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Abstract: This paper presents a model of an agile tail-sitter aircraft, which can operate as a helicopter as well as capable of 

transition to fixed-wing flight. Aerodynamics of the co-axial counter-rotating propellers with quad rotors are analysed under 

the condition that the co-axial is operated at equal rotor torque (power). A finite-time convergent observer based on Lyapunov 

function is presented to estimate the unknown nonlinear terms in co-axial counter-rotating propellers, the uncertainties and 

external disturbances during mode transition. Furthermore, a simple controller based on the finite-time convergent observer 

and quaternion method is designed to implement mode transition. 
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1 INTRODUCTION 

  This paper focuses on the design and control of an agile tail-sitter aircraft, where such an aircraft can not only taking off 

and landing vertically, but also flying forward with high speed in the same way as a conventional fixed wing aircraft. 

Vertical take-off and landing (VTOL) aircrafts and fixed-wing airplanes have their advantages and shortcomings. 

Traditional aircrafts can take off and land vertically, but they cannot fly forward with high speed carrying large payloads [1-4]. 

On the other hand, conventional fixed-wing airplanes can fly forward with high speed and can carry large payloads. However, 

they cannot take off and land vertically, and appropriate runways are required. 

There are some types of VTOL aircrafts with the ability of high-speed forward flight, such as manned aircrafts AV-8B 

Harrier [5] and F-35 [6]. These aircrafts are designed for specific environment mission. The reason these aircrafts can perform 

vertical take-off and landing is all due to their powerful engines with thrust vectoring or tilting jettubes. Such aircrafts use jet 

engines to provide the required thrust. Although they are powerful, the jet exhaust stream is very hot and harmful, and it can 

easily destroy the ground environment or inflict injuries to people nearby. These aircrafts are not suitable for use for many civil 

and rescue operations. Moreover, such VTOL aircrafts with jet engines are less efficient in hover than a conventional 

helicopter or a tilting-rotor aircraft of the same gross weight [7]. Importantly, the tilting mechanisms and control hardware 

increase the weight of the aircraft. 

In recent years, there has been a considerable attention towards the propeller-pushing and flapping-wing aircrafts which can 

not only take off vertically, but also fly forward with high speed. A successful example includes V-22 aircraft [8] as well as 

tail-sitter designs [9-17]. The T-wing is a VTOL UAV that is capable of both wing-born horizontal flight and propeller born 

vertical mode flight including hover and descent. These aircrafts can be considered hybrid helicopter/fixed-wing aircrafts and 

have higher rotor disk loadings. In the tail-sitter aircrafts, a novel unmanned aircraft called SkyTote has been designed [18-22]. 

It was originally conceived as an airborne conveyor belt that would use a VTOL capability to minimize ground handling. The 

concept demonstrator is a 'tail-sitter' configuration and utilizes coaxial counter-rotating rotors. A relatively large cruciform tail 

provides directional control in the airplane modes as well as serving as a landing gear in the helicopter mode. However, a 

sufficiently large thrust force must be provided to complete mode transition. Such tail-sitter aircrafts are less efficient in hover 

than a conventional helicopter of the same gross weight but still are much more efficient than other VTOL aircrafts without 
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rotating wings [7]. Furthermore, the attitude control is implemented based on the downwash flow generated by the coaxial 

counter-rotating propellers. Large size of the co-axial counter-rotating propellers is required. Alternatively, if the size of the 

co-axial counter-rotating propellers is restricted, the upward flying velocity of the aircraft should attain a given value which 

can provide the sufficient moments in level and vertical flying modes. This adds constraints to the types of the flying 

trajectories possible. 

A tilt-fuselage aircraft was presented in [23] to keep the flying height invariant during mode transitions. It is a rotor-fixed 

wing aircraft with two free wings. During mode transition, the fuselage is tilted and free wings are kept at a given small angle 

of attack. However, it is difficult to analyze the aerodynamics of the tilting fuselage during mode transition, and moreover, the 

tilting structure is difficult to control. 

In this paper, a novel agile tail-sitter aircraft is presented. Its tilt structure is based on a quad rotor. When the aircraft hovers, 

takes off or lands, control method of a quadrotor aircraft can be used directly [24, 25, 26]. During mode transition from hover 

to forward flight and vice versa, the tilt moments are generated by the force differential of the two pairs of rotors. The co-axial 

counter-rotating propellers provide the thrust. Comparing with the conventional tail-sitter aircraft, more agile maneuverability 

can be obtained. Aerodynamics of the counter-rotating propellers with quad rotors is analyzed under the condition that the co-

axial is operated at equal rotor torque (power). In order to reconstruct the nonlinear terms in the relationship between the thrust 

and the rotational speed, the uncertainties and the external disturbances, a finite-time convergent observer is presented to 

estimate the unknown terms. Furthermore, the quad rotors increase the force efficiency of the co-axial counter-rotating 

propellers with respect to the two independent ones. A simple controller based on the observer and quaternion method is 

designed to implement mode transition. The flying modes transition is shown in Figure 1. 

The outline of the paper is as follows. In section 2, we present the design of aircraft including the mechanical structure of 

aircraft. In Section 3, the mathematical model of aircraft is derived, working from first principles and basic aerodynamics. In 

section 4, observer design is proposed. In section 5, controller design is proposed. In section 6, desired trajectory during mode 

transition is described. Computational analysis and simulation experiments are presented in Section 7. The conclusions are 

provided in Section 8. The Appendix for the proofs of some theorems is in Section 9. In Section 10, list of symbols is shown. 

 

Hover 
Hover to forward flight 

Forward flight Forward flight to hover  

Hover 

 
Figure 1 Transition to forward flight from hover and vice versa 

 

2 AIRCRAFT DESIGN 

2.1 Mechanical structure of the aircraft 
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A tail-sitter aircraft is presented in Figures 2 (a)-(d). 
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                                                                                                         (c)                                                                                          (d) 
Figure 2 VTOL tail-sitter aircraft: (a) Structure of tail-sitter aircraft, (b) Hover, taking-off or landing mode, (c) Mode transition from hover to forward flight 

and vice versa, (d) Forward flight 

Notations: 
1: rotor 1, 2: rotor 2, 3: rotor 3, 4: rotor 4, 5: up propeller, 6: low propeller, 7: left fixed wing, 8: right fixed wing, 9: left aileron, 10: right aileron, 11: vane 1, 

12: vane 2, 13: vane 3, 14: vane 4, 15: fuselage 

A. Flying modes 

When the aircraft is in VTOL flight or in hover (see Figure 2(b)), the thrusts generated by the propellers 5 and 6 with quad 

rotors 1-4 provide the required lift force. A control method for quad rotor aircraft can be used. The only difference is that the 

main lift force can be provided by the co-axial propellers 5 and 6, and the attitude regulation is provided by quad rotors 1-4. 

For this aircraft, the yaw dynamics in forward flight correspond to the roll dynamics in hover, the pitch dynamics in forward 

flight correspond to the same dynamics in hover, and the roll dynamics in forward flight correspond to the yaw dynamics in 

hover. In the following, we select the dynamic angle names in forward flight for all the flying modes. 

For transition from hover to horizontal flight, assuming that the aircraft is hovering (see Figure 2(b)), the aircraft is initially 

lifted by co-axial counter-rotating propellers with quad rotors 1-4. The thrusts generated by rotors 3 and 4 increase, at the same 

time the thrusts generated by rotors 1 and 2 decrease. Thus, the fuselage is tilted towards the horizontal, which in turn causes 

the horizontal speed of the aircraft to increase (see Figure 2(c)). With the regulation of the co-axial counter-rotating propellers 

5 and 6, the fixed wings 7 and 8 obtain a given angle of attack in accordance with the relative wind. The gravity of the aircraft 

is counteracted mainly by the vertical force of the thrusts generated by co-axial counter-rotating propellers and quad rotors 1-4. 

The flying process is shown in Figure 1. Quad rotors 1-4 are controlled, the pitch angle changes from 90 degree to zero degree. 

With increasing horizontal speed, wings 7 and 8 develop lift. The aircraft soon transitions into horizontal flight in a fixed wing 

straight and level flight mode (see Figure 2(d)). During mode transition from hover to forward flight, roll, yaw and pitch 

dynamics are all controlled by quad rotors 1-4. The attitude control is similar to that of usual quad-rotor aircrafts. The only 

difference is that a torque amplifier for the reactive torque is designed for magnifying the roll moment, because the coefficient 

of the reactive torques generated by quad rotors 1-4 is very small. 
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For transition from horizontal flight to hover, the aircraft is controlled to climb up. The aircraft flies towards vertical (see 

Figure 1). This causes the horizontal speed of the aircraft to decrease and the vertical thrust vector gradually increases to 

overcome the gravity. Thus, the aircraft slows and performs transitions to hover. 

B. Analysis without the quad rotors 1-4 

The aircraft without quad rotors 1-4 cannot provide the sufficient pitch, roll and yaw torques (see Figure 3). The attitude 

control is implemented based on the downwash flow generated by the co-axial counter-rotating propellers. Therefore, a large 

size of the co-axial counter-rotating propellers is required. Furthermore, a sufficiently large thrust generated by the co-axial 

counter-rotating propellers is needed. Alternatively, if the size of the co-axial counter-rotating propellers is restricted, the 

upward flying velocity of the aircraft should attain a given value which can provide the sufficient torques by vanes 11-14. This 

restrains the types of the flying trajectories. 

         
Figure 3 VTOL Tail-sitter aircraft without quad rotors 1-4 

 

3 MATHEMATICAL MODEL 

3.1 Mathematical model in hover 

The forces and moments for the tail-sitter aircraft during hover, vertically takeoff and landing are shown in Figures 4 and 5. 
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Figure 4 VTOL aircraft model in hover              Figure 5 Forces and torques of the aircraft in hover 

  The modeling and control is similar to normal quadrotor aircrafts during hovering, takeoff and landing. Here we will not 

discuss this case. 

 

3.2 Mathematical model during mode transition 

The forces and moments for the aircraft during mode transition are shown in Figures 6 and 7. 

As the blades of quad rotors 1-4 rotate, they are subjected to drag forces which produce torques around the aerodynamic 

center. These moments act in opposite direction relative to the rotation rate of the rotor. The reactive torque generated, in free 

air, by the rotor due to rotor drag is small. It is difficult to regulate the roll dynamics during mode transition. Therefore, a 

torque amplifier for roll dynamics during mode transition is designed as shown in Figure 8. In Figure 8, when the rotors 1-4 

rotate, the biases of the vanes 1-4 generate the forces f1, f2, f3 and f4. These forces can help increase the roll torque. 
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Figure 6 VTOL tail-sitter aircraft model during mode transition     Figure 7 Forces and torques of the aircraft during mode transition 
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Figure 8 Torque amplifier for roll dynamics during mode transition 
  

3.2.1 Coordinates and frames 

In Figures 6 and 7, C is the centre of gravity of the aircraft. Let ( , , )x y zE E EΓ =  denote the right handed inertial frame, and 

( , , )b b b
x y zE E EΛ =  denote the frame attached to the aircraft’s body whose origin is located at its center of gravity [27]. 

( , , )b b bP x y zΛ =  is the position of center of gravity relative to frame Λ . 3( , , )Tφ θ ψΓΘ = ∈ℜ  describes the aircraft orientation 

expressed in the classical yaw, pitch and roll angles (Euler angles), and ( , , )Tφ θ ψΓΩ =  



. We use cθ  for cosθ and sθ  for sinθ . 

R is the transformation matrix representing the orientation of the rotorcraft,  

c c c s s s c c s c s s
R c s s s s c c s s c c s

s s c c c

θ ψ ψ θ φ ψ φ ψ θ φ ψ φ

θ ψ ψ θ φ ψ φ ψ θ φ ψ φ

θ φ θ φ θ

 − +
 = + − 
 − 

                                                            (1) 

and the following relation holds: V RVΓ Λ= , where VΓ
 denotes the vector in frame Γ , and VΛ

 is its projection in frame Λ . 

Let α  be the angle of attack of the fixed wing, and 

( )1arctan b bz xα θ −= − 

                                                                           (3) 

Let β  be the sideslip angle, and 

( )1arcsin b by Vβ −= 

                                                                                (4) 

where 2 2 2
b b b bV x y z= + +  

. 

3.2.2 Dynamical model 
By defining ( , , )P x y zΓ =  and ( , , )x y zυΓ =    as the position of center of gravity and the velocity relative to frame Γ , the 

equations of motion for a rigid body subjected to body force 3F ∈ℜ  and torque 3τ ∈ℜ  applied at the center of mass and 
specified with respect to frame Γ , are given as follows: 

   

z

P
m F mgE

υ
υ
Γ Γ

Γ

=
= −





                                                                                 (2) 
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J J τΛ Λ ΛΩ +Ω × Ω =                                                                              (3) 

where [ ] 3p q r Τ
Λ Λ Λ ΛΩ = ∈ℜ denotes the angular velocity of the airframe expressed in frame Λ , m∈ℜ  specifies the mass, 

and 3 3diag{ , , }xb yb zbJ J J J ×= ∈ℜ is an inertial matrix; ( )R RS Λ= Ω ; The skew-symmetric matrix ( )S ΛΩ  is defined as follow: 

0
( ) 0

0

r q
S r p

q p

Λ Λ

Λ Λ Λ

Λ Λ

− 
 Ω = − 
 − 

                                                                          (4) 

The relation between the angular velocity of the aircraft and the time derivative of the attitude angles is given by the 

following transformation 

[ ]p q r Τ
Λ Λ Λ Λ ΓΩ = = Ω                                                                         (5) 

where   is the velocity transformation matrix and defined as 

1 0
0
0

s
c s c
s c c

θ

φ φ θ

φ φ θ

 −
 =  
 − 



                                                                              (6) 

Therefore, we obtain the following relation between the angular rate and the derivatives of the Euler angles: 

1 1

p
q
r

φ
θ
ψ

Λ
− −

Γ Λ Λ

Λ

   
   Ω = = Ω =   
     





 



                                                                          (7) 

where 

1

1 sin tan cos tan
0 cos sin
0 sin sec cos sec

φ θ φ θ
φ φ

φ θ φ θ

−

 
 = − 
  



                                                                      (8) 

The total external force F consists of the thrust Fc generated by the co-axial counter rotating propellers, the thrusts Fr of the 

quad rotors, aerodynamic forces on the fixed wings Fw, aerodynamic forces on the fuselage Ff, and forces due to uncertainties 

and external disturbances Fd. These forces are expressed in body frame Λ , and they are transformed by R to be expressed in 

the inertial frame Γ  as follows: 

( )c r w f dF R F F F F F= + + + +                                                                        (9) 

The total moment τ consists of the moments created by the rotors τr, moments created by the aerodynamic forces produced 

by the wings τw, moments created by the gyroscopic effects of the propellers τgyro and moments due to the uncertainties and 

external disturbances τd:  

r w gyro dτ τ τ τ τ= + + +                                                                               (10) 

One of the drawbacks related to the use of the Euler angle system is the inherent singularity. This drawback can be avoided 

by using the quaternion representation [28-32], which is based upon the fact that any rotation of a rigid body can by described 

by a single rotation about a fixed axis [33]. This globally nonsingular representation of the orientation is given by the vector (q, 

q0)T with 

( ) ( )0sin 2 , cos 2q k qγ γ= =
                                                                       (11) 

where γ  is the equivalent rotation angle about the axis described by the unit vector 1 2 3( , , )k k k k=
   

,with the constant as follow: 

2
0 1q q qΤ + =                                                                                      (12) 
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Although the quaternion representation is nonsingular, it contains a sign ambiguity (i.e., (q, q0) and (-q, -q0) lead to the same 

orientation) which can be resolved by choosing the following differential equations [32]:  

0 0
1 1( ( ) ) ,  
2 2

q S q q I q qΤ
Λ Λ= + Ω = − Ω 

                                                                    (13) 

where I is a 3×3 identity matrix, and ( )S ⋅  has been defined in Eq. (4). Moreover, the relationship between the quaternion and 

the Euler angles can be written as 

0 /2 /2 /2 /2 /2 /2

1 /2 /2 /2 /2 /2 /2

2 /2 /2 /2 /2 /2 /2

3 /2 /2 /2 /2 /2 /2

q c c c s s s
q s c c c s s
q c s c s c s
q c c s s s c

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

= +

= +

= +

= +

                                                                      (14) 

and 

1 0 1 2 3

1 1 2 2

1
0 2 3 1

1 0 3 1 2

2 2 3 3

2( )tan
1 2

sin (2( ))

2( )tan
1 2( )

q q q q
q q q q

q q q q

q q q q
q q q q

φ

φ

ψ

−

−

−

 +
=  − + 
= −

 +
=  − + 

                                                                       (15) 

3.3 Fluent for the aerodynamic parameters 

In the simulation, in order to obtain the parameters instead of the actual parameters in the wind tunnel test, we use Fluent 

software to simulate the flying environment. Fluent is one of the applications of computing fluid dynamics [34]. It uses finite-

element method to calculate the motion of fluid field, and three steps are arranged to get the aerodynamic parameters [35]. 

Step 1: Meshing the fluid field. The parameters of fixed wings 7, 8 and fuselage 15 are obtained by using the 3-D simulation 

shown in Figure 9(a), the parameters of one of the co-axial counter-rotating propellers use the simulation shown in Figure 9 (b), 

and the parameters of the rotors 1-4 with fairings 11-14 use the simulation shown in Figure 9 (c). 

 

 

 

 

 

 

(a) Mesh of tail-sitter aircraft 

                                           

(b) Mesh of one of the co-axial counter-rotating propellers                           (c) Mesh of the rotor with fairing 
Figure 9 Model of fluent simulation 
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Step 2: Fluent simulation. The following conditions are set: the boundary condition, continuous equation, motion equation, 

energy equation, initial condition of the fluid field; the following constraints are selected: the type of the fluid field, viscid or 

invisicid, laminar or turbulence flow, k-epsilon, the algorithm to simulate the motion of fluid field. The parameter simulation 

results are shown in Figure 10. 

 
(a) Remains of the simulation target for the fixed wing and fuselage 

(3-D velocity, energy, k-s model parameters) 

 
(b) Drag coefficient of fixed wing 

Figure 10 Fluent simulation 

If the curves in Figure 10(a) cannot converge to a preseted value, such as 10-6, then we should turn back to step 1, to make 

the mesh denser, and to repeat the step 2 until the curves converge to the preseted value. 

Step 3: Postprocessing. After the Fluent simulation, we use the post processing tools in Fluent to get the needed parameters. 

1) The parameters of fixed wing 

The lift force and drag force generated by the fixed wings 7 and 8 are, respectively 

( ) ( )
0

2 2
0

2 2 2 0.68

0 0

0.5 ( ),

0.5 ( ), , 1.78 1 0.045 0.46

0.3137, 0.7025, 0.00182, 0.1634, 6

i

i

i Li b b Li L L L i

i Di b b Di D L w w w w

L L D L i w

L C S x z C C C C

D C S x z C C C A e e A

C C C C A

α δ

α δ

ρ α δ

ρ π

= + = + +

= + = + = − −

= = = = =

 

 

                             (16) 

where 1, 2i = ; S  is the area of the half wing, 
0LC  is the lift coefficient when the angle of attack α  is equal to zero, 

LC α
 is 

the lift coefficient due to the angle of attack α , 
iδ  is the normal flap bias angle, and LC δ  is the lift coefficient due to the flap 

bias angle iδ . Aw is aspect ratio of fixed wing. ew is the value of the Oswald’s efficiency factor. The expression of lift and drag 

coefficients is considered as valid for low angle of attack, and the angle of attack could be higher during the initial mode 

transition at low speed. 

A projection of lift and drag in the body frame is generated by the sideslip angle β. Here sideslip angle β is assumed to be 

low enough to neglect this lateral effect. Alternatively, we can incorporate this effect into external uncertain force Fd. Then the 

aerodynamic forces on the fixed wings Fw in body frame can be written as 
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1 2 1 2

1 2 1 2

( )sin ( ) cos
0

( )cos ( )sin
w

L L D D
F

L L D D

α α

α α

+ − + 
 =  
 − + − + 

                                                             (17) 

and the moments created by the aerodynamic forces produced by the wings τw are 

2 1 2 1

2 1 2 1

2 1 1 2

[( ) cos ( )sin ]
[( ) cos ( )sin ]
[( ) cos ( )sin ]

w

w c

w

l L L D D
l L L D D
l D D L L

α α
τ α α

α α

− + − 
 = + + + 
 − + − 

                                                            (18) 

The parameters of fuselage lift and drag are presented as follows: 

( ) ( )2 2 2 20.5 , 0.5f lf f b b f df f b bL C S x z D C S x zρ ρ= + = +    

0,lf lf df df dfC C C C Cα αα α= = +  

00.0802, 0.0063, 0.0094lf df dfC C Cα α= = =                                                              (19) 

where Lf  and Df  are the lift and drag forces generated by the fuselage, respectively; Clf is lift coefficient; Cdf is the drag 

coefficient; Cdf0 is the constant in the coefficients of drag force. Then forces on the fuselage Ff in body frame are written as 

sin cos
0

cos sin

f f

f

f f

L D
F

L D

α α

α α

 −
 =  
 − − 

                                                                         (20) 

2) The parameters of co-axial counter-rotating propellers 

u c d uv Rλ ω= , l c d lv Rλ ω= , 0.2673cλ =                                                               (21) 

where uv  and lv  are the induced velocities of upper and lower rotors, respectively; uω  and lω  are the rotational speeds of 

the upper and lower rotors, respectively; cλ  is a positive non-dimensional quantity,  which is called as induced inflow ratio;
dR  

is the radius of the rotor disk of the co-axial counter rotating propellers. 

3) The parameters of quad rotors and vanes are shown as follows: 

The lift forces of quad rotors 1-4: 

( )2 4, 1, 2,3, 4 , 5 10ri iF b i bω −= = = ×                                                                     (22) 

where Fr1, ⋯, Fr4 are the thrust forces generated by the four rotors, respectively; 𝜔𝜔1, ⋯, 𝜔𝜔4 are the angular rates of the rotors, 

respectively; b is the coefficient of lift force for each rotor. The sum of the quad rotors thrusts can be written as 

4 4
2

1 1
0 0 0 0r ri i

i i
F F b ω

Τ Τ

= =

   
= =   
   
∑ ∑                                                                   (23) 

  As the blades of quad rotors 1-4 rotate, they are subject to drag forces which produce torques around the aerodynamic center 

Ori. These moments act in opposite direction relative to ωi. In hover, the reactive torque generated in free air by the rotor due to 

rotor drag is given by: 

( )2 5, 1, 2,3, 4 , 3 10ri ik i kτ ω −= = = ×                                                                   (24) 

where k  is a positive constant. Because coefficient k is very small, reactive torques can’t provide the sufficient torque. A 

torque amplifier for roll dynamics is designed as follow (see Figure 8): 

32 2ai aif lτ = , 1, , 4i = 

                                                                           (25) 

2 ,ai f i f a af k k cω δ= =                                                                                 (26) 
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where, aδ  is the deflection angle of vane, ac  is the coefficient of moment for a fairing. From the simulation results of Fluent, 

we can obtain a conclusion that when each vane has single bade, the vane angle is 0.13686rad (i.e., 7.84deg or so). 

Therefore, the sum of torques of each rotor with a vane is 
2

3( 2 2)ri ai f ik k lτ τ ω+ = + , 1, , 4i = 

                                                         (27) 

Therefore, the moments created by the rotors are 
4

1

1

3
1 2 3 4

3
2 3 1 4

( 1) ( )

[( ) ( )]
2

[( ) ( )]
2

i
ri ai

i

r r r r r

r r r r

lF F F F

lF F F F

τ τ

τ

+

=

 − + 
 
 = + − + 
 
 + − +  

∑
                                                                        (28) 

and the gyroscopic effects of the propellers τgyro can be written as 
4

1
( 1)i

gyro r z i
i

J eτ ωΛ
=

= Ω × −∑                                                                          (29) 

where rJ  is the moment of inertia of each rotor. 

3.4 Aerodynamic analysis of co-axial counter-rotating propellers 5 and 6 with quad rotors 1-4 

The side slip angle β is assumed to be low during mode transitions. The performance treatment of co-axial counter-rotating 

propellers 5-6 and quad rotors 1-4 in mode transition is shown in Figure 11. 

 

6 
7 

8 Rotor-disk plane 

vena contracta 

Upper rotor 

Lower rotor 

Tl 

0 

1 

3 4 

5 

2 

Rr 

2la 

Vbcosα+vi 

Vbcosα+wi 

Vbcosα 

Vbcosα+wl 

Vbcosα+2vu+vl 

Vbcosα+vl 

Vbcosα+2vu 

Vbcosα+vu 

Tu 

Vbcosα 
Vbcosα 

Vb 

Vbsinα 

Vbcosα 

Vbcosα+vi 

Vbcosα+wi  
Figure 11 Flow model analysis, where the lower rotor is considered to operate in the fully developed slipstream of the upper rotor 

 

One advantage of the co-axial counter-rotating propeller design is that the net size of the rotor(s) is reduced (for the aircraft 

gross weight) because each rotor now provides thrust. In addition, no additional rotor is required for anti-torque purposes, so 

that all power can be devoted to providing useful thrust and performance. However, the rotors and their wakes interact with 

one another, producing a somewhat more complicated flow field than is found with a single rotor, and this interacting flow 

incurs a loss of net rotor system aerodynamic efficiency. 
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The main reason for the over-prediction of induced power is related to the actual (finite) spacing between the rotors. 

Generally, on co-axial designs the rotors are spaced sufficiently far that the lower rotor operates in the vena contracta of the 

upper rotor (the radius length of a propeller). Based on ideal flow considerations, this means that only half of the area of the 

lower operates in an effective velocity induced by the upper rotor. 

In [7], the aerodynamic analysis was given when each propeller provides an equal fraction of the total system thrust in hover. 

However, the undesired torque exists during mode transition. In the following, we will give the aerodynamic analysis when the 

co-axial is operated at equal rotor torque (power) during mode transition. 

We assume that the performance of the upper rotor is not influenced by the lower rotor. Let Vb be the relative velocity far 

upstream relative to the rotor. The vena contracta of the upper rotor is an area of A/2 with velocity 2vu+Vbcosα. Therefore, at 

the plane of the lower rotor there is a velocity of 2vu+vl+Vbcosα over the inner one-half of the disk area (See Figure 11).  

Theorem 1: For co-axial counter-rotating propellers 5-6, when the co-axial is operated at equal rotor torque (power), there 

exist the bounded functions ( , )bVω αΓ , ( , )uv bVαΓ  and ( , )Fc bVαΓ , such that the following relations hold: 

( , )l uv u bk Vωω ω α= +Γ , ( , )l uv u uv bv k v Vα= +Γ                                                        (30) 

and 
2 ( , )c cu cl u u Fc bF F F k Vω α= + = +Γ                                                                         (31) 

where, 0.4376uvk = , 2 23.3913u c dk A Rρ λ= ; ( , )bVω αΓ , ( , )uv bVαΓ  and ( , )Fc bVαΓ  are the bounded functions of α  and bV , and 

(0,0) 0ωΓ = , (0,0) 0uvΓ =  and (0,0) 0FcΓ = ; cuF  and clF  are the thrusts on the upper and lower rotors, respectively; 
uω  and 

lω  

are the rotational speeds of the upper and lower rotors, respectively; 
uv  and 

lv  are the induced velocities of the upper and lower 

rotors, respectively; cλ  is a positive non-dimensional quantity,  which is called as induced inflow ratio, such that u c d uv Rλ ω=  

holds; 
dR  is the radius of the rotor disk of one of the co-axial counter-rotating propellers. 

The proof of Theorem 1 is presented in Appendix. 

 

Remark 1:  Introducing quad rotors 1-4 increases the sum of induced power factors with respect to that of only the co-axial 

counter-rotating propellers. In hover, the induced power factor for all the rotors (co-axial counter-rotating propellers 5-6 and 

quad rotors 1-4) is given by 

inth 1.2809κ <                                                                                 (32) 

Therefore, the use of quad rotors 1-4 increases the efficiency of thrusts. In fact,  

1) The induced power factor of co-axial counter-rotating propeller 

In hover, when the rotors are operating in isolation, we obtain the thrust of each rotor as follow: 
22 1.6957ce c uF F Avρ= =                                                                       (33) 

Furthermore, we obtain 
22ce eF Avρ=                                                                                  (34) 

where ev  is the induced velocity for each rotor operating in isolation. Accordingly, it can be followed that 

0.9208e uv v=                                                                                 (35) 

The power for each rotor in isolation can be written as 
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3 32 1.5614ce ce e e uP F v Av Avρ ρ= = =                                                                  (36) 

Therefore, when the co-axial propellers are operated at equal torque (power), the induced power factor is given by 

( ) ( ) ( )3 3
int 2 2 2 1.5614 1.2809c ce u uP P Av Avκ ρ ρ= = =                                                   (37) 

2) The induced power factor of co-axial counter-rotating propeller with quad rotors 1-4 

Let the thrust of one of quad rotors be 

ri cF Fς=                                                                                        (38) 

where ( )0,1ς ∈  is a positive constant. Therefore, 

2 23.3913 2ri u q iF Av A vςρ ρ= =                                                                     (39) 

where qA  is the disk area of the rotor. Then, 

1.3022i u qv v A Aς=
                                                                               (40) 

The power for each rotor is 

( ) ( )1 23 23 3 3/2 1/2 32 4.4164 4.4164ri q i u q uP A v A v A A vρ ρ ς ρ ς η= = =                                               (41) 

where / qA Aη = . There, from (113), (36), (41), and 32cu cu u uP F v Avρ= = , induced power factor for all the propellers is given 

by 

                                                 
3/2 1/2

inth 3/2 1/2

2 4 2 2 4.4164
2 4 1.5614 2 4.4164

cu ri

ce ri

P P
P P

ς ηκ
ς η

+ + ×
= =

+ + ×
                                                             (42) 

It is found that 

inth 1.2809κ <                                                                                        (43) 

  Therefore, the use of quad rotors 1-4 increases the efficiency of thrusts. 

 

3.5 Measurement sensors and actuators 

  Position (X,Y) and Velocity ( ,X Y  )  can be obtained by Global Positioning System (GPS). The position data from GPS is sent 

to the processor in the aircraft for feedback control. Altitude Z and its velocity Z  are measured by an altimeter. The relative 

wind speed ( , ,b b bx y z   ) is measured by the airspeed tube. Attitude ( , , )Tψ θ φ  and attitude rate ( , , )Tψ θ φ 
 can be obtained by an 

Inertial Measurement Unit (IMU). Most common attitude sensors are based on gyros. Angle of attack is measured by an angle 

of attack sensor. Angle of attack is quite simply the angle between the wing chord and the oncoming air that the wing is flying 

through. The uncertain force Fd and moment τd should be reconstructed from the known information. The thrust Fc generated 

by the co-axial counter-rotating propellers and rotor thrusts Fr1, Fr2, Fr3 Fr4, are selected as the control actuators. 

 

4 OBSERVER DESIGN 

From Eqs. (9) and (10), in systems (2) and (3), dF  and dτ  are the unknown external disturbances in the position and attitude 

dynamics, respectively. Moreover, for the co-axial counter-rotating propellers, the uncertain nonlinear terms exist in the 

relationship between the thrust and the rotational speed. In order to reconstruct these unknown terms, we will design the finite-

time convergent observers. 
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4. 1 Finite-time convergent observer 

Considering (9), (10) and (31), the systems (2) and (3) can be rewritten as 

0
1 1( )c r w f z dR F F F F gE RF
m m

υΓ = + + + − +

                                                             (44) 

1 1 1( )r w gyro dJ J J Jτ τ τ τ− − −
Λ Λ ΛΩ = − Ω × Ω + + + +                                                      (45) 

where 2
0c u uF k ω=  and ( , )d d Fc bF F Vα= +Γ . 

In systems (44) and (45), 
dF  and dτ  are uncertain vectors. A general form for systems (44) and (45) can be described as 

1 ,i i d iζ δ= Ξ +                                                                                     (46) 

where i=1, ⋯, 6, and 

[ ]11 21 31υ ζ ζ ζ Τ
Γ = , [ ]41 51 61ζ ζ ζ Τ

ΛΩ = ; [ ]0 1 2 3
1 ( )c r w f zR F F F F gE
m

Τ+ + + − = Ξ Ξ Ξ  

[ ]1 1
4 5 6( )r w gyroJ J J τ τ τ Τ− −

Λ Λ− Ω × Ω + + + = Ξ Ξ Ξ ; 
,1 ,2 ,3

1
d d d dRF

m
δ δ δ

Τ
 =   , 1

,4 ,5 ,6d d d dJ τ δ δ δ
Τ−  =           (47) 

Assumption 2: Uncertainties δd,i, i=1,⋯,6, have the following dynamics: 

, ( )d i i tδ η= , 1, ,6i = 

                                                                             (48) 

where ( )i tη  is bounded, and 
[0, )

sup ( )i di
t

t Lη
∈ ∞

≤ , diL  is a positive constant, 1, ,6i = 

. In fact, this assumption is satisfied with 

almost all engineering applications, for instance, the dynamics of crosswind and the uncertainties in the aircraft. 

Let 
2 ,i d iζ δ=  and 2 ( )i i tζ η=  (where 1, ,6i = 

), Eq. (46) can be extended to 

1 2

2

1

( )
i i i

i i

opi i

t
y

ζ ζ

ζ η
ζ

= +Ξ

=
=





                                                                                   (49) 

where 
1 2 3 4 5 6 [ ]op op op op op opy y y y y y υ

Τ Τ Τ Τ
Γ Λ  = Ω  . υΓ  is the aircraft velocity relative to the inertial frame Γ , and 

ΛΩ is the angular velocity of the airframe expressed in body frame Λ . They are defined in Eqs. (2) and (3). In order to 

reconstruct the uncertainties in systems (44) and (45) (i.e., (49)), we present the finite-time convergent observers, and a 

theorem is given as follow. 

Theorem 2: For system (49), the finite-time convergent observers are designed as 
1 2

1 2 ,1 1 1 1 1

2 ,2 1 1

sign( )

sign( )

i i i i i i i i

i i i i

k

k

ζ ζ ζ ζ ζ ζ

ζ ζ ζ

= +Ξ − − −

= − −

   



 



                                                      (50) 

where 
,1 0ik >  and ,2 0ik > ; i=1,⋯,6; 

11 21 31υ̂ ζ ζ ζ
Τ

Γ  =  
   , 

41 51 61ζ ζ ζ
Τ

Λ  Ω =  
   ;  

12 22 32
1

dRF
m

ζ ζ ζ
Τ

 =  


   , 

1
42 52 62dJ τ ζ ζ ζ

Τ−  =  
  

 ; and ,2 ( )i ik tη> . Then, a finite time ts>0 exists, for t≥ts, such that the following statements hold: 

υ υΓ Γ= , 
Λ ΛΩ = Ω
 , 1 1

d dRF RF
m m

=


, 1 1
d dJ Jτ τ− −=                                                    (51) 

The proof of Theorem 2 is presented in Appendix. 
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4.2 Robustness analysis in frequency domain for the finite-time convergent observer 

In a practical problem, high-frequency noise exists in measurement output. The following analysis concerns the robustness 

behavior of the presented observer under high-frequency noise.  

For the presented nonlinear observer, an extended version of the frequency response method, describing function method 

[36, 37], can be used to approximately analyze and predict the nonlinear behaviors of the observer. Even though it is only an 

approximation method, the desirable properties it inherits from the frequency response method, and the shortage of other, 

systematic tools for nonlinear observer analysis, make it an indispensable component of the bag of tools of practicing control 

engineers. By describing function method, it can be found that the presented observer leads to perform rejection of high-

frequency noise. 

For system (49), let 1 1 2 2,i i i i iξ ζ ξ ζ= = +Ξ , and ( )i i tσΞ = , then 2 2 ( ) ( )i i i i it tξ ζ η σ= +Ξ = + 
 . We know that 

[0, )
sup ( )i d

t
t Lη

∈ ∞
≤  and 

[0, )
sup ( )i d

t
t Hσ

∈ ∞
≤ . Then, 

[0, )
sup ( ) ( )i i d d

t
t t L Hη σ

∈ ∞
+ ≤ + . Therefore, system (49) can be rewritten as 

1 2

2

1

( ) ( )
i i

i i i

opi i

t t
y

ξ ξ

ξ η σ
ξ

=

= +
=





                                                                                 (52) 

Accordingly, for system (52), the observer (50) can be transferred to 
1 2

1 2 ,1 1 1 1 1

2 ,2 1 1

sign( )

sign( )

i i i i i i i

i i i i

k

k

ξ ξ ξ ξ ξ ξ

ξ ξ ξ

= − − −

= − −

   



 



                                                           (53) 

where 1iξ


 tracks the output 1opi iy ξ= ; 2iξ


 estimates the first-order derivative of 1opi iy ξ= , i.e., the state 2iξ . 

The frequency characteristic of  (53) is analyzed as follow. 

Let 1 0 0sin( )i opiy A tξ ω− =


, where 0A  and 0ω  are the magnitude and frequency of 1i opiyξ −


, respectively. For the following 

nonlinear functions 
1 2

0 0sin( ) sign(sin( ))A t tω ω  and 0sign(sin( ))tω ,                                                  (54) 

their describing functions can be obtained, respective, as follows: 

1 2
1 0 0 0 00

3 2 1
0 01 2 1 20

0 0

2( ) sin( ) sign(sin( ))sin( )

2          sin( )

N A A d
A

d
A A

π

π

ωτ ω τ ω τ ωτ
π

ω τ ω τ
π

=

∆
= =

∫

∫
                                             (55) 

2 0 0 00
0

0 00
0 0

2( ) sign(sin( ))sin( )

2 4          sin( )

N A d
A

d
A A

π

π

ω τ ω τ ωτ
π

ω τ ω τ
π π

=

= =

∫

∫

                                                         (56) 

where 3 2
1 0

2 sin( ) 1.1128d
π

ωτ ωτ
π

∆ = =∫ . Therefore, the linearization of continuous observer (53) is 

1 2 ,1 1 0 1 1

2 ,2 2 0 1 1

( )( )

( )( )

i i i i i

i i i i

k N A

k N A

ξ ξ ξ ξ

ξ ξ ξ

= − −

= − −

  



 



                                                                     (57) 

i.e., 
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,1
1 2 1 11 2

0

,2
2 1 1

0

1.1128
( )

4
( )

i
i i i i

i
i i i

k
A

k
A

ξ ξ ξ ξ

ξ ξ ξ
π

= − −

= − −

  



 



                                                                     (58) 

From the Routh-Hurwitz stability criterion, polynomial ,1 ,22
1 2
0 0

1.1128 4i ik k
s s

A A π
+ +  is Hurwitz if ,1 0ik >  and 

,2 0ik > . 

For system (58), the following transfer functions are obtained: 

i) The transfer function I from 1iξ  to 1iξ


 is 

,1 ,2
1 2
0 0

1
,1 ,22

1 2
0 0

1.1128 4

( ) 1.1128 4

i i

i i

k k
s

A AG s k k
s s

A A

π

π

+
=

+ +

                                                                    (59) 

ii) The transfer function II from 1iξ  to 
2iξ
  is 

,2

0
2

,1 ,22
1 2
0 0

4

( ) 1.1128 4

i

i i

k
s

AG s k k
s s

A A

π

π

=
+ +

                                                                    (60) 

The effects of the observer parameters on the robustness are analyzed as follows. 

4.2.1 Frequency characteristic with the change in A0 

From the transfer functions (59), (60), and the conditions of the observer (50), the parameters are selected as follows: 

,1 6ik = , ,2 8ik = ; 0 10,1,0.1,0.01A = , respectively. The Bode plots for the transfer functions are described in Fig. 12a and b, 

respectively. It is found that when the tracking error magnitude A0 is large, the cutoff frequency is relatively small and much 

noise is reduced sufficiently and that when the tracking error magnitude A0 is small, the cutoff frequency is relatively large and 

the signal with higher frequency can be estimated. Therefore, it is confirmed that the presented observer leads to perform 

rejection of high-frequency noise. 
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Figure 12 Bode plots with the change in A0 
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5 CONTROLLER DESIGN 

  In this section, a control law is derived for the purpose of attitude stabilization and trajectory tracking. Suppose the reference 

trajectory and its finite order derivatives are bounded, and can be directly generated. 

 

5.1 Controller design for attitude dynamics 

From (14), for the desired altitude angle ( , , )T
d d d dφ θ ψΓΘ = , the desired attitude in quaternion expression can be obtained as 

0 /2 /2 /2 /2 /2 /2

1 /2 /2 /2 /2 /2 /2

2 /2 /2 /2 /2 /2 /2

3 /2 /2 /2 /2 /2 /2

d d d d d d

d d d d d d

d d d d d d

d d d d d d

d

d

d

d

q c c c s s s

q s c c c s s

q c s c s c s

q c c s s s c

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

= +

= +

= +

= +

                                                             (61) 

Moreover, from (7) and (8), we can obtain 

d d

d d d d d d

d d

p
q
r

φ
θ
ψ

Λ Γ

  
  Ω = = Ω =   
     





 



                                                                 (62) 

where 

1 0

0

0

d

d d d

d d d

d

s

c s c

s c c

θ

φ φ θ

φ φ θ

 −
 

=  
 −  



                                                                         (63) 

The angular velocity denoted by 
ΛΩ  can be computed from (13) as follow 

0 02( ) 2 ( )q q qq S q qΛΩ = − −  
                                                                    (64) 

For the desired unit quaternion 3
0{ , }d d dQ q q R R= ∈ ×  that is constructed to satisfy 

2
0 1d d dq q qΤ + =                                                                                  (65) 

The desired quaternion is related to the desired angular velocity denoted by 3
d RΛΩ ∈ , through the following dynamic equation 

0
1 ( ( ) )
2d d d dq S q q I Λ= + Ω

                                                                          (66) 

0
1
2d d dq qΤ

Λ= − Ω

                                                                                (67) 

It is noted that Eqs. (66) and (67) can be used to explicitly compute an expression for dΛΩ  as shown bellow 

0 02( ) 2 ( )d d d d d d dq q q q S q qΛΩ = − −  
                                                              (68) 

To quantify the mismatch between the actual and desired attitude, the quaternion tracking error 3
0{ , }e e e R R∈ ×

 is defined 

as shown below [38] 

0 0 0d de q q q qΤ= +                                                                             (69) 

0 0 ( )d d de q q q q S q q= − +                                                                      (70) 

And the tracking angular velocity error is defined as follow 
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dΛ Λ ΛΩ = Ω −Ω                                                                                (71) 

From Eqs. (13), (45) and (66), (67), (69) and (70), we obtain the attitude error dynamics: 

1 1 1 1( ) ( ) ( )d d r w gyro d dJ J J J Jτ τ τ τ− − − −
Λ Λ Λ Λ Λ ΛΩ = − Ω +Ω × Ω +Ω + + + + −Ω

                              (72) 

0 3
1 ( ( ) )
2

e S e e I Λ= + Ω

                                                                            (73) 

0
1
2

e eΤ
Λ= − Ω

                                                                                   (74) 

Let 0 3( )qM S e e I= + , therefore, 

1
2 qe M eΩΛ=                                                                                    (75) 

Theorem 3: For the attitude error dynamics (72), (73) and (74), if the controller is designed as 

1 1
1 2( ) ( ) ( ) 2 ( )r d d w gyro d d q a a q qJ J JM k e k e JM Mτ τ τ τ − −

Λ Λ Λ Λ Λ Λ= Ω +Ω × Ω +Ω − + − + Ω − + − Ω

    


                      (76) 

where 1 2, 0a ak k > , then the attitude error dynamics (72), (73) and (74) rendering by controller (76) will converge 

asymptotically to the origin, i.e., 0e →  and 0e →  as t →∞ . 

The proof of Theorem 3 is presented in Appendix. 

5.2 Controller design for position dynamics 

For the position dynamics (44), let the reference trajectory vector be ( , , )d d d dP x y z Τ
Γ = , then the system error for the 

position dynamics can be written as 

1 2

2
1 [ ( ) ]p w f d z d

e e

e F R F F RF gE P
m

Γ Γ

Γ Γ

=

= + + + − −







                                                         (77) 

where 1 de P PΓ Γ Γ= − , 2 de PυΓ Γ Γ= −  , and  

0( )p c rF R F F= + , 2
0c u uF k ω= , ( , )d d Fc bF F Vα= +Γ                                                   (78) 

Theorem 4: For the system error dynamics (77), if the controller is designed as 

1 1 2 2( )p d w f z d p pF RF R F F mgE mP k me k meΓ Γ Γ= − − + + + − −


                                          (79) 

where 1 2, 0p pk k > , then the position error dynamic system (77) rendering by controller (79) will converge asymptotically to 

the origin, i.e., the tracking error 1 0eΓ →  and 2 0eΓ →  as t →∞ . 

The proof of Theorem 4 is presented in Appendix. 

 

5.3 The implement of autopilot 
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From (24) and (28), we known that 

( )

( )

( )

4
1 2

3
1

1
2 2 2 2 3

2 1 2 3 4

3
2 2 2 2 3
1 2 3 4

( 1) 2 2

2

2

i
f i

i
r

r r

r

k l k

bl

bl

ω
τ

τ τ ω ω ω ω
τ

ω ω ω ω

+

=

 − + 
  
  = = + − −  
     − + + −  

∑
                                                            (80) 

And from (1), (23), (78) and (79), we can obtain 
4

2 2
0 0 22

1
( )c r u u i p c r

i
F F k b F R F Fω ω

=

+ = + = = +∑                                                     (81) 

We allocate 2
u uk ω  and 

4
2

1
i

i
b ω

=
∑  according to the following relation: 

4
2 2

1
u u i

i
k Kbω ω

=

= ∑                                                                                (82) 

where 1K >  is decided by the maneuverability requirement of the desired trajectory. From Equations (55), (65), (66), (68) and 

(69), we can carry out 1 2 3 4, , ,ω ω ω ω  and uω . In fact, 

2 2 2 2 2
1 2 3 4
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1 2 3 4
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2 2 2 2 2
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ω ω ω ω

τω ω ω ω

τω ω ω ω

τω ω ω ω

+ + + =
+

− + − =
+

+ − − =

− + + − =

                                                                  (83) 

Therefore, we obtain 
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3 33
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2 (1 ) 2 2
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f

F

b K bl blk l k
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+ +
 

32 1 2
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3 33
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2 (1 ) 2 2

p rr r

f

F

b K bl blk l k
ττ τω = + − +

+ +
, 32 1 2

4
3 33

221
2 (1 ) 2 2

p rr r

f

F

b K bl blk l k
ττ τω = − − −

+ +
                     (84) 

From (82), it follows that 

2

1
p

u
u

FK
k K

ω =
+

                                                                                (85) 

Therefore, from (30), we obtain 

2

1
p

l uv
u

FKk
k K

ω =
+

                                                                               (86) 

 

Remark 2: Controller design in forward flight 

The aircraft is equipped with ailerons on each half wing. The ailerons are used to control the roll dynamics in forward flight. 

It could help save energy on the tail rotors. 
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In forward flight, the control torque is taken as 

( )

( )

2 1
1

2 2 2 2 3
2 1 2 3 4

3
2 2 2 2 3
1 2 3 4

cos ( )

2

2

w
r

r r

r

L L l
bl

bl

ατ
τ τ ω ω ω ω

τ
ω ω ω ω

 
 −

   
   = = + − −   
    

 − + + −
 

                                                              (87) 

The deflexion angles of vanes in the torque amplifier are fixed to be zero, and the reactive torques generated in free air by the 

quad rotors due to rotor drags are restrained by 
4

1 2

1
( 1) 0i

i
i

k ω+

=

− =∑                                                                               (88) 

The moments 

2 1

2 1 2 1

2 1 1 2

( )sin ]
[( ) cos ( )sin ]
[( ) cos ( )sin ]

w c
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D D
l L L D D
l D D L L

α
τ α α

α α

− 
 = + + + 
 − + − 

                                                            (89) 

generated by fixed wing is taken as a part of uncertainties. Therefore, the moments due to the external disturbances dτ  can be 

written as 

d w dτ τ τ= +                                                                                   (90) 

Thus, the total moment τ  become 

r gyro dτ τ τ τ= + +                                                                                (91) 

Therefore, from (76), the controller for attitude dynamics in forward flight can be written as 
1 1

1 2( ) ( ) 2 ( )r d d gyro d d q a a q qJ J JM k e k e JM Mτ τ τ − −
Λ Λ Λ Λ Λ Λ= Ω +Ω × Ω +Ω − − + Ω − + − Ω



    


                          (92) 

From the controllers (79) and (92), we obtain the following relations 
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                                                                    (93) 

Therefore, we obtain 
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For the fixed wing, from (16), it follows that 
2 2

0
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where i=, 1, 2. Therefore 

2 1

2 2
2 1 2 1cos ( ) 0.5 ( ) cos ( )w w b b L LL L l l S x z C Cδ δα ρ α δ δ− = + − 

                                            (96) 

 Selecting 
2 2 1,2L L LC C Cδ δ δ= = , 1 2 1,2δ δ δ= − = , we obtain 

1,2

2 2
2 1 1,2cos ( ) ( ) cosw w L b bL L l l C S x zδα ρ δ α− = + 

                                                         (97) 

From (87) and (97), it follows that 

1,2

2 2
1 2 1 1,2cos ( ) ( ) cosr w w L b bL L l l C S x zδτ α ρ δ α= − = + 

 

Therefore, the ailerons control law in forward flight can be obtain as follow 

1,2

1
1,2 2 2( ) cos

r

w L b bl C S x zδ

τδ
ρ α

=
+ 

                                                                        (98) 

 

6 DESIRED TRAJECTORY AND ATTITUDE ANGLE DURING MODE TRANSITION 

Trajectory design is treated independently for both dimensions. For the desired trajectory, let dx , 
dx  and 

dx  denote the 

position, velocity and acceleration, respectively, in the level direction; dz , 
dz  and 

dz  denote the position, velocity and 

acceleration, respectively, in the vertical direction; The xd trajectory is velocity based. For a hover-to-level transition, the tail-

sitter's velocity will initially be zero and will need to increase to vf when it is in level flight. For a level-to-hover transition, the 

velocity will initially be vf and will then go to zero as the tail-sitter assumes a hover position.  

1) For a hover-to-level transition, the trajectory in the xd direction is given by 
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 + ≤= 
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                                                               (99) 

where 

( )02m ft v v a= −                                                                                  (100) 

And the desired trajectories in the zd direction is given by 

 ( )2
00.5

0 1 mk at v t
dz h e− + = − 

 
, ( ) ( )2

00.5
0 0

mk at v t
d mz h k at v e− +
= +

, ( )( ) ( )2
00.52

0 0
mk at v t

d m mz h k a k at v e− +
= + +

               (101) 

We can find that 0 , 0, 0d d dz h z z→ → → 

 as t →∞ . Furthermore, we can obtain 

( )0 1 m dk x
dz h e−= −                                                                                  (102) 

  This space motion trajectory is easy to be implemented. For Eqs. (99)-(101), the parameters are selected as 
2

0 05 / , 50 / , 0 / , 30 , 0.05f ma m s v m s v m s h m k= = = = = . The trajectory for a hover-to-level transition is shown in Figure 13. 
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Figure 13 Desired trajectory for a hover-to-level transition 

2) For level-to-hover transition, trajectory in the xd direction is given by 
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                                (103) 

where 

m ft v a=                                                                                              (104) 

And for the desired trajectory in the zd direction is given by 

( )20.5
0 1 mk at

dz h e−= − , 20.5
0

mk at
d mz h k ate−= , ( ) 20.52

0 1 mk at
d m mz h k a k at e−= −

                                     (105) 

We can find that 
0 , 0, 0d d dz h z z→ → → 

 as t →∞ . For Equations (103)-(105), the parameters are selected as 
2

05 / , 50 / , 30 , 0.005f ma m s v m s h m k= = = = . The trajectory for a level-to-hover transition is shown in Figure 14. 
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Figure 14 Desired trajectory for a level-to-hover transition 
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3) During cruise, let 
1 22 2L L mg= = . From Equation (16), 2

0( )L L d fC C S V mgαα ρ+ =  is established. Therefore, we obtain the 

desired angle of attack 
0d da α= . For hover-to-level and level-to-hover transitions, we select 

0,
0,  otherwise

d s
d

α γ γ
α

≤
= 


                                                                         (106) 

where sγ  is a large flightpath angle approached to 90 . During mode transition, the aircraft is required to move in X-Z plane, i.

e., 0dy = . For the desired attitude, ( , , ) (0, ,0)d d d dφ θ ψ θ= . Moreover, for the pitch dynamics, the angle of attack α  is required to

 be kept at a given degree dα . From the desired flying velocity ( ),d dx z 

, we can obtain the desired flightpath angle as follow 

( )1arctand d dz xγ −= 

                                                                          (107) 

Therefore, the desired pitch angle can be given by 

d d dθ α γ= +                                                                                    (108) 

7 COMPUTATIONAL ANALYSIS AND SIMULATION EXPERIMENTS 

The parameters of aircraft model and flight are shown in Table 1, and the simulink of the tail-sitter aircraft control system is 

described in Figure 15. 

For hover-to-level transition, the desired trajectory is shown in Eqs. (99)-(101) and (107) (see Figure 13). The initial attitude 

angle vector is ( ) ( ), , 0,90 ,0φ θ ψ =  , position vector ( ) ( ), , 0,0,0x y z = , and velocity vector ( ) ( ), , 0,0,0x y z =  

. The initial 

values of angular rate of rotor and rolling angle of flap are 

( ) ( )1 2 3 4, , , , 290,310.1,310.1,310.1,310.1uω ω ω ω ω =  

For level-to-hover transition, the desired trajectory is shown in Equations (103)-(105) and (107) (see Figure 14), the initial 

attitude angle vector ( ) ( ), , 0,5 ,0φ θ ψ =  , the position ( ) ( ), , 0,0,0x y z = , the velocity vector ( ) ( ), , 50,0,0x y z =  

. The initial angular 

rate of rotor and rolling angle of flap are 

( ) ( )1 2 3 4, , , , 102,74.4,74.4,74.4,74.4uω ω ω ω ω =  

The uncertainties in the aircraft dynamics are assumed as follows: 
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where 
1pδ , 

2pδ , 
3pδ , 

1aδ , 2aδ  and 3aδ  are high-frequency noise. 

  The results from the presented controller simulation are seen in Figure 16 for hover-to-level and Figure 17 for level-to-hover.  
Although uncertainties are external disturbances exist in the dynamic equations of the tail-sitter aircraft, the controller 

approaches the desired trajectories and attitudes for both transition modes. We can carry out that the thrusts generated by rotors 

during forward flight mode (55N) are far smaller than that during hover (500N). Therefore, under the same cruising velocity, the 

presented tail-sitter aircraft can save much energy than helicopter. This can increase endurance cruising time and flying distance. 

Furthermore, the computational analysis and simulations exhibit the agile maneuverability of the presented tail-sitter aircraft 

with simple control algorithm. 
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Parameter Value Parameter Value Parameter Value Parameter Value 

m  50kg  g  210 /m s  1,1k  5  1,2k  10  

ρ  
31.225kg m  1l  0.6m  2,1k  4  2,2k  6  

2l  1m  3l  0.8m  3,1k  6  3,2k  8  

al  0.08m  S  20.45m  4,1k  6  4,2k  11  

xbJ  20.2m kg  ybJ  20.2m kg  5,1k  3  5,2k  7  

zbJ  20.4m kg  iS  
20.04m  6,1k  6  6,2k  11  

0LC  0.32  0DC  0.008  cλ  0.2673 K  6  

LC α  0.5  LC δ  0.05  1pk  0.2  2pk  0.6  

rJ  20.01m kg  b  45 10−×  1ak  0.8  2ak  0.5  

k  53 10−×  fC δ  0.02  lfC α  0.0802  0dfC  0.0063  

uvk  0.4376  fk  2.6583  dfC α  0.0094  aδ  0.13686rad  

iCφ  0.02  iCψ  0.01  0dα  5  sγ  80  

Table 1  Parameters of aircraft model and flight 
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Figure 15 Simulink of aircraft control system 
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Figure 16 Mode transition from hover to forward flight 
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Figure 17 Mode transition from forward flight to hover 
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8 CONCLUSIONS 

In this paper, a novel model of an agile tail-sitter aircraft is presented. Not only the aircraft can hover, take off and land 

vertically, but also the forward flight with high speed be implemented. Comparing with the conventional tail-tail aircraft, more 

agile maneuverability can be obtained. Moreover, the aircraft is controlled easily to implement the mode transitions. Our future 

work is to implement the hardware of the presented tail-sitter aircraft. 

 

9 APPENDIX 

Proof of Theorem 1:  

Let the radius of co-axial blade be Rr. The effect of the root cut out (the inner, non-aerodynamic portion of the blade) can be 

estimated. If la is the non-dimensional radius of the root cut-out, then the effective area becomes 
2 2
r aA R lπ π= −                                                                               (109) 

The mass flow rate through the upper rotor is 

u um AUρ=
                                                                                 (110) 

where 2 2 1 2(( sin ) ( cos ) )u b b uU V V vα α= + + . Therefore, 

2 2 1 2(( sin ) ( cos ) )u b b um A V V vρ α α= + +
                                                           (111) 

Thus, the thrust on the upper rotor may be written as 

( )cos cos 2cu u b u u b u u u uF m V w m V m w m vα α= + − = =   

                                                   (112) 

and the power produced by upper rotor is 

( ) ( )2 2 2 2cos 0.5 cos 0.5 cos 0.5 (2 cos )cu u b u u b u u b u b u uP T V v m V w m V m V w wα α α α= + = + − = +  

                        (113) 

Therefore, 

( ) 2cos 0.5(2 cos )u b u b u uw V v V w wα α+ = +                                                             (114) 

or simply 2u uw v= . 

The vena contracta of the upper rotor is an area of A/2 with velocity Vbcosα+2vu. Therefore, at the plane of the lower rotor 

there is a velocity of Vbcosα+2vu+vl over the inner one-half of the disk area (See Figure 11). 

The mass of flow rates over the inner and outer parts of the lower rotor are ( )( )1 22 2 20.5 cos 2 sinin b u l bm A V v v Vρ α α= + + +

 and 

( )( )1 22 2 20.5 cos sinout b l bm A V v Vρ α α= + +

, respectively. Therefore, the mass of flow rates over the lower rotor is 

( )( ) ( )( )1 2 1 22 22 2 2 20.5 cos 2 sin 0.5 cos sinl in out b u l b b l bm m m A V v v V A V v Vρ α α ρ α α= + = + + + + + +  

                    (115) 

The momentum flow out of plans 5 is ( )cosl b lm V wα +
. Thus, the thrust on the lower rotor may be determined as 

( )cos 2 coscl l b l u u out bF m V w m v m Vα α= + − −  
                                                           (116) 

The work produced by the lower rotor is 

( )coscl cl b u lP F V v vα= + +                                                                        (117) 

and  
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( ) ( ) ( )2 2 2 21 1 1cos cos cos 2 cos
2 2 2cl b u l l b l in b u out bF V v v m V w m V v m Vα α α α+ + = + − + −  

                      (118) 

Assuming the co-axial is operated at equal power, i.e.,  

cu clP P=                                                                                             (119) 

Therefore, from (113), (117), (118) and (119), we obtain 

( ) ( )( )

( ) ( )

( )

2

3 2

2

cos 0.5 cos cos

                                   0.5 cos 2 0.5 cos
2 2

                               2 cos

cl b u l b u l b l

b u b l b

b u u

F V v v A V v v V w
A AV v V v V

A V v v

α ρ α α

ρ α ρ α

ρ α

+ + = + + +

− + − +

= +

                                  (120) 

For the Equations (116)-(120), it is difficult to solve for the direct relation between vu and vl, i.e.,  

( ), ,l u bv v Vα= Φ                                                                                       (121) 

The fist-order Taylor expansion for (121) at 0bV =  and 0α =  is obtained as follow: 

( ) ( ), , ,l u b uv u uv bv v V k v Vα α= Φ = +Γ                                                                         (122) 

where ( ),uv bVαΓ  is the bounded function of 
bV , and ( )0,0 0uvΓ = ; uvk  is a constant coefficient. When 0bV =  and 0α = , i.e., the 

co-axial propellers are in the hover. From (113), (116), (117) and (120), we obtain 

( ) ( )4 2l u l u u lw v v v v v= + +                                                                              (123) 

and  

( ) ( ) ( )3 22 5 2 2 0l u l u l uv v v v v v+ + − =                                                                (124) 

Solving Equation (124) provides 

0.4376l uv v=                                                                                           (125) 

From (122), 0.4376uvk =  is obtained. 

It is known that there exists a positive non-dimensional quantity cλ , which is called the induced inflow ratio, such that 

u c d uv Rλ ω= , l c d lv Rλ ω=                                                                    (126) 

Therefore, the following expression holds:  

( ) ( ) ,
,uv u uv bl

l u u uv u uv b u u
u u

k v Vv k V v
v v

α
ω ω ω ω α ω

+Γ
= = = +Γ                                       (127) 

Then, ( )( , ) ,b uv b u uV V vω α α ωΓ = Γ .  From (112) and (126), it follows that 

2 2 2 22 2 2 2cu u u b c d u u bF Av Av V A R Av Vρ ρ ρ λ ω ρ= + = +                                                 (128) 

And from (116) and (118), we obtain 

2.3590 ( , )l u wv bw v Vα= +Γ                                                                       (129) 

where ( , )wv bVαΓ  is the bounded function of bV , and (0,0) 0wvΓ = . Therefore, from (116), (127) and (129), it is obtained that 

2 2 2 21.3913 ( , ) 1.3913 ( , )cl u Fcl b c d u Fcl bF Av V A R Vρ α ρ λ ω α= +Γ = +Γ                                            (130) 

Finally, we obtain 
2 ( , )c cu cl u u Fc bF F F k Vω α= + = +Γ                                                                 (131) 

where 2 23.3913u c dk A Rρ λ= , ( , ) 2 ( , )Fc b u b Fcl bV Av V Vα ρ αΓ = +Γ . 
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This concludes the proof. ∎ 

 

Proof of Theorem 2: 

For system (49) and observer (50), let 

1 1 1 2 2 2,i i i i i ie eζ ζ ζ ζ= − = −
 

                                                                       (132) 

The system error between (50) and (49) is 
1 2

1 2 ,1 1 1

2 ,2 1

sign( )

sign( ) ( )
i i i i i

i i i i

e e k e e

e k e tη

= −

= − −

  



 



                                                                      (133) 

Select the Lyapunov function be 

i aV Pς ςΤ=                                                                            (134) 

where ( )
1
2

1 1 2sgni i ie e eς
Τ

 =   
   , and Pa is a positive definite and symmetrical matrix with the following form: 

2
2 ,1 ,1

,1

41
22

i i i
a

i

k k k
P

k
 + −

=  − 
                                                                   (135) 

Differentiating Vi with respect to time yields 

{ }( )1 2 1 2
mini a iV c P Vλ ≤ −

 
                                                                (136) 

where ca is a positive constant. From the definition of finite-time stability [39, 40], the system error (133) is finite-time 

convergent. This concludes the proof. ∎ 

 

Proof of Theorem 3: 

From (72), (73) and (74), and after taking the time derivative of (75), we obtain 

1 1 1 1

1 1
2 2
1 1  ( ) ( ) ( )
2 2

q q

q q d d r w gyro d d

e M M

M M J J J J Jτ τ τ τ

Λ Λ

− − − −
Λ Λ Λ Λ Λ Λ

= Ω + Ω

 = Ω + − Ω +Ω × Ω +Ω + + + + −Ω 



  



    

                   (137) 

Considering controller (76), the closed-loop error system for the attitude dynamics is 

1 1
1 2

1
2a a q d de k e k e M J Jτ τ− − = − − + − 



 

                                                          (138) 

For st t≥ , selecting the Lyapunov function to be 1 (1/ 2)a a p pV k e e e eΤ Τ= +  
, we can obtain that 0e →  and 0e →  as t →∞ . 

This concludes the proof. ∎ 

 

Proof of Theorem 4: 

In the light of Theorem 2, for st t≥ , the observation signals 1 1
d dRF RF

m m
=



. Considering controller (79), the closed-loop 

error system for position error dynamics (77) is 
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1 2

2 1 1 2 2
1 1[ ]p p d d

e e

e k e k e RF RF
m m

Γ Γ

Γ Γ Γ

=

= − − + −







                                                        (139) 

For st t≥ , selecting the Lyapunov function to be 1 1 1 2 2(1/ 2)p pV k e e e eΤ Τ
Γ Γ Γ Γ= + , we can obtain that 1 0eΓ →  and 2 0eΓ →  as 

t →∞ . This concludes the proof. ∎ 

 

10 LIST OF SYMBOLS 

cF  sum of the thrusts of the co-axial propellers 

, 1, , 4riF i = 

 thrust of each quad rotor 

Fd  forces due to uncertainties and external disturbances 
, 1, , 4ri iτ = 

 reactive torque generated in free air by the rotor due to rotor drag for quad rotors 

gyroτ  gyroscopic effects of the propellers 

τd  moments due to the uncertainties and external disturbances 
, 1, , 4aif i = 

 force generated by each blade of torque amplifier 

, 1, ,4i iω = 

rotational velocity of each quad rotor 

uω  rotational velocity of upper rotor 

lω  rotational velocity of lower rotor 

m mass of aircraft 
g  acceleration of gravity 

1l  distance between center of gravity of aircraft and force operating point of fixed wing 

2l  distance between center of gravity of aircraft and plane center of quad rotors 

3l  distance between two quad rotor 

cl  distance between center of gravity of aircraft and fixed wing 

φ  roll angle 

θ  pitch angle  
ψ  yaw angle 
α  angle of attack 
γ  flightpath angle 

1L  lift force generated by left fixed wing 

2L  lift force generated by right fixed wing 

Lf  the lift force generated by the fuselage, respectively 

1D  drag force generated by left fixed wing 

2D  drag force generated by right fixed wing 

Df  the drag force generated by the fuselage, respectively 
S  area of fixed wing 

0LC  lift coefficient when angle of attack α  is equal to zero for fixed wing 

LC α
 lift coefficient due to angle of attack α  

Clf  lift coefficient of fuselage 
Cdf  the drag coefficient of fuselage 
Cdf0  the constant in the coefficients of drag force of fuselage 

iδ  normal flap bias angle of fixed wing  

LC δ
 lift coefficient due to flap bias angle iδ  

J  inertial matrix of aircraft 
pΓ

 position of center of gravity relative to right handed inertial frame 

υΓ  velocity vector of center of gravity relative to right handed inertial frame 

fF  body force of aircraft 

R  transformation matrix representing the orientation of the rotorcraft 
τ  sum of the moments in the fixed-body frame 
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ΛΩ  angular velocity of the airframe expressed in body frame 

ΓΩ  angular velocity of the airframe expressed in inertial frame 

bV  velocity of center of gravity relative to right handed inertial frame 

uv  induced velocity through upper disk 

lv  induced velocity through lower disk 

uw  velocity of vena contracta of the upper rotor 

lw  velocity of vena contracta of the lower rotor 

, 1, ,4iv i = 

 induced velocity of each quad rotor 

, 1, ,4iw i = 

 velocity of vena contracta of each quad rotor 

, 1, , 4riP i = 

 power for each quad rotor 

cuF  thrust on the upper rotor 

clF  thrust on the lower rotor 

al  radius of the root cut-out of the co-axial 

A  effective area of co-axial disk 

qA  area of each quad rotor disk 

dR  the radius of quad rotor disk 

rR the radius of co-axial blade 

ρ  air density 

um  mass flow rate through the upper rotor 

lm  mass of flow rates over the lower rotor 

inm  mass of flow rates over the inner part of the lower rotor 

outm  mass of flow rates over the outer part of the lower rotor 

cuP  power produced by upper rotor 

clP  power produced by lower rotor 

ev   the induced velocity for each rotor operating in isolation 

ceP  power for each rotor in isolation 

intκ  induced power factor of co-axial 

inthκ  induced power factor for all the propellers 

cλ  induced inflow ratio 

b  force coefficient of one of quad rotors 
k  torque coefficient of one of quad rotors 

rJ  the moment of inertia of each rotor 

, 1, , 4ai iτ = 

 torque generated by each blade of torque amplifier 

fS  blade area of torque amplifier 

fiδ  normal flap bias angle of torque amplifier 

fC δ
 lift coefficient created by the flap bias angle 

fiδ .  

DfC  drag coefficient of blade area of torque amplifier 

, 1, ,4fiD i = 

 drag force generated by each blade of torque amplifier 

fk  force coefficient of torque amplifier 

bG  gyroscopic torques due to the combination of the rotation of the airframe and quad rotors 
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