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AND MONTSERRAT ALSINA∗∗∗

Abstract. We develop a new transmission scheme for additive white Gauss-
ian noisy (AWGN) channels based on Fuchsian groups from rational quater-

nion algebras. The structure of the proposed Fuchsian codes is nonlinear

and nonuniform, hence conventional decoding methods based on linearity and
symmetry do not apply. Previously, only brute force decoding methods with

complexity that is linear in the code size exist for general nonuniform codes.

However, the properly discontinuous character of the action of the Fuchsian
groups on the complex upper half-plane translates into decoding complexity

that is logarithmic in the code size via a recently introduced point reduction

algorithm.

Introduction

Fuchsian groups constructed from quaternion algebras arise in the study of
Shimura curves [18], a rich theory with a large number of theoretical applications
to various branches of number theory like Jacquet-Langlands correspondence or the
proof of the Shimura-Taniyama-Weil conjecture. Shimura curves are also present
in the theory of error-correcting codes [11]. More recently, Fuchsian groups have
made an appearance [19, 23, 6, 21] in the context of signal constellation design with
potential applications in communications.

In this paper1, we will consider a new family of Fuchsian codes. The codes are
obtained from unit groups of orders of quaternion algebras acting on the complex
upper half-plane, in this way giving rise to complex points that can be used as
codewords. Each of the above notions will be properly introduced in the sequel,
but let us first concentrate on the general communication problem at hand.

Namely, as the underlying mathematical communication model, we will use the
typical additive white Gaussian noise (AWGN) channel model [8, Ch. 10]. The
transmission process is described by the equation

(0.1) y = x+ w,
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where y ∈ C is the received signal, x ∈ C is the transmitted codeword drawn from
a finite codebook C ⊂ C (also referred to as a constellation), and w is complex
AWGN with zero mean and variance σ2/2 per real and imaginary part.

Throughout this paper, we denote by <(z) and =(z) the real and imaginary
part of a complex number z ∈ C, respectively. The complex absolute value, i.e.,
Euclidean norm is denoted by |z| =

√
<(z)2 + =(z)2, and the cardinality of a code

C by |C|. In spite of the slight abuse of notation there should not be any danger of
confusion.

0.1. Contributions, related work and organization. Next, we summarize our
main contributions and reflect our work to relevant earlier work related to Fuchsian
groups in the context of communication applications. The main contributions of
this paper are:

• We show how to explicitly build nonuniform signal constellations on the
complex plane by using Fuchsian groups and Möbius transformations. Non-
uniform signal constellations are included in the digital video broadcasting
standard for next generation handheld (DVB-NGH) systems, and they are
currently being considered for the future extension of terrestrial DVB with
multiple antennas (DVB-T2 MIMO). This creates a great interest and need
for nonuniform constellations.
• We describe the whole encoding and decoding process of the proposed Fuch-

sian codes in full detail, assuming the AWGN communication setting.
• Our construction method allows for decoding complexity which is logarith-

mic in the code size, enabled by the so-called point reduction algorithm [2]
based on determining the tile to which a given point belongs in the hy-
perbolic upper half-plane. This is a magnificent improvement since, as far
as the authors are aware, there are no known optimal decoders for general
nonuniform constellations with sublinear complexity.
• We also discuss the optimization of the Fuchsian codes and propose a new

design criterion, hence motivating further study on Fuchsian codes.
• Finally, we present an alternative method for constructing Fuchsian codes

by certain parametrization of the integer tuples defining the Möbius trans-
formations used for the code construction.

Our interest in Fuchsian groups as a basis for code construction stems from a
series of recent papers by Palazzo et al. In [23, 6, 19, 21], among others, various
interesting connections between Fuchsian groups and signal constellation design
are presented. In [23], the authors construct Fuchsian groups suitable for signal
constellation construction. In [19], the authors consider the unit disk model of
the hyperbolic half-plane as the signal space, and the noise is modeled as a hyper-
bolic Gaussian random variable. With the study of the hyperbolic geometry they
construct a hyperbolic equivalent to QAM and PSK constellations and point out
that, when the channel model is hyperbolic2, the proposed hyperbolic constella-
tions provide higher coding gains than the classical euclidean variants. Building on
this work, in [21] the authors construct dense tessellations and counting Dirichlet
domains in tessellations of certain type. In [6] the authors use units of quaternion
orders to construct space-time matrices with the potential use case being wireless
multi-antenna (MIMO) communications. We refer the reader to [17, 14] as the

2This is the case e.g. in power transmission line communications [13].
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early references to the use of division algebras and maximal orders in MIMO, and
to [3] for a more general introduction to the topic.

Although codes related to Fuchsian groups have been considered before, our
construction is original in that it describes the complete construction and decoding
process, whereas earlier work has largely concentrated on the constellation design
while giving little attention to the decoding and performance aspects. Another key
difference to the aforementioned works is that we are studying codes on the complex
plane arising from quaternion algebras and Fuchsian groups, and our aim is to apply
the codes to the classical (euclidean) channel models such as the aforementioned
AWGN channel, with possible future extension to fading channels [16, 3]. We do not
use hyperbolic metric as our design metric, but use the Fuchsian group as a starting
point to the code generation. Nevertheless, our decoder will rely on hyperbolic
geometry as opposed to the classical decoders based on euclidean geometry.

The paper is organized as follows. In what remains of this section, we will
give some insight to AWGN channel decoding. In section 1 we provide the essential
algebraic preliminaries. The Fuchsian code construction process as well as decoding
via point reduction algorithm are introduced in Section 2. Section 3 provides a
thorough decoding complexity analysis, showing that the decoding algorithm has
logarithmic complexity. We discuss the optimization of the proposed Fuchsian
codes in Section 4 as a motivation for further research. Conclusions and directions
for further research are given in Section 5. Finally, we present as an appendix an
alternative method for constructing Fuchsian codes. This method is called for when
the generators of the Fuchsian group are not known.

0.2. Decoding in AWGN channels. Let us discuss the decoding process in
AWGN channels before going to the actual code construction in more detail. This
decoding process, i.e., deciding on which codeword x ∈ C was transmitted given the
received signal y ∈ C can be done in many different ways. An optimal decoding
method is given by the maximum-likelihood (ML) decoding, which decides on the
codeword x̂ having the smallest squared euclidean distance to y,

(0.2) x̂ = arg min|y − x|2.

This amounts to exhaustively enumerating the metric (0.2) for all x ∈ C, and com-
paring the values obtained in order to find the minimum. The metric evaluations
require 4|C| arithmetic operations3, and to compare, we have to compute |C| − 1
differences. In total, this amounts to 5|C| − 1 arithmetic operations. As far as the
authors are aware, there are no other known optimal decoding methods for general
nonuniform codes.

In [4], we have compared the error performance4 of some Fuchsian codes to
that of quadrature amplitude modulation (QAM) in order to get some preliminary
insight as to how close to these classical constellations we are able to get. We define

3By arithmetic operation we refer to addition, subtraction, multiplication, and division. These
can all be considered constant time when we are computing with numbers having fixed precision.

In (0.2), we need to compute the difference y − x, square the real and imaginary parts of the
result and finally add them, (<(y − x))2 + (=(y − x))2, which requires two multiplications, one
subtraction and one addition per codeword.

4The performance is typically measured as the relative frequency of decoding errors as a func-
tion of the signal-to-noise ratio (SNR). SNR is the ratio of the signal and noise powers, and is
commonly used to measure the channel quality.
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an odd, symmetric square QAM constellation as

22r-QAM = {±a± bi | 1 ≤ a, b ≤ 2r − 1, 2 6 | ab} ⊂ Z[i].

This is a subset of the two-dimensional Gaussian integer lattice5 Z[i], hence its ML
complexity can be written as 5|C|−1 = 5|S|2−1, where S ⊂ Z is the corresponding
real pulse amplitude modulation (PAM) constellation,

2r-PAM = {−(2r − 1), . . . ,−3,−1, 1, 3, . . . , 2r − 1} ⊂ Z.

More generally, if we denote by S the underlying real signaling alphabet ⊂ Z of a
lattice code, the ML complexity 5|C| − 1 = 5|S|κ − 1 grows exponentially with the
lattice dimension κ.

For lattice codes, the ML complexity can be reduced by using lattice decoding,
which performs a closest lattice point search within a limited sphere centered at the
received point y, while ignoring the fact that the codebook is a finite subset of the
infinite lattice. The complexity of lattice decoding is hence independent of |C|, and
it actually turns out to be polynomial (cf. [25]) in |S| for a given lattice and sphere
radius. Unfortunately it also performs poorly compared to ML decoding. The
performance can be improved by taking into account the code boundaries, often
referred to as sphere decoding, but this again increases the complexity. Naturally,
the worst case complexity of a sphere decoder is always upper bounded by the
complexity of exhaustive search.

The complexity comparison between the QAM constellations and Fuchsian con-
stellations is not straightforward since, in practice, one does not use ML, lattice
or sphere decoder for decoding QAM in the single-input single-output (SISO) case
(cf. Eq. (0.1)). The difficulty of complexity comparison stems from the fact that,
while the decoding complexity of the proposed Fuchsian codes largely arises from
arithmetic operations, the decoding complexity of QAM in the SISO case is, in
practice6, a combination of arithmetic operations and memory usage due to main-
tenance of a look-up table. So for QAM, this finally boils down to resource usage
in a particular chip, the trade-off being memory vs. arithmetic operations. In ad-
dition, the estimate quality of the received signal is a parameter, since the amount
of memory depends on the bit-resolution of the look-up table. In the literature, a
look-up table is normally hand-waved as having negligible complexity, whereas in
reality a very large table could still be highly inconvenient. Due to this compari-
son mismatch, we compare the complexity of Fuchsian codes to the ML decoding
complexity 5|C| − 1. This is also a more righteous comparison in the sense that, as
noted before, nonuniform codes are not previously known to admit sublinear de-
coding complexity. Indeed, one of the main contributions of this paper is that our
codes enable the use of a decoding algorithm with complexity that is logarithmic
in the code size |C|.

Remark 0.1. We have chosen to use the number of arithmetic operations as the
complexity measure. Another option would be to only count multiplications and
divisions, since these are more complex than addition and subtraction. Never-
theless, both options yield very similar results. In addition, when the numbers

5By a lattice here we refer to a discrete abelian subgroup of C. We refer to [16] for a general

introduction to lattice codes.
6We gratefully acknowledge Peter Moss (BBC Research & Development) for sharing his knowl-

edge and insights regarding AWGN channel decoding and complexity.
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involved in the arithmetic operations have known and predetermined precision, all
arithmetic operations can be thought of as constant-time operations.

1. Algebraic preliminaries

In this section, we survey some facts on the arithmetic of quaternion algebras
in order to construct a discrete group Γ ∈ SL(2,R) and its fundamental domain
in the complex upper half-plane. We mainly follow [1] and refer the reader to the
well-known references [15] and [24] for more details.

1.1. Quaternion algebras and Fuchsian groups. For square-free a, b ∈ Q∗ =

Q \ {0}, let H =
(
a,b
Q

)
be the quaternion Q-algebra generated by I and J with

the standard relations I2 = a, J2 = b,K = IJ = −JI. Up to isomorphism, we can
assume a, b are square-free nonzero integers. For ω = x + yI + zJ + tK ∈ H, the
conjugate is ω = x − yI − zJ − tK, and the reduced trace and the reduced norm
are defined as

Tr(ω) = ω + ω = 2x, N(ω) = ωω = x2 − ay2 − bz2 + abt.

Let us denote by φ the following monomorphism of Q-algebras:

(1.1)
φ :

(
a, b

Q

)
→ M(2,Q(

√
a))

x+ yI + zJ + tK 7→
(

x+ y
√
a z + t

√
a

b(z − t
√
a) x− y

√
a

)
.

Notice that for any ω ∈ H, N(ω) = det (φ(ω)) and Tr(ω) = Tr (φ(ω)).
A quaternion Q-algebra is either an algebra isomorphic to the matrix algebra

M(2,Q) or a skew field, in the latter case typically called a division algebra. For
any absolute value | |p of Q attached to a place p, a place being either a prime
number or infinity, Hp := H ⊗Q Qp is a quaternion Qp-algebra. For a local field
Qp or R there exists a unique quaternion division algebra. In the case of R it is
the algebra of Hamiltonian quaternions. If Hp is a division algebra, H is called
ramified at p. The discriminant DH is defined as the product of the primes at
which H ramifies. Any quaternion algebra is ramified at a finite even number of
places. Moreover, two quaternion Q-algebras are isomorphic if and only if they
have the same discriminant.

Definition 1.1. A rational quaternion algebra H is called definite if it is ramified
at p =∞, and indefinite otherwise. An indefinite quaternion algebra is called small
ramified if DH is equal to a product of two distinct primes.

An element α ∈ H is called integral if N(α),Tr(α) ∈ Z. In general the set of
integral elements in a quaternion algebra is not a ring.

A Z-lattice of H is a finitely generated torsion-free Z-module contained in H.
An order O of H is a Z-lattice and a ring such that Q ⊗ O ' H. Each order
of a quaternion algebra is contained in a maximal order. In an indefinite rational
quaternion algebra, all the maximal orders are conjugate to each other (cf. [24]).

Definition 1.2. Fix a quaternion algebra H =
(
a,b
Q

)
having discriminant D > 1,

D a product of an even number of primes, and a maximal order O ⊂ H. Since H is
indefinite we can always assume a > 0. Let us denote by Γ(D, 1) the image under
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the monomorphism φ (cf. Eq.(3)) of the group of units of reduced norm 1 in O,
that is:

Γ(D, 1) = φ({ω ∈ O | N(ω) = 1}) ⊆ M(2,Q(
√
a)).

Remark 1.3. The group Γ(D, 1) is a Fuchsian group, a discrete subgroup of SL(2,R).
Its elements will be called quaternion transformations. More details about its ex-
pression can be found in [1].

As a reference, consider the family of quaternion algebras H =
(
p,−1
Q

)
. For any

prime p ≡ 3 mod 4, it is an indefinite quaternion algebra of discriminant 2 · p,
and Z[1, I, J, (1 + I + J + IJ)/2] is a maximal order. The group of quaternion
transformations Γ(2p, 1) is equal to{

γ =
1

2

(
α β

−β′ α′

)
| α, β ∈ Z[

√
p],det(γ) = 1, α ≡ β ≡ α√p (mod 2)

}
,

where α 7→ α′ is the quadratic conjugation: α = a+ b
√
p ∈ Z[

√
p], α′ = a− b√p.

Remark 1.4. The above construction is also valid for D = 1. In this case, the
corresponding group is the modular group SL(2,Z).

1.2. Fundamental domains for quaternion groups. Consider the complex up-
per half-plane H = {z ∈ C | =(z) > 0} endowed with the structure given by the
hyperbolic metric (cf. [1], [15]).

The group SL(2,R) acts on the complex upper half-plane H by Möbius trans-
formations and its action factorizes through SL(2,R)/± Id. Namely,

(1.2)
for all z ∈ H, γ =

(
a11 a12

a21 a22

)
∈ SL(2,R),

γ(z) =
a11z + a12

a21z + a22
, γ(∞) =

a11

a21
= lim
z→∞

γ(z).

The Fuchsian groups are discrete subgroups of SL(2,R) and they have a proper
and discontinuous action on H.

Definition 1.5. Let Γ be a Fuchsian group. A connected closed hyperbolic polygon
F in H is a fundamental domain for the action of Γ on H if

a) for any z, z′ in the interior of F , if there exists γ ∈ Γ such that γ(z) = z′,
then z = z′ and γ = Id,

b) for any z ∈ H, there exists z′ ∈ F and γ ∈ Γ such that γ(z) = z′.

By using fundamental domains with a pairing of the edges, a presentation of a
Fuchsian group can be found. Explicit fundamental domains for several Fuchsian
groups of quaternion transformations Γ(D, 1) and their presentations can be found
in [1]. Next, we include some examples of the presentations for the groups Γ(6, 1),
Γ(10, 1) and Γ(15, 1) (cf. [1] Thm. 5.46, Thm. 5.47, Thm. 5.49), as they will
be used to exemplify the results of this paper. An algorithm applicable to a more
general setting was stated in [26].

Each election of a fundamental domain for the action of a Fuchsian group Γ(D, 1)
leads to a regular tessellation of the upper half-plane by hyperbolic polygons, which
will be useful for the construction of Fuchsian codes.
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Example 1.6. Consider the Fuchsian group Γ(6, 1), which will be used as the main
example throughout the paper. A fundamental domain is displayed in Fig. 1 and
the corresponding presentation is the following:

Γ(6, 1)/± Id = 〈g1, g2, g3 | g3
1 = g3

2 = g2
3 = (g−1

1 g3g2)2 = 1〉, where

g1 := 1
2

(
1 +
√

3 3−
√

3

−3−
√

3 1−
√

3

)
, g2 := 1

2

(
1 +
√

3 −3 +
√

3

3 +
√

3 1−
√

3

)
, g3 :=

(
0 1
−1 0

)
.

a

a

b

b

c c

-1.0 -0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 1. A fundamental domain for Γ(6, 1) with the pairing of
the edges.

Example 1.7. A presentation for the Fuchsian group Γ(10, 1) is the following:

Γ(10, 1)/± Id = 〈g1, g2, g3 | g3
1 = g3

2 = (g−1
3 g1)3 = (g−1

3 g2)3 = 1〉, where

g1 :=
1

2

(
1 +
√

2 −1 +
√

2

−5(1 +
√

2) 1−
√

2

)
, g2 :=

1

2

(
1 +
√

2 1−
√

2

5(1 +
√

2) 1−
√

2

)

and g3 :=

(
3 + 2

√
2 0

0 3− 2
√

2

)
.

Example 1.8. A presentation for the Fuchsian group Γ(15, 1) is the following:

Γ(15, 1)/± Id = 〈g1, g2, g3 | (g1g3)3 = (g3g
−1
2 g1g2)3 = 1〉, where

g1 := 1
2

(
−4 + 3

√
3 −

√
3

5
√

3 −4− 3
√

3

)
, g2 := 1

2

(
3 1
5 3

)
, g3 :=

(
2 +
√

3 0

0 2−
√

3

)
.

The construction of fundamental domains is based on the use of isometric cir-
cles, a geometric object that will be used in the implementation of our decoding
algorithm.

Definition 1.9. Given γ =

(
a11 a12

a21 a22

)
∈ Γ such that a21 6= 0, the isometric circle

of γ is

I(γ) = {z ∈ H | |a21z + a22| = 1}.
The center and the radius of I(γ) are the real numbers −a22/a11 and |1/a21|,

respectively.
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Definition 1.10. For a Fuchsian group Γ and a fixed fundamental domain F(Γ)
as above, let us denote by G the set of elements in Γ such that the edges of F(Γ)
are included in the set of isometric circles defined by the elements of G. Let us
denote M = |G|.

Remark 1.11. We will split G in two sets denoted by Gint and Gext in such a way
that the fundamental domain F(Γ) is the closure of⋂

γ∈Gext

ext(I(γ))
⋂

γ∈Gint

int(I(γ)),

where ext(I(γ)) and int(I(γ)) denote the exterior and the interior of the isometric
circle I(γ), respectively. The presentation of the group arises from the pairing of
the edges; thus we can assume the generators of Γ are included in G.

This is illustrated in Fig. 2, where we have depicted a fundamental domain
for Γ(6, 1) (cf. Ex. 1). The isometric circles corresponding to the edges of the
hyperbolic polygon are displayed, labeled in terms of the generators of the group.
In this example,

Gext = {g1, g
−1
1 , g2, g

−1
2 }, Gint = {g3}, and M = 5.

IHg1
-1L

IHg1L

IHg3L

IHg2L IHg2
-1L

-1.0 -0.5 0.5 1.0

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

Figure 2. A fundamental domain for Γ(6, 1) labeled with isomet-
ric circles.

2. Construction of Fuchsian codes

In this section, we will show in detail how to construct and decode Fuchsian
codes in an AWGN channel. The first subsection describes our proposal for the
construction of a new family of Fuchsian codes. The second subsection introduces
the point reduction algorithm (PRA) [2], which will be used for decoding in the
third subsection.

In what follows Γ will be a Fuchsian group Γ(D, 1) with D > 1 a product of
an even number of primes. In fact, our construction could be formulated more
generally in terms of compactness for any cocompact Fuchsian group Γ.

2.1. Construction. Let us now fix a Fuchsian group Γ = Γ(D, 1), a fundamental
domain F = F(Γ) and an ordered set of generators G. We choose a point τ in the
interior of F ; this condition ensures that γ(τ) 6= τ for all γ ∈ Γ \ {± Id}.
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The first step in the code construction is to choose N elements in Γ. We denote
this finite set by SΓ = {γ1, . . . γN}. The first elements can be directly taken to be
the generators of the group, and the rest will be expressed as products of generators.
Later on in this section we will discuss the choice of the elements γ ∈ SΓ in more
detail.

Considering the action of the group Γ in the complex upper half-plane H defined
in (1.2), we obtain the points γ1(τ), . . . γN (τ) in H. These will serve as the first
points to be included in our codebook. We can double the number of points by
expanding to the lower half-plane in a natural way by including the opposites−γ(τ).
This has two advantages:

(1) Duplicating the code size in this way does not increase the average/maximum
energy (cf. Eq. (4.2)) of the constellation, since |γ(τ)| = | − γ(τ)|.

(2) The complexity of our decoding algorithm (Sec. 2.3) is related to the max-
imum number of generators gi in the presentation of γ as a product of
generators. Hence, it is favorable to construct the code by using as few
different matrices γ as possible to avoid having to involve more generators
than necessary.

Table 1 below summarizes the construction process.

Table 1. Sketch of the code construction process.

FIX:
the Fuchsian group Γ and a
fundamental domain F(Γ)

↓
CHOOSE:

SΓ = {γ1, . . . γN} ⊂ Γ
τ in the interior of F(Γ)

↓
CONSTRUCT the CODE:
C = {±γ1(τ), . . .± γN (τ)}

|C| = 2N

Formally, we define a Fuchsian code as follows.

Definition 2.1. Let Γ be a Fuchsian group defined as above. Given a fundamental
domain F(Γ), a set SΓ, and a point τ in the interior of F(Γ), we define the associated
Fuchsian code as C = {±γ(τ) | γ ∈ SΓ} ⊆ C.

The point τ is called the center of the code. For a fixed code size q = |C| =
2N , the corresponding constellations will be referred to as nonuniform Fuchsian
constellations, q-NUF in short.

Remark 2.2. Nonuniform constellations have been used already in early-state signal
transmission, e.g., in the so-called codec transmission, and are present more recently
in the DVB-NGH standard. Currently, the use of certain nonuniform constellations
is being discussed and seriously considered for the multi-antenna extension of the
terrestrial DVB standard (DVB-T2). While in this paper we are considering the
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AWGN channel, which in the context of DVB is mainly relevant for satellite trans-
mission and the theoretical understanding of the codes, our aim is to generalize this
framework to fading channels and to design codes directly applicable to the general
DVB framework. For more information, see [10].

Example 2.3. Let us consider the Fuchsian group Γ(6, 1) and the fundamental
domain displayed in Table 2 below, which collects the data used for generating
Fuchsian codes of size 4, 8, and 16, in terms of the generators (cf. the presentation
given in Example 1.6. The explicit values of the codewords in C are also included.
The 16-NUF constellation is displayed in Fig. 3. For brevity, the codes arising from
Example 1.7 and Example 1.8 are given in terms of the center and generators.

Table 2. Explicit choices for τ and SΓ and the list of resulting
codewords in C ∩ H, q = |C| = 4, 8, 16, for Γ(D, 1).

Γ(6,1) τ =
1

2
i

q = 4 SΓ = {Id, g−1
1 }

Codewords i
2 ,−

5
7 (−3 + 2

√
3)− 4

7 i(−2 +
√

3)

q = 8 SΓ = {Id, g−1
1 , g−1

2 , g3}

Codewords i
2 ,−

5
7 (−3 + 2

√
3)− 4

7 i(−2 +
√

3)

5
7 (−3 + 2

√
3)− 4

7 i(−2 +
√

3), 2i

q = 16 SΓ = {Id, g−1
1 , g−1

2 , g3, g1, g2, g
−1
1 g3, g2g3}

Codewords i
2 , −

5
7 (−3 + 2

√
3)− 4

7 i(−2 +
√

3)

5
7 (−3 + 2

√
3)− 4

7 i(−2 +
√

3), 2i

1
193 (96− 131

√
3) + 4

193 i
(
14 +

√
3
)
, − 1

193 (96− 131
√

3) + 4
193 i

(
14 +

√
3
)

− 5
13 (−3 + 2

√
3)− 4

13 i(−2 +
√

3), 5
13 (−3 + 2

√
3)− 4

13 i(−2 +
√

3)

Γ(10,1) τ = 2
5 i

q = 4 SΓ = {Id, g−1
1 }

q = 8 SΓ = {Id, g−1
1 , g−1

2 , g1}

q = 16 SΓ = {Id, g−1
1 , g−1

2 , g1, g2, g1g
−1
2 , g2g

−1
1 , g−1

3 }

Γ(15,1) τ = 9
10 i

q = 4 SΓ = {Id, g2}

q = 8 SΓ = {Id, g2, g1, g
−1
2 }

q = 16 SΓ = {Id, g2, g1, g
−1
2 , g−1

1 , g−1
3 , g−1

2 g1g2, g
−1
2 g−1

1 g2}

2.2. The point reduction algorithm (PRA). In order to decode the Fuchsian
codes in AWGN channels, we first show that this problem is equivalent to certain
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Figure 3. Example of 16-NUF constellation for Γ(6, 1).

point reduction in the upper half-plane. As we saw in the definition of a funda-
mental domain, any point in the complex upper half-plane has its equivalent in the
fundamental domain. Using this fact and a finite number of Möbius transforma-
tions we will be able to recover the transmitted points. To this end, we will employ
the so-called point reduction algorithm. In what follows, we will explain the general
guidelines of the algorithm, originally presented in [2].

Given a cocompact Fuchsian group Γ and a fundamental domain F(Γ) ⊆ H, the
algorithm reduces a given point z ∈ H to a point z0 ∈ F , and yields a transformation
t ∈ Γ such that t(z) = z0. Shortly:

Input: a point z ∈ H.

Output: a point z0 ∈ F , and a matrix t ∈ Γ such that t(z) = z0.

Next, consider the finite ordered set G derived from the fundamental domain
by taking into account the isometric circles (cf. Section 1), G = Gint ∪ Gext. The
following algorithm is adapted from the point reduction algorithm in [2], where a
proof of correctness is given, based on results in [15]. The complexity of the point
reduction algorithm is treated in full detail in Section 3.

The following definition of depth will help us to choose codewords that contribute
as little as possible to the complexity of the above algorithm.

Definition 2.4. Let F(Γ) be a fundamental domain of a Fuchsian group Γ similarly
as above. We define the depth of a point z ∈ H as the number `(z) of iterations
of the algorithm, namely iterations of step 3, to reduce z to a point z0 ∈ F . The
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ALGORITHM

Step 1 Initialize: z0 = z and t = Id.
Step 2 Check if z0 ∈ F .

If z0 ∈ F , return z0 and t. Quit.
If z0 6∈ F , return g ∈ G such that:

z0 ∈ int(I(g)), if g ∈ Gext,
z0 ∈ ext(I(g)) if g ∈ Gint.

Step 3 Compute z0 = g(z0) and t = g · t. Go to Step 2.

depth of a matrix γ ∈ Γ is defined as the number `(γ) of iterations of the algorithm
to reduce the point γ(p) to the point p, for any point p in the interior of F(Γ). It
is straightforward to see that this number is independent of the choice of p, so it is
well-defined. The depth of a set S ⊆ Γ is defined as `(S) = max{`(γ) | γ ∈ S}.

We immediately observe that the identity element Id ∈ Γ satisfies `(Id) = 0. We
can control the depth as follows.

Lemma 2.5. Let Γ be a cocompact Fuchsian group, S a finite ordered set of gen-
erators of Γ such that for any γ ∈ S also γ−1 ∈ S. Then `(S) = 1.

Lemma 2.6. If `(γ) = κ, then γ can be written as the product of κ elements in G.

2.3. Decoding of Fuchsian codes. Let τ be the center of the code, x ∈ C ⊂ C
the transmitted codeword and y the received signal, y = x+ w = γ(τ) + w, where
w is the Gaussian noise. In order to remain in the upper half-plane, we initialize
the algorithm with z0 = y, if =(y) > 0, and with z0 = −y, if =(y) < 0. Since R has
measure zero in C, the case =(y) = 0 occurs with probability zero.

Let us first consider the case =(y) > 0. We use the above point reduction
algorithm to obtain a point γ′(y) ∈ F , and store the matrix γ′. The decoded word
will be γ′−1(τ). If the channel quality is sufficient, we shall have γ′ = γ−1 and we
can recover x.

If =(y) < 0, then we reduce the point −y; thus, we obtain a matrix γ′ such that

(γ′ ◦ n)(y) ∈ F , where n =

 −1 0

0 1

 , n(y) = −y.

The decoded word will be γ′′−1(τ), where γ′′ = γ′◦n. Again, with sufficient channel
quality, we shall have (γ′′)−1 = n ◦ γ, and we can recover x.

Next we will apply the properties of PRA to the choice of the codewords.

Definition 2.7. Let again F(Γ) be a fundamental domain of a Fuchsian group Γ
defined as above. We define the depth of the code C as

`(C) = max{`(x) |x ∈ C}.

Now we have all the tools to construct a set SΓ with good properties. We fix
the point p = τ ∈ F to be the center of the code in order to consider the depth of
elements in Γ. We define

SκΓ = {γ ∈ Γ | `(γ) ≤ κ} and θκ = |SκΓ|.

Remark 2.8. Fuchsian groups are infinite groups and θκ−1 < θκ. The study of the
values θκ is done by using the growth function. Results on cocompact Fuchsian
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groups were presented in [5].
Therefore, our task is to search for the smallest κ such that θκ−1 < |C| ≤ θκ. Then,
for the code size |C|, we will choose SΓ such that

SΓ ⊆ SκΓ.

The advantages of the above condition are twofold:

(1) This choice will optimize the running time of the algorithm since our code
will consist of matrices with minimal depth.

(2) We are considering good tiles for the codewords as they are obtained from
the edges of the fundamental domain in a systematic way, hence keeping
them as close as possible to the initial tile.

This criterion was used to build the example of 16-NUF constellation. The first
advantage is reflected in the data in Table 2, and the second one in the tiles in
Fig.3.

Remark 2.9. We have constructed the codes starting from a fundamental domain
and the group generators. However, in the case when the explicit domain or gener-
ators cannot be computed, we need to think of other construction methods. This
can be done by a general parametrization to come up with a desired number of
matrices γi, and will be explained in detail in Appendix. We also point out that
in this case, since the point reduction algorithm requires the information about the
fundamental domain and the generators, modifications to the algorithm are needed.
Naturally, one can always choose to do ML decoding.

3. Complexity

In this section we see how the properly discontinuous character of the action of a
Fuchsian group Γ implies fast decoding. Let C = {±γ(τ) | γ ∈ SΓ} be the codebook
. Since we have chosen τ in the interior of F , all the points in the codebook are
indeed distinct, so |C| = 2N .

Consider G the set of elements in Γ defined in Section 1 according to the election
of the fundamental domain, G = Gint ∪Gext.

Proposition 3.1. The complexity of the decoding algorithm for a Fuchsian code C,
in number of arithmetic operations (i.e. sums, differences, products, and divisions)
is

rC ≤ `(C)(5M + 14) + 5M + 7,

where M is defined as in Def. 1.10. Hence, M is a constant7 independent of the
code size |C|.

Proof. First we take in account Steps 1-3 for the PRA.
Step 1. The algorithm initializes z0 to be either the channel output y or −y,

depending on the sign of =(y). The accumulator matrix t is set to be the identity.
These initializations do not imply arithmetic operations.

Step 2. This step consists of checking whether the point z0 belongs to the funda-
mental domain. Since the fundamental domain is given in terms of the intersection
of the exteriors or interiors of the isometry circles (cf. Remark 1.11), this requires
to check recursively if the point belongs to the interior of I(γ) for γ ∈ Gint, and to

7To give some idea as to how big the constant M is, we have M = 5 , 6, 8 for Γ(6, 1), Γ(10, 1),
Γ(15, 1), respectively.
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the exterior of I(γ) for γ ∈ Gext. Hence, if the point belongs to the fundamental
domain, this step will finish after checking the M isometry circles corresponding
to G, and the algorithm will stop. Otherwise, it will find g ∈ G such that the
condition on the isometry circle I(g) is not satisfied. In the worst case, we are
checking M isometry circles. To determine whether or not a given complex number
belongs to an isometry circle implies performing 5 arithmetic operations (2 real
multiplications, 1 sums and 2 differences). Hence, this step takes 5M arithmetic
operations.

The matrix of g is stored in this step. This does not imply arithmetic operations.
In fact we can avoid storing matrices at this step, because G is an ordered set and
to store the index will be enough.

Step 3. In case the point does not belong to the fundamental domain, the
algorithm continues in this third step. Here, once we have identified an element
g such that the interior of its isometry circle contains the point (by the previous
step), we multiply the accumulator t by g, which requires 12 arithmetic operations
(2 products and 1 sum per entry), and update zk+1 = g(zk), which accounts for 7
arithmetic operations, 19 arithmetic operations all told. Then we go to Step 2, but
now we can avoid checking with the element g just applied, which means at most
5(M − 1) operations.

Thus, given a point, the PRA returns the element γ′ with `(C) iterations, which
means applying Step 2 once and Step 3 `(C) times, followed by Step 2. In total at
most `(C)(5M + 14) + 5M operations.

Finally, the decoded word is obtained by computing γ′−1(τ), i.e., 7 arithmetic
operations, since det(γ′) = 1.

Summarizing, we have rC ≤ `(C)(5M + 14) + 5M + 7. �

A study of Fuchsian codes for the group Γ(6, 1) was carried out in order to
compare the growth of the depth, `(C), with the growth of the code size, |C|, prior
to developing these theoretical results. In the following table, the growth of `(C)
and the growth of |C| are compared.

Table 3. Experimental relationship between the depth `(C) and
the size |C|, for Fuchsian codes C attached to Γ(6, 1).

|C| 4 8 16 32 64 128 256 512 1024

`(C) 1 1 2 3 3 4 5 5 6

Proposition 3.2. Let Γ be a Fuchsian group containing a non-abelian free sub-
group. Then

`(C) ≤ κ0

(
log(|C|+ 2)

log(2)
− 2

)
,

where κ0 ≥ 1 is a constant depending only on the Fuchsian group.

Proof. Let h1, h2 ∈ Γ such that 〈h1, h2〉 ⊆ Γ is a non-abelian free subgroup and
denote κ0 = max{`(h1), `(h2)}.
Consider St = {hi1hi2 · · ·him | hij ∈ {h1, h2}, m ≤ t} ⊂ 〈h1, h2〉.
We have |St| = 2t+1 − 1, because of the non-abelian free character.
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Since it is clear that `(St) = tκ0, we have

St ⊂ Stκ0

Γ , thus |Stκ0

Γ | ≥ 2t+1 − 1.

Taking in account the duplication process, a Fuchsian code C can be constructed
in such a way that |C| ≥ 2(2t+1−1), and the depth `(C) ≤ tκ0. It follows then that

t ≤ log(|C|+ 2)

log(2)
− 2, then `(C) ≤ κ0

log(|C|+ 2)

log(2)
− 2.

�

Remark 3.3. Notice that if we were able to use a fundamental domain of Γ in such
a way that h1, h2 ∈ G, then κ0 = 1. For the Fuchsian groups Γ(D, 1) the choice
of an element h1 can be done by using the principal homothety of Γ, studied in
[1], related to a fundamental unit of the real quadratic field Q(

√
a) (cf. Eq. (3)).

Estimation of κ0 in general is a difficult problem; some partial results have been
proved in, e.g., [22].

By using the above propositions we arrive at the following upper bound for the
complexity.

Corollary 3.4. Let C be a Fuchsian code attached to a group Γ containing a non-
abelian free subgroup. Then the complexity can be upper bounded as

rC ≤ rC = κ0(5M + 14)

(
log(|C|+ 2)

log(2)
− 2

)
+ 5M + 7,

where κ0 is a constant depending only on the group Γ and the choice of its funda-
mental domain.

Since the Fuchsian groups considered in this paper are non-elementary, they
have a free a non-abelian subgroup ([12]). In particular, this free non-abelian
subgroup has at least two generators, for otherwise it would be cyclic. Hence, the
complexity bound in corollary 3.4 holds for our constructions. In fact, for Γ(6, 1) an
experimental value of κ0 = 1 is obtained, which leads to a very interesting bound
for the complexity, especially when |C| ≥ 25.

Taking into account the experimental value of κ0 = 1 for Γ(6, 1), we compare
the decoding complexity by using the point reduction algorithm to the complexity
of ML decoding, i.e., exhaustive comparison of the received signal with all the
elements in the codebook, and choosing the closest one. As mentioned earlier, the
ML method consists of 5|C| − 1 comparisons. To do this, we use the bound in
Corollary 3.4, taking into account that M = 5 for Γ(6, 1). In Table 4, we depict
the complexity reduction for different code sizes |C|. The entries of the table give
the complexity reduction percentage (CRP),

CRP|C| = 100

(
(5|C| − 1)− rC

5|C| − 1

)
for |C| = 4, 8, 16, 64, 256, 512, and 1024. Note that a zero entry means that it is
favorable, in terms of complexity, to use ML decoding instead of the PRA.
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Table 4. Complexity reduction percentage achieved with the
PRA decoding of the Fuchsian codes attached to Γ(6, 1), compared
to ML decoding for code sizes |C| = 4,8,16,64,256,512,1024.

CRP4 CRP8 CRP16 CRP64 CPR256 CRP512 CRP1024

0 0 0 5.79 70.40 83.68 91.08

Remark 3.5. Since we have used the complexity upper bound rC , the above CRPs
are somewhat pessimistic. Nevertheless, even with the upper bound the reduction
quickly grows enormously.

4. Code design criterion for Fuchsian code optimization

In the previous sections, we have shown how to construct Fuchsian codes from
scratch and how to decode them with the point reduction algorithm (PRA). How-
ever, the simulations we have carried out (cf. [4]) demonstrate that the typical
design criterion for codes used in conjunction with a ML (or lattice decoder) does
not work for the PRA decoder. Hence, there is a call for a new design criterion for
codes to be used in conjunction with PRA decoder.

In more detail, for ML decoding, the performance is well dictated by the nor-
malized minimum distance, and hence the goal is to maximize the function

(4.1) ∆ML(C) =
d2
min(C)
Pav(C)

,

where

d2
min(C) = min

x,x′∈C

{
|x− x′|2 |x 6= x′

}
is the squared minimum distance between distinct codewords, and

(4.2) Pav =
1

|C|
∑

γ(τ)∈C

|γ(τ)|2

is the average transmission power of C.
In this section, our aim is to develop a similar function ∆PRA that predicts the

performance of Fuchsian codes with the point reduction algorithm. The key design
metric stems from the fact that a decoding error will happen if the noise is so
big that the received point belongs to a different tile than the one containing the
transmitted point, and hence the point reduction algorithm returns a wrong point.
Therefore, it is crucial to choose the fundamental domain and the center of the
code in such a way that all the codewords have maximal possible distance to the
decoding border, i.e., to the closest isometric circle defining the closest neighboring
tile. We will refer to this distance as border distance. Let bx be the closest point
on the closest isometry circle to x. We define the minimum border distance of a
Fuchsian code formally as follows.

Definition 4.1. The minimum border distance of a Fuchsian code C is

bd2
min(C) = min

x∈C

{
|x− bx|2

}
We have arrived at the following design criterion.



NONUNIFORM FUCHSIAN CODES FOR NOISY CHANNELS 17

Code design criterion for Fuchsian codes

In order to optimize the performance of a Fuchsian code C with a point reduc-
tion algorithm decoder one should seek to maximize the normalized minimum
border distance function

∆PRA(C) =
bd2
min(C)
Pav(C)

,

where Pav(C) is the average transmission power of C.

Notice that in order to fairly compare the functions of different decoding al-
gorithms, one should compare ∆ML to 4∆PRA, since d2

min(C) = 4bd2
min(C) for

symmetric codebooks with symmetric decoding regions. That is, the distance be-
tween the points is the distance from the first point to the border, and from the
border to the second point, which is two times the border distance, giving the con-
stant 4 due to squaring. This criterion motivates future work on code optimization
by considering different Fuchsian groups, tessellations, and centers τ .

Remark 4.2. In [4] we have observed that the best of our 4-NUF codes is outper-
formed by the 4-QAM except for very low SNRs. On the other hand, the gap to
the worst 4-NUF is so vast that it gives hope to improve by another similar gap,
which would bring us very close to 4-QAM. Considering the logarithmic decoding
complexity8, some performance loss can easily be tolerated.

5. Conclusions and further research

In this paper, we have designed a new class of codes called Fuchsian codes. These
codes were obtained by considering constellations on the complex plane arising from
the Möbius transformation related to a Fuchsian group coming from units in rational
quaternion algebras.

We have described the construction and decoding process of the proposed codes
in full detail, providing also numerous explicit examples. According to [4], the dif-
ferences in the performance of different Fuchsian codes can vary drastically. Hence,
as a motivation for future work, we have provided a design criterion in order to con-
struct optimal Fuchsian codes, after having given the preliminary guidelines and
first ad hoc constructions in this paper.

In forthcoming work we will apply the construction method presented herein
to different groups, fundamental domains, tessellations, generators, and centers τ ,
hopefully being able to significantly improve the performance. In addition, prelim-
inary studies suggest that the point reduction algorithm can be improved at the
penalty of increasing the worst-case complexity order to O(log2 |C|). A remarkable
advantage of our construction is its generality, giving us an enormous design space.

We will also consider the issue of error correction after point reduction, while
not substantially increasing the complexity. Another interesting extension is to
consider Fuchsian codes for fading channels and multi-antenna communications.

8In general, there are also fast decoding algorithms for QAM constellations, but they come with
a complexity–performance tradeoff, meaning that also the performance of a QAM constellation is

degraded if we use suboptimal algorithms that are faster.
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APPENDIX: Generation of the constellations without generators

We address now the problem of how to produce the 4-tuples (x, y, z, t) ∈ Z4

such that x2 − ay2 − bz2 + abt2 = 1, in the case in which the generators of the
Fuchsian group Γ(D, 1) are not known or they are too complex to determine. This
construction will be used to obtain the matrices of Γ(D, 1) acting on τ by Möbius
transforms. In the first subsection, we develop a constructive method for an infinite
family of quaternion algebras, the so called small ramified quaternion Q-algebras
of type A [1], while in the second subsection, we show that an infinite subset of
elements of the constellation can be produced in general provided that we are able
to solve the attached normic equation.

Explicit constructive method. We will suppose here that our quaternion al-

gebras have the form
(
p,−1
Q

)
with p > 0 prime and p ≡ 3 (mod 4). This case is

known in the literature as small ramified of type A, and the discriminant of the
quaternion algebra in this case is 2p.

Let us write the quaternion matrix γ = γ(x, y, z, t) (cf. Section 1) in terms
of the four integer symbols (x, y, z, t) involved. Notice that only three symbols in
each 4-tuple are independent, hence, we would like to parametrize the set of these
4-tuples by an infinite set of 3-tuples (m, k1, k2) ∈ Z. Since the quaternion algebra(
p,−1
Q

)
is indefinite, one has that the normic equation x2 − py2 + z2 − pt2 = 1 has

infinitely many integer solutions (cf.[1]). It is possible to parametrize all the rational
solutions of this normic equation by means of rational functions in three variables,
but using this method to produce integer solutions seems a difficult task. Instead,
we will develop an explicit method to produce an infinite set of such solutions in
the small ramified type A. Next, we describe our construction in detail.

First, notice that for p ≡ 3 (mod 4), the ring of integers of the number field
Q(
√
p) is Z[

√
p]. The multiplicative group of units of this ring is {±εm : m ∈ Z},

where ε is a unit of infinite order (called a fundamental unit). This is a very par-
ticular version of Dirichlet’s theorem on units. We have provided the fundamental
units in Table 5 in order to make our method implementable in general. In most
symbolic algebra packages like Sage or Magma, it is easy to obtain extensive lists
of fundamental units.

Given an element θ = a+
√
pb ∈ Q(

√
p), let us denote by θ′ its Galois conjugate,

i.e., a −√pb. For the rest of this section, we will denote by ε a fundamental unit
of Z[

√
p] and will suppose ε > 0, by taking a Galois conjugate and multiplying by

−1 if necessary.
Given a triple (m, k1, k2) of nonnegative integers (m 6= 0), define am +

√
pbm =

εm. We have that a2
m−pb2m = εm(ε′)m = 1. Now, set xm,k1 +

√
pym,k1 := amε

k1 and

zm,k2 +
√
ptm,k2 :=

√
pbmε

k2 . Notice that x2
m,k1
−py2

m,k1
= a2

m and z2
m,k2

+pt2m,k2 =

−pb2m, hence

x2
m,k1 − py

2
m,k1 + z2

m,k2 − pt
2
m,k2 = a2

m − pb2m = 1.

We will use the notation

φp(m, k1, k2) = (xm,k1 , ym,k1 , zm,k2 , tm,k2),

making it evident that we can parametrize an infinite subset of integer points of
the hyper quadric x2 − py2 + z2 − pt2 = 1 by using three variables .
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Table 5. Fundamental units ε for Z[
√
p], p ≡ 3 (mod 4), p < 50

p = 3 2 +
√

3 p = 23 24 + 2
√

23

p = 7 8 + 3
√

7 p = 31 1520 + 237
√

31

p = 11 10 + 3
√

11 p = 43 3482 + 531
√

43

p = 19 170 + 39
√

19 p = 47 48 + 7
√

47

Proposition 6.1. For each prime number p ≡ 3 (mod 4), the map φp is bijective
over its image, which is contained in the set

{(x, y, z, t) ∈ Z4
≥0 |x2 − py2 = m2, z2 − pt2 = −pr2, for some m, r ∈ Z}.

Proof. Let (m1, k1,1, k1,2) and (m2, k2,1, k2,2) be two triples of nonnegative integers
with m1,m2 6= 0. Suppose m1 = m2 = m. If k1,1 6= k2,1, then amε

k1,1 6= amε
k2,1

and φp(m1, k1,1, k1,2) 6= φp(m2, k2,1, k2,2). The case k2,1 6= k2,2 is analogous. Sup-
pose that m1 6= m2. In this case, am1

6= am2
or bm1

6= bm2
. Suppose that

am1 6= am2 . In this case, am1ε
k1,1 6= am2ε

k2,1 , since otherwise, a2
m1

= a2
m2

, and
since ε > 0, we would have that am1 = am2 . The remaining case is identical. �

As an illustration of our method, in Table 6 the reader can find a set of images of
the parametrization φp for some different values of p and different domain entries.

Table 6. Explicit parametrization at different values for p = 3, 7, 11

(m, k1, k2) φ3 φ7 φ11

(1, 0, 1) (2, 0, 3, 2) (8, 0, 63, 24) (10, 0, 99, 30)

(2, 0, 1) (7, 0, 12, 8) (127, 0, 1008, 384) (199, 0, 1980, 600)

(2, 1, 1) (14, 7, 12, 8) (1016, 381, 1008, 384) (1990, 597, 1980, 600)

The explicit parametrization of the whole group of units is a delicate problem.
On the contrary to the number field setting, the structure of the group of units
of reduced norm 1 in quaternion algebras has not been explicitly described yet.
However, there exist some interesting theoretical results, see [7].

General theoretical approach. Let H =
(
a,b
Q

)
be an indefinite quaternion Q-

algebra of discriminant DH > 1. Let us recall the following result.

Lemma 6.2. [1, Thm. 4.3] Let H be a quaternion Q-algebra with discriminant DH

and F a quadratic number field with discriminant DF . The following statements
are equivalent:

1) There exists an embedding of F into H.

2) For every prime number q such that q | DH ,
(
DF

q

)
6= 1.

We are interested in quadratic fields Q(
√
q) which can be embedded in a quater-

nion algebra of discriminant DH . Again, we assume that q ≡ 3 (mod 4). As an
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application of the above lemma, we have the following result, which will be used
later.

Lemma 6.3. For H =
(
p1p2
Q

)
, small ramified quaternion Q-algebra, the set A =

{q ≡ 3 (mod 4), q prime, Q(
√
q) ↪→ H} is infinite

Proof. According to lemma 6.2, the primes q such that Q(
√
q) embeds in H, are

precisely those such that
(

4q
p1

)
,
(

4q
p2

)
6= 1. Hence, we are seeking for prime numbers

q ≡ 3 (mod 4) such that both Legendre symbols are either 0 or −1. The existence
of such primes is granted by the Chinese reminder theorem and Dirichlet’s theorem
on primes in arithmetic progressions: indeed, the map

Z/p1p2Z → Z/p1Z× Z/p2Z

([a]p1p2) 7→ ([a]p1 , [a]p2)

is surjective, hence we can take ([a]p1 , [b]p2) ∈ Z/p1Z × Z/p2Z such that a is a

non-square modulo p1 and b a non-square modulo p2 (we have (p1−1)(p2−1)
4 pairs of

this kind) and find an inverse image x0 modulo p1p2. Now, for p1, p2 > 2, we apply
again the Chinese reminder reminder theorem to find x in Z/4p1p2Z congruent to
x0 modulo p1p2 and to −1 modulo 4. Now, by Dirichlet’s theorem on primes in
arithmetic progressions, we have infinitely many prime numbers in the class of x
modulo 4p1p2. �

Fixing an embedding of Q(
√
q) into H is equivalent to fix a pure quaternion ω =

xI+yJ+zK ∈ H of norm −p, that is (x, y, z) ∈ Z3 such that ax2 +by2−abz2 = q.
Since H is indefinite, this normic equation has infinitely many solutions, hence,
there exist bijections ϕp : N→ {(x, y, z) ∈ Z3 : ax2 + by2− abz2 = q}. Determining
such a bijection is equivalent to solve the diophantine equation ax2 +by2−abz2 = q,
which is a classical problem in number theory. It is possible to give asymptotic
estimates of the number of solutions, which involves the use of modular forms of
fractional weight 3/2 (cf. [9]). Nevertheless, there exists a polynomial algorithm
which computes finite sets of solutions (cf. [20]).

Now, given a real quadratic field Q(
√
q) embedded in H we can obtain units in

the natural order Z[1, I, J,K] of H from the group of units of the ring of integers
of the quadratic field, generated by ε = x + y

√
q (notice that the fundamental

unit ε is usually normalized so that x, y > 0 and its absolute value is greater
than 1, by taking Galois conjugate and/or changing sign, if necessary). Thus,
identifying the units in the quaternion order with the corresponding matrices in
the arithmetic Fuchsian group Γ(D, 1), we define maps ψq : N2 → Γ(D, 1) given by
ψq(t,m) = (x+ yϕq(t))

m
.

Proposition 6.4. The map ψq is injective when restricted to N× (N \ {0}).

Proof. Consider ψq(t1,m1) = ψq(t2,m2). Suppose first that m1 = m2 = m. Then,
since we have εm = l+ r

√
q, with r 6= 0, from l+ rϕq(t1) = l+ rϕq(t2), we deduce

ϕq(t1) = ϕq(t2), hence t1 = t2.
Suppose now that m1 6= m2. In this case, setting ψq(t1, n1) = l1 + m1ϕq(t1)

and ψq(t2,m2) = l2 + r2ϕq(t2), since riϕp(ti) is a pure quaternion, we have that
l1 = l2. However, by the binomial formula, and taking into account that ϕq(t1)2 =
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ϕq(t2)2 = q, we have

l1 =

m1∑
j = 0

j even

(
m1

j

)
yjq

j
2xm1−j .

Now assume m1 > m2 ≥ j, so we have that
(
m1

j

)
>
(
m2

j

)
, hence

l1 >

m2∑
j = 0

j even

(
m1

j

)
yjq

j
2xm1−j >

m2∑
j = 0

j even

(
m2

j

)
yjq

j
2xm2−j = l2,

which is a contradiction. �

With these maps we can produce a countable family of non-overlapping infinite
families of codewords:

Proposition 6.5. Let q1, q2 ≡ 3 (mod 4) be two different prime numbers such that
Q(
√
p1),Q(

√
q2) ↪→ H. Then ψq1(t1,m1) = ψq2(t2,m2) if and only if m1 = m2 = 0.

Proof. The if clause is trivial. Suppose ψq1(t1,m1) = ψq2(t2,m2). Writing ψq1(t1,m1) =
l1 +r1ϕq1(t1) and ψq2(t2,m2) = l2 +r2ϕq2(t2), we have that l1 = l2 and r1ϕq1(t1) =
r2ϕq2(t2). Taking squares we obtain r2

1q1 = r2
2q2, which implies r1 = r2 = 0 and,

since q1, q2 > 0, we deduce that m1 = m2 = 0. �

The above facts, allow us to conclude the following

Theorem 6.6. Let H =
(
p1,p2
Q

)
be a small ramified quaternion Q-algebra of dis-

criminant D with p1 ≡ 3 (mod 4) square free. Let Γ be the subgroup of Γ(D, 1)
consisting of matrices with entries in Z[

√
p1]. There exists a parametrization of an

infinite subset of Γ by three degrees of freedom.

Proof. Let A be the infinite set of primes ≡ 3 (mod 4) such that Q(
√
q) embeds

into H. For any p ∈ A, fix a generator of the unit group of the form xq + yq
√
q

with xq, yq > 0. Now, the map Ψ : A × N × (N \ {0}) → Γ(D, 1) defined by
Ψ(q, s,m) = ψq(s,m) is injective. �

Remark 6.7. Notice that this theorem is not explicit, since it depends on how to
produce the solutions of the normic form. But using the algorithm described in
[20], we can explicitly parametrize an infinite family of units by two dregrees of
freedom. Further studies on the structure of the group of units will allow us to
make the full parametrization more explicit.

Relation to the size duplication. If a matrix γ corresponds to the 4-tuple
(x, y, z, t), and this 4-tuple corresponds to the 3-tuple (m, k1, k2) of independent
nonnegative integers, then the matrix −γ corresponds to the 3-tuple (−m, k1, k2).
Notice that this is not ambiguous since the original triples are assumed to have
nonnegative entries, and θ > 0.

To recover the right 3-tuple from a received signal, we first check whether it
belongs to H or to −H. In the first case, we use the point reduction algorithm to
obtain (x, y, z, t) and the parametrization to obtain (m, k1, k2). In the second case,
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we have received v = −γk(τ) + n, hence, we apply the point reduction algorithm
to −v, obtain (x, y, z, t) and (m, k1, k2), and we decode it as (−m, k1, k2).
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