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Abstract

In this paper, stability of linearly coupled dynamical systems with feedback pinning algorithm is studied. Here, both
the coupling matrix and the set of pinned-nodes vary with time, induced by a continuous-time Markov chain with
finite states. Event-triggered rules are employed on both diffusion coupling and feedback pinning terms, which can
efficiently reduce the computation load, as well as communication load in some cases and be realized by the latest
observations of the state information of its local neighborhood and the target trajectory. The next observation is
triggered by certain criterion (event) based on these stateinformation as well. Two scenarios are considered: the
continuous monitoring, that each node observes the state information of its neighborhood and target (if pinned) in
an instantaneous way, to determine the next triggering event time, and the discrete monitoring, that each node needs
only to observe the state information at the last event time and predict the next triggering-event time. In both cases,
we present several event-triggering rules and prove that ifthe conditions that the coupled system with persistent
coupling and control can be stabilized are satisfied, then these event-trigger strategies can stabilize the system, and
Zeno behaviors are excluded in some cases. Numerical examples are presented to illustrate the theoretical results.

Keywords: pinning control; event-triggered rule; coupled dynamicalsystem; Markovian switching

1. Introduction

Control and synchronization of large-scale dynamical systems have attracted increasing interests over the last
several decades [1]-[9]. When a networked system is unstable by itself, many control strategies are designed to
stabilize the networked system. Among them, pinning control is effective, because it is economically realized by
controlling a partial of the nodes, instead of all nodes in the network. The general idea behind pinning control is
that when applying some local feedback controllers only to afraction of nodes, the rest of nodes can be propagated
through the network interactions among nodes [10]-[17].

More related to the present paper, for example in [18], the authors investigated the pinning control problem of
coupled dynamical systems with Markovian switching couplings and Markovian switching controller-set. In [18] and
most existing works in linearly coupled dynamical systems,each node needs to gather information of its own state
and neighbors states and update them continuously or in a fixed sampling rate [6]. However, as pointed out in [19],
the event-based sampling technique showed better performance than sampling periodically in time for some simple
systems. Hence, a number of researchers suggested that the event-based control algorithms can be utilized for the
purpose to reduce communication and computation load in networked systems [20]-[21] but still maintain control
performance [21]-[27]. Therefore, the event-based control is particularly suitable for networked systems with limited
resources and so has attracted wide interests in the scope ofdistributed control of networked systems. The idea
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of event-triggered control can be regarded as a specific temporal discretization approach, which was studied before
[6, 9]. As application, the event-based control was appliedfor consensus of multi-agent systems. For instance, [22]
investigated centralized and distributed formulation of event-driven strategies for consensus of multi-agent systems
and proposed a self-triggered setup; [23, 24] studied the stochastic event-driven strategies; [25] introduced event-
based control strategies for both networks of single-integrators with time-delay in communication links and networks
of double-integrators; By using scattering transformation, [26] studied the output synchronization problem of multi-
agent systems with event-driven communication in the presence of constant communication delays.

In some recent papers [29]-[30], the authors addressed event-triggered algorithms for pinning control of networks.
[29] gave an exponentially decreasing threshold function,while the event-triggering threshold in [28, 30] is prescribed
by the continuous or discrete states of agents and target. Inthese works, sufficient conditions were proposed, which
are based on the control gain, some quantities of the uncoupled node dynamics and the minimum eigenvalue of the
augmented Laplacian.

Motivated by these works including our previous work [18], in the present paper, we employ the event-triggered
strategy in both coupling configuration and pinning controlterms to realize stability in coupled dynamical systems
with Markovian switching couplings and pinned node set. At each node, the diffusion coupling and feedback pinning
terms are piecewise static based on the information of its local neighborhood and the target trajectory only at the latest
time of event, which is triggered by some specified criteria derived from the information of its local neighborhood
and target. In other words, once the triggering criterion ofnode is satisfied, the diffusion coupling and pinning
terms will be updated; otherwise these terms are constant between two successive event time points. We consider
two scenarios: continuous monitoring and discrete monitoring. In the continuous-monitoring scenario, each node
observes its neighborhood’s and the target’s states in an instantaneous way; on the contrary, in discrete-monitoring
scenario, each node can only obtain its neighborhood’s and target’s information at the last event-triggering time point,
which results in a small cost of monitoring (communication load) but the triggering events happening more frequently
than continuous monitoring, namely, higher computation load. For both scenarios, it is proved that the proposed
event-triggered rules guarantee the stability of the coupled dynamical systems under the local pinning algorithm.

This paper is organized as follows. After formulating the underlying problem in Sec. 2, the event-triggering
rules of diffusion and pinning terms are proposed to pin the coupled systems to a homogenous preassigned trajectory
of the uncoupled node system by using continuous and discrete monitoring scenarios in Sec. 3 and 4 respectively.
Simulations are given in Sec. 5 to verify the theoretical results. Strength, limitations of the work and possible orients
of future study are discussed in Sec. 6. Finally, this paper is concluded in Sec. 7.

2. Problem formation

In this paper, we consider a network of linearly coupled dynamical systems with discontinuous diffusions and
feedback pinning terms as follows:

ẋi(t) = f(xi(t)) + θi(σt, t
i
k), tik ≤ t < tik+1, i = 1, · · · ,m, (1)

where

θi(σt, t
i
k) = −c

m
∑

j=1

Lij(σt)Γ

[

xj(t
i
k)− xi(t

i
k)

]

− cǫDi(σt)

[

xi(t
i
k)− s(tik)

]

. (2)

Here, the system containsm nodes,xi(t) = [x1
i (t), · · · , xn

i (t)]
⊤ ∈ R

n denotes the state vector of nodei, the
continuous mapf(·) : Rn → R

n denotes the identical node dynamics.σt is a homogeneous Markov chain, which
will be specified later.L(σt) = [Lij(σt)]

m
i,j=1 ∈ R

m,m is the time-varying Laplacian matrix of the underlying time-
varying bi-graphG(σt) = {V,E(σt)}, with the node setV and time-varying link setE(σt): for each pair of nodes
i 6= j, Lij(σt) = −1 if i is linked toj at timet, otherwiseLij(σt) = 0, andLii(σt) = −∑m

j=1 Lij(σt). c is uniform
coupling strength at each node.Γ = [γij ]

n
i,j=1 ∈ R

n,n stands for the inner configuration matrix that describes the
coupling of components between the state vectors.Di(σt) = δD(σt)(i), whereδ·(·) is the characteristic function, i.e.
δD(σt)(i) = 1 if i ∈ D(σt), otherwiseδD(σt)(i) = 0 for the pinned node subsetD(σt) ⊂ {1, · · · ,m}, whereD(σt)
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denotes the node subset inV that are pinned at timet by a specific node dynamic trajectorys(t) with ṡ = f(s(t)),
s(0) = s0. ǫ is the pinning strength gain over the coupling strength.

Our aim is to provide sufficient conditions to guarantee thats(t) is a global stable trajectory for the coupled
system, namely

lim
t→∞

‖xi(t)− s(t)‖ = 0, ∀ i = 1, · · · ,m.

Here, we consider theL2-vector norm and denote it by‖ · ‖ throughout this paper. Let̂xi(t) = xi(t)− s(t). Then (1
and 2) become

˙̂xi(t) = f(x̂i(t) + s(t)) − f(s(t))− c

m
∑

j=1

Lij(σt)Γ

[

x̂j(t
i
k)− x̂i(t

i
k)

]

− cǫDi(σt)Γx̂i(t
i
k), t

i
k ≤ t < tik+1 (3)

Supposeσt is a homogeneous continuous Markov chain with a finite state spaceS = {1, 2, · · · , N} and its
infinitesimal generatorQ = [quv]N×N is given by

P{σt+∆ = v|σt = u} =

{

quv∆+ o(∆), u 6= v,
1 + quu∆+ o(∆), u = v,

where∆ > 0, o(∆) is a infinitesimal as∆ → 0, i.e, lim∆→0(o(∆)/∆) = 0, puv = − quv

quu
> 0 is the transition

probability fromu to v if v 6= u, while quu = −∑N

v=1,v 6=u quv. DenoteP = [puv] the transition matrix of the

Markov chain. The sojourn time in stateu is exponentially distributed with parameterqu , −quu.
LetPt,u(s,Λ) = P(σt+s ∈ Λ|σt = u) andEt,u(f(σs)) =

∫

f(y)Pt,u(s, dy). Denote byA the weak infinitesimal
operator ofσt. A functionf(σt, t) is said to be in the domain ofA if

lim
∆→0

Et,u(f(σt+∆, t+∆))− f(u, t)

∆

= lim
∆→0

Et,u(f(σt+∆, t+∆))− Et,u(f(σt+∆, t))

∆
+ lim

∆→0

Et,u(f(σt+∆, t))− f(u, t)

∆

=ft(u, t) + h(u, t)

and

lim
∆→0

Et,u(ft(σt+∆, t+∆) + h(σt+∆, t+∆)) = ft(u, t) + h(u, t).

Then, we writeAf(u, t) = ft(u, t) + h(u, t).
Note that for fixedt,

Et,u(f(σt+∆, t)) =

∫

f(y, t)Pt,u(∆, dy) =
∑

v

f(v, t)Pt,u(∆, v) =
∑

v

f(v, t)quv∆+ f(u, t).

Hence, by the Dynkin’s formula, we have

Af(u, t) = ft(u, t) +
∑

v

f(v, t)quv. (4)

Throughout the paper, we assumef(·, t) belongs to the following function class.

Definition 1. Function class QUAD(G,αΓ, β): let G be ann×n positive definite matrix andΓ be ann×n matrix.
QUAD(G,αΓ, β) denotes a class of continuous functionsf(ξ, t) : Rn × [0,+∞) 7→ R

n satisfying

(ξ − ζ)⊤G[f(ξ, t)− f(ζ, t)− αΓ(ξ − ζ)] ≤ −β(ξ − ζ)⊤G(ξ − ζ)

holds for allξ, ζ ∈ R
n.
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Definition 2. System (1,2) is said to be exponentially stable ats(t) in mean square sense, if there exists constants
δ > 0 andM > 0, such that

E

[

‖xi(t)− s(t)‖2
]

≤ Me−δt (5)

holds for allt > 0 and anyi = 1, · · · ,m.

3. Continuous monitoring

We briefly provide the basic idea of the setup of the coupling and pinning terms. Instead of using the simultaneous
state from the neighborhood and the target trajectory to realize stability, an economic alternative for the nodei is to
use the neighbors’ constant states at the nearest time pointtik until some pre-defined event is triggered at timetik+1;
if nodei is pinned at timet, it also obtains the target trajectory’s constant state at time pointtiki(t)

; then the incoming

neighbors’ and the target trajectory’s information is updated by the states attik+1 until the next event is triggered, and
so on. The event is defined based on the neighbors’, the targettrajectory’s and its own states with some prescribed
rule. This process goes on through all nodes in a parallel fashion. To depict the event that triggers the next time point,
we introduce following Lyapunov function:

V (x̂, t, σt) =
1

2
x̂⊤

(

P (σt)⊗G

)

x̂, (6)

wherex̂ = [x̂⊤
1 , · · · , x̂⊤

m]⊤, P (σt) ∈ R
m,m are diagonal positive definite matrices, induced byσt, andG ∈ R

n,n

is a positive definite matrix. Let̂F (x̂) = [(f(xi) − f(s))⊤, · · · , (f(xm) − f(s))⊤]⊤, D(σt) = diag[Di(σt)]
m
i=1,

L̂(σt) = L(σt) + ǫD(σt).
Note thatV (x̂, t, σt) is in the domain of the weak infinitesimal operator ofσt. Denotingσt = u, by (4), we have

AV (x̂, t, u) =
N
∑

v=1

quvV (x̂, t, v) + (
∂V (x̂, t, u)

∂x̂
)⊤

dx̂

dt
. (7)

Substitute (3) into (7), we get

AV (x̂, t, σt)
∣

∣

∣(3) = x̂⊤(t) [P (σt)⊗G]
[

F̂ (x̂(t))− αIm ⊗ Γx̂(t) + cz(t)
]

(8)

+ x̂⊤(t)

{

P (σt)
[

(αIm − cL̂(σt))⊗GΓ
]

+
1

2

∑

v

qσtvP (v)⊗G

}sym

x̂(t),

wherez(t) = [z⊤1 (t), · · · , z⊤m(t)]⊤ with

zi(t) =
∑

j

Lij(σt)Γ
[

xj(t)− xi(t)− xj(t
i
ki(t)

) + xi(t
i
ki(t)

)
]

+ ǫDi(σt)
[

xi(t)− s(t)− xi(t
i
ki(t)

)− s(tiki(t)
)
]

, (9)

and{S}sym denotes the symmetry part of a square matrixS, i.e.,Ssym = (S + S⊤)/2.
Let λm(·) andλM (·) denote the smallest and largest eigenvalues in module of a symmetry real matrix, and

λ = minv λm (P (v)⊗G), λ̄ = maxv λM (P (v)⊗G). From the conditionf ∈ QUAD(P, αΓ, β), we have

x̂⊤(t) [P (σt)⊗G]
[

F̂ (x̂(t))− αIm ⊗ Γx̂(t)
]

≤ −βλx̂⊤(t)x̂(t). (10)

For the term̂x⊤(t) [P (σt)⊗G] z(t), we have

x̂⊤(t) [P (σt)⊗G] z(t) ≤ υ

2
x̂⊤(t)(P 2(σt)⊗G2)x̂(t) +

1

2υ
z⊤(t)z(t) (11)

≤ υλ̄2

2
x̂⊤(t)x̂(t) +

1

2υ
z⊤(t)z(t)

holds for anyυ > 0. Then, we have the following theorem.
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Theorem 1. Suppose thatf belongs toQUAD(G,αΓ, β) with the positive matrixG andα > 0, β > 0, and there
exist diagonal positive definite matricesP (u), u = 1, · · · , N such that

{P (u)[αIm − cL(u)− cǫD(u)]⊗GΓ}sym +
1

2

N
∑

v=1

quvP (v)⊗G ≤ 0, for all u ∈ S. (12)

Then, under either of the following two updating rules, system (1) is exponentially stable at the homogeneous trajec-
tory s(t) in mean square sense:

(1) settik+1 by the rule

tik+1 = max

{

τ ≥ tik : ‖zi(τ)‖ ≤ (βλ− 1
2δλ̄)√

cλ̄
‖x̂i(τ)‖

}

(13)

where0 < δ ≤ 2βλ/λ̄ is a constant;
(2) settik+1 by the rule

tik+1 = max
{

τ ≥ tik : ‖zi(τ)‖ ≤ a exp (−bτ)
}

(14)

wherea > 0 andb > 0 are constants.

Proof. [Case (1).] Consider the event-triggering rule (13) and pick a constantδ with 0 < δ ≤ 2βλ/λ̄. By Dynkin
Formula [31], we have

EeδtV (x̂, t, σt) = EV (x̂(0), 0, σ0) + δE

∫ t

0

eδτV (x̂, τ, στ )dτ + E

∫ t

0

eδτAV (x̂, τ, στ )dτ. (15)

From (8)-(12), we have

EeδtV (x̂, t, σt) ≤ EV (x̂(0), 0, σ0) + δE

∫ t

0

eδτV (x̂, τ, στ )dτ − βλE

∫ t

0

eδτ x̂⊤(τ)x̂(τ)dτ

+
cυλ̄2

2
E

∫ t

0

eδτ x̂⊤(τ)x̂(τ)dτ +
c

2υ
E

∫ t

0

eδτz⊤(τ)z(τ)dτ

+E

∫ t

0

eδτ x̂⊤(τ)

{

P (στ )
[

(αIm − cL̂(στ ))
]

⊗GΓ +
1

2

∑

v

qστvP (v) ⊗G

}sym

x̂(τ)dτ

≤ EV (x̂(0), 0, σ0) + E

∫ t

0

eδτ
{[

−βλ+
δλ̄

2
+

cυλ̄2

2

]

x̂⊤(τ)x̂(τ) +
c

2υ
z⊤(τ)z(τ)

}

dτ (16)

for anyυ > 0. Note that

max
υ>0

2υ

c

[

βλ− δλ̄

2
− cυλ̄2

2

]

=
(βλ − 1

2δλ̄)
2

cλ̄2

and the maximum is reached if and only ifυ =
(βλ− 1

2
δλ̄)√

cλ̄
. Hence, lettingυ =

(βλ− 1

2
δλ̄)√

cλ̄
, (13) implies

‖zi(τ)‖2 ≤ 2υ

c

[

βλ − δλ̄

2
− cυλ̄2

2

]

‖x̂i(τ)‖2, i = 1, · · · ,m,

for all τ ≤ tik+1. Therefore, we have

EeδtV (x̂, t, σt) ≤ EV (x̂(0), 0, σ0), (17)

5



which implies

Eeδt‖xj(t)− s(t)‖2 ≤ 2

λ
EeδtV (x̂, t, σt) ≤

2

λ
EV (x̂(0), 0, σ0), ∀j = 1, · · · ,m. (18)

Therefore, we have

E‖xj(t)− s(t)‖2 ≤ 2e−δt

λ
EV (x̂(0), 0, σ0), ∀j = 1, · · · ,m. (19)

[Case (2).] Consider the event-triggering rule (14) and pick υ = 2βλ−δλ̄

cλ̄2
. Then, we have

−βλ+
δλ̄

2
+

cυλ̄2

2
= 0.

Substituting‖zi(τ)‖ ≤ a exp(−bτ) into (16) gives

EeδtV (x̂, t, σt) ≤ EV (x̂(0), 0, σ0) +
a2c2λ̄2

2(2βλ− δλ̄)
E

∫ t

0

e(−2b+δ)τdτ

= EV (x̂(0), 0, σ0) +
a2c2λ̄2

2(2βλ− δλ̄)

1

2b− δ

[

1− e(−2b+δ)t
]

.

LetC0 = a2c2λ̄2

2(2βλ−δλ̄)
1

2b−δ
. By the similar arguments as (17)-(19), we have

E‖xj(t)− s(t)‖2 ≤ 2e−δt

λ

(

EV (x̂(0), 0, σ0) + C0

[

1− e(−2b+δ)t
])

≤ C1e
−min(2b,δ)t, ∀j = 1, · · · ,m,

whereC1 = 2
λ
max(|EV (x̂(0), 0, σ0) + C0|, |C0|). This completes the proof.

Remark 1. If x̂(t1) = 0 holds, then from (13), at timet1, every node updated its feedback term and pinning term (if
pinned). Therefore, from (1,2), for anyt ≥ t1, x̂(t) = 0 holds, which meanŝx = 0 is an equilibrium of the system
under the event-triggering rules.

Remark 2. In fact, in our previous work [18], we studied pinning dynamic systems of networks with Markovian
switching couplings and controller-node set. By this theorem, we showed and proved that if the condition for the
stability of the coupled system with spontaneous coupling and control in [18] can be satisfied, then the event-trigger
strategies can stabilize the system too. Therefore, the issue of selection of pinned node in terms of guaranteeing
stability is totally the same with the system with spontaneous diffusion and control.

Under the updating rule (14), it can be proved that the Zeno behaviors [32] is excluded by the arguments as the
same fashion as in [29]. While for the updating rule (13), similar to work [22], it should be pointed out that there
exists at least one node such that its next inter-event interval is strictly positive.

Proposition 1. Suppose that all hypotheses of Theorem 1 hold. Under the updating rule (13), if the system does not
reach stability, then there exists at least one nodei ∈ {1, · · · ,m} such that the next inter-event interval is strictly
positive; Under the updating rule (14), if the system does not reach stability, the expectation of next inter-event interval
of every node is strictly positive, further, it is lower bounded by some positive constant.

The proof is the similar to those in [29, 22] with some modifications. In fact, if at any timet, there exists one
nodei such that (13) cannot hold as an equality for this nodei. Hence,tik+1 > t can be derived, which implies that
the inter-event interval for nodei is positive. Otherwise, at timet, (13) holds as an equality for every node, that is, all
nodes update their control law at this moment, which implieszi(t) = 0 holds for alli. However, since the network
has not been stabilized ats(t) yet, there exists at least nodej with x̂j(t) 6= 0, which impliestjk+1 > t holds, which
implies that the next inter-event interval for nodej should be positive.

In comparison, under the rule (14), supposeb < δ
2 , for each nodei, atτ = tik, we havezi(tik) = 0 but the right-

hand side of (14) is nonzero. Therefore,tik+1 > tik always holds and the low bound of the expectation of inter-event

intervals can be estimated as1
b
log {1 + 1

A+B
} with Lf the Lipschtiz constant off(·), A =

2mLf+2cm(m+ǫ)+Lf+cm

ab

andB = 2m+1
b

.

6



4. Discrete monitoring

In the discrete monitoring scenario, each nodei can obtain its local neighborhood’s state only at the time points
tik, k = 1, 2, · · · . Meanwhile, if nodei is pinned, it can also obtain the target’s state at latest time pointsti

ki(t)
. By this

way, the rule to determine the next time pointtik+1 of obtaining state information only depends on the local states at
tik. In comparison, the triggering event rules (13) and (14) demand the instantaneous states aftertik.

Consider system (1,2) andV (x) as the candidate Lyapunov function with its derivative (8).We are to derive a
triggering event rule from (13) in Theorem 1, which only depends ontik. The estimations of the upper bounds of
‖zi(t)‖ and the lower bounds of‖xi(t)− s(t)‖ for all i are essential.

First of all, we take the switching time points of the Markov chainσt to trigger the state information updating for
all nodes. Then, we are to estimate the upper-bound of‖(xj(t) − xj(t

i
k)) − (xi(t) − xi(t

i
k))‖ with Lij(σt) 6= 0, of

which the evolution equation can be written as:
{

dxi(t)
dt

= f(xi(t)) + θi(σt, t
i
k)

dxj(t)
dt

= f(xj(t)) + θj(σt, t
j

kj(t)
)

(20)

for tik ≤ t < min{tik+1, t
j

kj(t)+1} and initialsxi(t
i
k), xj(t

i
k). Here,θi(σt, t

i
k) andθj(σt, t

j

kj(t)
) are constants in this

time interval.
Let us consider a general form of (20) as follows:

{

du
dt

= f(u(t)) + θ u(0) = u0

dv
dt

= f(v(t)) + ϑ v(0) = v0,
(21)

whereu, v, u0, v0 ∈ R
n. Suppose that there exists a nonnegative-valued continuous mapρ : R≥0×R

4n → R≥0 such
that the solutions of (21) satisfy the following inequality:

‖(u(t)− u0)− (v(t) − v0)‖ ≤ ρ(t, θ, ϑ, u0, v0). (22)

Here the mapρ depends on the node dynamics mapf(·), the initial valueu0, v0 and inputsθ, ϑ, and satisfies
ρ(0, ·, ·, ·, ·) ≡ 0. Geometrically,ρ is an upper-bound estimation of the difference between the two trajectories of
(21) starting at0 of time-lengtht:

‖(u(t)− u0)− (v(t)− v0)‖ =

∥

∥

∥

∥

∫ t

0

[f(u(s))− f(v(s))]ds+ (θ − ϑ)t

∥

∥

∥

∥

.

For example, iff(·) is Lipschitz (on the two trajectories):‖f(u(s))− f(v(s))‖ ≤ Lf‖u(s)− v(s)‖ for all s ≥ 0,
then we have

‖(u(t)− u0)− (v(t)− v0)‖ ≤Lf

∫ t

0

‖(u(s)− u0)− (v(s)− v0)‖ds

+ (‖θ − ϑ‖+ Lf‖u0 − v0‖) t.

By the Gronwall-Bellman inequality [33, 34], we have

‖(u(t)− u0)− (v(t) − v0)‖ ≤ (‖θ − ϑ‖+ Lf‖u0 − v0‖)
Lf

[exp(Lf t)− 1]. (23)

We can takeρ(t, θ, ϑ, u0, v0) as the right-hand side above, which equals to zero att = 0.
Second, we suppose that there exists a nonnegative map̺ : R≥0 × R

4n → R≥0 such that the solutions of (21)
satisfy:

‖u(t)− v(t)‖ ≥ ̺(t, θ, ϑ, u0, v0). (24)
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ρ’s generator
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θ

v0
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





du
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





dv

dt
= f(v) + ϑ

v(0) = v0

v(t)

‖[(u(t)− u0)− (v(t)− v0)]‖

Figure 1:ρ generator.

Here,̺ can be regarded as the lower-bound estimation of the distance between two trajectories:

‖u(t)− v(t)‖ =

∥

∥

∥

∥

∫ t

0

[f(u(s))− f(v(s))]ds+ (θ − ϑ)t+ (u0 − v0)

∥

∥

∥

∥

and satisfies (i).̺(·, θ, θ, u0, u0) ≡ 0; (ii). ̺(0, ·, ·, u0, u0) ≡ 0. For example, assuming that there exists some
constantσ (possibly negative) such that

(u− v)⊤(f(u)− f(v)) ≥ σ(u− v)⊤(u− v)

holds for allu, v ∈ R
n. We have

d

dt
[(u(t)− v(t))⊤(u(t)− v(t))]

∣

∣

∣(21) = 2(u− v)⊤[f(u)− f(v) + θ − ϑ]

≥ 2σ(u− v)⊤(u − v)− µ(u− v)⊤(u− v)− 1

µ
(θ − ϑ)⊤(θ − ϑ)

hold for anyµ > 0. By Gronwall-Bellman inequality, we have

(u(t)− v(t))⊤(u(t)− v(t)) ≥ exp [(2σ − µ)t](u0 − v0)
⊤(u0 − v0)

− (θ − ϑ)⊤(θ − ϑ)/µ

2σ − µ

{

exp[(2σ − µ)t]− 1

}

.

We take̺ as the right-hand side above, which is positive for a small interval oft, starting from0, for anyu0 6= v0.
We highlight that there is no uniform approach to get preciseestimation for a general function off(·) but one can

do it case by case. Therefore, an efficient way is to use integrators that simulates the node dynamics ofu̇ = f(u)+θ to
realize generators that calculate the maps ofρ and̺. Noting that these generators are independent of the statesof the
nodes, they can be built parallel to the networked system. Figures 1 and 2 show the generators ofρ and̺ respectively.

Let ϑi
k = θi(σt, t

i
k) andϑj

kj(t)
= θj(σt, tkj(t)(t)). Based on the event-triggering rules (13), (14), we have the

following theorem.

Theorem 2. Suppose thatf belongs toQUAD(G,αΓ, β) with positive matrixG andα, β > 0. Suppose there exist
diagonal positive definite matricesP (u), u = 1, · · · , N such that

{P (u)[αIm − cL(u)− cǫD(u)]⊗GΓ}sym +
1

2

N
∑

v=1

quvP (v)⊗G ≤ 0, for all u ∈ S.
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̺’s generator

Input Integrators Output

t

u0

θ

v0

ϑ







du

dt
= f(u) + θ

u(0) = u0

u(t)







dv

dt
= f(v) + ϑ

v(0) = v0

v(t)

‖[u(t)− v(t)]‖

Figure 2:̺ generator.

define a sequence ofξik under either of the following two updating rules,

(1)

ξik = max

{

ξ :
∑

j 6=i

(−Lij(σξ+ti
k
))ρ

(

ξ, ϑi
k, ϑ

j

kj(ξ+ti
k
)
, xi(t

i
k), xj(t

i
k)
)

+

+ǫDi(σξ+ti
k
)ρ

(

ξ, ϑi
k, 0, xi(t

i
k), s(t

i
k)
)

≤ (βλ− 1
2δλ̄)√

cλ̄
̺
(

ξ, ϑi
k, 0, xi(t

i
k), s(t

i
k)
)

}

(25)

where0 < δ ≤ 2βλ/λ̄ is a constant;
(2)

ξik = max

{

ξ :
∑

j 6=i

(−Lij(σξ+ti
k
))ρ

(

ξ, ϑi
k, ϑ

j

kj(ξ+ti
k
)
, xi(t

i
k), xj(t

i
k)
)

+

+ǫDi(σξ+ti
k
)ρ

(

ξ, ϑi
k, 0, xi(t

i
k), s(t

i
k)
)

≤ a exp (−b(ξ + tik))

}

(26)

wherea > 0 andb > 0 are constants.

If the triggering event time points{tik} are picked by the following scheme:

1. Initialization: ti0 = 0 for all i = 1, · · · ,m;
2. At t = tik, nodei obtainsξik by the rule (25)(or (26));

3. At t > tik, if one of its neighbor, for example, denoted byj, is triggered att = tjk′+1 (let k′ be the latest event at

nodej beforet), thenj broadcasts its current updating law,ϑj
k′ , to nodei, and the rule (25)(or (26)) is updated

by replacing the diffusion term from nodej, ϑj
k′ , byϑj

k′+1, andtik by t. And, go to Step 2;

4. If σt switches att, then we update the rule (25)(or (26)) by replacingϑi
k by the current stateθi(σt, t), andtik

by t. And go to Step 2;
5. Let tik+1 = tik + ξik, an event is triggered at nodei by updating the state information in (1,2) fromtik by tik+1,

9



then system (1,2) is stabilized ats(t) in mean square sense.

This theorem can be derived from Theorem 1 immediately. In fact, event (25) is an estimation of event (13), event
(26) is an estimation of event (14).

There is substantial difference between the discrete and continuous monitoring strategies. Generally speaking, the
continuous monitoring require that every node collects itsneighborhood states at every instant time, while discrete
monitoring does not need this step. As shown in Table 1, the continuous monitoring scheme costs higher commu-
nication load than the discrete monitoring. As a pay-off, wewill show in the numerical example section that the
frequencies of triggering events in the continuous monitoring are much lower than that the discrete monitoring re-
quires. That is, the continuous monitoring costs lower computation load than the discrete monitoring.

Table 1: Continuousvsdiscrete time monitoring schemes

Step Continuous monitoring Discrete-time monitoring

1
At time tik, agenti updates feedback control law
θi(σt, t

i
k)

At time tik, agenti updates feedback control law
θi(σt, t

i
k)

2 If t < tik+1 in (13) or (14) If ξ < ξik in (25) or (26)

3

then
monitoring the states ofi’s neighborhoodxj(t), j ∈
Ni and targets(t) (if i is pinned at timet), t ≥ tik

4
else else
go to step 1, replacetik by tik+1 go to step 1, replacetik by tik + ξik

Remark 3. In the discrete monitoring scenario, each node does not needto observe the information of its neighbors
at every instants, but each node has to broadcast its updating law,θik, to all its neighborhood once it is triggered.

Similar to Proposition 1, we have:

Proposition 2. (1) Suppose that hypotheses in Theorem 2 hold. Under the rule(25) and the scheme described in
Theorem 2, if system (1,2) is not stable att, there exists at least one nodei ∈ {1, · · · ,m} such that the next
triggering event time strictly greater thant, namely, inter-event interval is strictly positive.

(2) Under the rule (26) and the scheme described in Theorem 2,if system (1,2) does not reach stability, the expec-
tation of next inter-event interval of every node is strictly positive, further, it is lower bounded by some positive
constant.

Remark 4. The discrete monitoring strategy implies the triggering events happen more frequently than continuous
monitoring as a reward of a smaller cost of monitoring.

Remark 5. For the discrete monitoring strategy, the computation complexity for every task depends on the number
of multiplies inρ(·) and̺(·). We suppose the number of multiplies ofρ(·) and̺(·) are respectivelyN1, N2. From
the updating rules (25) and (26), the computation complexity for the next triggering time of every agent is at most
(m+ 1)N1 +N2.

5. Examples

In this section, we present several numerical examples to illustrate these theoretical results. The system is an array
of 5 coupled Chua circuits with the mapf(·) of node dynamics as follows:

f(z) =





p ∗ (−z1 + z2 − g(z1))
z1 − z2 + z3

−q ∗ z2



 (27)

whereg(z1) = m1 ∗ z1 + 1/2 ∗ (m0 − m1) ∗ (|z1 + 1| − |z1 − 1|), with the parameters taken values asp = 9.78,
q = 14.97, m0 = −1.31 andm1 = −0.75, which implies that the intrinsic node dynamics (without coupling terms)

10



have a double-scrolling chaotic attractor [35]. LetP = Γ = G = I3, whereI3 stands for the identity matrix of three
dimensions. To estimate the parameterβ in theQUAD condition, noting the Jacobin matrices off is one of the
following

A1 =





−2.445 9.78 0
1 −1 1
0 −14.97 0



 , A2 =





3.0318 9.78 0
1 −1 1
0 −14.97 0



 ,

then we estimateβ′ = α− λmax((A2)
s) = α− 9.1207, where9.1207 is the largest eigenvalue of the symmetry parts

of all Jacobin matrices off .
The possible coupling graph topologies are shown in Fig.5. To select the pinned nodes, we add an extra virtual

node (on behalf ofs(t)) to the original network, which has a few links to the node that are pinned, then have an
extended network. From the results in [18], one can see that if every extended network topology among the switching
is strongly connected and the duration time at each network topology is sufficiently long, then there always exist
positive matricesP (·), coupling gainc and pinning gainǫ such that condition (12) holds, which implies that the
system with persistent coupling and control can be stabilized. Hence, according to this viewpoint, one node from
every strongly connected component is picked to be pinned. Noting topologies given in Fig.5 are all connected, every
possible pinned node set is applicable.

In this simulation, the graph topologies and pinned nodes ofcoupled system (1,2) switch among these four states,
as shown in Fig.5 (a)-(d) respectively, induced by a homogeneous Markov chain,σt. L(σt) is picked as the Laplacian
of the graphG(σt), where each link has uniform weight1. Here, we pick the state space of the Markov chainσt by
{1, 2, 3, 4}, and its transition matrix is given by

T =









−10 6.5 0 3.5
7 −10 3 0
0 1 −10 9
4 6 0 −10









.

It can be seen from the transition matrix ofσt, the expected sojourn time in each graph follows an exponential
distribution with parameter0.1. In the following, we pickα = 10 andβ = 0.8803.

The ODEs (1,2) are numerically solved by the Euler method with time step0.001 (sec) and the time duration of
the numerical simulations is[0, 10] (sec).

5.1. Continuous monitoring
We give two examples to illustrate the updating rules (13) and (14) respectively. Pickδ = 0.03, c = 20, a = b =

0.5 andǫ = 0.5. Then, it can be verified that{αIm − kL(u) − kǫD(u)}s are negative definite and so the matrix

inequality (12) is satisfied. And we have(βλ−
1

2
δλ̄)√

cλ̄
= 0.2736.

We employ rule (13). Fig. 4 shows the dynamics of each components of the10 nodes and Fig. 8 shows the
dynamics ofV (t). All show that the coupled system (1, 2) is stable. Similarly, we also employ the triggering event
rule (14). Fig. 5 illustrates the dynamics of each components of all nodes, and Fig. 8 illustrates the dynamics ofV (t).
One can see that the coupled systems (1,2) is asymptoticallystable at certain chaotic homogeneous trajectory.

5.2. Discrete monitoring
In this subsection, we illustrate the discrete-time monitoring strategies as described in Theorem 2. In these exam-

ples, we also takec = 20, a = b = 0.5, andǫ = 0.5. Fig.6 shows the dynamics of each components of the10 nodes
and Fig.8 shows the dynamics ofV (t) under rule (25) in Theorem 2. All of them show that the coupledsystem (1,2)
is stable. By employing rule (26) in Theorem 2, Fig. 7 illustrates the dynamics of each components of all nodes and
Fig. 8 illustrates the dynamics ofV (t). These plots show that the coupled system (1,2) is asymptotically stable.

Furthermore, as shown in Figs.9(a)-9(b), the events of updating the diffusion and pinning terms in the discrete
monitoring strategy is much more than the continuous monitoring strategy, as we expected as Table 1. As a trade-
off, the performance of the discrete monitoring in terms of convergence rate ofV (t) is higher than the continuous
monitoring, as shown by Fig.8.Further, it can be seen from Fig. 8 that the rules (13) and (25) have higher convergence
rates than (14) and (26) and close to the original coupled system with simultaneous diffusion and pinning, as a reward
of high event frequency of updating diffusion and pinning terms, as shown in Figs.9(a)-9(b).

11



5

1 2

7 8

4

3

6

109

(a) Pinned set{2, 6}

4

1

3

7 8

5

2

9 10

6

(b) Pinned set{5, 8}

5

1

4

7 8

6

3

9 10

2

(c) Pinned set{2, 6}

4

1

6

7

5

2 3

8 9 10

(d) Pinned set{2, 5}

Figure 3: The topologies of the graph of the coupled system and the pinned set.

6. Strength, limitations of the work and orients of future research

Event-triggered algorithm is a new issue in the coordination control. Despite attracting increasing interests re-
cently, there are a small number of papers, for instance [28]-[30], which were concerned with pinning control of
networks with event-triggered algorithm. Moreover, all ofthem can not handle the scenario considered in this paper.
[28] studied distributed event-triggered mechanism for pinning control of networks withstatic topology, while in our
paper, we studied pinning networks with Markovian switching topologies and Markovian switching pinned node set.
[29, 30] investigated event-triggered pinning control of networks with static and switching topologies. However, from
the sufficient conditions for complete synchronization that were given in [29] and [30], the pinned coupled system
with each possible topology among the switching topologiesshould be able to stabilize the coupled system; in com-
parison, in our work, there may exist some network topology and pinned node set in the state space of the Markovian
chain that cannot stabilize the coupled subsystem. Moreover, they have not considered the switching of pinned node
set, which were taken into consideration in the present paper.

However, there are a few limitations of the present methods.First, the present study assumes there is no delay
in information transitions. But real networks may have limit bandwidth limitation that will cause delays in message
delivery. An interesting future research may take the time-delays into consideration. Second, in this work, we assume
that the possible graph topologies and corresponding coupling matrices are already given and induced by a Markovian
chain. It is sufficient for constructing a Lyapunov functionto prove the stability of system. But in reality, the coupling
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Figure 4: For continuous monitoring with event triggering (13), the dynamics of components of the coupled system ((1,2)).

weights of every possible graph topology may be time-varying. it is an important issue, and will be addressed in the
near future.

Third, this work mainly shows that if the linearly coupled system with persistent diffusion and control can be
stabilized, then the proposed event-triggered rules can stabilize the system, too. It is important to extend the model
to nonlinear cases. In [36]-[38], the authors proved that fuzzy systems are universal approximators for nonlinear
dynamic systems. Hence, applying event-triggered strategies to fuzzy systems can be seen as a modest step. For this
issue, we refer readers to [39]-[41] . Recently, [42] proposed a centralized event-triggered communication scheme for
networked Takagi-Sugeno fuzzy systems, while distributedevent-triggered algorithms for fuzzy systems are absent.
This also leads to interesting orients of our future work.

7. Conclusions

In this paper, event-triggered configurations and pinning control are employed to realize stability in linearly cou-
pled dynamical systems with Markovian switching in both coupling matrix and pinned node set. Two monitoring
scenarios are considered. For continuous monitoring, eachnode observes its neighborhood’s state and the target’s
state (if it is pinned) in an instantaneous way to determine the next triggering event time for updating state informa-
tion. Instead, for discrete monitoring, each node can only obtain the state information at the event time or switching
time of the underlying Markov chain to predict the next triggering event time for updating state information. Once
an event for a node is triggered, the diffusion coupling termand feedback control term of this node is updated. Event
triggering criteria are derived for each node that can be computed in a parallel way. For both scenarios, it is proved
that the coupled system can realize stability and the rule ofpiece-wise constant diffusion and pinning (if pinned) terms
can efficiently reduce the computation load of the networkedsystem, in comparison to the original coupled system.
In addition, the discrete monitoring strategy can also reduce the communication load as well. Zeno behaviors can be
proved excluded by proving the positivity of the lengths of the inter-event time intervals for some rules. Simulations
are given to verify these theoretical results.
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