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Abstract

In this paper, stability of linearly coupled dynamical et with feedback pinning algorithm is studied. Here, both
the coupling matrix and the set of pinned-nodes vary withetimduced by a continuous-time Markov chain with
finite states. Event-triggered rules are employed on bdthsitbn coupling and feedback pinning terms, which can
efficiently reduce the computation load, as well as comnatiga load in some cases and be realized by the latest
observations of the state information of its local neigioad and the target trajectory. The next observation is
triggered by certain criterion (event) based on these atébemation as well. Two scenarios are considered: the
continuous monitoring, that each node observes the stidgamation of its neighborhood and target (if pinned) in
an instantaneous way, to determine the next triggeringtdirag, and the discrete monitoring, that each node needs
only to observe the state information at the last event timtepedict the next triggering-event time. In both cases,
we present several event-triggering rules and prove thtiteifconditions that the coupled system with persistent
coupling and control can be stabilized are satisfied, thegetfevent-trigger strategies can stabilize the system, and
Zeno behaviors are excluded in some cases. Numerical egarap@ presented to illustrate the theoretical results.
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1. Introduction

Control and synchronization of large-scale dynamicaleyst have attracted increasing interests over the last
several decades|[1]{[9]. When a networked system is urestaplitself, many control strategies are designed to
stabilize the networked system. Among them, pinning cdns¢reffective, because it is economically realized by
controlling a partial of the nodes, instead of all nodes im tletwork. The general idea behind pinning control is
that when applying some local feedback controllers only t@etion of nodes, the rest of nodes can be propagated
through the network interactions among nodes [10]-[17].

More related to the present paper, for example_in [18], thbas investigated the pinning control problem of
coupled dynamical systems with Markovian switching cougiand Markovian switching controller-set. Inl[18] and
most existing works in linearly coupled dynamical systeeegh node needs to gather information of its own state
and neighbors states and update them continuously or ind $empling rate [6]. However, as pointed outlin/ [19],
the event-based sampling technique showed better penfimertaan sampling periodically in time for some simple
systems. Hence, a number of researchers suggested thatkethitebased control algorithms can be utilized for the
purpose to reduce communication and computation load warked systems [20]-[21] but still maintain control
performance [21]-[27]. Therefore, the event-based coignmarticularly suitable for networked systems with liedt
resources and so has attracted wide interests in the scogistobuted control of networked systems. The idea
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of event-triggered control can be regarded as a specificaehdiscretization approach, which was studied before
[6,19]. As application, the event-based control was apdi@adonsensus of multi-agent systems. For instance, [22]
investigated centralized and distributed formulation\wérg-driven strategies for consensus of multi-agent syste
and proposed a self-triggered setup;! [23, 24] studied thehastic event-driven strategies; |[25] introduced event-
based control strategies for both networks of single-irattegs with time-delay in communication links and networks
of double-integrators; By using scattering transformatj@6] studied the output synchronization problem of multi
agent systems with event-driven communication in the presef constant communication delays.

In some recent papets [29]-[30], the authors addressed-avggered algorithms for pinning control of networks.
[29] gave an exponentially decreasing threshold functidiile the event-triggering threshold in [28, 30] is prebed
by the continuous or discrete states of agents and targétese works, sufficient conditions were proposed, which
are based on the control gain, some quantities of the unedumde dynamics and the minimum eigenvalue of the
augmented Laplacian.

Motivated by these works including our previous wark! [18]the present paper, we employ the event-triggered
strategy in both coupling configuration and pinning contesins to realize stability in coupled dynamical systems
with Markovian switching couplings and pinned node set. &tlenode, the diffusion coupling and feedback pinning
terms are piecewise static based on the information ofdtl loeighborhood and the target trajectory only at thetates
time of event, which is triggered by some specified critegaved from the information of its local neighborhood
and target. In other words, once the triggering criteriomoéle is satisfied, the diffusion coupling and pinning
terms will be updated; otherwise these terms are constawebe two successive event time points. We consider
two scenarios: continuous monitoring and discrete moinigor In the continuous-monitoring scenario, each node
observes its neighborhood’s and the target’s states instaritaneous way; on the contrary, in discrete-monitoring
scenario, each node can only obtain its neighborhood’sagét's information at the last event-triggering time ppin
which results in a small cost of monitoring (communicatioad) but the triggering events happening more frequently
than continuous monitoring, namely, higher computaticadlo For both scenarios, it is proved that the proposed
event-triggered rules guarantee the stability of the cadiglynamical systems under the local pinning algorithm.

This paper is organized as follows. After formulating thederying problem in Sec. 2, the event-triggering
rules of diffusion and pinning terms are proposed to pin thegxed systems to a homogenous preassigned trajectory
of the uncoupled node system by using continuous and désanenitoring scenarios in Sec. 3 and 4 respectively.
Simulations are given in Sec. 5 to verify the theoreticaliltss Strength, limitations of the work and possible orgent
of future study are discussed in Sec. 6. Finally, this papeoncluded in Sec. 7.

2. Problem formation

In this paper, we consider a network of linearly coupled dyital systems with discontinuous diffusions and
feedback pinning terms as follows:

ii(t) = f(zi() + Oi(on, t},), th <t <thyq,i=1,.,m, 1)

where
0; (0, th) = —CZL” (o¢) {acj th) — l(t}c)] —ceD;(o¢) [mz(tZ) - s(t}%)} (2)
Here, the system contains nodesz;(t) = [z} (¢),---,27(¢)]T € R"™ denotes the state vector of nodehe

continuous magf(-) : R® — R™ denotes the identical node dynamies.is a homogeneous Markov chain, which
will be specified laterL(o;) = [Li;(01)];"—; € R™™ is the time-varying Laplacian matrix of the underlying time
varying bi-graphG(o,) = {V, E(0¢)}, with the node seV” and time-varying link seE(c;): for each pair of nodes

i # j, Lij(0y) = —1if i is linked toj at timet, otherwiseL;;(c;) = 0, andL;;(o) = — Z;.”:l L;j(o¢). cis uniform
coupling strength at each nodE. = [v;;];';,_; € R™" stands for the inner configuration matrix that describes the
coupling of components between the state vectdi$o;) = dp(o,) (i), Whered.(-) is the characteristic function, i.e.
0p(ay) (i) = 1if i € D(0y), otherwisedp,,)(i) = 0 for the pinned node subsBX(o;) C {1,---,m}, whereD(o;)



denotes the node subsetlinthat are pinned at timeby a specific node dynamic trajectosyt) with s = f(s(t)),
s(0) = sg. € is the pinning strength gain over the coupling strength.

Our aim is to provide sufficient conditions to guarantee th{a} is a global stable trajectory for the coupled
system, namely

Jim [lzi(t) — s(6)] =0, Vi=1,-,m,

Here, we consider th&,-vector norm and denote it B || throughout this paper. Le¥;(t) = x;(t) — s(¢). Then[d
and2) become

Bi(t) = f(@:(8) + 5(1)) = f(s(t)) =D Loj(on)T [ij (t) — iz‘(ti)] —ceDi(o)Ta(ty), 8, <t <tpp ()

J=1

Supposes; is a homogeneous continuous Markov chain with a finite stateesS = {1,2,---, N} and its
infinitesimal generatof) = [q..] N« ~ IS given by

_ _ _ quA + O(A)7 u 7’é v,

P{oiin =v|oy =u} = { 1+ quul +0(A), u=u,
whereA > 0, o(A) is a infinitesimal as\ — 0, i.e, lima—0(0(A)/A) = 0, puy = —Z= > 0is the transition
probability fromwu to v if v # w, while g, = — fo:l,v#u quv- DenoteP = [py,] the transition matrix of the

Markov chain. The sojourn time in stateis exponentially distributed with parametgr £ —q,...
LetPy (s, A) = P(oy4s € Aoy = u) andE, ,(f(0s)) = [ f(y)Pe.u(s, dy). Denote byA the weak infinitesimal
operator ofo;. A function f (o, t) is said to be in the domain of if

Eeu(f(otra,t+A)) — f(u,t)

lim

A—0 A
— lim Eiu(f(opa,t +A)) —Eiu(f(oira,t)) 4 lim Etu(f(oira,t)) — fu,t)
A=0 A A=0 A

=f(u,t) + h(u,t)
and

iigl()Et"u(ft(Jt+A7t + A) + h(O’t+A,t + A)) = ft(’ll,,t) + h(’LL, t)

Then, we writeA f (u, t) = fi(u,t) + h(u,t).
Note that for fixed,

Et,u(f(0t+Aa t)) = /f(yvt)Pt,u(Aa dy) = Z f(’U, t)Pt,u(A7U) = Z f(th)qu’UA + f(uvt)
Hence, by the Dynkin’s formula, we have
Af(ut) = folw,t) + > f(0,)quo- 4)

Throughout the paper, we assuifig, t) belongs to the following function class.

Definition 1. Function class QUARG, oI, 3): let G be ann x n positive definite matrix anfl be ann x n matrix.
QUAD(G, oI, 8) denotes a class of continuous functigits, t) : R™ x [0, +00) — R™ satisfying

E=OTGUfE) = F(G ) —al(E =] < =B - TG(E—Q)
holds for all¢, ¢ € R™.



Definition 2. System[{[]2) is said to be exponentially stable(a} in mean square sense, if there exists constants
0 > 0andM > 0, such that

E|J2:(0) - s < e )

holds for allt > 0and anyi = 1,--- ,m.

3. Continuous monitoring

We briefly provide the basic idea of the setup of the couplimdj@ginning terms. Instead of using the simultaneous
state from the neighborhood and the target trajectory tlizeeatability, an economic alternative for the nade to
use the neighbors’ constant states at the nearest time#aintil some pre-defined event is triggered at tit@gl;
if node: is pinned at time, it also obtains the target trajectory’s constant stateveg pomttk )’ then the incoming

neighbors’ and the target trajectory’s information is ugdzaby the states a;H until the next event is triggered, and
so on. The event is defined based on the neighbors’, the taagettory’s and its own states with some prescribed
rule. This process goes on through all nodes in a paralleidas To depict the event that triggers the next time point,
we introduce following Lyapunov function:

1
Vieto) = 5if <P<ot> ® G)fc, ©)
wherei = [#],---,2,]", P(o;) € R™™ are diagonal positive definite matrices, inducedshyandG € R™"

is a positive definite matrix. LeF'(z) = [(f(x:) — f(s) T, , (f(xm) — f(s))T]T, D(oy) = diag|Di(oy)]™,,
L(O’t) = L(O't) + GD(O't).
Note thatV/ (%, ¢, ;) is in the domain of the weak infinitesimal operatowef Denotings; = u, by (4), we have

OV (&,t,u) o di

V(& t,u) qu (&,t0) + (=) o (7)
Substitute[(B) into{7), we get
AV (i, t.00) g = &) [Plon) ® G [F(:z(t)) — al, ® Ta(t) + cz(ﬁ)} )
+ &) { P(o1) [(@ln = cL(o2) © GT| + qu }bym@(t),
wherez(t) = [2] (), -+, 2z, (t)] T with

Z Lij(oy)l [l‘j (t) = @i(t) — 2ty ) + xi(ﬁci(t))}

+ eDilor) [milt) = s(t) = wilth ) — 5t )] (©)

and{S}*¥™ denotes the symmetry part of a square masyixe.,S*¥™ = (S + ST7)/2.
Let A (-) and Ay (-) denote the smallest and largest eigenvalues in module ofrengyry real matrix, and
A = min, A, (P(v) ® G), A = max, Ay (P(v) ® G). From the conditiory € QUAD(P, ol 8), we have

&' (1) [P(or) ® G {F(i(t)) —al, ® Fi(t)} < —BAZT (H)a(t). (10)
For the termi ' (¢) [P (o) ® G] 2(t), we have
T (1) [Ploy) @ G 2(t) < giT(t)(PQ(Jt) ® GH2(t) + %zT(t)z(t) (11)
< %iT(t)i;(t) + %zT(t)z(t)

holds for anyv > 0. Then, we have the following theorem.
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Theorem 1. Suppose thaf belongs toQU AD(G, ol §) with the positive matrixG anda > 0,5 > 0, and there
exist diagonal positive definite matricégw), w = 1,--- , N such that

N
{P(u)[ad,, — cL(u) — ceD(u)] @ GL'}*¥™ + % Z quvP(v) ® G <0, forallu € S. (12)
v=1

Then, under either of the following two updating rules, sysf1) is exponentially stable at the homogeneous trajec-
tory s(¢) in mean square sense:

(1) sett; ., bytherule

-
¢+l=nmx{rztz:|awﬁ|g(ﬂé25Aﬂm47m}

T (13)
whe_reO <6< 263/5\ is a constant;
(2) sett;, bytherule
thar = max {7 >t} 1 [|2:(7)]| < aexp(=br)} (14)
wherea > 0 andb > 0 are constants.

Proof. [Case (1).] Consider the event-triggering rdlel(13) and piconstant with 0 < § < 28A/\. By Dynkin
Formula[31], we have

t t
Ee’V (i,t,04) = EV(&(0), 0, 00) +5E/ TV (&, T, UT)d’T‘JrE/ T AV (&, 7, 04 )dT. (15)
0 0
From (8)-[12), we have

t t
Ee’'V (&,t,00) < EV(fc(O),O,aO)JrcSE/ TV (&, T, oT)dT—ﬂAE/ 7" (1) (r)dr
0 0

N2 gt ¢
+& E/ & (1) (r)dr + iIE/ 72T (7)2(1)dr
2 0 2v 0

+E/O 73" (1) {P(O‘-,—) [(a[m - clA/(aT))} ® GT + % Z 4o, vP(v) ® G} &(r)dr

< EV(#(0),0,00) +E/Ot &5 { [—BM %A + C“;T 3T (P)3(r) + izT(T)z(T)} dr (16)

foranyv > 0. Note that

w22 [y 8 0] _ (A= 30
=2 2 A2
and the maximum is reached if and onlywif= (BA—300)

, A—16X I
75— - Hence, letting) = (ﬂ—ficg), (@I3) implies

2 S cur?] .
Il < 2[5 5 = S IaP, i1

forall 7 <t} ,. Therefore, we have

Ee®'V (&,t, ) < EV(2(0),0,00), (17)



which implies

2 2
Ee?t||z;(t) — s(t)]|? < X1Ee‘”1/(gz,t,gt) < X1EV(§5(0),0,UO), Vj=1,---,m. (18)

Therefore, we have

26_6t
Ellz;(t) — s(t)||” <

EV(£(0),0,00), Vj=1,---,m. (19)

[Case (2).] Consider the event-triggering rilel (14) and pic= %. Then, we have

SA cv?
BN+ 22 —
BA+ 5 + 5 0

Substituting||z;(7)|| < aexp(—b7) into (I8) gives

Ee’'V (2,t,0,) < EV(£(0),0,00) + ﬂE/t e(—20+8)T 7
s by Ut >~ ,U,00 Q(QBA_(S;\) |

a2 )2 1
2(28X — 6)\) 2b— 6

= EV(2(0),0,00) + {1 _ o(-2bto)t]

LetCy = %Tia By the similar arguments ds (17)-{19), we have

267&

Ella;(t) — s(t)||* < (EV(@(O),O,JO) +Co [1 - e<*2b+5>t}) < Crem MmOy =1 m,

whereC; = £ max(|EV (2(0),0,00) + Col,|Col). This completes the proof. O

Remark 1. If Z(¢1) = 0 holds, then from[(13), at timg, every node updated its feedback term and pinning term (if
pinned). Therefore, fronid(,2), for amy> t1, (¢) = 0 holds, which meang = 0 is an equilibrium of the system
under the event-triggering rules.

Remark 2. In fact, in our previous work/[18], we studied pinning dynamsiystems of networks with Markovian
switching couplings and controller-node set. By this tle@or we showed and proved that if the condition for the
stability of the coupled system with spontaneous couplirtga@ntrol in [18] can be satisfied, then the event-trigger
strategies can stabilize the system too. Therefore, theeis$ selection of pinned node in terms of guaranteeing
stability is totally the same with the system with spontasatiffusion and control.

Under the updating rulé(14), it can be proved that the Zefatiers [32] is excluded by the arguments as the
same fashion as in_[29]. While for the updating rdle] (13),ikinto work [22], it should be pointed out that there
exists at least one node such that its next inter-eventiltey strictly positive.

Proposition 1. Suppose that all hypotheses of Theorém 1 hold. Under thetingdale (I3), if the system does not
reach stability, then there exists at least one node {1,--- ,m} such that the next inter-event interval is strictly
positive; Under the updating rule{]L4), if the system doeserch stability, the expectation of next inter-eventrivig

of every node is strictly positive, further, it is lower baled by some positive constant.

The proof is the similar to those in_[29,/22] with some modiiicas. In fact, if at any time, there exists one
nodei such that[(1B) cannot hold as an equality for this m')delence,t};,+1 > t can be derived, which implies that
the inter-event interval for nodds positive. Otherwise, at timg (I3) holds as an equality for every node, that is, all
nodes update their control law at this moment, which impli¢s) = 0 holds for alli. However, since the network
has not been stabilized aft) yet, there exists at least noglevith z;(t) # 0, which impliest; ,, > ¢ holds, which
implies that the next inter-event interval for noglshould be positive.

In comparison, under the rule{|14), suppése g for each node, atr = ¢!, we havez;(¢%) = 0 but the right-

hand side of{(14) is nonzero. Therefo&rg1 > ti always holds and the low bound of the expectation of intemev

intervals can be estimated fdog {1 + -1 } with L; the Lipschtiz constant of (-), A = 27Lst2em(ntatbyton

5 L ab
— 2m+
andB = =5=.




4. Discrete monitoring

In the discrete monitoring scenario, each nedan obtain its local neighborhood’s state only at the timiatso
i,k =1,2,---. Meanwhile, if node is pinned, it can also obtain the target's state at latest pmntstk )" By this

way, the rule to determine the next time pozlm1 of obtaining state information only depends on the locdkstat
tt. In comparison, the triggering event rulgsl(13) dnd (14) aletithe instantaneous states affer

Consider systeni|{1,2) arid(z) as the candidate Lyapunov function with its derivative (8je are to derive a
triggering event rule fron{(13) in Theorem 1, which only dege onti. The estimations of the upper bounds of
|lz:(¢)|| and the lower bounds difz; (¢) — s(t)]| for all i are essential.

First of all, we take the switching time points of the Markdain o to trigger the state information updating for
all nodes. Then, we are to estimate the upper-bounidof(t) — =;(t})) — (z;(t) — ;(t}))|| with L;;(o¢) # 0, of
which the evolution equation can be written as:

) — f(a(t)) + b:(0r 1)
0 — F(ai(6) + 0500t )

(20)

fort; <t < min{t}Hl,tiJ(tH
time interval.
Let us consider a general form §f{20) as follows:

,} and initialsz; (t}), z;(t},). Here,0;(ov, t},) andej(at,tfcj(t)) are constants in this

D () +0 w(0) = u
{%Zf(v(t))ﬂ? (0) = v, (21)

whereu, v, ug, v9 € R™. Suppose that there exists a nonnegative-valued contimaapy : R x R — Rx( such
that the solutions of (21) satisfy the following inequality

H(u(ﬁ) - UO) - (U(t) - UO)H < p(t, 9,19,UQ,U0). (22)

Here the mapy depends on the node dynamics mAp), the initial valueug, vy and inputsé, ¥, and satisfies
p(0,-,-,-,-) = 0. Geometrically,o is an upper-bound estimation of the difference betweenwleettajectories of
(21) starting ad of time-lengtht:

1u®) — o) — (o(t) — o) = H / L7 uls)) — F(ols)))ds + (6 ﬂ)tH .

For example, iff (-) is Lipschitz (on the two trajectories)if (u(s)) — f(v(s))|| < Ly|lu(s) —v(s)| forall s > 0,
then we have

60 ~ o) = 000) = )] <Es [ 1(ats) — o) = 015) — o)l
+ (10 = I + Llluo — voll) .
By the Gronwall-Bellman inequality [33, B4], we have

(10 =9 + Lylluo — voll)
Ly

[(u(t) = uo) = (v(t) —vo)|| < [exp(Lyt) — 1]. (23)

We can takey(t, 0, ¥, uo, vo) as the right-hand side above, which equals to zetc-ab.
Second, we suppose that there exists a nonnegativeoma-, x R** — R, such that the solutions df (1)
satisfy:

[u(t) = v(@)l = oft, 6,9, uo, vo)- (24)
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[ p’s generator ]

[ Input ] \Integrators\\ Output

0 (du ‘
{ dt—f(ume
[ u(0) =up ) \

t < M(w() = wo) = (v(t) = wo)]]

vy dv /
{ %: (UHﬂ)FU(f)

Figure 1:p generator.

Here,p can be regarded as the lower-bound estimation of the distagteveen two trajectories:

Ju(t) — o(t)] = H 17t = sods + 0 = 0)t+ (w0 o)

and satisfies (i).o(+, 0,0, ugp,up) = 0; (ii). ©(0,-,-,uo,up) = 0. For example, assuming that there exists some
constant (possibly negative) such that

(w—0)" (f(u) = f(v)) 2 o(u—v)"(u—v)

holds for allu, v € R™. We have

%[(U(t) —v(®)" (u(t) — o(®))] |@m = 2(u—v) " [f(w) = f() + 0 -]
>20(u—v)" (u—v)—plu—20)"(u—21)— i(@ — 976 —0)

hold for anyu > 0. By Gronwall-Bellman inequality, we have

(u(t) = v(®) " (u(t) = v(t)) = exp[(20 — w)t](uo — vo) " (uo — vo)

_ (9 _0)T(9 _0)/M{GXP[(20 —,u)t] _ 1}

20 —

We takep as the right-hand side above, which is positive for a smédriral oft, starting from0, for anyug # vg.

We highlight that there is no uniform approach to get pree&@nation for a general function ¢f-) but one can
do it case by case. Therefore, an efficient way is to use iategrthat simulates the node dynamicéef f(u)+6to
realize generators that calculate the maps ahdo. Noting that these generators are independent of the stfities
nodes, they can be built parallel to the networked systegureg 1 anfll2 show the generatorg @indo respectively.

Let 9% = 6;(oy,ti) andﬁfcj(t) = 0;(o¢, i, 1)(t)). Based on the event-triggering rulé€s](18).1(14), we have the
following theorem.

Theorem 2. Suppose thaf belongs toQU AD(G, o', 8) with positive matrixi and«, 8 > 0. Suppose there exist
diagonal positive definite matricg3(u),u = 1,--- , N such that

N
. 1
{P(u)[al,y, — cL(u) — ceD(u)] @ GT}Y™ + 3 Z GuvP(v) ® G <0, forallu € S.
v=1
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[ 0’s generator ]

npu ntegrators utpu
Input Integrat Output

N v
{ dt—f(U)WPu(t)
Up u(0) = up ) \

Up dv )
{ i (U)+§FU(1‘,)
i = 0=w

Figure 2:p generator.

define a sequence gf under either of the following two updating rules,

1)

j#i
+€Di(0'€+t;c)p (f, 19};,, 0, xi(t};), s(t}c))
(BA = 38)) i i i
< T;\Q (& 95,0, 2:(t},), s(t},) (25)
where0 < § < 253/5\ is a constant;

)

g,@ = max{ & Z(*Lij(%.;,.t;;))ﬁ <§a 19?;,19?;].(&%), zl(t}Ls)?:rJ(t}Ls)) +
j#i
+€Di(ag+t};)p (6; 7927 0, xi(ﬁc)? S(t}c))

Samﬂlﬂ+%n} (26)

wherea > 0 andb > 0 are constants.
If the triggering event time pointg? } are picked by the following scheme:
1. Initialization: tj) = O forall i = 1,--- ,m;
2. Att = ti, nodei obtains¢; by the rule[[25)(or((26));
3. Att > ti, if one of its neighbor, for example, denotedjbis triggered att = t{;/ﬂ (letk’ be the latest event at
node;j beforet), then; broadcasts its current updating Ia\ﬁf,’;,, to nodei, and the rule[(2b)(of(26)) is updated
by replacing the diffusion term from nodev;,, byﬂj/ﬂ, andt; byt. And, go to Step 2;

4. If o, switches at, then we update the rule(25)(dr(26)) by replacifig by the current staté; (o, ¢), andt
byt. And go to Step 2;

5. Lett; ,, =t} + &}, an event s triggered at nodeby updating the state information il(1,2) fratnby ¢} . ,,

9



then systeni{{I],2) is stabilizeddt) in mean square sense.

This theorem can be derived from Theollgm 1 immediately. dh fvent[[2b) is an estimation of evelntl(13), event
(28) is an estimation of everi(114).

There is substantial difference between the discrete amtihecmus monitoring strategies. Generally speaking, the
continuous monitoring require that every node collectsé@ghborhood states at every instant time, while discrete
monitoring does not need this step. As shown in Table 1, tikirioous monitoring scheme costs higher commu-
nication load than the discrete monitoring. As a pay-off, witt show in the numerical example section that the
frequencies of triggering events in the continuous moirigpare much lower than that the discrete monitoring re-
quires. That is, the continuous monitoring costs lower cotaiion load than the discrete monitoring.

Table 1: Continuoussdiscrete time monitoring schemes

Step| Continuous monitoring Discrete-time monitoring

1 At time ti, agenti updates feedback control lajvAt time ti, agenti updates feedback control lap
b; (Uta t;c) b; (Uta t;c)

2 | Ift <ty ,in(3)or[13) If & <&, in (25) or [26)
then

3 monitoring the states afs neighborhood:;(t), j €
N; and targes(t) (if 7 is pinned at time), ¢t > ¢,

4 else . 4 else . 4 4
goto step 1, replacg, byt ., go to step 1, replacg, by ¢} + &,

Remark 3. In the discrete monitoring scenario, each node does not teeetiserve the information of its neighbors
at every instants, but each node has to broadcast its upgléin, 6% , to all its neighborhood once it is triggered.

Similar to Propositiofi]1, we have:

Proposition 2. (1) Suppose that hypotheses in Thedrém 2 hold. Under theZ8)eand the scheme described in
Theoreni P, if systerfil(1,2) is not stablet athere exists at least one nodec {1,---,m} such that the next
triggering event time strictly greater thannamely, inter-event interval is strictly positive.

(2) Under the rule[(Z6) and the scheme described in Theblefisgstem[(IL2) does not reach stability, the expec-
tation of next inter-event interval of every node is styigibsitive, further, it is lower bounded by some positive
constant.

Remark 4. The discrete monitoring strategy implies the triggeringme happen more frequently than continuous
monitoring as a reward of a smaller cost of monitoring.

Remark 5. For the discrete monitoring strategy, the computation claxify for every task depends on the number
of multiplies inp(-) and o(-). We suppose the number of multipliesp6f) and o(-) are respectivelyV;, N,. From
the updating rules[(25) an@ (26), the computation compfeiit the next triggering time of every agent is at most

5. Examples

In this section, we present several numerical examplehisirihte these theoretical results. The system is an array
of 5 coupled Chua circuits with the mafi-) of node dynamics as follows:

p* (=21 + 22 — g(z1))
f(z) = 21— 22+ 23 (27)
—q* 22
whereg(z1) = mq * z1 + 1/2 % (mg — mq) * (Jz1 + 1| — |21 — 1|), with the parameters taken valuespas: 9.78,
q = 14.97, mg = —1.31 andmy, = —0.75, which implies that the intrinsic node dynamics (withoutipbng terms)
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have a double-scrolling chaotic attractor/[35]. 2= " = G = I3, wherel; stands for the identity matrix of three
dimensions. To estimate the parameten the QU AD condition, noting the Jacobin matrices pfis one of the

following
3.0318 9.78 0
JAg = { 1 —1 1 ] ,

0 —-14.97 0

1 -1 1

—2445 978 0
Ay =
0 ~14.97 0

then we estimat®’ = a — Apax((42)%) = a —9.1207, where9.1207 is the largest eigenvalue of the symmetry parts
of all Jacobin matrices of.

The possible coupling graph topologies are shown i Figdbsélect the pinned nodes, we add an extra virtual
node (on behalf o&(t)) to the original network, which has a few links to the nodet i@ pinned, then have an
extended networkFrom the results in [18], one can see that if every extendégdork topology among the switching
is strongly connected and the duration time at each netwapglogy is sufficiently long, then there always exist
positive matricesP(-), coupling gainc and pinning gaire such that condition[(12) holds, which implies that the
system with persistent coupling and control can be staullizHence, according to this viewpoint, one node from
every strongly connected component is picked to be pinnetintjtopologies given in Figl5 are all connected, every
possible pinned node set is applicable.

In this simulation, the graph topologies and pinned node®upled systeni{{1,2) switch among these four states,
as shown in Figl5 (a)-(d) respectively, induced by a homegas Markov chaing;. L(o:) is picked as the Laplacian
of the graphG (o), where each link has uniform weight Here, we pick the state space of the Markov chaity
{1,2, 3,4}, and its transition matrix is given by

—-10 6.5 0 3.5
7 =10 3 0
0 1 =10 9
4 6 0 -10

It can be seen from the transition matrix @f, the expected sojourn time in each graph follows an expdalent
distribution with parametd.1. In the following, we picka = 10 ands = 0.8803.

The ODESI{[,R) are numerically solved by the Euler method tiihe step).001 (sec) and the time duration of
the numerical simulations (8, 10] (sec).

T =

5.1. Continuous monitoring
We give two examples to illustrate the updating rules (13) @) respectively. Pick = 0.03, ¢ = 20,a = b =
0.5 ande = 0.5. Then, it can be verified thdtal,,, — kL(u) — keD(u)}* are negative definite and so the matrix

inequality [12) is satisfied. And we ha&%ﬁf\g%” = 0.2736.

We employ rule[(IB). Fig[d4 shows the dynamics of each compisnef the10 nodes and Fig[]8 shows the
dynamics ofV/(¢). All show that the coupled systefn (I, 2) is stable. Similanlg also employ the triggering event
rule (I4). Fig[5 illustrates the dynamics of each compamehall nodes, and Fid] 8 illustrates the dynamic&¢f).
One can see that the coupled systdnid (1,2) is asymptotitalije at certain chaotic homogeneous trajectory.

5.2. Discrete monitoring
In this subsection, we illustrate the discrete-time mamimpstrategies as described in Theofégm 2. In these exam-
ples, we also take = 20, a = b = 0.5, ande = 0.5. Fig[8 shows the dynamics of each components ofl theodes
and Fid.8 shows the dynamics B6{¢) under rule[(2b) in Theorem 2. All of them show that the coupsestem[(ILP)
is stable. By employing rulé(26) in Theoréin 2, Hig. 7 illases the dynamics of each components of all nodes and
Fig.[8 illustrates the dynamics &f(¢). These plots show that the coupled systeln (1,2) is asyroptiytstable.
Furthermore, as shown in Figs.3(a)-9(b), the events of tipgl¢he diffusion and pinning terms in the discrete
monitoring strategy is much more than the continuous manigostrategy, as we expected as Tdlle 1. As a trade-
off, the performance of the discrete monitoring in terms afvergence rate df (¢) is higher than the continuous
monitoring, as shown by F[g.8.Further, it can be seen fragn&that the rule$ (13) and (25) have higher convergence
rates thar[(114) an@(26) and close to the original couple@sywith simultaneous diffusion and pinning, as a reward
of high event frequency of updating diffusion and pinningrts, as shown in Figs.9{R)-9[b).

11
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Figure 3: The topologies of the graph of the coupled systettlaam pinned set.

6. Strength, limitations of the work and orients of future research

Event-triggered algorithm is a new issue in the coordimationtrol. Despite attracting increasing interests re-
cently, there are a small number of papers, for instance[¥] which were concerned with pinning control of
networks with event-triggered algorithm. Moreover, altlsém can not handle the scenario considered in this paper.
[28] studied distributed event-triggered mechanism fanpig control of networks witlstatictopology, while in our
paper, we studied pinning networks with Markovian switchiopologies and Markovian switching pinned node set.
[29,[30] investigated event-triggered pinning control efworks with static and switching topologies. Howeverpiro
the sufficient conditions for complete synchronizatiort thare given inl[209] and [30], the pinned coupled system
with each possible topology among the switching topologhesuld be able to stabilize the coupled system; in com-
parison, in our work, there may exist some network topolagyginned node set in the state space of the Markovian
chain that cannot stabilize the coupled subsystem. Morethay have not considered the switching of pinned node
set, which were taken into consideration in the presentipape

However, there are a few limitations of the present methédist, the present study assumes there is no delay
in information transitions. But real networks may have titmhndwidth limitation that will cause delays in message
delivery. An interesting future research may take the tadekys into consideration. Second, in this work, we assume
that the possible graph topologies and corresponding tappiatrices are already given and induced by a Markovian
chain. Itis sufficient for constructing a Lyapunov functiorprove the stability of system. But in reality, the couglin

12
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Figure 4: For continuous monitoring with event triggerifi@d), the dynamics of components of the coupled systeli §(1,2)

weights of every possible graph topology may be time-vayyihis an important issue, and will be addressed in the
near future.

Third, this work mainly shows that if the linearly coupledssgm with persistent diffusion and control can be
stabilized, then the proposed event-triggered rules ailige the system, too. It is important to extend the model
to nonlinear cases. In [36]-[388], the authors proved thazyusystems are universal approximators for nonlinear
dynamic systems. Hence, applying event-triggered stiegeqg fuzzy systems can be seen as a modest step. For this
issue, we refer readers (0 [39]-[41] . Recenily/ [42] praguba centralized event-triggered communication scheme for
networked Takagi-Sugeno fuzzy systems, while distribeezht-triggered algorithms for fuzzy systems are absent.
This also leads to interesting orients of our future work.

7. Conclusions

In this paper, event-triggered configurations and pinnimgfio| are employed to realize stability in linearly cou-
pled dynamical systems with Markovian switching in both giing matrix and pinned node set. Two monitoring
scenarios are considered. For continuous monitoring, eade observes its neighborhood’s state and the target's
state (if it is pinned) in an instantaneous way to determtigenext triggering event time for updating state informa-
tion. Instead, for discrete monitoring, each node can obtgio the state information at the event time or switching
time of the underlying Markov chain to predict the next tegigg event time for updating state information. Once
an event for a node is triggered, the diffusion coupling tand feedback control term of this node is updated. Event
triggering criteria are derived for each node that can beprded in a parallel way. For both scenarios, it is proved
that the coupled system can realize stability and the rupésafe-wise constant diffusion and pinning (if pinned) term
can efficiently reduce the computation load of the netwoidgesiem, in comparison to the original coupled system.
In addition, the discrete monitoring strategy can also cedhe communication load as well. Zeno behaviors can be

proved excluded by proving the positivity of the lengthsha# tnter-event time intervals for some rules. Simulations
are given to verify these theoretical results.
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