
 

 

Maximum correntropy criterion based sparse adaptive 

filtering algorithms for robust channel estimation under 

non-Gaussian environments 

 

Wentao Maa, Hua Qua, Guan Guib*, Li Xub,JihongZhaoa, BadongChena* 

aSchool of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, 710049, China 

bDepartment of Electronics and Information Systems, Akita Prefectural University, 015-0055, Japan 

 

Abstract: 

Sparse adaptive channel estimation problem is one of the most important topics in broadband 

wireless communications systems due to its simplicity and robustness. So far many sparsity-aware 

channel estimation algorithms have been developed based on the well-known minimum mean 

square error (MMSE) criterion, such as the zero-attracting least mean square (ZALMS),which are 

robust under Gaussian assumption. In non-Gaussian environments, however, these methods are 

often no longer robust especially when systems are disturbed by random impulsive noises. To 

address this problem, we propose in this work a robust sparse adaptive filtering algorithm using 

correntropy induced metric (CIM) penalized maximum correntropy criterion (MCC) rather than 

conventional MMSE criterion for robust channel estimation. Specifically, MCC is utilized to mitigate 

the impulsive noise while CIM is adopted to exploit the channel sparsity efficiently. Both theoretical 

analysis and computer simulations are provided to corroborate the proposed methods.  
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1. Introduction 

Signal transmission over fading channel is often deteriorated severely. Hence, accurate channel 

estimation is one of the most important technical issues for realizing dependable wireless 

communications. In narrowband or wideband communications systems, wireless channels are often 

described in time domain by dense channel model, i.e., most of channel taps are nonzero coefficient 

[1].Linear channel estimation methods perform very well [1] to achieve the dense-model based 

lower bound. In broadband wireless communication systems, wireless channel in time domain 

often exhibits sparse structure which is supported by very few dominant coefficients while most of 

channels taps are zeros [2].The performance bound could be further achieved lower if they can 

exploit the sparsity in channels. Motivated by this fact, several effective sparse channel estimation 

(SCE)methods have been proposed to take advantage of channel sparsity and improve the 

estimation performance particularly in environments with high signal-to-noise ratio (SNR) [3-6]. 

However, these SCE methods may be instable under low SNR regimes. The potential problem 

motivates the fast development of sparse adaptive filtering algorithms which can work stable in low 

SNR regimes. In [7], proportionate-type algorithms were proposed to estimate channel parameters, 

which updates each channel coefficient in proportion to its estimated magnitude to exploit the 

sparse prior information. In [8], an improved proportionate normalized least mean square(IPNLMS) 

algorithm was proposed. In [9], a family of subband IPNLMS algorithms was proposed as well. In all 

above proportionate-type algorithms, the finite impulse response position to position and is 

roughly proportional at each tap position to the absolute value of the current tap weight estimate.  

Besides, sparse adaptive algorithms were proposed by incorporating a sparsity-aware penalty 

term (e.g. ℓ0-norm orℓ1-norm) into a traditional adaptive filtering algorithm such as the least mean 

square (LMS) or recursive least squares (RLS), motivated by the least absolute shrinkage and 

selection operator (LASSO) [10] and recent progresses in compressive sensing [11]. Well-known 

examples include zero-attracting LMS (ZALMS) [12], reweighted zero-attracting LMS (RZALMS) [12] 

and sparse RLS [13], which have been successfully applied in sparse system identification and 

sparse channel estimation. By adding different sparsity-aware penalty terms to the popular 

minimum mean square error (MMSE) criterion, these methods are very effective for sparse signal 



 

 

 

processing, such as sparse system identification [12] and sparse channel estimation [14].Many 

variants of sparse adaptive filtering algorithms have also been developed. For example, Wu et. al. 

proposed a novel sparse adaptive algorithm by introducing a variable ℓ𝑝-norm-like constraint into 

the cost function of the LMS algorithm [15]. Aliyu et.al proposed a sparse variable step-size LMS 

algorithm by employing a ℓ𝑝-norm constraint[16]. To take full advantage of channel sparsity, Gui 

et.al proposed several improved adaptive sparse channel estimation methods using ℓ𝑝-norm 

normalized LMS(ℓ𝑝-NLMS) as well as ℓ0-norm normalized LMS (ℓ0-NLMS) [17]. In some severe 

deterioration scenarios, sparse least mean square (LMS)/fourth (LMF) algorithms (combined LMS 

and LMF algorithms) were proposed to improve performance as well as to exploit channel sparsity 

[18]. 

The above channel estimation methods were developed under Gaussian noise model. Accurately, 

as the development of channel measurement techniques, non-Gaussian noise models (e.g. 

alpha-stable noise model) were proposed to describe real communication environments which are 

more accurate than conventional model [19-22]. Under the non-Gaussian (especially heavy-tailed) 

noise environments, however, the existing methods are very sensitive to impulsive noises. To ensure 

more dependable signal transmission, robust channel estimation methods are necessary to mitigate 

the non-Gaussian impulsive noises. Recently, several robust adaptive algorithms were developed 

based on the maximum correntropy criterion (MCC) for signal processing [23-26]. The MCC is 

based on a new similarity measure called correntropy, which has some desirable properties [27]:1) it is 

always bounded foranydistribution;2) it contains all even-order moments, and the weights of the 

higher-order moments are determined by the kernel size(or kernel width); 3) it is a local similarity measure 

and is robust to outliers(more detailed theoretical analysis results can be found in [23]). The MCC 

based adaptive filtering algorithms may perform well with lower steady-state excess MSE (EMSE) 

[24]. So far correntropy has been applied in many areas. Singh et.al proposed a novel cost function 

for linear adaptive filtering by using correntropy[25]. Zhao et.al derived a robust kernel adaptive 

filter under MCC criterion [26].Yuan and Hu proposed a robust feature extraction framework based 

on correntropy[28]. He et.al. introduced a sparse correntropy framework for deriving robust sparse 

representations of face images for recognition [29–30].  



 

 

 

To the best of our knowledge, however, it has not yet been proposed to design a robust and 

sparse adaptive filter to estimate a sparse channel in the presence of impulsive noises. In this work, 

we will develop a MCC based robust and sparse adaptive filtering algorithm to mitigate the 

non-Gaussian impulsive noises. In our approach, correntropy is used as a cost function to replace 

the traditional MSE, so that the resulting sparse filter is rather robust against the impulsive noises. 

In addition, we also introduce a new sparse penalty term to exploit the channel sparsity. It is well 

known that a sparse adaptive filtering algorithm using a stronger sparse penalty can exploit the 

channel prior information more efficiently [31].The SCE can be viewed as a sparse representation 

problem. However, finding the sparsest solution, which leads to an ℓ0-norm minimization problem, 

is an NP-hard combinatorial optimization problem. To deal with this intractable problem, some 

approximates of ℓ0-norm functions are usually used, such as the ℓ1-norm, reweighted ℓ1-norm. It 

is shown that the correntropy induced metric (CIM) [32] as a nonlinear metric in the input space 

can provide a nice approximation for the ℓ0-norm function. The goal of this paper is to develop a 

robust and sparse adaptive filtering algorithm by combining the MCC with the CIM. Specifically, the 

MCC is utilized to mitigate the impulsive noises while the CIM function imposes a zero attraction of 

the filter coefficients according to the relative value of each coefficient among all the entries which 

in turn leads to an improved performance when the system is sparse. Hence, our studies can be 

efficiently applied in sparse channel estimation under impulsive noise environments. Finally, 

numerical and simulation results are provided to corroborate the study. 

The rest of the paper is organized as follows. In section 2, the correntropy and CIM are briefly 

reviewed. In section 3, the sparse MCC algorithm, namely CIMMCC, is derived. In section 4, the mean 

and mean-square convergence is analyzed. In section 5, simulation results are given to illustrate the 

desirable performance of the proposed algorithm. Finally, the work is summarized in section 6. 

 

2. Correntropy and CIM 

The correntropy is a nonlinear measure of the similarity between two random variables

 1, ,
T

NX x x and  1, ,
T

NY y y in kernel spaces [24]:  
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Where [ ]E denotes the expectation operator, ( , )   is a shift-invariant Mercer kernel, and ( )XYF x,y

denotes the joint distribution function. In practice, the data distribution is usually unknown, and 

only a finite number of samples  i ix , y are available. In this case, the correntropy can be estimated 

as: 
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A typical kernel in correntropy is the Gaussian kernel: 
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where e = x-y, and denotes the kernel width. The correntropy is always bounded for any 

distribution and is robust to impulsive noises (or outliers) [23-24, 27]. The MCC criterion aims at 

maximizing the correntropy between a variable and its estimator, and this principle has been 

successfully applied in robust adaptive filtering [25-26].   

The sparsity penalty term is a key factor in a sparse filter. The zero-attracting (ZA)and 

reweighted zero-attracting(RZA)penalty terms are usually adopted to design different sparse 

adaptive filtering algorithms [12-18, 33]. In this paper, we will introduce a CIM based sparse 

penalty to develop an efficient sparse MCC algorithm. For a better understanding, below we briefly 

revisit the CIM [23]. Consider X andY , in a sample space, the CIM is defined by 
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where (0) 1 ( 2 )   .The ℓ0-norm of the vector  1, ,
T

NX x x can be approximated by [31] 
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It has been shown that if ix  , 0ix  , then as 0  , we can get arbitrarily close to the ℓ0-norm 

[32], where is a small positive number. Due to its relation with correntropy, this nonlinear metric 

is called the correntropy induce metric. CIM is a nonlinear metric in the input space. 

According to the above discussion, the CIM provides a well approximation for the ℓ0-norm. Hence, 



 

 

 

it favors sparsity and can be used as a sparsity penalty term to exploit the channel sparsity in the 

sparse channel estimation scenarios.  

3 CIMMCC algorithm 

First of all, adaptive channel estimation problem is formulated as follows. An input signal vector 

 1 1( ) , , ,
T

n n n MX n x x x    is sent over a finite impulse response (FIR)filter channel with 

parameter vector ,1 ,2 ,[w ,w , ,w ]T

o o o o MW  , where M  is the size of the channel memory. It is 

assumed that the channel parameters are real-valued with sparse structure, i.e., most of channel 

coefficients are zeros. At the receive side, received signal ( )d n is obtained as 

( ) ( ) ( )T

od n W X n v n 
                               (6) 

where ( )v n  denotes the additive noise. In many existing systems, the noise ( )v n is described as 

non-Gaussian due to the impulsive nature of man-made electromagnetic interference as well as 

nature noise[36-40]. In order to mitigate the impulsive noises, we construct a cost function by 

combining MCC and CIM as follows 
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where ( )e n denotes the n-th update instantaneous error, i.e., ( ) ( ) ( ) ( )Te n d n W n X n  ,

1 2( ) [ ( ), ( ), , ( )] T

MW n w n w n w n stands for the n-th channel estimate; 1  and 2 represent the 

kernel widths of MCC and CIM, respectively. In (7), the MCC term plays robust role to impulsive 

noise while the CIM term (with smaller width) plays the role to exploit channel sparsity balanced by 

a weight factor 0  which is a regularization parameter to balance between MCC estimation error 

and CIM sparsity. 

Based on the cost function (7), a gradient based adaptive filtering algorithm can be derived as 

follows: 
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The matrix-vector form of (8) can be also written as 
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where 3

1( 2 )    , and   . The algorithm in (9) is termed as CIMMCC. About the algorithm, 

it is worth noting that suitable selection of the kernel width can make the CIM approach the 

ℓ0-norm [23, 32]. Hence, the proposed algorithm can be applied in real systems. For a better 

understanding, the proposed algorithm is summarized as Table 1. 

 

Table 1. The proposed CIMMCC algorithm 

Input parameters  ,  , 1 , 2 , M  

InitialW(0),X(0),d(0),e(0) 

Forn=1,2,…Do 

Input new X(n) and d(n) 

( ) ( ) ( ) ( )Te n d n W n X n 
 

2 2

1

2 2

2

( 1) ( ) exp( ( ) 2 ) ( ) ( )

1
( )exp( ( ) 2 )

23
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M

 

 
 

   

   

End 

 

 

Remark 1: The ℓ1-norm and reweighted ℓ1-norm are well-known popular sparsity penalty terms 

for constructing adaptive sparse filtering algorithms. Similarly, onecan also derive sparse MCC 

algorithms, e.g., ℓ1-norm into MCC (i.e., ZAMCC) and reweighted ℓ1-norm MCC (i.e., RZAMCC). The 

detailed derivation could be found in Appendix 1.  

Remark 2: Compared with the traditional MCC algorithm, the computational complexity of the 



 

 

 

proposed CIMMCC algorithm is still very low. The operations per iteration of the CIMMCC contain 

3M additions and 2M multiplications, and the exponential calculation is M+1. 

 

4 Performance analysis 

It is well known thatthe mean and mean square convergence are two key properties for an adaptive 

filter which is the fundamental of its feasibility. The convergence analysis of the proposed 

algorithm is in general a challenging problem. By means of an approximation approach, we study 

the mean and the mean square convergence of the proposed algorithm by using the generalization 

approximation idea [16, 33-35].Hence, the proposed algorithm can be rewritten as  

( 1) ( ) ( ( )) ( ) ( ) ( )+   W n W n f e n e n X n g n                  (10) 

where 2 2

1( ( )) exp( ( ) 2 ) f e n e n , and ( )g n is  3 2 2

2 21 2 ( )exp( ( ) 2 )M W n W n    for the 

CIMMCC. To simplify the analysis, the following statistical assumptions are given. 

Assumption 1: The input signal { ( )}X n  is independent and identically distributed (i.i.d.) with 

zero-mean Gaussian distribution.  

Assumption 2: The noise signal { ( )}v n  is i.i.d. with zero-mean and variance 2

v , and is independent 

of{ ( )}X n . 

Assumption3: The error nonlinearity 2 2

1( ( )) exp( ( ) 2 )f e n e n   is independent of the input signal

{ ( )}X n .  

Assumption4: The{ ( )}W n and ( )g n are independent of the{ ( )}X n . 

Assumption5: The expectation [ (e( ))]E f  is limited. 

Remark 3: Assumptions 1 and 2 are commonly used in [16, 33]. Assumption 3 is valid when the 

weight vector ( )W n lies in the neighborhood of the optimal solution
oW . 

 

4.1 Mean performance 

The filter misalignment vector is defined as 

*( ) ( ) W n W W n
                                    (11) 



 

 

 

The mean and autocorrelation matrix of ( )W n  are denoted by                                                                    

( ) [ ( )]n E W n 
                                     (12) 

( ) [ ( ) ( )]TS n E n n                                    (13)                                      

where ( )n is                                                       
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where (n) [ (e(n)) ( ) ( )]TA I f X n X n  .Taking the expectation of (15) and using the independence 

assumptions 1, 2, and 3, we get: 

2( 1) [ ( 1)] [1 [ (e( ))] ] ( ) [ ( )]xn E W n E f n n E g n         -
           (16) 

where 2

x  denotes the covariance matrix of ( )X n . From the (16), one can easily derive 
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Combining (11) and (17), we have 
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From the definition of (n)g  for the CIMMCC, we show that [ ( )]E g   is still limited (see Appendix 

2).  Then under Assumption 5, [ ( )]E W   is a bounded vector. As a result, [ ( )]E W n will converge to 

a vector [ ( )]E W  as shown in (18). 

 

4.2 Mean square performance 

Subtracting (16) from (15) and applying (14) yields 
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where 

2( ) [ ( ( ))] ( ( )) ( ) ( )T

xB n E f e n f e n X n X n   

( ) ( ) [ ( )]C n g n E g n   

Under Assumptions 1-3, it is straightforward to verify that ( )B n , and ( )C n  are zero-mean, and

( )W n , ( )X n  and ( )v n  are mutually independent. So, substituting (19) into (13) and after some 

tedious calculations, we can derive 
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Using the facts shown in [16, 33] that the fourth-order moment of a Gaussian variable is three times 

the variance squared and that ( )S n  is symmetric, we get    
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where ( )tr   denotes the trace of a matrix. Also, combining (11), (14), and the definition of (n)C , we 

obtain  
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Using (21), (22) and (23), one can derive  
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Further, the trace of (24) is as follows:  
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In equation (24), ( ) [ ( )]n E W n  , [ ( )]E W n and ( )C n are all bounded, and hence, [ ( ) ( )]TE W n C n

converges. This conclusion is the same as that in [16, 33-35] when the sparsity penalty term ( )g n

are chosen as theℓ1-norm or logarithmic penalty term. The CIM penalty term is also bounded 

because the negative exponential term can reach its maximum value. Therefore, the adaptive 

algorithm is stable if the following holds 

2 2 2 4(1 2 [ ( ( ))] ( 2) [ ( ( ))] ) 1x xE f e n M E f e n       .
              

(26) 

Hence, the above equation (26) reduces to 
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Furthermore, under Assumption 4, we have 
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Here, we denote the upper bound as the conservative upper bound B  due to Assumption 4.  

It is worth noting that the condition of (27) is equal to the stability condition of the standard ZALMS 

when ( ) 0e n  , or the 1  .We also note that ( )e n will be approximately equal to ( )v n when the 

proposed algorithm reaches the steady-state (as n ). For this case, (27) can be rewritten as 
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This result shows that if the step size satisfies (28), the convergence of the proposed algorithms is 

guaranteed. 



 

 

 

Remark4：According to the mean square convergence analysis, one can see easily that the mean 

square convergence performance of the CIMMCC algorithm depends mainly on the adaptive filter 

term. This result is general and coincides with the other sparse adaptive filters proposed in [16, 

33]. 

Remark 5： It is worth noting that the condition of (27) is equivalent to the stability condition of 

the standard ZALMS when ( ( )) 1f e n , which is similar to the results in [16, 33-35]. In addition, if 

the step size satisfies (27), then convergence of the proposed algorithms is guaranteed. However, 

the right term of (27) is only a conservative upper bound for the proposed algorithm because the 

condition of (27) is an approximation case. On the one hand, computer simulations, in Section 5, 

show that the proposed algorithm is converged even if the selected step size is slightly larger than 

the conservative upper bound. On the other hand, the steady-state performance of the proposed 

algorithm becomes a tangled mess, and then the result may invaluable for practical engineering. 

Therefore, the approximate condition in (27) is reasonable for ensuring the algorithm stability.   

 

5 Simulation Results 

To validate the performance of the proposed CIMMCC algorithm, we adopt state-of-the-art 

algorithms (i.e., LMP (least mean p-power) [21], MCC, ZALMS, RZALMS) and the proposed ZAMCC, 

RZAMCC algorithms. All the results are obtained by averaging over 100 independent Monte Carlo 

runs. The parameter vector of the unknown time-varying channel is set as 

[0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] 2000

[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] 2000 3000

[1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1] 3000

o

n

W n

n




  
                         

(29) 

In (29), the channel memory size M is 20 during different iterations. Here, we define the sparsity 

degree sD as:  

non zero

s

N
D

M

  

where the non zeroN  is the number of the non-zero tap in the oW . Since, the channel model has a 



 

 

 

sparsity of 1/20 during 1 to 2000 iterations, while the sD changes to 1/2 when the iteration is from 

2000 to 3000, and it is non-sparsity after 3000 iterations. Two impulsive noise models including 

mixed Gaussian (finite variance) and alpha-stable (infinite variance) are considered to in the 

following computer simulations. 

 

5.1. Time-varying channel estimation under Mixed Gaussian noise 

We intend to compare the seven algorithms (i..e, LMP, MCC, ZALMS, RZALMS, CIMMCC, ZAMCC, 

RZAMCC) in the presence of the mixed Gaussian noise. The impulsive observation noise model 

[41]is defined as 

2 2

1 1 2 2(1 ) ( , ) ( , )N N      
                            (30) 

where 2( , )( 1,2)i iN i   denotes the Gaussian distributions with mean values i and variances 2

i , 

and the   is the mixture coefficient. In this study, one can notice that the Gaussian distribution 

with much larger variance can model stronger impulsive noises.  The estimation performance is 

evaluated by mean square deviation（MSD）standard which is defined as 

2( (n)) E{|| (n) || }oMSD W W W 
                      

(31) 

Experiment 1: The convergence behavior of the proposed is first evaluated. Simulation 

environments are formulated as follows. Parameters 1 2 1 2( , , , , )     in the mixed Gaussian 

distribution are set as (0,0,0.0001,20,0.05) . 1 2  is set as for the standard MCC and the sparse 

MCC-type algorithms. Step size is 0.02  , the zero-attractor controller factors are 0.0006  for 

sparse aware MCC and 0.0001  for sparse aware LMS. The free parameter  in log-sum penalty 

for the RZAMCC and RZALMS is 10, and the kernel width in CIMMCC is 2 0.01  . The parameters 

are selected such that the algorithms have almost the same initial convergence rate. The 

convergence curves, in terms of MSD are shown in Fig.1. This figure shows that both ZALMS and 

RZALMS achieve almost the same convergence performance, and ZAMCC and RZAMCC also obtain 

similar performance. Unlike these algorithms, the CIMMCC achieve better performance during the 

first and second stages. After 3000 iterations, the CIMMCC algorithm performs comparable with the 



 

 

 

standard MCC and other sparse MCC-type algorithms even in the case of the non-sparse system. 

Hence, our proposed algorithm can well track time-varying channels. 

 

 

Fig.1. Tracking and steady-state behaviours of 20-order adaptive filters, 

driven by white input signal and corrupted by mixed Gaussian noise. 

 

Experiment 2:We further examine MCC aware algorithms with different step sizes (i.e., 0.005, 0.01, 

0.05, 0.085, 0.1and 0.5).  The simulation results are depicted in Fig.2. One can see that the 

performance of the proposed algorithm becomes better with smaller and vice versa. In practice, an 

upper bound of the step size is needed to guarantee the convergence performance of the MCC and 

sparse aware MCC algorithms. In this example the optimal performance is achieved at the step size 

0.005 for all algorithms. Furthermore, the performance curves of the sparse MCC algorithms are 

almost the same as the standard MCC algorithm when step size gets larger, though the performance 

becomes poorer.  Simulation results suggest that the step sizes of the sparse MCC algorithms need 

unifying upper bound to ensure the convergence performance, as proven in section 4. In this case, 

the conservative upper bound of 𝜇 obtained from (27) is 0.085. We observe that the satisfactory 

convergence performance can be achieved when 0.05 B    . Since B is a conservative upper 

bound, the algorithm still show the convergence behavior when the step size is slightly larger than

B  (e.g. 0.1  ), but the performance become much poorer which doesn’t meet the requirement 
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of practical engineering.  When the step size is too large (say 0.1 B   ), the algorithm shows no 

obvious convergence. The error bars of the CIMMCC in terms of MSD are plotted in Fig.3 to further 

validate the results. According to the result in Fig.3, one can observe that the MSD of the CIMMCC is 

very worse when the step size𝜇is larger than 0.085. 

 

Fig.2. Steady-state MSDs of the channel estimates versus step sizes 

 

Fig.3. Error bar performance of CIMMCC with different step sizes  

 

5.2 Time-varying channel estimation under Alpha -stable noise 
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The mixed Gaussian models do not suitable for modeling all of natural noises [38].Even though its 

tail decays exponentially while empirical evidence manifests that algebraic decay of heavy-tailed 

noise processes often occurs in communications as well as other fields [39]. To solve this problem, 

we consider the alpha-stable noise model which provides a good description for above mentioned 

heavy-tailed noises [41].Hence, alpha-stable model has been attracted highly attentions [20-22]. 

Under the alpha-stable noises, we also verify the effectiveness of the proposed CIMMCC algorithm. 

First of all, the characteristic function of alpha-stable process is given by                                                                                            

 ( ) exp | | [1 sgn( ) (t, )]f t j t t j t S     
                 

(32)  

in which  

tan 1
2

( , )
2

log | | 1

if

S t

t if












 
 
                            

(33) 

where (0,2]   is the characteristic factor,     is the location parameter, [ 1,1]   is the 

symmetry parameter, and 0   is the dispersion parameter. The characteristic factor   

measures the tail heaviness of the distribution. Smaller   is means to the heavier tail in (31). In 

addition,  measures the dispersion of the distribution, which plays a similar role to the variance of 

Gaussian distribution. The distribution is symmetric about its location   when 0  . Such a 

distribution is called a symmetric alpha-stable distribution ( S S ). In our simulations, the noise 

model ( )v n is defined as ( , , , )V     . 

Experiment 1: Let us consider the problem of sparse channel estimation under impulsive noise 

model with (1.2,0,0.2,0)V  . The step size is set at 0.02 for all of adaptive filtering algorithms: LMP, 

MCC, ZALMS, RZALMS, ZAMCC, RZAMCC, and CIMMCC. The kernel widths in MCC and CIM are set as 

2.0 and 0.01, respectively. For ZALMS, RZALMS, ZAMCC, RZAMCC, and CIMMCC, the weight factor of 

the sparsity inducing term is set at 0.0001 and 10   .The average convergence curves in terms of 

the mean square deviation (MSD) are shown in Fig.4. One can find that sparse MCC-type algorithms 

achieve faster convergence rate and better steady-state performance than the standard algorithms 

(i.e., LMP and MCC). In addition, Fig. 4 also shows that proposed CIMMCC achieves lower MSD than 



 

 

 

ZAMCC and RZAMCC because the CIM provides a better approximation to ℓ0-norm function. It is 

worth notice that both ZALMS and RZALMS are unstable which is caused by impulsive noises. In the 

subsequent experiments, unstable LMS-type algorithms are omitted and only stable algorithms 

(LMP and MCC) as the benchmark will be compared. 

 

 

Fig.4.Tracking and steady-state behaviours of 20-order adaptive filters, driven by white input signal 

corrupted by impulsive noise 

 

Experiment 2:To further demonstrate the performance of the proposed methods, we continue to 

conduct the simulation with different values of the different   (1,1.5,2,2.5,3)  and  different  

  (0.5,1,1.1,1.2,1.3,1.4,1.5,1.6,1.7) inFig.5and Fig. 6. As shown in the two figures, the curve of our 

proposed CIMMCC is lower than other algorithms.  
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Fig.5.MSD of the channel estimates versus   

 

Fig.6.MSD of the channel estimates versus𝛼. 

 

Experiment 3: The kernel size 1 in MCC is one of important parameters for the CIMMCC. To study 

the connection between the parameter and CIMMCC, MSD curves of CIMMCC are depicted in 

different 1  as shown in Fig.7. This figure implies that the proposed algorithm under less impulsive 

noise (bigger α) can achieve the better performance for different 1 .Hence, the simulation result in 
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Fig. 7is also coincidence with theory analysis in Section 4. In addition, the lower MSD of the 

proposed algorithm is obtained when 1 1  for different alpha. Hence, the MSD is deteriorating as 

the kernel size increasing in exceeds certain range. For obtaining the optimal performance, it is 

worth noting that suitable choosing the kernel size is also important for the CIMMCC.  

 

Fig.7.MSD of CIMMCC with different kernel size for different . 

 

Experiment 4: The effects of the step size on the performance of the CIMMCC algorithm will be 

studied as follows. Proper step size ensures good convergence performance. We illustrate the 

convergence behaviors of the CIMMCC with different step sizes. The noise parameters is set as 

(1.4,0,1,0)V  .The kernel width 2  is0.05, the zero-attract factor is 0.0005  , and the p value is 

p=1.2. The convergence curves viruses step sizes (0.01, 0.03, 0.05, 0.07, 0.09, 0.1, 0.2, and 0.3) are 

depicted in Fig.8. One can observe that the satisfactory convergence performance is achieved when

0.01  . However, when the step size is too large (i.e., 0.2   ), the algorithm does not converge.  

The error bar performance is illustrated as well in Fig.9. To keep the algorithm converges to a 

steady-state value,  should be set a conservative upper bound. Hence, the simulation result is 

coincidence with the convergence analysis in section 4. 
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Fig.8. Convergence of the CIMMCC with different   

 

 

Fig.9. Error bar performance of the CIMMCC with different step sizes 
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5.3 Sparse echo cancellation under alpha stable noise 

One of the important applications of sparse adaptive system identification is the sparse echoes 

cancellation [42-44].In this section, we evaluate the ability of the proposed sparse aware MCC 

algorithms using sparse echo cancellation scenarios. In our simulation, the echo path commutes to a 

channel with length M = 1024 and 52 non-zero coefficients. This artificial echo path, which has been 

represented in Fig.10, will be referred as the sparse echo channel.   

 

 

Fig.10. Impulse response of artificially generated sparse echo channels  

 

Experiment 1:  USASI noise [45] input with a speech-like spectrum [46] and the alpha-stable noise 

model are considered in the simulation. 1 and 2  are set at 2 and 0.01, respectively; the 

zero-attract factor is 0.0001  , and the step size are set as 0.001 and0.0005, ' 10   is considered. 

Fig.11 shows the convergence curves for MCC-type algorithms, i.e., CIMMCC, RZAMCC as well 

ZAMCC. It is expected that all the sparse MCC-type algorithms converge quickly and the proposed 

CIMMCC algorithm achieve the optimal MSD performance. 
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Fig.11. Convergence for sparse echo response with USASI noise input 

  

Experiment 2: To conclude the evaluation of the proposed schemes for echo cancellation further, 

we demonstrated their performance when the input signal is a fragment of 2s of real speech, 

sampled at 8 kHz in this subsection. Simulation parameters are set as: 0.0001  , 0.001  , 1 2  ,

2 0.01  , ' 10   and the simulation result is shown in Fig.12. This figure shows that the proposed 

sparse MCC algorithms perform well performance for the real speech under the impulsive noise 

case. According to the simulation, one can deduce that the proposed MCC algorithms can work well 

in the practical scenarios of sparse echo cancellation. 
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Fig.12. Convergence for sparse echo response with speech input. 

 

6 Conclusions 

In this paper, we proposed anew robust and sparse adaptive filtering algorithm, derived by 

incorporating into the MCC with a CIM based sparsity penalty term. We have analyzed theoretically 

the mean and mean square convergence of the proposed algorithm, and derived certain conditions 

for guaranteeing convergence. Simulation results confirmed the desirable performance of the new 

algorithm under impulsive noise environments. 
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Appendix 1： 

1. Sparse MCC with zero-attracting (ℓ1-norm) penalty term(ZAMCC) 

To develop a sparse MCC algorithm with zero-attracting (ℓ1-norm) penalty term, we introduce the 

cost function 

 2 2

1 1

1

(W( )) ( ) (W( ))

1
exp ( ) 2 || ( )) ||

2
                

CIMMCC MCC ZAJ n J n J n

e n W n



 
 

  

   

                   

(34) 

where 1(W( )) || ( )) ||ZAJ n W n denotes the ℓ1-norm of the estimated parameter vector. In (34), the 

MCC term is robust to impulsive noise, and the ZA penalty term is a sparsity inducing term, and the 

two terms are balanced by a weight factor 0  .Based on the cost function (34), we derive an 

adaptive algorithm: 
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(35) 

where  and  are the same as in (8) and (9),and the ( )sign  is a component-wise sign function. 

This algorithm is referred to as the ZAMCC algorithm.   

2. Sparse MCC with the logarithmic penalty term 

In this part, we derive a sparse MCC algorithm with logarithmic penalty term. We define the 

following cost function: 
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exp ( ) 2 log 1 | |

2
                

RZAMCC MCC RZA

M

i

i

J n J n J n

e n w



  
  

  

    
            

(36) 

where the log-sum penalty 
1
log(1 | | / )

M

ii
w 


 is introduced as it behaves more similarly to the 



 

 

 

ℓ0-norm than ||W||1,  is a positive number. Then a gradient based adaptive algorithm can be easily 

derived as   
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or equivalently, in vector form 
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where  and  are the same as in (8) and (9), and ' 1  . This algorithm is referred to as the 

RZAMCC algorithm.  

Appendix 2： 

 We define a function as follows： 

 2 2( ) exp 2g x x x  
                         

(39) 

where  is a constant. Obviously, we have 

2 2
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2
CIM i i ig x g w n w n w n

M


 
   

            
(40) 

when 31 ( 2 )M     and  ( )ix w n  . Further, we compute the limit of the function ( )g x  

based on L'Hôpital's rule with x  
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(41) 

The estimated weight ( )iw n is limited in general, and by (41) even if the channel parameter ( )iw n

tends to infinity, the vector ( ( ))CIM ig w n is still limited. 
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