 or [43], page 191). The system

ẋ1 =
x2

1(x2 − x1) + x5
2

(x2
1 + x2

2)
(

1 + (x2
1 + x2

2)
2
) and ẋ2 =

x2
2(x2 − 2x1)

(x2
1 + x2

2)
(

1 + (x2
1 + x2

2)
2
)

has the globally asymptotically attractive origin. However, it is not Lyapunov

stable, since this system has trajectories (see Fig. 4), which start in arbitrary

small ball with the center at the origin and always leave the ball B(ε0) of a fixed

radius ε0 ∈ R+ (i.e. Condition 2 of Definition 5 does not hold for ε ∈ (0, ε0)).

Figure 4: Example of R.E. Vinograd [42].

The uniform asymptotic stability can be introduced by analogy with uniform

Lyapunov stability. It just requests more strong attractivity property.

Definition 8 (Uniform asymptotic attractivity). The origin of the system

(27) is said to be uniformly asymptotically attractive if it is asymptotically at-

tractive with a time-invariant attraction domain U ⊆ Rn and for ∀R ∈ R+,
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∀ε ∈ R+ there exists T = T (R, ε) ∈ R+ such that the inclusions x0 ∈ B(R) ∩ U

and t0 ∈ R imply x(t, t0, x0) ∈ B(ε) for t > t0 + T .

Definition 9 (Uniform asymptotic stability). The origin of the system (27)

is said to be uniformly asymptotically stable if it is uniformly Lyapunov stable

and uniformly asymptotically attractive.

If U = Rn then a uniformly asymptotically stable (attractive) origin of the

system (27) is called globally uniformly asymptotically stable (attractive). Uni-

form asymptotic stability always implies asymptotic stability. The converse

proposition also holds for time-invariant systems.

Proposition 2 ([44], Proposition 2.2, page 78). Let a set-valued function

F : Rn → Rn be defined and upper-semicontinuous in Rn. Let F (x) be nonempty,

compact and convex for any x ∈ Rn. If the origin of the system

ẋ ∈ F (x)

is asymptotically stable then it is uniformly asymptotically stable.

Frequently, an asymptotic stability of a closed-loop system is not enough

for a ”good” quality of control. A rate of transition processes also has to be

adjusted in order to provide a better performance to a control system. For this

purpose some concepts of ”rated” stability can be used such as exponential,

finite-time or fixed-time stability.

Definition 10 (Exponential stability). The origin of the system (27) is said

to be exponentially stable if there exist an attraction domain U ⊆ Rn : 0 ∈ int(U)

and numbers C, r ∈ R+ such that

‖x(t, t0, x0)‖ ≤ C‖x0‖e−r(t−t0), t > t0. (32)

for t0 ∈ R and x0 ∈ U .

The inequality (32) expresses the so-called exponential convergence (attrac-

tivity) property. The linear control theory usually deals with this property [19].

Exponential stability obviously implies both Lyapunov stability and asymp-

totic stability.
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4.2. Finite-time Stability

Introduce the functional T0 : Wn
[t0,+∞) → R+ ∪{0} by the following formula

T0(y(·)) = inf
τ≥t0:y(τ)=0

τ.

If y(τ) 6= 0 for all t ∈ [t0,+∞) then T0(y(·)) = +∞.

Let us define the settling-time function of the system (27) as follows

T (t0, x0) = sup
x(t,t0,x0)∈Φ(t0,x0)

T0(x(t, t0, x0))− t0, (33)

where Φ(t0, x0) is the set of all solutions of the Cauchy problem (27), (31).

Definition 11 (Finite-time attractivity). The origin of the system (27) is

said to be finite-time attractive if for ∀t0 ∈ R there exists a set V(t0) ⊆ Rn : 0 ∈

int(V(t0)) such that ∀x0 ∈ V(t0)

• any solution x(t, t0, x0) of Cauchy problem (27), (31) exists for t > t0;

• T (t0, x0) < +∞ for x0 ∈ V(t0) and for t0 ∈ R.

The set V(t0) is called finite-time attraction domain.

It is worth to stress that the finite-time attractivity property, introduced

originally in [14], does not imply asymptotic attractivity. However, it is impor-

tant for many control applications. For example, antimissile control problem

has to be studied only on a finite interval of time, since there is nothing to

control after missile explosion. In practice, Lyapunov stability is additionally

required in order to guarantee a robustness of a control system.

Definition 12 (Finite-time stability ([13], [14])). The origin of the system

(27) is said to be finite-time stable if it is Lyapunov stable and finite-time at-

tractive.

If V(t0) = Rn then the origin of (27) is called globally finite-time stable.
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Example 5. Consider the sliding mode system

ẋ = − 2√
π

sign[x] + |2tx|, t > t0, x ∈ R,

which, according to Filippov definition, is extended to the differential inclusion

ẋ ∈ − 2√
π
· sign[x]+̇{|2tx|}, t > t0, x ∈ R, (34)

where t0 ∈ R. It can be shown that the origin of this system is finite-time

attractive with an attraction domain V(t0) = B
(
et

2
0(1− erf(|t0|))

)
, where

erf(z) =
2√
π

∫ z

0

e−τ
2

dτ, z ∈ R

is the so-called Gauss error function. Moreover, the origin of the considered

system is Lyapunov stable (for ∀ε > 0 and for ∀t0 ∈ R we can select δ =

δ(t0) = min
{
ε, et

2
0(1− erf(|t0|))

}
), so it is finite-time stable. In particular,

for t0 > 0 the settling-time function has the form

T (t0, x0) = erf−1
(
|x0|e−t

2
0 + erf(t0)

)
− t0,

where erf−1(·) denotes the inverse function to erf(·).

The proposition 1 implies the following property of a finite-time stable sys-

tem.

Proposition 3 ([14], Proposition 2.3). If the origin of the system (27) is

finite-time stable then it is asymptotically stable and x(t, t0, x0) = 0 for t >

t0 + T0(t0, x0).

A uniform finite-time attractivity requests an additional property for the

system (27).

Definition 13 (Uniform finite-time attractivity). The origin of the sys-

tem (27) is said to be uniformly finite-time attractive if it is finite-time at-

tractive with a time-invariant attraction domain V ⊆ Rn such that the set-

tling time function T (t0, x0) is locally bounded on R × V uniformly on t0 ∈

R, i.e. for any y ∈ V there exists ε ∈ R+ such that {y}+̇B(ε) ⊆ V and

sup
t0∈R, x0∈{y}+̇B(ε)

T (t0, x0) < +∞.
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Definition 14 (Uniform finite-time stability, [13], [15]). The origin of the

system (27) is said to be uniformly finite-time stable if it is uniformly Lyapunov

stable and uniformly finite-time attractive.

The origin of (27) is called globally uniformly finite-time stable if V = Rn.

Obviously, a settling-time function of time-invariant finite-time stable system

(27) is independent of t0, i.e. T = T (x0). However, in contrast to asymptotic

and Lyapunov stability, finite-time stability of a time-invariant system does not

imply its uniform finite-time stability in general case.

Example 6 ([14], page 756). Let a vector field f : R2 → R2 of a time-

invariant system be defined on the quadrants

QI =
{
x ∈ R2\{0} : x1 ≥ 0, x2 ≥ 0

}
QII =

{
x ∈ R2 : x1 < 0, x2 ≥ 0

}
QIII =

{
x ∈ R2 : x1 ≤ 0, x2 < 0

}
QIV =

{
x ∈ R2 : x1 > 0, x2 < 0

}
as show in Fig. 5. The vector field f is continuous, f(0) = 0 and x =

(x1, x2)T = (r cos(θ), r sin(θ))T , r > 0, θ ∈ [0, 2π). In [14] it was shown that

Figure 5: Example of S.P. Bhat and D. Bernstein [14].

this system is finite-time stable. Moreover, it is uniformly asymptotically

stable, but it is not uniformly finite-time stable. For the sequence of the

initial conditions xi0 = (0,−1/i)T , i = 1, 2, ... we have (see [14] for the details)

xi0 → 0 and T (xi0)→ +∞.

So, for any open ball B(r), r > 0 with the center at the origin we have

sup
x0∈B(r)

T (x0) = +∞.
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Uniform finite-time stability is the usual property for sliding mode systems

[15], [38]. The further considerations deals mainly with this property and its

modifications.

4.3. Fixed-time Stability

This subsection discusses a recent extension of the uniform finite-time sta-

bility concept, which is called fixed-time stability [30]. Fixed-time stability asks

more strong uniform attractivity property for the system (27). As it was demon-

strated in [32], [30], this property is very important for some applications, such

as control and observation with predefined convergence time.

In order to demonstrate the necessity of more detailed elaboration of uni-

formity properties of finite-time stable systems let us consider the following

motivating example.

Example 7. Consider two systems

(I) ẋ = −x[ 1
2 ] (1− |x|) , (II) ẋ =

 −x[ 1
2 ] for x < 1,

0 for x ≥ 1,

which are uniformly finite-time stable with the finite-time attraction domain

V = B(1). Indeed, the settling-time functions of these systems are continuous

on V:

T(I)(x0) = ln

(
1 + |x0|

1
2

1− |x0|
1
2

)
, T(II)(x0) = 2|x0|

1
2 .

So, for any y ∈ V we can select the ball {y}+̇B(ε) ⊆ V, where ε=(1 − |y|)/2,

such that sup
x0∈{y}+̇B(ε)

T(I)(x0) <+∞ and sup
x0∈{y}+̇B(ε)

T(II)(x0) <+∞.

On the other hand, T(I)(x0) → +∞ if x0 → ±1, but T(II)(x0) → 2 if

x0 → ±1. Therefore, these systems have different uniformity properties of finite-

time attractivity with respect to domain of initial conditions.

Definition 15 (Fixed-time attractivity). The origin of the system (27) is

said to be fixed-time attractive if it is uniformly finite-time attractive with an

attraction domain V and the settling time function T (t0, x0) is bounded on

R × V, i.e. there exists a number Tmax ∈ R+ such that T (t0, x0) ≤ Tmax if

t0 ∈ R and x0 ∈ V.
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Systems (I) and (II) from Example 7 are both fixed-time attractive with

respect to attraction domain B(r) if r ∈ (0, 1), but the system (I) loses this

property for the maximum attraction domain B(1).

Definition 16 (Fixed-time stability, [30]). The origin of the system (27) is

said to be fixed-time stable if it is Lyapunov stable and fixed-time attractive.

If V = Rn then the origin of the system (27) is called globally fixed-time

stable. Locally differences between finite-time and fixed-time stability are ques-

tionable. Fixed-time stability definitely provides more advantages to a control

system in a global case [32], [30].

Example 8. Consider the system

ẋ = −x[ 1
2 ] − x[ 3

2 ], x ∈ R, t > t0,

which has solutions defined for all t ≥ t0:

x(t, t0, x0)=

 sign(x0) tan2
(

arctan(|x0|
1
2 )− t−t0

2

)
, t ≤ t0+2 arctan(|x0|

1
2 ),

0, t > t0+2 arctan(|x0|
1
2 ).

Any solution x(t, t0, x0) of this system converges to the origin in a finite time.

Moreover, for any x0 ∈ R, t0 ∈ R the equality x(t, t0, x0) = 0 holds for all

t ≥ t0 + π, i.e. the system is globally fixed-time stable with Tmax = π.

5. Generalized derivatives

The celebrated Second Lyapunov Method is founded on the so-called ener-

getic approach to stability analysis. It considers any positive definite function as

an possible energetic characteristic (”energy”) of a dynamic system and studies

evolution of this ”energy” in time. If a dynamic system has an energetic func-

tion, which is decreasing (strongly decreasing or bounded) along any trajectory

of the system, then this system has a stability property and the corresponding

energetic function is called Lyapunov function.

For example, to analyze asymptotic stability of the origin of the system

ẋ = f(t, x), f ∈ C(Rn+1), t ∈ R+, x ∈ Rn (35)
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it is sufficient to find a continuous positive definite function V (·) such that for

any solution x(t) of the system (35) the function V (x(t)) is decreasing and tend-

ing to zero for t→ +∞. The existence of such function guarantees asymptotic

stability of the origin of the system (35) due to Zubov’s theorem (see [26] [40]).

If the function V (x) is continuously differentiable then the required mono-

tonicity property can be rewritten in the form of the classical condition [17]:

V̇ (x) = ∇TV (x)f(t, x) < 0. (36)

The inequality (36) is very usable, since it does not require knowing the solutions

of (35) in order to check the asymptotic stability. From the practical point

of view, it is important to represent monotonicity conditions in the form of

differential or algebraic inequalities like (36).

Analysis of sliding mode systems is frequently based on non-smooth or even

discontinuous Lyapunov functions [13, 27, 45, 20, 24], which require consid-

eration of generalized derivatives and generalized gradients in order to verify

stability conditions. This section presents all necessary backgrounds for the

corresponding non-smooth analysis.

5.1. Derivative Numbers and Monotonicity

Let I be one of the following intervals: [a, b], (a, b), [a, b) or (a, b], where

a, b ∈ R, a < b.

The function ϕ : R→ R is called decreasing on I iff

∀t1, t2 ∈ I : t1 ≤ t2 ⇒ ϕ(t1) ≥ ϕ(t2).

Let K be a set of all sequences of real numbers converging to zero, i.e.

{hn} ∈ K ⇔ hn → 0, hn 6= 0.

Let a real-valued function ϕ : R→ R be defined on I.

Definition 17 ([46], page 207). A number

D{hn}ϕ(t) = lim
n→+∞

ϕ(t+ hn)− ϕ(t)

hn
, {hn} ∈ K : t+ hn ∈ I
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is called derivative number of the function ϕ(t) at a point t ∈ I, if finite or

infinite limit exists.

The set of all derivative numbers of the function ϕ(t) at a point t ∈ I is

called contingent derivative:

DKϕ(t) =
⋃

{hn}∈K

{D{hn}ϕ(t)} ⊆ R.

A contingent derivative of a vector-valued function ϕ : R → Rn can be

defined in the same way. If a function ϕ(t) is differentiable at a point t ∈ I then

DKϕ(t) = {ϕ̇(t)}.

Lemma 2 ([46], page 208). If a function ϕ : R→ R is defined on I then

1) the set DKϕ(t) ⊆ R is nonempty for any t ∈ I;

2) for any t ∈ I and for any sequence {hn} ∈ K : t + {hn} ∈ I there

exists a subsequence {hn′} ⊆ {hn} such that finite or infinite derivative number

D{hn′}ϕ(t) exists.

Remark, Lemma 2 remains true for a vector-valued function ϕ : R→ Rn.

Inequalities y < 0, y ≤ 0, y > 0, y ≥ 0 for y ∈ Rn are understood in

a componentwise sense. If for ∀y ∈ DKϕ(t) we have y < 0 then we write

DKϕ(t) < 0. Other ordering relations ≤, >, ≥ for contingent derivatives are

interpreted analogously.

The contingent derivative also helps to prove monotonicity of a non-differ-

entiable function.

Lemma 3 ([46], page 266). If a function ϕ : R→ R is defined on I and the

inequality DKϕ(t) ≤ 0 holds for all t ∈ I, then ϕ(t) is decreasing function

on I and differentiable almost everywhere on I.

Lemma 3 require neither the continuity of the function ϕ(t) nor the finiteness of

its derivative numbers. It gives a background for the discontinuous Lyapunov

function method.
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Example 9. The function ϕ(t) = −t−signσ[t] has a negative contingent deriva-

tive for all t ∈ R and for any σ ∈ [−1, 1], where the function signσ is defined

by (1). Indeed, DKϕ(t) = {−1} for t 6= 0, DKϕ(0) = {−∞} if σ ∈ (−1, 1) and

DKϕ(0) = {−∞,−1} if σ ∈ {−1, 1}.

The next lemma simplifies the monotonicity analysis of nonnegative func-

tions.

Lemma 4. If 1) the function ϕ : R→ R is nonnegative on I;

2) the inequality DKϕ(t) ≤ 0 holds for t ∈ I : ϕ(t) 6= 0;

3) the function ϕ(t) is continuous at any t ∈ I : ϕ(t) = 0;

then ϕ(t) is decreasing function on I and differentiable almost everywhere

on I.

Proof. Suppose the contrary: ∃t1, t2 ∈ I : t1 < t2 and 0 ≤ ϕ(t1) < ϕ(t2).

If ϕ(t0) 6= 0 for all t ∈ [t1, t2] then Lemma 3 implies that the function ϕ(t)

is decreasing on [t1, t2] and ϕ(t1) ≥ ϕ(t2).

If there exists t0 ∈ [t1, t2] such that ϕ(t0) = 0 and ϕ(t) > 0 for all t ∈ (t0, t2]

then Lemma 3 guarantees that the function ϕ(t) is decreasing on (t0, t2]. Taking

into account the condition 3) we obtain the contradiction ϕ(t2) ≤ ϕ(t0) = 0.

Finally, let there exists a point t∗ ∈ (t1, t2] such that ϕ(t∗) > 0 and any

neighborhood of the point t∗ contains a point t0 ∈ [t1, t
∗] : ϕ(t0) = 0. In this

case, let us select the sequence hn = tn−t∗ < 0 such that ϕ(tn) = 0 and tn → t∗

as n→∞. For this sequence we obviously have

D{hn}ϕ(t1)= lim
n→∞

ϕ(t∗+hn)− ϕ(t∗)

hn
= lim
n→∞

−ϕ(t∗)

hn
= +∞.

This contradicts to the condition 2).

Absolutely continuous functions are differentiable almost everywhere. Mono-

tonicity conditions for them are less restrictive.

Lemma 5 ([47], page 13). If a function ϕ : R → R defined on I is abso-

lutely continuous and ϕ̇(t) ≤ 0 almost everywhere on I then ϕ(t) is decreasing

function on I.
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Lemma below shows relations between solutions of a differential inclusion

(27) and its contingent derivatives.

Lemma 6 ([7], page 70). Let a set-valued function F : Rn+1 → 2R
n

be de-

fined, upper-semicontinuous on a closed nonempty set Ω ∈ Rn+1 and the set

F (t, x) be nonempty, compact and convex for all (t, x) ∈ Ω.

Let an absolutely continuous function x : R → Rn be defined on I and

(t, x(t)) ∈ Ω if t ∈ I. Then

ẋ(t) ∈ F (t, x(t))

almost everywhere on I

 ⇔
DKx(t) ⊆ F (t, x(t))

everywhere on I.

5.2. Dini derivatives and comparison systems

The generalized derivatives presented above are closely related with well-

known Dini derivatives (see, for example, [47]).

• Right-hand Upper Dini derivative:

D+ϕ(t) = lim sup
h→0+

ϕ(t+ h)− ϕ(t)

h
.

• Right-hand Lower Dini derivative:

D+ϕ(t) = lim inf
h→0+

ϕ(t+ h)− ϕ(t)

h
.

• Left-hand Upper Dini derivative:

D−ϕ(t) = lim sup
h→0−

ϕ(t+ h)− ϕ(t)

h
.

• Left-hand Lower Dini derivative:

D−ϕ(t) = lim inf
h→0−

ϕ(t+ h)− ϕ(t)

h
.

Obviously, D+ϕ(t) ≤ D+ϕ(t) and D−ϕ(t) ≤ D−ϕ(t). Moreover, definitions

of lim sup and lim inf directly imply that all Dini derivatives belong to the set

DKϕ(t) and

DKϕ(t) ≤ 0 ⇔

 D−ϕ(t) ≤ 0,

D+ϕ(t) ≤ 0.
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DKϕ(t) ≥ 0 ⇔

 D−ϕ(t) ≥ 0,

D+ϕ(t) ≥ 0.

Therefore, all further results for contingent derivative can be rewritten in terms

of Dini derivatives.

Theorem 5 (Denjoy-Young-Saks Theorem, [48], page 65). If ϕ : R →

R is a function defined on an interval I, then for almost all t ∈ I Dini deriva-

tives of ϕ(t) satisfy one of the following four conditions:

• ϕ(t) has a finite derivative;

• D+ϕ(t) = D−ϕ(t) is finite and D−ϕ(t) = +∞, D+ϕ(t) = −∞;

• D−ϕ(t) = D+ϕ(t) is finite and D+ϕ(t) = +∞, D−ϕ(t) = −∞;

• D−ϕ(t) = D+ϕ(t) = +∞, D−ϕ(t) = D+ϕ(t) = −∞.

This theorem has the following simple corollary, which is important for some

further considerations.

Corollary 1. If ϕ : R → R is a function defined on I, then the equality

DKϕ(t) = {−∞} (DKϕ(t) = {+∞}) may hold only on a set ∆ ⊆ I of measure

zero.

Consider the system

ẏ = g(t, y), (t, y) ∈ R2, g : R2 → R, (37)

where a function g(t, y) is continuous and defined on a set G = (a, b)× (y1, y2),

a, b, y1, y2 ∈ R : a < b, y1 < y2. In this case the system (37) has the so-called

right-hand maximum solutions for any initial condition y(t0) = y0, (t0, y0) ∈ G

(see [47], Remark 9.1, page 25).

Definition 18. A solution y∗(t, t0, y0) of the system (37) with initial conditions

y(t0) = y0, (t0, y0) ∈ G is said to be right-hand maximum if any other so-

lution y(t, t0, y0) of the system (37) with the same initial condition satisfies the

inequality

y(t, t0, y0) ≤ y∗(t, t0, y0)
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for all t ∈ I, where I is a time interval on which all solutions exist.

Now we can formulate the following comparison theorem.

Theorem 6 ([47], page 25). Let

1) the right-hand side of the equation (37) be continuous in a region G;

2) y∗(t, t0, y0) be the right-hand maximum solution of (37) with the initial

condition y(t0) = y0, (t0, y0) ∈ G, which is defined on [t0, t0 + α), α ∈ R+;

3) a function V : R→ R be defined and continuous on [t0, t0 + β), β ∈ R+,

(t, V (t)) ∈ G for t ∈ [t0, t0 + β) and

V (t0) ≤ y0, D+V (t) ≤ g(t, V (t)) for t ∈ (t0, t0 + β),

then

V (t) ≤ y∗(t, t0, y0) for t ∈ [t0, t0 + min{α, β}).

Theorem 6 remains true if Dini derivative D+ is replaced with some other deriva-

tive D+, D−, D− or DK (see [47], Remark 2.2, page 11).

5.3. Generalized directional derivatives of continuous and discontinuous func-
tions

Stability analysis based on Lyapunov functions requires calculation of deriva-

tives of positive definite functions along trajectories of a dynamic system. If

Lyapunov function is non-differentiable, a concept of generalized directional

derivatives (see, for example, [28, 49, 50]) can be used for this analysis. This

survey introduces generalized directional derivatives by analogy with contingent

derivatives for scalar functions.

Let M(d) be a set of all sequences of real vectors converging to d ∈ Rn , i.e.

{vn} ∈M(d) ⇔ vn → d, vn ∈ Rn.

Let a function V : Rn → R be defined on an open nonempty set Ω ⊆ Rn

and d ∈ Rn.

Definition 19. A number

D{hn},{vn}V (x, d) = lim
n→+∞

V (x+hnvn)−V (x)
hn

,

{hn} ∈ K, {vn} ∈M(d) : x+ hnvn ∈ Ω
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is called directional derivative number of the function V (x) at the point

x ∈ Ω on the direction d ∈ Rn, if finite or infinite limit exists.

The set of all directional derivative numbers of the function V (x) at the point

x ∈ Ω on the direction d ∈ Rn is called directional contingent derivative:

DK,M(d)V (x) =
⋃

{hn}∈K,{vn}∈M(d)

{D{hn},{vn}V (x, d)}.

Similarly to Lemma 2 it can be shown that if x ∈ Ω then the set DK,M(d)V (x)

is nonempty for any function V defined on an open nonempty set Ω ⊆ Rn and

any d ∈ Rn. A chain rule for the introduced contingent derivative is described

by the following lemma.

Lemma 7. Let a function V : Rn → R be defined on an open nonempty set

Ω ⊆ Rn and a function x : R→ Rn be defined on I, such that x(t) ∈ Ω if t ∈ I

and the contingent derivative DKx(t) ⊆ Rn is bounded for all t ∈ I.

Then the inclusion

DKV (x(t)) ⊆
⋃

d∈DKx(t)

DK,M(d)V (x)

holds for all t ∈ I.

Proof. Since x(t) ∈ Ω for t ∈ I then Lemma 2 implies that DKV (x(t)) is

nonempty for any t ∈ I. Let D{hn}V (x(t)) ∈ DKV (x(t)) be an arbitrary deriva-

tive number, i.e. by Definition 17 the finite or infinite limit

lim
n→∞

V (x(t+ hn))− V (x(t))

hn
, {hn} ∈ K : t+ hn ∈ I

exists.

Consider now the sequence:

vn =
x(t+ hn)− x(t)

hn
.

Lemma 2 and inequality |DKx(t)| < +∞ implies that there exist finite d ∈

DKx(t) and a subsequence {hn′} of the sequence {hn} such that vn′ → d.

Hence,

D{hn}V (x(t))= lim
n→∞

V (x(t+ hn))− V (x(t))

hn
= lim
n′→∞

V (x(t+ hn′))− V (x(t))

hn′
=
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lim
n′→∞

V (x(t) + hn′vn′)− V (x(t))

hn′
= D{h′n},{v′n}V (x).

The proven lemma together with Lemmas 6 and 4 imply the following corol-

lary, which is useful for a non-smooth Lyapunov analysis.

Corollary 2. Let a set-valued function F : Rn+1 → 2R
n

be defined and upper-

semicontinuous on I ×Ω and the set F (t, x) be nonempty, compact and convex

for any (t, x) ∈ I × Ω, where Ω ⊆ Rn is an open nonempty set.

Let x(t, t0, x0) be an arbitrary solution of Cauchy problem (27), (31) defined

on [t0, t0 +α), where t0 ∈ I, x0 ∈ Ω and α ∈ R+. Let a function V : Rn → R be

nonnegative on Ω.

If the inequality DF (t,x)V (x) ≤ 0 holds for every t ∈ I and every x ∈ Ω :

V (x) 6= 0 then the function of time V (x(t, t0, x0)) is decreasing on [t0, t0 + α),

where

DF (t,x)V (x) =
⋃

d∈F (t,x)

DK,M(d)V (x). (38)

5.4. Clarke’s gradient of Lipschitz continuous functions

Let a function V : Rn → R be defined and Lipschitz continuous on an open

nonempty set. Then, by Rademacher theorem [51], its gradient exists almost

everywhere on Ω and for each x ∈ Ω the following set can be constructed:

∇CV (x)= co
⋃

{xk}∈M(x):∃∇V (xk)

{
lim
xk→x

∇V (xk)

}
, (39)

which is called the Clarke’s generalized gradient of the function V (x) at

the point x ∈ Ω. The set ∇CV (x) is nonempty, convex and compact for any

x ∈ Ω and the set-valued mapping ∇CV : Rn → 2R
n

is upper-semicontinuous

on Ω (see [50], Proposition 2.6.2, page 70).

The formula (39) gives a procedure for calculation of the generalized gradient

of a function. The next lemma presents a chain rule for the Clarke’s generalized

gradient.
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Lemma 8 ([52], Theorem 2, page 336). Let a Lipschitz continuous func-

tion V : Rn → R be defined in an open nonempty set Ω ⊆ Rn and a absolutely

continuous function x : R → Rn be defined on I such that x(t) ∈ Ω for every

t ∈ I.

Then there exists a function p : R → Rn defined on I such that p(t) ∈

∇CV (x(t)) and V̇ (x(t)) = pT (t)ẋ(t) almost everywhere on I.

Lemmas 8 and 5 implies the following corollary.

Corollary 3. Let a set-valued function F : Rn+1 → 2R
n

be defined and upper-

semicontinuous on I × Ω and a set F (t, x) be nonempty, compact and convex

for any (t, x) ∈ I × Ω, where Ω ⊆ Rn is an open nonempty set. Let x(t, t0, x0)

be an arbitrary solution of Cauchy problem (27), (31) defined on [t0, t0 + α),

where t0 ∈ I, x0 ∈ Ω and α ∈ R+. Let a function V : Rn → R be defined and

Lipschitz continuous on Ω.

If the inequality DC
F (t,x)V (x) ≤ 0 holds almost everywhere on I for every

x ∈ Ω then the function of time V (x(t, t0, x0)) is decreasing on [t0, t0 + α),

where

DC
F (t,x)V (x) =

⋃
d∈F (t,x)

⋃
p∈∇CV (x)

{
pT d

}
(40)

If the function V : Rn → R is continuously differentiable then the usual total

derivative

V̇F (t,x)(x) =
⋃

d∈F (t,x)

{
∇TV (x)d

}
(41)

can be used for monotonicity analysis instead of Clarke’s or contingent deriva-

tive. In this case we have DF (t,x)V (x) = DC
F (t,x)V (x) = V̇F (t,x)(x).

6. Lyapunov function method and convergence rate

Lyapunov function method is a very effective tool for analysis and design

of both linear and nonlinear control systems [19]. Initially, the method was

presented for ”unrated” (Lyapunov and asymptotic) stability analysis [17]. A

development of control theory had required to study a convergence rate to-

gether with a stability properties of a control system. This section observes
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the most important achievements of the Lyapunov function method related to

a convergence rate estimation of sliding mode systems.

6.1. Analysis of Lyapunov, asymptotic and exponential stability

The continuous function W : Rn → R defined on Rn is said to be positive

definite iff W (0) = 0 and W (x) > 0 for x ∈ Rn\{0}.

Definition 20. A function V : Rn → R is said to be proper on an open

nonempty set Ω ⊆ Rn : 0 ∈ int(Ω) iff

1) it is defined on Ω and continuous at the origin;

2) there exists a continuous positive definite function V : Rn → R such that

V (x) ≤ V (x) for x ∈ Ω.

A positive definite function W : Rn → R is called radially unbounded if

W (x)→ +∞ for ‖x‖ → +∞.

Definition 21. A function V : Rn → R is said to be globally proper iff it

is proper on Rn and the positive definite function V : Rn → R is radially

unbounded.

If V is continuous on Ω, then V (x) = V (x) for x ∈ Ω and Definition 21

corresponds to the usual notion of proper positive definite function (see, for

example, [44]).

For a given number r ∈ R and a given positive definite function W : Rn → R

defined on Ω let us introduce the set

Π(W, r) = {x ∈ Ω : W (x) < r}

which is called the level set of the function W .

Theorems on Lyapunov and asymptotic stability given below are obtained

by a combination of Zubov’s theorems (see, for example, [40], pages 566-568)

with Corollary 2.
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Theorem 7. Let a function V : Rn → R be proper on an open nonempty set

Ω ⊆ Rn : 0 ∈ int(Ω) and

DF (t,x)V (x) ≤ 0 for t ∈ R and x ∈ Ω\{0}. (42)

Then the origin of the system (27) is Lyapunov stable.

Proof. Since V (x) is proper, then there exist continuous positive definite func-

tion V (x) such that V (x) ≤ V (x) for all x ∈ Ω.

Let h = sup
r∈R+:B(r)⊆Ω

r and λ(ε) = inf
x∈Rn:‖x‖=ε

V (x) > 0, where ε ∈ (0, h].

The function V (x) is continuous at the origin, so ∃δ ∈ (0, ε) : V (x) < λ(ε)

if x ∈ B(δ). Moreover, B(δ) ⊆ U(ε) = Π(V, λ(ε)) ∩ B(ε).

Let t0 ∈ R and x0 ∈ U(ε) (in partial case x0 ∈ B(δ)). The system (27)

satisfies Theorem 3 and it has solutions, which can be continued up to the

boundary of Ω. Consider an arbitrary solution x(t, t0, x0) of (27). The inequality

(42) and Corollary 2 implies that the function of time V (x(t, t0, x0)) is decreasing

for t > t0, i.e. V (x(t, t0, x0)) ≤ V (x0) < λ(ε).

In this case, x(t, t0, x0) ∈ B(ε) for t > t0. Indeed, otherwise there exists

t∗ > t0 : ‖x(t∗, t0, x0)‖ = ε, so V (x(t∗, t0, x0)) ≥ V (x(t∗, t0, x0)) ≥ λ(ε).

The proven property also implies that even if a solution of (27) with t0 ∈ R

and x0 ∈ U(ε) was initially defined on finite interval [t0, t0 + α), α ∈ R+, it can

be prolonged for all t > t0.

Asymptotic stability requires analysis of an attraction set. Lyapunov func-

tion approach may provide an estimate of this set.

Theorem 8. Let a function V : Rn → R be proper on an open nonempty set

Ω ⊆ Rn : 0 ∈ int(Ω), a function W : Rn → R be a continuous positive definite

and

DF (t,x)V (x) ≤ −W (x) for t ∈ R and x ∈ Ω\{0}.

Then the origin of the system (27) is asymptotically stable with an attraction

domain

U = Π(V, λ(h)) ∩ B(h), (43)
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where λ(h) = inf
x∈Rn:‖x‖=h

V (x) and h ≤ sup
r∈R+:B(r)⊆Ω

r.

If V is globally proper and Ω = Rn then the origin of the system (27) is

globally asymptotically stable (U = Rn).

Proof. Theorem 7 implies that an arbitrary solution x(t, t0, x0) of (27) with

t0 ∈ R and x0 ∈ U(ε) is defined for all t > t0 and x(t, t0, x0) ∈ B(ε), where

ε ∈ (0, h] and U(ε) = Π(V, λ(ε)) ∩ B(ε). Moreover, the function of time Ṽ (t) =

V (x(t, t0, x0)) is decreasing for all t > t0. So, in order to prove asymptotic

stability we just need to show that µ = 0, where µ = inf
t>t0

Ṽ (t).

Suppose a contradiction, i.e. µ > 0.

The function V (x) is continuous at the origin, so there exists r > 0 such that

V (x) < µ for all x ∈ B(r). Since µ > 0 then x(t, t0, x0) /∈ B(r) for all t > t0.

Introduce the following compact set Θ = {x ∈ Rn : r ≤ ‖x‖ ≤ ε}. Since

W (x) is continuous and positive definite, then we have W0 = inf
x∈Θ

W (x) > 0.

The inequality DF (t,x)V (x) ≤ −W (x) and the exclusion x(t, t0, x0) /∈ B(r)

imply DKṼ (t) ≤ −W0 for all t > t0.

Since Ṽ (t) is decreasing then it is differentiable almost everywhere on [t0, t0+

∆], where ∆ = V (x0)/W0. Hence (see, for example, [53], page 111),

V (t0 + ∆)− V (t0) ≤
∫ t0+∆

t0

V̇ (τ)dτ ≤ −W0∆ = −V (t0),

i.e. V (t0+∆) ≤ 0 < µ. This contradicts our supposition. So, V (x(t, t0, x0))→ 0

or equivalently x(t, t0, x0)→ 0 if t→ +∞.

If the function V is globally proper then global asymptotic attractiveness

follows from lim
ε→+∞

λ(ε) = +∞ due to radial unboundedness of V .

Exponential convergence asks for additional properties of Lyapunov func-

tions.

Theorem 9. Let conditions of Theorem 8 hold, the function V (x) is continuous

on an open nonempty set Ω ⊂ Rn : 0 ∈ int(Ω) and there exist α, r1, r2 ∈ R+:

r1‖x‖ ≤ V (x) ≤ r2‖x‖ and W (x) ≥ αV (x)

then the origin of the system (27) is exponentially stable with a rate α ∈ R+.
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This theorem can be proven by analogy to a classical theorem on exponential

stability (see, for example, [19], page 171) using Lemma 6.

The presented theorems shows that discontinuous and non-Lipschitzian Lya-

punov functions can also be used for stability analysis. If V (x) is Lipschitz

continuous then all theorems on stability can be reformulated using Clarke’s

gradient.

The following important theorem declares that a smooth Lyapunov function

always exists for a time-invariant asymptotically stable differential inclusion

(27).

Theorem 10 ([44], Theorem 1.2). Let a set-valued function F : Rn → Rn

be defined and upper-semicontinuous in Rn. Let F (x) be nonempty, compact

and convex for any x ∈ Rn. If the origin of the system

ẋ ∈ F (x)

is globally uniformly asymptotically stable iff there exists a globally proper func-

tion V (·) ∈ C∞(Rn) and a function W (·) ∈ C∞(Rn) : W (x) > 0 for x 6= 0 such

that

max
y∈F (x)

∇TV (x)y ≤ −W (x), x ∈ Rn\{0}.

However, the practice shows that designing of a Lyapunov function for non-

linear and/or discontinuous system is a nontrivial problem even for a two dimen-

sional case. Frequently, in order to analyze stability of a sliding mode control

system it is simpler to design a non-smooth Lyapunov function (see, for example,

[3], [20], [24]).

6.2. Lyapunov analysis of finite-time stability

Analysis of finite-time stability using the Lyapunov function method allows

us to estimate of a settling time a priori. The proof of the next theorem follows

the ideas introduced in [13] and [54].
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Theorem 11. Let a function V : Rn → R be proper on an open nonempty set

Ω ⊆ Rn : 0 ∈ int(Ω) and

DF (t,x)V (x) ≤ −1 for t ∈ R and x ∈ Ω\{0}. (44)

Then the origin of the system (27) is finite-time stable with an attraction domain

U defined by (43) and

T (x0) ≤ V (x0) for x0 ∈ U , (45)

where T (·) is a settling-time function.

If a function V is globally proper on Ω = Rn then the inequality (44) implies

global finite-time stability of the system (27).

Proof. Theorem 8 implies that the origin of the system (27) is asymptot-

ically stable with the attraction domain U . This means that any solution

x(t, t0, x0), x0 ∈ U of the system (27) exists for ∀t > t0. Therefore, we need

to show finite-time attractivity. Consider the interval [t0, t1], t1 = t0 + V (x0).

Suppose a contradiction: x(t, t0, x0) 6= 0 for ∀t ∈ [t0, t1]. Denote Ṽ (t) =

V (x(t, t0, x0)). Lemma 7 implies

DKṼ (t) ≤ DF (t,x)V (x(t, t0, x0)) ≤ −1, ∀t ∈ [t0, t1]

Hence, by Lemma 3 the function Ṽ (t) is decreasing on [t0, t1] and differentiable

almost everywhere on [t0, t1]. Then

Ṽ (t1)− Ṽ (t0) ≤
t1∫
t0

d

dt
Ṽ (τ)dτ ≤ −(t1 − t0) = −V (x0)

(see, for example, [53], page 111), i.e. Ṽ (t1) = V (x(t1, t0, x0)) ≤ Ṽ (t0) −

V (x0) = V (x(t0, t0, x0)) − V (x0) = 0. Since V (x) is positive definite then

V (x(t1, t0, x0)) ≤ 0 ⇒ V (x(t1, t0, x0)) = 0 ⇔ x(t1, t0, x0) = 0, i.e. the origin of

the system (27) is finite-time attractive with the settling time estimate (45).

Evidently, if under conditions of Theorem 11 there exists a continuous func-

tion V : Rn → R such that V (x) ≤ V (x) for ∀x ∈ Ω then the origin of the

system (27) is uniformly finite-time stable.
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Example 10. Consider again the uniformly finite-time stable system

ẋ = −x[ 1
2 ] (1− |x|) , x ∈ R,

and show that its settling-time function

T (x) = ln

(
1 + |x| 12
1− |x| 12

)

satisfies all conditions of Theorem 11. Indeed, it is continuous and proper on

B(1). Finally, it is differentiable for x ∈ B(1)\{0} and

Ṫ (x) =
∂T

∂x
ẋ =

1

x[ 1
2 ](1− |x|)

ẋ = −1 for x 6= 0.

The last example shows that a settling-time function of finite-time stable

system is a Lyapunov function in a generalized sense. Theorem 11 operates with

a very large class Lyapunov functions. However, its conditions are still rather

conservative. For example, the settling-time function from Example 6 can not

be considered as a Lyapunov function candidate, since it is discontinuous at

the origin, so it is not proper. However, even proper settling-time functions of

sliding mode systems may not satisfy the condition (44).

Example 11. Consider the twisting second order sliding mode system [55] ẋ1

ẋ2

 ∈ F (x1, x2) =

 y

−2sign[x1]− sign[x2]

 , (46)

which is uniformly finite-time stable with the settling-time function [54] :

Ttw(x) = p

√
|x1|+

x2
2

2(2 + sign[x1x2])
+
|x2| sign[x1x2]

2 + sign[x1x2]
, p =

4
√

2

3−
√

3

The function Ttw is globally proper, Lipschtz continuous outside the origin and

continuously differentiable for xy 6= 0

DF (x1,x2)Ttw(x1, x2) =
∂Ttw
∂x1

x2+
∂Ttw
∂x2

(−2 sign[x1]−sign[x2]) = −1 for x1x2 6= 0.

However, DF (x1,x2)Ttw(x1, x2)
⋂

R+ 6= ∅ for x1 = 0. So, Ttw(x, y) does not

satisfy (44). Applying Clarke’s gradient does not help to avoid this problem.
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In the same time, if x(t, t0, x0) is an arbitrary solution of the system (46),

then DKTtw(x(t, t0, x0)) ≤ −1 for ∀t > t0 : x(t, t0, x0) 6= 0 (see [54] for the

details).

Remark, if p > 4
√

2
3−
√

3
then the function Ttw(x) satisfies the conditions of

Theorem 11 and DF (x1,x2)Ttw(x) = {−∞} for x1 = 0.

Sometimes the less restrictive finite-time stability condition

DKV (x(t, t0, x0)) ≤ −1, t ≥ t0 : x(t, t0, x0) 6= 0,

x(t, t0, x0) ∈ Φ(t0, x0), t0 ∈ R, x0 ∈ U .
(47)

has to be considered instead of (44). Examples of applying the condition (47)

for analysis of second order sliding mode systems can be found in [54], [22].

They demonstrate that frequently we do not need to know a solution x(t, t0, x0)

of (27) in order to check the condition (47).

Example 12. Consider the system

ẋ = − (2− sign[x1x2])

‖x‖
x, x = (x1, x2)T ∈ R2.

It is uniformly finite-time stable. Its settling time function is discontinuous

T (x) =

 ‖x‖ for x1x2 ≥ 0

1
3‖x‖ for x1x2 < 0

However, the function T (x) is the generalized Lyapunov function, since it is

globally proper and

DKT (x(t, t0, x0)) = −1 for t > t0 : x(t, t0, x0) 6= 0,

where x(t, t0, x0) ∈ Φ(t0, x0), t0 ∈ R and x0 ∈ R2.

Theorem 12 ([14], Theorem 4.2). Let a continuous function V : Rn → R

be proper on an open nonempty set Ω ⊆ Rn : 0 ∈ int(Ω) and

DF (t,x)V (x) ≤ −rV ρ(x), t > t0, x ∈ Ω,
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where r ∈ R+, 0 < ρ < 1. Then the origin of the system (27) is uniformly

finite-time stable with an attraction domain U defined by (43) and the settling

time function T (·) is estimated as follows

T (x0) ≤ V 1−ρ(x0)

r(1− ρ)
for x0 ∈ U .

Proof. Let x(t, t0, x0), x0 ∈ U be any solution of (27) and Ṽ (t) = V (x(t, t0, x0)).

Since

DKṼ (t) ≤ DF (t,x)V (x(t, t0, x0)) ≤ −rṼ ρ(t)

(see, Lemma 7) then Lemma 6 implies that Ṽ (t) ≤ y(t), t > t0, where y(t) is a

right-hand maximum solution of the following Cauchy problem

ẏ(t) = −ryρ(t), y(t0) = V (x0),

i.e.

y(t) =


(
V (x0)1−ρ − r(1− ρ)(t− t0)

) 1
1−ρ for t ∈ [t0, t0 + V 1−ρ(x0)

r(1−ρ) ],

0 for t > V 1−ρ(x0)
r(1−ρ) .

This implies V (x(t, t0, x0)) = 0 for ∀t > V 1−ρ(x0)
r(1−ρ) .

A global finite-time stability can be analyzed using globally proper Lyapunov

functions in Theorems 11 and 12.

Example 13. Consider the so-called super-twisting system [55] ẋ

ẏ

 ∈ F (x, y) =

 −αx[ 1
2 ] + y

−β · sign[x]

 (48)

where x ∈ R, y ∈ R, α > 0, β > 0. Recall, x[µ] = |x|µ sign[x], µ ∈ R+.

The function [24]

V (x, y) = (2β + α2/2)|x|+ y2 − αyx[ 1
2 ]

is the generalized Lyapunov function for the system (48). Indeed, this function is

globally proper and continuous (but not Lipschitz continuous on the line x = 0).

For x 6= 0 this function is differentiable and

DVF (x,y)(x, y) ≤ −γ
√
V (x, y)
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where γ = γ(α, β) > 0 is a positive number (see [24] for details).

For x = 0 and y 6= 0 we need to calculate a generalized directional derivative.

So, consider the limit

D{hn},{un}V (0, y) = lim
n→∞

V (hnu
x
n, y + hnu

y
n)− V (0, y)

hn

where {hn} ∈ K, un = (uxn, u
y
n)T , {un} ∈M(d), d ∈ F (0, y). In this case, uxn → y

and uyn → q, q ∈ [−β, β]. Hence,

D{hn},{un}V (0, y)= lim
n→∞

(2β+α2/2)|hny|+(y+hnq)
2 − α(hny)[

1
2 ](y+hnq)− y2

hn
.

Obviously, D{hn},{un}V (0, y) = −∞. Therefore,

DF (x,y)V (0, y) = {−∞} ≤ −γ
√
V (0, y)) for y 6= 0

and the super-twisting system is uniformly finite-time stable with the settling

time estimate T (x, y) ≤ 2
√
V (x, y)/γ.

By Corollary 1, the set of time instants t > t0 : DKV (x(t), y(t)) = {−∞}

may have only the measure zero. This means that the line x = 0 for y 6= 0 can

not be sliding set of the system (48). The sliding mode may appear only at the

origin.

6.3. Fixed-time stability analysis

Locally fixed-time stability property is very close to finite-time stability, so

it can be established using Theorem 11 just including additional condition :

V (x) ≤ Tmax for ∀x ∈ Ω , where Tmax ∈ R+. An alternative Lyapunov charac-

terization of fixed-time stability can be obtained using the ideas introduced in

the proof of Corollary 2.24 from [31].

Theorem 13 ([30], page 2106). Let a continuous function V : Rn → R be

proper on an open connected set Ω : 0 ∈ int(Ω). If for some numbers µ ∈

(0, 1), ν ∈ R+, rµ ∈ R+, rν ∈ R+ the following inequlity

DF (t,x)V (x) ≤

 −rµV 1−µ(x) for x ∈ Ω : V (x) ≤ 1,

−rνV 1+ν(x) for x ∈ Ω : V (x) ≥ 1,
t > t0, x ∈ Ω,

(49)
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holds, then the origin of the system (27) is fixed-time stable with the attraction

domain U defined by (43) and the maximum settling time is estimated by

T (x) ≤ Tmax ≤
1

µrµ
+

1

νrν
. (50)

If Ω = Rn and a function V is radially unbounded then the origin of the system

(27) is globally fixed-time stable.

Proof. Theorem 8 implies that the origin of the system (27) is asymptot-

ically stable with the attraction domain U . This means that any solution

x(t, t0, x0), x0 ∈ U of the system (27) exists for ∀t > t0. We just need to

proof that the estimate (49) implies fixed-time attractivity.

Indeed, for any trajectory x(t, t0, x0) of the system (6) with V (x0) > 1, there

exists a time instant T1 = T1(x0) ≤ 1
νrν

: V (x(T1, t0, x0)) = 1. On the other

hand, for any trajectory x(t, t1, x1) with V (x1) ≤ 1, there exists a time instant

T2 = T2(x1) ≤ 1
µrµ

: V (x(t, t1, x1)) → 0 for t → T2. These facts can be easily

proven analogously to Theorem 12.

This result also can be used for fixed-time stability analysis of high-order

sliding mode control systems.

Example 14 ([30], page 2108). Consider the sliding mode control system
ẋ = y,

ẏ = u+ d(t),

u = −α1+3β1x
2+γ

2 sign[s]−
(
α2s+ β2s

3
)[ 1

2 ]
,

where x ∈ R, y ∈ R, |d(t)| < C, α1, α2, β1, β2, C ∈ R+, γ > 2C and the switching

surface s = 0 is defined by

s = y +
(
y[2] + α1x+ β1x

3
)[ 1

2 ]
.

The original discontinuous systems corresponds to the following extended differ-

ential inclusion:
ẋ = y,

ẏ ∈
{
−α1+3β1x

2+γ
2

}
· sign[s]+̇

{
−
(
α2s+ β2s

3
)[ 3

2 ]
}

+̇[−C,C].
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Consider the function V (s) = |s| and calculate its generalized derivative along

trajectories of the last system

DFV (s) ≤ −
(
α2V (s) + β2V

3(s)
) 1

2 for s 6= 0

(see [30] for the details). This implies that the sliding surface s = 0 is fixed-time

attractive with the estimate of a reaching time:

Ts ≤
2
√
α2

+
2√
β2.

The sliding motion equation for s = 0 has the form

ẋ = −
(
α1

2
x+

β1

2
x3

)[ 1
2 ]
.

This system is fixed-time stable and a global estimate of the settling-time func-

tion T (x, y) for the original system is

T (x, y) ≤ Tmax ≤
2
√

2
√
α1

+
2
√

2√
β1

+
2
√
α2

+
2√
β2

.

7. Conclusions

The paper surveys mathematical tools required for stability analysis of slid-

ing mode systems. It discusses definitions of solutions for systems with dis-

continuous right-hand sides, which effectively describe sliding mode systems. It

observes an evolution of stability notions, convergence rate properties and under-

lines differences between finite-time and fixed-time stable systems in local and

global cases. The paper considers elements of the theory of generalized deriva-

tives and presents a generalized Lyapunov function method for asymptotic, ex-

ponential, finite-time and fixed-time stability analysis of discontinuous systems.

Theorems on finite-time and fixed-time stability provide rigorous mathematical

justifications of formal applying non-Lipschitz Lyapunov functions presented in

[23, 24, 25] for stability analysis of second order sliding mode systems.

It is worth to stress that the presented tutorial summarize methods required

for stability analysis of the so-called ”ideal” sliding modes. The practical re-

alization of sliding mode control requires extended analysis, which takes into
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account sampling, hysteresis and delay effects, measurement errors, discretiza-

tion, etc. Robustness analysis of ”real” sliding modes goes out of the scope of

this paper. Practical stability analysis of sliding mode systems based on two

Lyapunov functions was presented in [56]. Stability of the real coordinates in

the sliding mode was studied in [57]. More general approach to robustness anal-

ysis of ”real” sliding modes based on ISS theory of homogeneous systems can

be found in [58].
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