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Abstract: Motivated by real-time monitoring and fault diagnosis for complex systems, the presented paper 7 
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aims to develop effective fault estimation techniques for stochastic nonlinear systems subject to partially 

decoupled unknown input disturbances and Brownian motions. The challenges of the research is how to ensure 

the robustness of the proposed fault estimation techniques against stochastic Brownian perturbations and 

additive process disturbances, and provide a rigorous mathematical proof of the finite-time input-to-stabilization 

of the estimation error dynamics. In this paper, stochastic input-to-state stability and finite-time stochastic input-

to-state stability of stochastic nonlinear systems are firstly investigated based on Lyapunov theory, leading to a 

simple and straightforward criterion. By integrating augmented system approach, unknown input observer 

technique, finite-time stochastic input-to-state stability theory, a highly-novel fault estimation technique is 

proposed. The convergence of the estimation error with respect to un-decoupled unknown inputs and Brownian 

perturbation is proven by using the derived stochastic input-to-state stability and finite-time stochastic input-to-

state stability theorems. Based on linear matrix inequality technique, the robust observer gains can be obtained 

in order to achieve both stability and robustness of the error dynamic. Finally, the effectiveness of the proposed 

fault estimation techniques is demonstrated by the detailed simulation studies using a robotic system and a 

numerical example.   

Keywords: Finite-time stochastic input-to-state stability; stochastic nonlinear system; Brownian motions; 22 

unknown input observer; robust fault estimation. 23 
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Nowadays, industrial systems are becoming more complex with more sophistical control strategies utilized. 

Since a single linear model, which is only valid within a neighbourhood of the operating point, cannot be 

effectively used for modelling complicated dynamics, nonlinear systems are becoming more popular to describe 27 
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complex practical processes. On the other hand, stochastic systems have attracted a lot of attention owing to their 

wide applications in many branches of science and industry. Taking both the two characteristics into account, 

stochastic nonlinear models are paying an important role to describe complex physical processes more accurately 

and effectively. Unexpected deviations of a real plant, usually defined as faults, are quite common in practice and 

may lead to unacceptable system behaviors. In order to ensure a good supervision of systems and guarantee the 

safety and reliability, fault diagnosis have been an active research field over the past decades and numerous 

results have been reported. From different point of perspectives, the techniques of fault diagnosis can be 

classified into various categories. According to the recent survey papers [1, 2], one well-known classification is 

model-based fault diagnosis [3, 4], signal-based fault diagnosis [5, 6] and knowledge-based (data-driven) fault 

diagnosis [7-9]. Among the diagnostic methods mentioned, model-based method has been popular with 

systematic design solutions by developing advanced observers/filters. Nevertheless, due to the lack of powerful 

design methods to deal with the nonlinearities and stochastic properties, designing observers for stochastic 

nonlinear systems is surely a challenging but hot research topic, which has a great potential in the applications to 

complex industrial systems. The limit but interesting results have been reported so far. For example, in [10], a 

tracking filter was addressed for stochastic nonlinear systems with white noises. In [11], an observer-based 

controller for stochastic singular systems with Brownian motions was proposed. In [12], the infinite horizon 

robust state estimation was investigated for nonlinear stochastic uncertain systems via 𝐻∞ filter. The stability of a 

nonlinear observer for a stochastic system was dealt with in [13]. 45 
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It is well known that fault estimation is an advanced fault diagnosis approach, because it is capable of 

revealing the details of considered faults and yielding the simultaneous estimation of the full system states, which 

are often unmeasurable in many applications but necessary for controlling the system. Based on well-designed 

observers such as adaptive observers [14], sliding mode observers [15, 16], and augmented system observers 

(including descriptor observers) [17-20], fault estimation has been widely used recently. Moreover, since 

unknown inputs caused by modelling errors, parameter perturbations, and exogenous disturbances are 

unavoidable, the robustness of an observer does always play a vital role to ensure an effective fault diagnosis and 

reduce the rate of false alarms. Unknown input observer (UIO), which can be traced back to the early 1970s [21], 

has been  proven to be an effective approach to decouple the influences from unknown inputs, and a large amount 

of results about UIO-based fault diagnosis methods and techniques were reported over the past decades [22-24]. 

Specifically, a UIO-based fault detection filter was developed for linear time-invariant systems in [22], and the 

UIO techniques were extended in [23, 24] to carry out robust fault detection and isolations for a class of 57 
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nonlinear system. It is natural to lead to an idea to integrate fault estimation techniques and UIO methods for 

achieving a robust tracking of the faults as well as system states. Based on this idea, some results were addressed 

in [25-27] for fault/disturbance estimation. The above mentioned references about UIOs were based on the 

assumption that the unknown inputs can be decoupled completely, which cannot meet in many realistic control 

systems unfortunately. So far, few results were reported on the UIO design for systems subject to partially 

decoupled process disturbances. In [28, 29], the state estimate methods were proposed using partially decoupled 

UIOs, which however were not explored for fault diagnosis. In [30], an innovative UIO-based fault estimation 

algorithm was addressed to solve robust fault estimation of linear systems and Lipschitz nonlinear systems in 

the presence of partially decoupled decoupled unknown inputs. However, the investigation of unknown input 

observer for more general types of nonlinear systems is still a challenging task, far from being solved completely. 

To the best of the authors’ knowledge, no efforts have been made on UIO-based fault estimation for stochastic 

nonlinear systems with partially decoupled unknown inputs yet. In particular, stochastic Brownian perturbation 

has hugely added the difficulty for fault estimation and diagnosis.  70 
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Stability plays the most fundamental role in systems control and estimation theory. Input-to-state stability was 

firstly introduced in [31] to capture the idea of bounded input bounded state behaviour together with the decay of 

the states under small inputs, and a series of results centralizing on the theory of input-to-state stability-Lyapunov 

functions were reported in the literature [32-36]. The input-to-state stability paradigm was generalized to finite-

time stochastic input-to-state stability in [37, 38], and a couple of interesting results were reported in [39- 43], 

which will facilitate to address a variety of control and estimation problems for stochastic systems. 76 
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To the best of our knowledge, very few efforts were made on fault estimation for stochastic systems with 

Brownian motions. Recently, motivated by descriptor estimation methods initialized by [17, 18, 20], fault 

estimation issues for stochastic Brownian systems were investigated in [16, 44]. In this study, we will focus on 

the systems corrupted by more general environmental disturbances, that is, the systems are subjected to the 

process disturbances which cannot be decoupled completely, and the stochastic Brownian parameter 

perturbations. Firstly, the criteria of stochastic input-to-state stability and the finite-time stochastic input-to-state 

stability are addressed with the aid of Lyapunov theory. Secondly, an augmented system is constructed by 

defining an augmented state vector composed of the stochastic states, the mean of the faults and their first-order 

derivatives. An UIO is next designed for the augmented system which can decouple the process disturbances 

which can be decoupled, and the linear matrix inequality (LMI) techniques are utilized to ensure the stochastic 86 



87 finite-time input-to-state stability of the estimator error dynamics, and attenuate the process disturbances which 

cannot be decoupled.   88 
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The reminder of this paper is organized as follows. Section 2 is dedicated to the problem statement and 

necessary preliminaries. Sufficient conditions of both the stochastic input-to-state-stability and finite-time 

stochastic input-to-state-stability are presented in Section 3. Section 4 states the methodologies to design UIO-

based fault estimator, applying the results in Section 3 to analyse the stability of the error dynamic. Both the 

synthesis of the stability and robustness are on the basis of LMI algorithms. Section 5 provides simulation 

studies to demonstrate the estimation performances, followed by Section 6 to conclude the whole contents of the 

presented paper and predict the future work. 95 

96 

97 

Throughout this paper, ℛ𝑛, ℛ𝑛×𝑚 and ℛ+ stands for 𝑛-dimentional Euclidean space, the set of 𝑛 × 𝑚 real 

matrices, and the set of nonnegative real numbers, respectively. 𝐼𝑛 represents identity matrix with dimension of 𝑛 

× 𝑛. 0 is a scalar zero or a zero matrix with appropriate zero entries. For any given vector 𝑥 ∈ ℛ𝑛, |𝑥| refers98 

to its Euclidean norm, and  |𝑥|𝑇𝑓 = (∫ 𝑥𝑇(𝜏)
𝑇𝑓

0
𝑥(𝜏)𝑑𝜏)1 2⁄ . |𝐴| = √𝜆𝑚𝑎𝑥(𝐴

𝑇𝐴)  where 𝐴 ∈ ℛ𝑛×𝑚,   𝐿∞
𝑚  stands99 

for all essentially bounded 𝑚-dimentional functions with norm ‖𝜉(𝑡)‖ = ess. sup. {|𝜉(𝑡)|, 𝑡 ≥ 0}. 𝔼(∙) denotes 100 

the expectation of a stochastic process, and ∀ means for all. The superscript 𝑇  represents the transpose of 101 

matrices or vectors. The notation 𝑋 > 0  indicates that the symmetric matrix  𝑋  is positive definite. The 102 

composition of two functions 𝜑: 𝐴 → 𝐵  and 𝜓:𝐵 → 𝐶  is denoted by 𝜓 ∘ 𝜑: 𝐴 → 𝐶 . 〈 , 〉 is the inner product. 103 

(Ω, ℱ, {ℱ𝑡}𝑡≥𝑡0 , 𝒫)   represents a complete probability space with  Ω  being a sample space, ℱ  being a 𝜎 -104 

field,  {ℱ𝑡}𝑡≥𝑡0  being a filtration and 𝒫  being a probability measure. In addition, [
𝑀1 𝑀2

𝑀2
𝑇 𝑀3

]   is denoted by 105 

[
𝑀1 𝑀2

∗ 𝑀3
] for brevity. 106 

2. Preliminaries and problem formulation107 

Consider a stochastic nonlinear system in the form of: 108 

𝑑𝑥(𝑡) = 𝑙(𝑡, 𝑥(𝑡), 𝑣(𝑡))𝑑𝑡 + ℎ(𝑡, 𝑥(𝑡), 𝑣(𝑡))𝑑𝑤(𝑡),  𝑡 ≥ 𝑡0  (2.1) 109 

where 𝑥(𝑡) ∈ ℛ𝑛 is system state,  𝑣(𝑡) is input with  𝔼[𝑣(𝑡)]  ∈ 𝐿∞𝑚 ,  𝑤(𝑡) represents Brownian motions defined110 

on the probability space (Ω, ℱ, {ℱ𝑡}𝑡≥𝑡0 , 𝒫),  𝑙(𝑡, 𝑥(𝑡), 𝑣(𝑡))  and ℎ(𝑡, 𝑥(𝑡), 𝑣(𝑡))  stand for system dynamic 111 

function and stochastic perturbation distribution function, respectively. 112 

For system (2.1), some lemmas and definitions are introduced as follows. 113 



Lemma 2.1 [45]. Assume that 𝑙(𝑡, 𝑥(𝑡), 𝑣(𝑡)) and ℎ(𝑡, 𝑥(𝑡), 𝑣(𝑡)) are both continuous in 𝑥(𝑡). Further, for each 114 

𝑁 =  1, 2, . . ., and each 0 ≤  𝑇 <  ∞, if the following conditions hold: 115 

 (i) |𝑙(𝑡, 𝑥, 𝑣)|  ≤  𝑐(𝑡)(1 + |𝑥|)  (2.2) 116 

(ii) |ℎ(𝑡, 𝑥, 𝑣)|2  ≤  𝑐(𝑡)(1 + |𝑥|2)  (2.3) 117 

(iii) 2⟨𝑥1  −  𝑥2, 𝑙(𝑡, 𝑥1, 𝑣)  −  𝑙 (𝑡, 𝑥2, 𝑣)⟩  +  |ℎ(𝑡, 𝑥1, 𝑣) − ℎ(𝑡, 𝑥2, 𝑣)|2 ≤ 𝑐𝑇𝑁  (𝑡)𝜌𝑇𝑁 (|𝑥1 − 𝑥2|2)  (2.4) 118 

as |𝑥𝑖|  ≤  𝑁, 𝑖 =  1, 2, 𝑡 ∈  [0, 𝑇 ], where 𝑐(𝑡) and  𝑐𝑇
𝑁(𝑡)are nonnegative functions such that ∫ 𝑐(𝑡)

𝑇

0
𝑑𝑡 < ∞ 119 

and ∫ 𝑐𝑇
𝑁(𝑡)

𝑇

0
𝑑𝑡 < ∞; 𝜌𝑇

𝑁 (𝑠)  ≥  0, as 𝑠 ≥  0, is non-random, strictly increasing, continuous and concave such120 

that ∫ 𝑑𝑠/𝜌𝑇
𝑁(𝑡)

𝑇

0
𝑑𝑡 = ∞. Then for any given 𝑥0 ∈ ℛ

𝑛 , equ. (2.1) has a path-wise unique strong solution.121 

It should be mentioned that the existence of a unique solution for a stochastic nonlinear system is the 122 

precondition of discussing the stochastic input-to-state-stability and finite-time stochastic input-to-state-stability. 123 

Definition 2.1 [46]. A function 𝛾: ℛ+ ⟶ℛ+  is said to be a generalized 𝒦-function if it is continuous with124 

𝛾(0) = 0, and satisfies: 125 

{
𝛾(𝜎1) > 𝛾(𝜎2),   𝑖𝑓 𝛾(𝜎1) ≠ 0

𝛾(𝜎1) = 𝛾(𝜎2) = 0, 𝑖𝑓 𝛾(𝜎1) = 0
, ∀𝜎1 > 𝜎2 ≥ 0                                            (2.5)126 

𝒦∞ is the subset of 𝒦-functions that are unbounded. Note that if 𝛾 is of class generalized 𝒦∞, then its inverse127 

function 𝛾−1 is well defined and again of class generalized 𝒦∞.128 

Definition 2.2 [46]. A function 𝛽: ℛ+ × ℛ+ ⟶ℛ+ is said to be a generalized 𝒦ℒ-function if for each fixed129 

𝑡 ≥ 0, the function 𝛽(𝑠, 𝑡) is a generalized 𝒦-function, and for each fixed 𝑠 ≥ 0, it decreases to zero as 𝑡 ⟶ 𝑇 130 

for some constant 𝑇 > 0. 131 

Definition 2.3. System (2.1) is said to be stochastic input-to-state stable, if ∀𝜀 > 0 , there exist functions 132 

𝛽 ∈ 𝒦ℒ and 𝛾 ∈ 𝒦∞, such that for any initial condition 𝑥(𝑡0) = 𝑥0, one has133 

𝒫{|𝑥(𝑡)| ≤ 𝔼[𝛽((|𝑥0|), 𝑡 − 𝑡0)] + 𝔼[𝛾(‖𝑣‖)]} ≥ 1 − 𝜀, ∀𝑡 ≥ 𝑡0, ∀𝑥0 ∈ ℛ
𝑛                      (2.6)134 

The above definition is from [38] with a slight modification by using mathematical expectation. 135 

Remark 2.1. Since 𝛾(0) = 0, it can be found that, in zero input situation,  stochastic input-to-state stability can 136 

necessarily lead to globally asymptotically stability in probability stated in [47]. But in general, globally 137 

asymptotically stability in probability does not imply stochastic input-to-state stability. 138 

For system (2.1), given any function 𝑉(𝑡, 𝑥) ∈ 𝒞2×1{ℛ𝑛 × [𝑡0, ∞] → ℛ+} , the infinitesimal generator139 

ℒ𝑉(𝑡, 𝑥) is defined as:  140 

ℒ𝑉(𝑡, 𝑥) =
𝜕𝑉(𝑡,𝑥)

𝜕𝑡
+ [

𝜕𝑉(𝑡,𝑥)

𝜕𝑥
]
𝑇

𝑙 +
1

2
𝑡𝑟𝑎𝑐𝑒 {ℎ𝑇

𝜕2𝑉(𝑡,𝑥)

𝜕𝑥2
ℎ}           (2.7) 141 



where 𝑡𝑟𝑎𝑐𝑒 {ℎ𝑇 𝜕
2𝑉(𝑡,𝑥)

𝜕𝑥2
ℎ} is called as the Hessian term of ℒ. 142 

Lemma 2.2 [39]. For any continuous convex function 𝑞(∙) ∈ 𝒦, there exists a generalized class 𝒦ℒ function 𝛽 143 

satisfying  144 

𝔼(𝑌(𝑡)) ≤ 𝛽(𝔼(𝑌0), 𝑡 − 𝑡0), 𝑡 ≥ 𝑡0                                                (2.8)145 

if for process 𝑌(𝑡) with 𝔼(𝑌(𝑡)) being (locally) absolutely continuous and 0 ≤ 𝔼(𝑌(𝑡)) < ∞ and for any 𝑡 ≥ 𝑡0146 

𝔼[ℒ𝑌(𝑡)] ≤ −𝔼[𝑞(𝑌(𝑡))]                                                       (2.9) 147 

Especially, when 𝑡 = 𝑡0, 𝔼(𝑌0) =  𝛽(𝔼(𝑌0),0).148 

Lemma 2.3 [41]. Assume that 𝜙(∙): ℛ → ℛ and 𝜒(∙,∙): ℛ𝑛 → ℛ are two smooth functions and 𝑥 is the solution of149 

system (2.1). Then the following equality holds: 150 

ℒ(𝜙 ∘ 𝜒(𝑡, 𝑥)) =
𝑑𝜙

𝑑𝜒
ℒ(𝜒(𝑡, 𝑥)) +

1

2

𝑑2𝜙

𝑑𝜒2
𝑡𝑟𝑎𝑐𝑒 {(

𝜕𝜒

𝜕𝜙
ℎ)

𝑇

(
𝜕𝜒

𝜕𝜙
ℎ)}                              (2.10)151 

Definition 2.4 [47]. System (2.1) is said to be finite-time stochastic input-to-state stable, if ∀𝜀 > 0, there exists 152 

function 𝛾 ∈ 𝒦∞, such that153 

𝒫{|𝑥(𝑡)| ≤ 𝔼[𝛾(‖𝑣‖)]} ≥ 1 − 𝜀, ∀𝑡 ≥ 𝑡0, ∀𝑥0 ∈ ℛ
𝑛                                      (2.11)154 

Remark 2.2. The difference between the stochastic input-to-state stability and the finite-time stochastic input-155 

to-state stability is the finite-time convergence of 𝛽. Finite-time stochastic input-to-state stability says,  156 

𝔼[𝛽(|𝑥0|, 𝑡 − 𝑡0)] = 0, 𝑡 ≥ 𝑡0 + 𝑇0(𝑡0, 𝑥0, 𝑣)                                            (2.12)157 

Lemma 2.4 (Jensen’s inequality) [48]. If 𝑋 to be a random variable and let 𝜑 to be a convex function, then  158 

𝔼[𝜑(𝑋)] ≥ 𝜑(𝔼(𝑋))                                                               (2.13) 159 

Lemma 2.5 (Chebychev’s inequality)[48]. Let 𝑋 to be a random variable and let 𝜑 to be a nonnegative function. 160 

Then, for any positive real number 𝑎,  161 

𝒫{𝜑(𝑋) ≥ 𝑎} ≤
𝔼[𝜑(𝑋)]

𝑎
 (2.14) 162 

Lemma 2.6 (It𝑜̂ formula) [48]. Given It𝑜̂ process in the form of (2.1), then function 𝜇(𝑡, 𝑥) is again an It𝑜̂ 163 

process with differential given by  164 

𝑑(𝜇(𝑡, 𝑥)) =  ℒ(𝜇(𝑡, 𝑥))𝑑𝑡 + 
𝜕𝜇

𝜕𝑥
ℎ𝑑𝑤          (2.15) 165 

The above preliminaries are the same as those of the most previous literatures. Note that the class of 166 

conventional 𝒦∞  functions mentioned in some papers is certainly the class of generalized 𝒦∞  functions.167 

Stochastic input-to-state stability reflects the fact that bounded initial condition and bounded input result in 168 

bounded state in probability, and the trajectories will decay under small inputs. Furthermore, the finite-time 169 



stochastic input-to-state stability says that the bounded state will converge to a function of the input alone after 170 

the finite stochastic settling time. 171 

3. Lyapunov function-based properties of the finite-time stochastic input-to-state-stability172 

173 

174 

175 

176 

In this section, based on the above definitions and Lemmas, we shall derive some sufficient conditions for 

checking the stochastic input-to-state stability and the finite-time stochastic input-to-state stability properties, 

associated with Lyapunov theory.  

Definition 3.1. A function 𝑉 is called a stochastic input-to-state stability-Lyapunov function if there exist 𝒦∞ 

functions 𝜓1, 𝜓2, 𝜓3, 𝜓4 such that for all 𝑥 ∈ ℛ𝑛, 𝑣 ∈ 𝐿𝑚∞ and 𝑡 ≥ 𝑡0,177 

(i) 𝔼 [𝜓1(|𝑥|)] ≤ 𝔼[𝑉(𝑡, 𝑥)] ≤ 𝔼[𝜓2(|𝑥|)]      (3.1) 178 

(ii)  𝔼[ℒ𝑉(𝑡, 𝑥)] ≤  −𝔼[𝜓3(|𝑥|)] + 𝔼[𝜓4(‖𝑣‖)]  (3.2) 179 

Remark 3.1.  In condition (i) of Definition 3.1, 𝔼[𝑉(𝑡, 𝑥)] ≥ 𝔼[𝜓1(|𝑥|)]  means the Lyapunov180 

function  𝔼 [𝑉(𝑡, 𝑥)]  is radially unbounded, and the existence of a generalized 𝒦∞  function 𝜓2  such that181 

𝔼[𝑉(𝑡, 𝑥)] ≤ 𝔼[𝜓2(|𝑥|)]  means that𝔼[𝑉(𝑡, 𝑥)]   is decreased. In addition, the usual statements of Lyapunov182 

inverse theorems do not necessarily provide the condition (ii). 183 

Theorem 3.1. System (2.1) is stochastic input-to-state stable if there is a stochastic input-to-state stability-184 

Lyapunov function 𝑉. 185 

Proof: Let 𝜏0 ∈ [𝑡0, ∞) denote a time at which the system trajectory 𝑥 enters the set186 

ℬ = {𝑥 ∈ ℛ𝑛: 𝔼[𝜓3(|𝑥|)] ≤ 𝔼[𝜓̃4(‖𝑣‖)]}                                                 (3.3)187 

where 𝜓̃4  is a generalized 𝒦  function and 𝜓̃4 =
(1+𝜎0)

1−𝜆
𝜓4 , 𝜎0 > 0, 0 < 𝜆 < 1 . In the following analysis, we188 

consider two cases: 𝑥0 ∈ ℬ𝑐 and 𝑥0 ∈ ℬ, respectively, where ℬ𝑐 denotes the complementary set of  ℬ.189 

Case 1. 𝑥0 ∈ ℬ𝑐, In this case, for any 𝑡 ∈ [𝑡0, 𝜏0),190 

𝔼[𝜓3(|𝑥|)] >
(1+𝜎0)

1−𝜆
𝔼[𝜓4(‖𝑣‖)]       (3.4) 191 

Then 192 

−𝔼[𝜓3(|𝑥|)] < −𝜆𝔼[𝜓3(|𝑥|)] − (1 + 𝜎0)𝔼[𝜓4(‖𝑣‖)]   (3.5) 193 

According to (3.2), we can derive 194 

𝔼[ℒ𝑉(𝑡, 𝑥)] <  −𝜆𝔼[𝜓3(|𝑥|)] − (1 + 𝜎0)𝔼[𝜓4(‖𝑣‖)] + 𝔼[𝜓4(‖𝑣‖)]   (3.6) 195 

Indicating 196 

𝔼[ℒ𝑉(𝑡, 𝑥)] <  −𝜆𝔼[𝜓3(|𝑥|)] − 𝜎0𝔼[𝜓4(‖𝑣‖)]    (3.7) 197 

Because 𝜓4 is of 𝒦∞, one has198 



𝔼[ℒ𝑉(𝑡, 𝑥)] <  −𝜆𝔼[𝜓3(|𝑥|)] < −𝔼[𝜆𝜓3 ∘ 𝜓2−1(𝑉(𝑡, 𝑥))]  (3.8) 199 

From Lemmas 2.2 and 2.4, there exists a generalized 𝒦ℒ function 𝛽 satisfying the following condition:200 

𝔼(𝑉(𝑡, 𝑥)) ≤ 𝛽 (𝔼(𝑉0), 𝑡 − 𝑡0) ≤ 𝔼[𝛽 (𝑉0, 𝑡 − 𝑡0)] , 𝑡 ∈ [𝑡0,𝜏0), 𝑥0 ∈ ℬ𝑐  (3.9) 201 

For any 𝜀 ∈ (0,1), take 𝛽̅ = 𝛽̃

𝜀
 ∈ 𝒦ℒ. Applying Lemma 2.5, we have 202 

𝒫{𝑉(𝑡, 𝑥) ≥ 𝔼 [𝛽̅(𝑉0, 𝑡 − 𝑡0)]} ≤
𝔼(𝑉(𝑡,𝑥))

𝔼(𝛽̅)
≤

𝔼(𝛽̃)

𝔼(𝛽̅)
= 𝜀, 𝑡 ∈ [𝑡0,𝜏0), 𝑥0 ∈ ℬ𝑐  (3.10) 203 

which leads to 204 

𝒫{𝑉(𝑡, 𝑥) ≤  𝔼 [𝛽̅(𝑉0, 𝑡 − 𝑡0)]} > 1 − 𝜀, 𝑡 ∈ [𝑡0,𝜏0), 𝑥0 ∈ ℬ𝑐  (3.11) 205 

To be mentioned that 𝜀 can be made arbitrarily small by an appropriate choice of  𝛽̅. Hence for all 𝜀 > 0, there206 

exists 𝛽 = 𝜓1−1 ∘ 𝛽̅ ∘ 𝜓2, such that207 

𝒫{|𝑥| ≤ 𝔼[𝛽(|𝑥0|, 𝑡 − 𝑡0)]} ≥ 1 − 𝜀, 𝑡 ∈ [𝑡0,𝜏0), 𝑥0 ∈ ℬ𝑐   (3.12) 208 

Now let us consider the interval 𝑡 ∈ [𝜏0, ∞), where 𝔼[𝜓3(|𝑥|)] ≤ 𝔼[𝜓̃4(‖𝑣‖)]. Based on Lemma 2.5, it209 

follows that 210 

𝒫{𝜓3(|𝑥|) ≥ 𝔼[𝜓̅4(‖𝑣‖)]} ≤
𝔼[𝜓̃4(‖𝑣‖)]

𝔼[𝜓̅4(‖𝑣‖)]
= 𝜀0, 𝑡 ∈ [𝑡0,𝜏0), 𝑥0 ∈ ℬ𝑐     (3.13) 211 

where 𝜓̅4 is a 𝒦 function. By choosing 𝜓̅4 we can make 𝜀0 < 𝜀. Since 𝜓3−1 is of class 𝒦∞, we can yield212 

𝒫{|𝑥| ≤ 𝜓3
−1 ∘ 𝔼[𝜓̅4(‖𝑣‖)] } ≥ 1 − 𝜀0, 𝑡 ∈ [𝜏0, ∞), 𝑥0 ∈ ℬ𝑐      (3.14) 213 

Since 𝜓3−1  is convex, based on Lemma 2.4 we have 𝜓3−1 ∘  𝔼[𝜓̅4(‖𝑣‖)] ≤  𝔼[𝜓3
−1 ∘ 𝜓̅4(‖𝑣‖)] . Define 𝛾 =214 

𝜓3
−1 ∘ 𝜓̅4 leading to215 

𝒫{|𝑥| ≤  𝔼[𝛾(‖𝑣‖)]} ≥ 1 − 𝜀0, 𝑡 ∈ [𝜏0, ∞), 𝑥0 ∈ ℬ𝑐     (3.15) 216 

Combined with (3.12), 217 

𝒫{|𝑥| ≤ 𝔼[𝛽(|𝑥0|, 𝑡 − 𝑡0)] +  𝔼[𝛾(‖𝑣‖)]  } ≥ max{1 − 𝜀, 1 − 𝜀0} = 1 − 𝜀0, 𝑡 ∈ [𝑡0, ∞), 𝑥0 ∈ ℬ𝑐      (3.16)218 

Case 2. 𝑥0 ∈ ℬ. In this case, 𝜏0 = 𝑡0. Then 𝒫{𝑡 ∈ [𝜏0, ∞) } =  𝒫{𝑡 ∈ [𝑡0, ∞)} = 1. Following the proof of219 

Case 1, we know that (3.15) still holds, and then 220 

𝒫{|𝑥| ≤ 𝔼[𝛽(|𝑥0|, 𝑡 − 𝑡0)] +  𝔼[𝛾(‖𝑣‖)]} ≥ 𝒫{|𝑥| ≤  𝔼[𝛾(‖𝑣‖)] } ≥ 1 − 𝜀0, 𝑡 ∈ [𝑡0, ∞), 𝑥0 ∈ ℬ    ( 3.17)221 

To sum up, by (3.16) and (3.17) we have 222 

𝒫{|𝑥| ≤ 𝔼[𝛽(|𝑥0|, 𝑡 − 𝑡0)] + 𝔼[𝛾(‖𝑣‖)]} ≥ 1 − 𝜀0, 𝑡 ∈ [𝑡0, ∞], 𝑥0 ∈ ℛ𝑛                   (3.18)223 

which yields system (2.1) is stochastic input-to-state stable. 224 



Now, on the basis of Theorem 3.1, let us turn our attention to the finite convergence and give sufficient 225 

conditions of finite-time stochastic input-to-state stability for system (2.1). This can be accomplished by make 226 

the stochastic settling time finite. 227 

Theorem 3.2. System (2.1) is finite-time stochastic input-to-state stable if there is a stochastic input-to-state 228 

stability-Lyapunov function 𝑉, with the following condition held:  229 

∫
1

𝜓3(𝑠)

𝜖

0
𝑑𝑠 < +∞, ∀𝜖 ∈ [0, +∞)          (3.19) 230 

Proof: Condition (3.21) implies that there exists a function 𝜂(𝑉) = ∫
1

𝜓3(𝑠)

𝑉

0
𝑑𝑠, 𝑉 ∈ [0,∞). Applying Lemma 231 

2.4 along with system (2.1), we have 232 

𝑑𝜂(𝑉(𝑡, 𝑥)) =  ℒ𝜂(𝑉(𝑡, 𝑥))𝑑𝑡 +
𝑑𝜂

𝑑𝑉

𝜕𝑉

𝜕𝑥
ℎ𝑑𝑤          (3.20) 233 

then for all 𝑡 ≥ 𝑡0234 

𝜂(𝑉(𝑡, 𝑥))= 𝜂(𝑉(𝑡0, 𝑥0)) + ∫ ℒ𝜂(𝑉(𝑠, 𝑥(𝑠)))𝑑𝑠 + ∫
𝑑𝜂

𝑑𝑉

𝑡

𝑡0

𝑡

𝑡0

𝜕𝑉

𝜕𝑥
ℎ𝑑𝑤      (3.21) 235 

Let 𝑡𝑘 = inf {𝑠 ≥ 𝑡0: 𝔼[𝛽(|𝑥0|, 𝑠 − 𝑡0)] < 1/𝑘, 𝑘 ∈{1, 2, 3, ⋯}} to be an increasing stop time sequence. If 𝑡 is236 

replaced by 𝑡𝑘 in the above, the stochastic integral in (3.23) defines a martingale, which means when we take237 

expectation, the second integral should be zero, i.e. 238 

𝔼(𝜂(𝑉(𝑡𝑘, 𝑥(𝑡𝑘))))= 𝔼(𝜂(𝑉(𝑡0, 𝑥0))) + 𝔼(∫ ℒ𝜂(𝑉(𝑠, 𝑥(𝑠)))𝑑𝑠
𝑡𝑘
𝑡0

)          (3.24) 239 

When 𝑡 ≤ 𝑡𝑘, according to Lemma 2.3,240 

ℒ(𝜂(𝑉(𝑡, 𝑥))) =
𝑑𝜂

𝑑𝑉
ℒ(𝑉(𝑡, 𝑥)) −

𝑑𝜓3

𝑑𝑉

1

2𝜓3
2 𝑡𝑟𝑎𝑐𝑒 {ℎ

𝑇 𝜕
2𝑉(𝑡,𝑥)

𝜕𝑥2
ℎ}          (3.25) 241 

Since 𝑑𝜂
𝑑𝑉
=

1

𝜓3
 and 𝑑𝜓3

𝑑𝑉
> 0, which means 𝑑𝜓3

𝑑𝑉

1

2𝜓3
2 𝑡𝑟𝑎𝑐𝑒 {ℎ

𝑇 𝜕
2𝑉(𝑡,𝑥)

𝜕𝑥2
ℎ} > 0, we can easily find 242 

𝔼 [ℒ (𝜂(𝑉(𝑡, 𝑥)))] < 𝔼 [
1

𝜓3
ℒ(𝑉(𝑡, 𝑥))] ≤  −1               (3.26) 243 

then we have 244 

𝔼(𝜂(𝑉(𝑡𝑘, 𝑥(𝑡𝑘)))) − 𝔼(𝜂(𝑉(𝑡0, 𝑥0))) = 𝔼(∫ ℒ𝜂(𝑉(𝑠, 𝑥(𝑠)))𝑑𝑠
𝑡𝑘
𝑡0

]) < 𝐸(∫ (−1)𝑑𝑠
𝑡𝑘
𝑡0

) = 𝑡0 − 𝑡𝑘     (3.27)245 

Considering 𝔼(𝜂(𝑉(𝑡𝑘, 𝑥(𝑡𝑘)))) ≥ 0, we get246 

𝑡𝑘 ≤ 𝑡0 + 𝔼(𝜂(𝑉(𝑡0, 𝑥0)))                                                           (3.28)247 

Let 𝑘 → ∞, we have 𝑡𝑘 → 𝑇0(𝑡0, 𝑥0, 𝑣).Thus248 

𝑇0(𝑡0, 𝑥0, 𝑣) ≤ 𝑡0 + 𝔼(𝜂(𝑉(𝑡0, 𝑥0))) < ∞                                             (3.29)249 

which implies the system is stochastic settling time is finite. Combined with Theorem 3.1, system (2.1) is finite-250 

time input-to-state stable. 251 



4. Design of unknown input observer 252 

Consider the following stochastic nonlinear system in the form of differential equation: 253 

  {
𝑑𝑥(𝑡) = (𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐵𝑑𝑑(𝑡) + 𝐵𝑓𝑓(𝑡) + 𝑔(𝑥(𝑡))) 𝑑𝑡 +𝑊𝑥(𝑡)𝑑𝑤(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝐷𝑓𝑓(𝑡) + 𝐺𝑤(𝑡)
 (4.1) 254 

where 𝑥(𝑡) ∈ ℛ𝑛  represents the state vector; 𝑢(𝑡) ∈ ℛ𝑚  stands for control input vector and 𝑦(𝑡) ∈ ℛ𝑝  is255 

measurement output vector; 𝑑(𝑡) ∈ 𝐿∞
𝑙𝑑  is unknown input vector; 𝑓(𝑡) ∈ ℛ 𝑙𝑓  represents the means of the faults256 

(e.g., actuator faults and/or sensor faults); 𝑔(𝑥(𝑡)): ℛ𝑛 ⟶ ℛ𝑛  is a continuous function satisfying 𝑔(0) = 0;257 

𝑤(𝑡) is a standard one-dimensional Brownian motions with 𝔼[𝑤(𝑡)] = 0 and 𝔼[𝑤2(𝑡)] = 𝑡; 𝐴, 𝐵, 𝐶, 𝐷, 𝐵𝑑 , 𝐵𝑓,258 

𝐷𝑓 , 𝑊 and 𝐺  are known coefficient matrices with appropriate dimensions. We assume that in system (4.1),259 

𝔼[|𝑥(𝑡)|] < ∞. In this section, the main goal is to design a robust unknown input observer for system (4.1) to 260 

estimate the trends of system states and the considered faults simultaneously. In the rest of paper, the symbol 𝑡 261 

in vectors will be omitted for the simplicity of presentation. 262 

The means of the faults concerned are assumed either to be incipient or abrupt, which generally exist in 263 

industrial processes. Therefore, the second-order derivatives of their means should be zero piecewise. For faults 264 

whose second order derivatives of the means are not zero but bounded signals, the bounded signals could be 265 

regarded as a part of unknown inputs 𝑑. Moreover, 𝐵𝑑 = [𝐵𝑑1  𝐵𝑑2],  𝑑 =  [𝑑1  𝑑2]
𝑇, 𝑑1 ∈ ℛ

𝑙𝑑1  and 𝑑2 ∈ ℛ
𝑙𝑑2 .266 

We assume that 𝑑1 rather than 𝑑2 can be decoupled, which means 𝐵𝑑1 is of full column rank whereas 𝐵𝑑  is not.267 

Assumption 4.1. for all 𝑥 ∈ ℛ𝑛, 𝑔(𝑥) satisfies the implicit function theorem and the following conditions:268 

(i) |𝑔(𝑥)| < 𝑐(1 + |𝑥|)  (4.2) 269 

(ii) |𝑔(𝑥1) − 𝑔(𝑥2)|2 ≤ 𝜌1 |𝑥1 − 𝑥2|2 + 𝜌2〈𝑥1 − 𝑥2, 𝑔(𝑥1) − 𝑔(𝑥2)〉  (4.3) 270 

271 where 𝜌1, 𝜌2 ∈ ℛ, 𝑐 > 0.

Remark 4.1. In Assumption 4.1, condition (ii) implies 𝑔(𝑥)  is quadratic inner-bounded [49]. Unlike the well-272 

known Lipschtiz condition, the constants 𝜌1 , 𝜌2  can be positive, negative or zero. In addition, if  𝑔(𝑥)   is273 

Lipschitz, then it is also quadratic inner-bounded with 𝜌1 > 0  and 𝜌2 = 0 . Thus, quadratic inner-bounded274 

condition provides a less conservative condition than Lipschitz one. According to Lemma 2.1, Assumption 4.1 275 

can ensure that for any 𝑥0 ∈ ℛ𝑛, system (4.1) has a path-wise strong solution.276 

In order to estimate the trends of system states and faults simultaneously, an augmented plant of system (4.1) 277 

can be constructed as follows: 278 

{
𝑑𝑥̅ = [𝐴̅𝑥̅ + 𝐵̅𝑢 + 𝐵̅𝑑𝑑 + 𝑔̅(𝑥)]𝑑𝑡 + 𝑊̅𝑥̅𝑑𝑤

𝑦 = 𝐶̅𝑥̅ + 𝐷𝑢 + 𝐺𝑤
 (4.4) 279 



where 280 

𝑛̅ = 𝑛 + 2𝑙𝑓, 𝑥̅ = [𝑥𝑇 𝑑𝑓 𝑑𝑡⁄ 𝑇
𝑓𝑇]

𝑇
∈ ℛ𝑛̅𝐴̅ = [

𝐴 0 𝐵𝑓
0 0 0
0 𝐼𝑙𝑓 0

] ∈ ℛ𝑛̅×𝑛̅𝐵̅ = [𝐵𝑇 0 0]𝑇 ∈ ℛ𝑛̅×𝑚,281 

𝐵̅𝑑 = [𝐵𝑑
𝑇 0 0]𝑇 ∈ ℛ 𝑛̅×𝑙𝑑 , 𝑔̅(𝑥) = [𝑔(𝑥)𝑇 0 0]𝑇 ∈ ℛ𝑛̅, 𝑊̅=[

𝑊 0 0
0 0 0
0 0 0

] ∈ ℛ𝑛̅×𝑛̅ ,282 

and 𝐶̅ = [𝐶 0 𝐷𝑓] ∈ ℛ𝑝×𝑛̅283 

Consider the following unknown input observer in the form of 284 

{
𝑑𝑧̅ = [𝑅𝑧̅ + 𝑆𝐵̅𝑢 + (𝐾1 + 𝐾2)(𝑦 − 𝐷𝑢) + 𝑆𝑔̅(𝑥̂)]𝑑𝑡

𝑥̂̅ = 𝑧̅ + 𝐻(𝑦 − 𝐷𝑢)
  (4.5) 285 

where  𝑧̅ ∈ ℛ𝑛̅ is the state of observer, 𝑥̂̅ ∈ ℛ𝑛̅ is the estimation of 𝑥̅ which is composed of the system states and286 

the concerned fault trends. In this way, the unmeasurable states and fault trends can be estimated provided that 287 

the estimated state vector  𝑥̂̅  is available. The observer parameters of  R, 𝑆, 𝐾1, 𝐾2, 𝐻 need to be designed.288 

Let 289 

𝑒̅ = 𝑥̅ − 𝑥̂̅ = (𝐼𝑛̅ − 𝐻𝐶̅)𝑥̅ − 𝑧̅ − 𝐻𝐺𝑤   (4.6) 290 

𝑔̃(𝑥) = 𝑔̅(𝑥) − 𝑔̅(𝑥̂)       (4.7) 291 

Subtracting (4.5) from (4.4), the state estimation error system can be characterized as: 292 

𝑑𝑒̅ = (𝐼𝑛̅ − 𝐻𝐶̅) 𝑑𝑥̅ − 𝑑𝑧̅ − 𝐻𝐺𝑑𝑤293 

= {(𝐼𝑛̅ − 𝐻𝐶̅) [𝐴̅𝑥̅ + 𝐵̅𝑢 + 𝐵̅𝑑𝑑 + 𝑔̅(𝑥)] − 𝑅𝑧̅ − 𝑆𝐵̅𝑢 − (𝐾1 + 𝐾2)(𝑦 − 𝐷𝑢) − 𝑆𝑔̅(𝑥̂)}𝑑𝑡

+(𝐼𝑛̅ −𝐻𝐶̅)𝑊̅𝑥̅𝑑𝑤 − 𝐻𝐺𝑑𝑤294 

= {(𝐼𝑛̅ − 𝐻𝐶̅)𝐴̅𝑥̅ − 𝐾1𝐶̅𝑥̅ − 𝐾1𝐺𝑤 + (𝐼𝑛̅ − 𝐻𝐶̅)𝐵̅𝑢 + (𝐼𝑛̅ − 𝐻𝐶̅)𝐵̅𝑑𝑑 + (𝐼𝑛̅ − 𝐻𝐶̅)𝑔̅(𝑥) − 𝑅𝑧̅295 

−𝑆𝐵̅𝑢 − 𝐾2(𝑦 − 𝐷𝑢) − 𝑆𝑔̅(𝑥̂)}𝑑𝑡 + (𝐼𝑛̅ −𝐻𝐶̅)𝑊̅𝑥̅𝑑𝑤 − 𝐻𝐺𝑑𝑤 296 

= {[(𝐼𝑛̅ − 𝐻𝐶̅)𝐴̅ − 𝐾1𝐶̅]𝑥̅ − 𝑅𝑥̂̅ + [(𝐼𝑛̅ − 𝐻𝐶̅) − 𝑆]𝐵̅𝑢 + (𝐼𝑛̅ − 𝐻𝐶̅)𝐵̅𝑑1𝑑1 + (𝐼𝑛̅ −𝐻𝐶̅)𝐵̅𝑑2𝑑2297 

+[(𝐼𝑛̅ −𝐻𝐶̅)𝑔̅(𝑥) − 𝑆𝑔̅(𝑥̂)] + (𝐻𝑅 − 𝐾2)(𝑦 − 𝐷𝑢) − 𝐾1𝐺𝑤}𝑑𝑡 + (𝐼𝑛̅ − 𝐻𝐶̅)𝑊̅𝑥̅𝑑𝑤 − 𝐻𝐺𝑑𝑤 298 

= [𝑅𝑒̅ + 𝑆𝐵̅𝑑2𝑑2 + 𝑆𝑔̃(𝑥) − 𝐾1𝐺𝑤]𝑑𝑡 + 𝑊̃𝑥̃𝑑𝑤  (4.8) 299 

where 𝑊̃ = [𝑆𝑊̅ −𝐻𝐺], 𝑥̃ = [𝑥̅𝑇 1]𝑇 ∈ ℛ𝑛̅+1, and if the following conditions are held:300 

(𝐼𝑛̅ −𝐻𝐶̅)𝐵̅𝑑1 = 0   (4.9) 301 

𝑅 = 𝐴̅ − 𝐻𝐶̅𝐴̅ − 𝐾1𝐶̅   (4.10) 302 

𝑆 = 𝐼𝑛̅ −𝐻𝐶̅  (4.11) 303 

𝐾2 = 𝑅𝐻  (4.12) 304 



For error dynamic (4.8), our main problem is to design 𝐻, 𝑅, 𝑆, 𝐾1, 𝐾2 such that 𝑒̅ is bounded in presence of 305 

bounded unknown inputs, and converge within finite time interval, which can be expressed by finite-time stochastic 306 

input-to-state stability of system (4.8). To meet this objective, the following assumptions are given: 307 

Assumption 4.2. rank(𝐶𝐵𝑑1) = rank(𝐵𝑑1);308 

Assumption 4.3. [
𝐴 𝐵𝑓 𝐵𝑑1
𝐶 𝐷𝑓 0

] is of full column rank; 309 

Assumption 4.4. rank [𝑠𝐼𝑛 − 𝐴 𝐵𝑑1
𝐶 0

] = 𝑛 + 𝑙𝑑1.310 

Remark 4.3. According to [30], Assumption 4.2 is to guarantee that Equation (4.9) can be solved, and a special 311 

solution is 312 

𝐻∗ = 𝐵̅𝑑1[(𝐶̅𝐵̅𝑑1)
𝑇(𝐶̅𝐵̅𝑑1)]

−1(𝐶̅𝐵̅𝑑1)
𝑇       (4.13) 313 

while Assumptions 4.3 and 4.4 are to ensure (𝐶̅, 𝐴̅1) to be an observable pair, where 𝐴̅1 = 𝐴̅ − 𝐻𝐶̅𝐴̅. Based on314 

these assumptions, we can decouple 𝑑1 by solving 𝐻 from condition (4.9), and assign the poles of 𝑅 arbitrarily.315 

The next step is to ensure the error dynamic is stochastic input-to-state stable with respect to 𝑑2 and Brownian316 

motions, which means 𝑒̅ will be bounded if un-decoupled unknown inputs are bounded. For this purpose, we shall 317 

introduce the following Theorem 4.1.  318 

Theorem 4.1. For system (4.1), there exists a robust observer in the form of (4.5) yields estimation error dynamic 319 

system (4.8) that is stochastic input-to-state stable and satisfies 𝔼(|𝑒̅|𝑇𝑓) ≤ 𝔼(𝛾̅|𝑣|𝑇𝑓), if there exist positive320 

definite matrices 𝑃and 𝑄, matrix 𝑌 and positive real number 𝜏, such that 321 

[

Λ 𝑃𝑆 + 𝜏𝜌2𝐼2𝑛̅ 𝑃𝑆𝐵̅𝑑2 −𝑌𝐺 0
∗ −2𝜏𝐼2𝑛̅ 0 0 0

∗ ∗ −𝛾̅1
2𝐼𝑙𝑑2 0 0

∗ ∗ ∗ −𝛾̅1
2 0

∗ ∗ ∗ ∗ 𝑊̃𝑇𝑃𝑊̃ − 𝛾̅1
2𝐼𝑛̅+1]

< 0  (4.14) 322 

where Λ = 𝐴̅1
 𝑇𝑃 + 𝑃𝐴̅1 − 𝐶̅

𝑇𝑌𝑇 − 𝑌𝐶̅ + 2𝜏𝜌1𝐼𝑛̅ + 𝑄, 𝐴̅1 = 𝑆𝐴̅, 𝑌 = 𝑃𝐾1 , 𝜌1  and 𝜌2  are given real numbers, 𝛾̅323 

and 𝛾̅1 are positive scalars, 𝛾̅1 = 𝜆𝑚𝑖𝑛(𝑄)𝛾̅.324 

Proof: Choose Lyapunov function 𝑉(𝑒̅) = 𝑒̅𝑇𝑃𝑒̅. It is not hard to obtain that:325 

𝔼[𝜆𝑚𝑖𝑛(𝑃)|𝑒̅|
2] ≤ 𝔼[𝑉(𝑒̅)] ≤ 𝔼[𝜆𝑚𝑎𝑥(𝑃)|𝑒̅|

2]  (4.15) 326 

which implies we can define 𝜓1 = 𝜆𝑚𝑖𝑛(𝑃)|𝑒̅|2 , 𝜓2=𝜆𝑚𝑎𝑥(𝑃)|𝑒̅|2  in Theorem 3.1. Then, according to (2.8),327 

ℒ𝑉(𝑒̅) can be calculated as: 328 

ℒ𝑉(𝑒̅) = [
𝜕𝑉(𝑒̅)

𝜕𝑒̅
]
𝑇

[𝑅𝑒̅ + 𝑆𝐵̅𝑑2𝑑2 + 𝑆𝑔̃(𝑥) − 𝐾1𝐺𝑤] +
1

2
𝑡𝑟𝑎𝑐𝑒 {𝑥̃𝑇𝑊̃𝑇 𝜕

2𝑉(𝑒̅)

𝜕𝑥2
𝑊̃𝑥̃} 329 

= 𝑒̅𝑇(𝑅𝑇𝑃 + 𝑃𝑅)𝑒̅ + 2𝑒̅𝑇𝑃𝑆𝐵̅𝑑2𝑑2 + 2𝑒̅
𝑇𝑃𝑆𝑔̃ − 2𝑒̅𝑇𝑌𝐺𝑤 + 𝑥̃𝑇𝑊̃𝑇𝑃𝑊̃𝑥̃  (4.16) 330 



Assumption 4.1 implies that for any positive scalar 𝜏, we have 331 

2𝜏(𝜌1𝑒̅
𝑇𝑒̅ + 𝜌2𝑒̅

𝑇𝑔̃ − 𝑔̃𝑇𝑔̃) ≥ 0  (4.17) 332 

Adding (4.17) to the right side of (4.16), and then adding and subtracting 𝑒̅𝑇𝑄𝑒̅, we can derive:333 

ℒ𝑉(𝑒̅) ≤ 𝑒̅𝑇(𝐴̅1
 𝑇𝑃 + 𝑃𝐴̅1 − 𝐶̅

𝑇𝑌𝑇 − 𝑌𝐶̅ + 2𝜏𝜌1𝐼𝑛̅ + 𝑄)𝑒̅ − 𝑒̅
𝑇𝑄𝑒̅ − 2𝜏𝑔̃𝑇𝑔̃ + 2𝑒̅𝑇(𝑃𝑆 + 𝜏𝜌2𝐼2𝑛̅)𝑔̃

+2𝑒̅𝑇𝑃𝑆𝐵̅𝑑2𝑑2 − 2𝑒̅
𝑇𝑌𝐺𝑤 + 𝑥̃𝑇𝑊̃𝑇𝑃𝑊̃𝑥̃ − 𝛾̅1

2𝑣𝑇𝑣 + 𝛾̅1
2𝑣𝑇𝑣334 

= [𝑒̅𝑇 𝑔̃𝑇 𝑣𝑇] Ψ [
𝑒̅
𝑔̃
𝑣
] − 𝑒̅𝑇𝑄𝑒̅ + 𝛾̅1

2𝑣𝑇𝑣  (4.18) 335 

where 336 

Ψ =

[

Λ 𝑃𝑆 + 𝜏𝜌2𝐼2𝑛̅ 𝑃𝑆𝐵̅𝑑2 −𝑌𝐺 0
∗ −2𝜏𝐼2𝑛̅ 0 0 0

∗ ∗ −𝛾̅1
2𝐼𝑙𝑑2 0 0

∗ ∗ ∗ −𝛾̅1
2 0

∗ ∗ ∗ ∗ 𝑊̃𝑇𝑃𝑊̃ − 𝛾̅1
2𝐼𝑛̅+1]

𝑣 = [𝑑2
𝑇 𝑤𝑇 𝑥̃𝑇]𝑇 , and  Λ = (𝐴̅1

 𝑇𝑃 + 𝑃𝐴̅1 − 𝐶̅
𝑇𝑌𝑇 − 𝑌𝐶̅ + 2𝜏𝜌1𝐼𝑛̅ + 𝑄).  LMI (4.14) implies that Ψ < 0 ,337 

indicating 338 

ℒ𝑉(𝑒̅) ≤ −𝑒̅𝑇𝑄𝑒̅ + 𝛾̅1
2𝑣𝑇𝑣                                                            (4.19)339 

Since 𝑄 is positive, it is easy to find a scale 𝜆̅ > 0 such that  340 

𝔼[ℒ𝑉(𝑒̅)] ≤ −𝔼(𝜆̅ |𝑒̅|2) + 𝔼(𝛾̅1
2|𝑣|2) ≤ −𝔼(𝜆̅ |𝑒̅|2) + 𝔼(𝛾̅1

2‖𝑣‖2)                     (4.20)341 

According to Theorem 3.1, dynamic system (4.8) is stochastic input-to-state stable with 𝜓3(𝑒̅) = 𝜆̅|𝑒̅|2 and342 

𝜓4(‖𝑣‖) = 𝛾̅1
2‖𝑣‖2.343 

Now we move on to attenuate the influences of 𝑣 on estimation error. Define the following performance index 344 

of the error dynamic 345 

𝛤 = 𝔼(∫ (𝑒̅𝑇𝑄𝑒̅ − 𝛾̅1
2𝑣𝑇𝑣)𝑑𝑡

𝑇𝑓

0
)  (4.21) 346 

Then adding and subtracting 𝔼(∫ ℒ𝑉(𝑒̅)𝑑𝑡)
𝑇𝑓

0
, yields: 347 

𝛤 = 𝔼 (∫ (𝑒̅𝑇𝑄𝑒̅ − 𝛾̅1
2𝑣𝑇𝑣 + ℒ𝑉(𝑒̅))𝑑𝑡

𝑇𝑓

0
) − 𝔼 (∫ ℒ𝑉(𝑒̅)𝑑𝑡

𝑇𝑓

0
) 348 

≤ 𝔼(∫ [𝑒̅𝑇 𝑔̃𝑇 𝑣𝑇] 
𝑇𝑓

0
Ψ[

𝑒̅
𝑔̃
𝑣
])𝑑𝑡)  − 𝔼(∫ ℒ𝑉(𝑒̅)𝑑𝑡)

𝑇𝑓

0
   (4.22) 349 

Under zero initial condition 𝑒̅(0) = 0, 350 

𝔼(∫ ℒ𝑉(𝑒̅)𝑑𝑡
𝑇𝑓

0
) = 𝔼(𝑒̅𝑇(𝑇𝑓)𝑃𝑒̅(𝑇𝑓)) − 𝔼(𝑒̅

𝑇(0)𝑃𝑒̅(0)) = 𝔼(𝑉(𝑒̅(𝑇𝑓))) > 0  (4.23) 351 

Therfore  Ψ < 0 indicates 𝛤 < 0, leading to 352 



𝔼(∫ 𝑒̅𝑇𝑄𝑒̅𝑑𝑡) ≤ 𝔼(∫ 𝛾̅1
2𝑣𝑇𝑣𝑑𝑡)

𝑇𝑓

0

𝑇𝑓

0
 (4.24) 353 

which means 354 

√𝜆𝑚𝑖𝑛(𝑄)𝔼(|𝑒̅|𝑇𝑓) ≤ 𝔼(𝛾̅1|𝑣|𝑇𝑓)  (4.25) 355 

Then we have 356 

𝔼(|𝑒̅|𝑇𝑓) ≤ 𝔼(𝛾̅|𝑣|𝑇𝑓)  (4.26) 357 

where 𝛾̅ = 𝛾̅1

𝜆𝑚𝑖𝑛(𝑄)
. 358 

Theorem 4.1 can be applied to prove the asymptotic stability of the estimation error as well, by letting the 359 

disturbances be zero. Such a result holds because the stochastic input-to-state stability implies global asymptotic 360 

stability in probability which is a special case that the input is zero [31]. In other words, a stochastic input-to-state 361 

stable state estimator behaves like an asymptotically stable observer in the absence of system and measurement 362 

noises. 363 

Now we are in the position to study the finite-time stochastic input-to-state stability of (4.8), which implies 364 

the stochastic setting time is finite. 365 

Theorem 4.2. For system (4.1), there exists a robust observer in the form of (4.5) yields estimation error dynamic 366 

system (4.8) that is finite-time stochastic input-to-state stable and satisfies 𝔼(|𝑒̅|𝑇𝑓) ≤ 𝔼(𝛾̅|𝑣|𝑇𝑓), if there exist367 

positive definite matrices 𝑃 and 𝑄, positive real number 𝜏, and matrix 𝑌, such that LMI (4.14) holds. 368 

Proof: ∀ 𝜀𝑒, we can find  positive scalar 𝑘0 = 𝜀𝑒 𝔼(𝛾̅12𝑣𝑇𝑣) . When 𝔼(|𝑒̅|) ≤ 𝑘0, Based on Lemma 2.5369 

𝒫{|𝑒̅| ≥ 𝔼(𝛾̅1
2𝑣𝑇𝑣)} ≤

𝔼(|𝑒̅|)

𝔼(𝛾̅1
2𝑣𝑇𝑣)

≤
𝑘0

𝔼(𝛾̅1
2𝑣𝑇𝑣)

= 𝜀𝑒  (4.27) 370 

which means 371 

𝒫{|𝑒̅| ≤ 𝔼(𝛾̅1
2𝑣𝑇𝑣)} ≥ 1 − 𝜀𝑒                                                         (4.28)372 

According to (2.11), (4.8) is finite-time stochastic input-to-state stable.  373 

In the following proof, we consider the case 𝔼(|𝑒̅|) > 𝑘0. From Theorem 4.1, it has been obtained that ℒ𝑉(𝑒̅) ≤374 

−𝑒̅𝑇𝑄𝑒̅ + 𝛾̅1
2𝑣𝑇𝑣. Thus for 0 < 𝜃 <

1

2
, we can derive375 

ℒ𝑉(𝑒̅) ≤ −
𝜆𝑚𝑖𝑛(𝑄)

𝜆𝑚𝑎𝑥(𝑃)
𝑒̅𝑇𝑃𝑒̅ + 𝛾̅1

2𝑣𝑇𝑣376 

= −
𝜆𝑚𝑖𝑛(𝑄)

𝜆𝑚𝑎𝑥(𝑃)
(𝑒̅𝑇𝑃𝑒̅)𝜃(𝑒̅𝑇𝑃𝑒̅)1−𝜃 + 𝛾̅1

2𝑣𝑇𝑣377 

≤ −
𝜆𝑚𝑖𝑛(𝑄)𝜆𝑚𝑖𝑛

1−𝜃(𝑃)

𝜆𝑚𝑎𝑥(𝑃)
(𝑒̅𝑇𝑃𝑒̅)𝜃(|𝑒̅|)2(1−𝜃) + 𝛾̅1

2𝑣𝑇𝑣   (4.29) 378 

Then we have 379 



𝔼[ℒ𝑉(𝑒̅)] = −
𝜆𝑚𝑖𝑛(𝑄)𝜆𝑚𝑖𝑛

1−𝜃(𝑃)

𝜆𝑚𝑎𝑥(𝑃)
𝔼[(𝑒̅𝑇𝑃𝑒̅)𝜃(|𝑒̅|)2(1−𝜃)] + 𝔼[𝛾̅1

2𝑣𝑇𝑣]380 

≤ −
𝜆𝑚𝑖𝑛(𝑄)𝜆𝑚𝑖𝑛

1−𝜃(𝑃)

𝜆𝑚𝑎𝑥(𝑃)
𝔼[(𝑒̅𝑇𝑃𝑒̅)𝜃]𝔼[(|𝑒̅|)2(1−𝜃)] + 𝔼[𝛾̅1

2𝑣𝑇𝑣]  (4.30) 381 

0 < 𝜃 <
1

2
implies 1 < 2(1 − 𝜃) < 2. Thus (‖𝑒̅‖)2(1−𝜃) is convex, according to lemma 2.4, 382 

𝔼[(|𝑒̅|)2(1−𝜃)] ≥ [𝔼(|𝑒̅|)]2(1−𝜃) ≥ 𝑘0
2(1−𝜃)  (4.31) 383 

Then 384 

𝔼[ℒ𝑉(𝑒̅)] ≤ −
𝜆𝑚𝑖𝑛(𝑄)𝜆𝑚𝑖𝑛

1−𝜃(𝑃)

𝜆𝑚𝑎𝑥(𝑃)
𝑘0
2(1−𝜃)𝔼[(𝑒̅𝑇𝑃𝑒̅)𝜃] + 𝔼[𝛾̅1

2𝑣𝑇𝑣]  (4.32) 385 

Define 𝜆̅0 =
𝜆𝑚𝑖𝑛(𝑄)𝜆𝑚𝑖𝑛

1−𝜃(𝑃)

𝜆𝑚𝑎𝑥(𝑃)
𝑘0
2(1−𝜃), it is not hard to find 𝜆̅0 > 0. Then we have:386 

𝔼[ℒ𝑉̅(𝑒̅)] ≤ −𝔼[𝜆̅0𝑉
𝜃(𝑒̅)] + 𝔼(𝛾̅1‖𝑣 ‖

2)  (4.33) 387 

If we define 𝜓3 = 𝜆̅0[𝑉(𝑒̅)]𝜃, it can be verified that388 

∫
1

𝜓3(𝑉)

𝜖

0
𝑑𝑉 = ∫

1

𝜆0𝑉
𝜃

𝜖

0
𝑑𝑉 =

𝜖1−𝜃

𝜆0(1−𝜃)
< +∞              (4.34) 389 

According to Theorem 3.2, the error dynamic (4.8) is finite-time stochastic input-to-state stable by setting 390 

𝜓3 = 𝜆̅0[𝑉(𝑒̅)]
𝜃 and 𝜓4(‖𝑣‖) = 𝛾̅1‖𝑣 ‖2.391 

Theorem 4.1 and 4.2 provide sufficient conditions for the existence of a robust UIO for system (4.1) in terms 392 

of a given estimation performance index. The observer gains can be decided by solving LMI (4.14) to make the 393 

estimation error decrease to a bounded value depending on unknown inputs only. In addition, the performance 394 

index can make the bound as small as possible to achieve robustness.  395 

Based on the above results, we can summarize the procedure to design the UIO for system (4.1) as follows. 396 

(1) Construct an augmented system in the form of (4.4). 397 

(2) Solve 𝐻 from Equation (4.9). 398 

(3) Solve the LMI (4.14) to obtain the matrices 𝑃 and 𝑌, and calculate the gain 𝐾1 = 𝑃−1𝑌.399 

(4) Calculate the other gain matrices 𝑅, 𝑆 and 𝐾2 following the formulae (4.10) to (4.12), respectively.400 

(5) Obtain the augmented estimate 𝑥̂̅ by implementing UIO (4.5), leading to the simultaneous estimates of state401 

and fault as 𝑥̂ = [𝐼𝑛 0𝑛×2𝑙𝑓]𝑥̂̅ and 𝑓 = [0𝑛×(𝑛+𝑙𝑓) 𝐼𝑙𝑓]𝑥̂̅, respectively.402 

5. Simulation403 

In this section, two examples are presented to illustrate the effectiveness and flexibility of the proposed 404 

method. 405 



Example 5.1. Consider a single-link robot with flexible joints actuated by a DC motor. The plant can be 406 

modelled as the following stochastic nonlinear system [50, 51]: 407 

{

𝑑𝜃𝑚 = 𝜔𝑚𝑑𝑡 + (0.1𝜔𝑚 − 0.2𝜃𝑙)𝑑𝑤

𝑑𝜔𝑚 = [
𝑘0

𝐽𝑚
(𝜃𝑙 − 𝜃𝑚) −

𝑍

𝐽𝑚
𝜔𝑚 +

𝑘𝜏

𝐽𝑚
𝑢] 𝑑𝑡 + (−0.1𝜔𝑚 + 0.1𝜔𝑙)𝑑𝑤

𝑑𝜃𝑙 = 𝜔𝑙𝑑𝑡 + 0.1𝜃𝑙𝑑𝑤

𝑑𝜔𝑙 = [−
𝑘0

𝐽𝑙
(𝜃𝑙 − 𝜃𝑚) −

𝑚𝑔ℎ

𝐽𝑙
sin(𝜃𝑙)] + (−0.3𝜔𝑚 + 0.1𝜔𝑙)𝑑𝑤

  (5.1) 408 

where  𝜃𝑚 and 𝜃𝑙 denote the angles of the rotations of the motor and link, respectively, 𝜔𝑚 and 𝜔𝑙 are the angular409 

velocities of the motor and link, respectively, 𝐽𝑚 represents the inertia of the DC motor (actuator), 𝐽𝑙 is the inertia410 

of the link, 𝑘0 is torsional spring constant, 𝑘𝜏 is the amplifier gain, 𝑍 is the viscous friction, 𝑚 is the pointer mass,411 

𝑔 is the gravity constant, and ℎ is the length of the link, and 𝑢  is the control input (DC voltage).  Let 𝑥 =412 

[𝜃𝑚   𝜔𝑚   𝜃𝑙   0.1𝜔𝑙], the system can be written in the form of (4.1), where413 

𝐴 = [

0 1 0 0
−48.6 −1.25 48.6 0
0 0 0 10
1.95 0 −1.95 0

], 𝐵 = [

0
21.6
0
0

], 𝐶 = [
1 0 0 0
0 1 0 0

], 414 

𝑔(𝑥) = [

0
0
0

−0.333sin (𝑥3)

], 𝑊 = [

0.1 0 −0.2 0
0 −0.1 0 0.1
0 0 0.1 0
0 −0.3 0 0.1

], 𝐷 = [0
0
], 415 

416 

The fault and disturbance distribution matrices are respectively 𝐵𝑓 = 𝐵𝑓𝑎 = 𝐵, 𝐷𝑓 = [
0
0
], 𝐺 = [0.1 

0 
0
0.2
] and 417 

𝐵𝑑 = [

−0.2 0.01 −0.02
−0.1 0.02 −0.04
0.1 −0.02 0.04
0.2 0.02 −0.04

] 

The actuator fault is: 418 

𝑓𝑎 =

{

0 𝑡 ≥ 80𝑠
−0.05(𝑡 − 80) 60𝑠 ≤ 𝑡 < 80𝑠

1 40𝑠 ≤ 𝑡 < 60𝑠
0.05(𝑡 − 20) 20𝑠 ≤ 𝑡 < 40𝑠

0 0𝑠 ≤ 𝑡 < 20𝑠

  (5.2) 419 

and the unknown input disturbances are random numbers from [−1,1]  measurement noises are random numbers 420 

from [−0.1,0.1]. The initial state value is given as 𝑥0 = [0.1 −1 0.1 0.2  ]𝑇corrupted by random noises. A421 

controller 𝑢 = 𝐹𝑦, where 𝐹 = [−0.5 −1], can be pre-designed to make the system stable. 422 

|𝑔(𝑥)| ≤ 0.333 ≤ 0.333(1 + |𝑥|) 

So let 𝑐 = 0.333, 𝜌1 = 0.11 and 𝜌2 = 0, we can easily find 𝑔(𝑥) satisfy the (4.2) and (4.3) in Assumption 4.1.423 

By choosing 𝛾̅ = 3, we can obtain 𝜏 = 20 and the observer gains as follows: 424 



𝐻 =

[

0.8000 0.4000
0.4000 0.2000
−0.4000 −0.2000
−0.8000 −0.4000

0 0
0 0 ]

, 𝑆 =

[

0.2000 −0.4000 0 0 0 0
−0.4000 0.8000 0 0 0 0
0.4000 0.2000 1 0 0 0
0.8000 0.4000 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

, 425 

𝐾 = 𝐾1 + 𝐾2 =

[

60.79 −62.57
−119.0 199.9
96.77 −242.6
−193.3 334.5
−248.1 496.2
−484.2 968.4 ]

, 𝑅 =

[

12.86 90.38 −19.44 0 0 −8.640
−31.00 −176.8 38.88 0 0 17.28
−24.05 283.9 9.720 10 0 4.320
−0.9442 −422.6 17.49 0 0 8.640
21.49 −609.4 0 0 0 0
42.05 −1190 0 0 1 0 ]

By choosing the above parameters, 𝑑1  is decoupled and the influences of 𝑑2 and Brownian motion are426 

attenuated. Using the Euler–Maruyama method [52] to simulate the standard Brownian motions, one can obtain 427 

the simulated curves of the stochastic state responses (40 state trajectories). The curves displayed in Figs. 1-5 428 

exhibit the estimation performances for the trends of full system states, and actuator fault respectively. 429 

430 

Fig. 1. State 𝑥1 and its estimation431 



432 

Fig. 2. State 𝑥2 and its estimation433 

434 

Fig. 3. State 𝑥3 and its estimation435 



436 

Fig. 4. State 𝑥4 and its estimation437 

438 

Fig. 5.  𝑓𝑎 and its estimation439 

440 

441 

442 

443 

444 

Applying the suggested fault-reconstruction approach, the means of actuator fault and full system states can 

be estimated simultaneously and the trajectories of estimation error can be mapped quite closed to equilibrium in 

finite time. It is noticed that he concerned unknown inputs are not constrained to be completely decoupled, and 

the un-decoupled part of unknown inputs can be attenuated successfully by the solving LMI conditions. As a 

result, the presented methods are suitable for more general systems which thus have potentials to apply to a 

wider scope of practical dynamic systems. 445 

446 One can find the nonlinear component of example 5.1 satisfies Lipschitz constrict which is a special 

situation of the quadratic inner boundedness. In order to further demonstrate the applicability of the proposed 

methods to 

447 



448 more general systems, we give another example (see Example 5.2) with the nonlinear term satisfying 

the quadratic inner boundedness constraint.  449 

Example 5.2. In this example, we consider a more general condition. The plant is in the form of (4.1) with the 450 

following parameters: 451 

𝐴 = [
−1 −8 1
2 −1 2
0 0 −2

], 𝐵 = [
1
0
0
], 𝐶 = [

1 0 0
0 1 0
0 0 1

], 𝑔(𝑥) = [

−𝑥1(𝑥1
2 + 𝑥2

2 + 𝑥3
2)

−𝑥2(𝑥1
2 + 𝑥2

2 + 𝑥3
2)

−𝑥3(𝑥1
2 + 𝑥2

2 + 𝑥3
2)

],  𝑊 = [
0.3 0 −0.2
0 0.1 0.4
0.5 0 0.1

], 452 

𝐵𝑓𝑎 = 𝐵, 𝐷𝑓𝑠 = [
1
0
0
], 𝐵𝑑 = [

−0.3 −0.1 −0.05
0.1 −0.2 0.1
−0.2 −0.4 0.2

],𝐷 = [
0
0
0
], 𝐺 = [

0.1 0 0
0 0 0
0 0 0

] 453 

In this case, 𝐵𝑓 = [𝐵𝑓𝑎  0], 𝐷𝑓 = [0  𝐷𝑓𝑠]. The actuator fault is defined as: 454 

𝑓𝑎 = {

0 𝑡 ≥ 70𝑠
−0.02(𝑡 − 70) 40𝑠 ≤ 𝑡 < 70𝑠

0.02(𝑡 − 10) 10𝑠 ≤ 𝑡 < 40𝑠
0 0𝑠 ≤ 𝑡 < 10𝑠

 (5.3) 455 

and the sensor fault is 50% deviation of the real output, while the control input 𝑢 = 1 and the unknown input 456 

disturbances and measurement noises are random numbers from [−0.01,0.01]  The initial state value is given as 457 

𝑥0 = [0.1 −0.05 0  ]𝑇  corrupted by random noises. Considering the set 𝐷̃ = {𝑥 ∈ 𝑅3: |𝑥| ≤ 𝜗},  we have458 

|𝑔(𝑥)| = |𝑥|3 < 𝜗2(1 + |𝑥|). It is not hard to find that 𝑔(𝑥) is not Lipschitz. Let us verify the quadratic inner459 

boundedness according to [49]. After some algebraic manipulations, we can obtain 460 

|𝑔(𝑥1) − 𝑔(𝑥2)|
2 = (|𝑥1|

2 − |𝑥2|
2)2(|𝑥1|

2 + |𝑥2|
2) + |𝑥1 − 𝑥2|

2|𝑥1|
2|𝑥2|

2

𝜌1 |𝑥1 − 𝑥2|
2 + 𝜌2〈𝑥1 − 𝑥2, 𝑔(𝑥1) − 𝑔(𝑥2)〉 = |𝑥1 − 𝑥2|

2 [𝜌1 −
𝜌2
2
(|𝑥1|

2 + |𝑥2|
2)] −

𝜌2
2
(|𝑥1|

2 − |𝑥2|
2)2

In order to make (4.3) hold, we have to find 𝜌1 and 𝜌2 such that461 

|𝑥1|
2 + |𝑥2|

2 ≤ −
𝜌2

2
, |𝑥1|2 ∙ |𝑥2|2 ≤ 𝜌1 −

𝜌2

2
[|𝑥1|

2 + |𝑥2|
2]2 ≤ 𝜌1 +

𝜌2
2

4
462 

hold in set 𝐷̃. It suffices to have 𝜌2 ≤ −4𝜗2and 𝜌1 ≥ 𝜗4 −
𝜌2
2

4
. For given set 𝐷̃ with 𝜗 = 1.4, which is large463 

enough in terms of the considered system, we can find  𝜌1 = −7  and 𝜌2 = −8.4  to make 𝑔(𝑥)  satisfy the464 

quadratic inner-bounded condition. Then by choosing  𝛾̅ = 9, we can obtain 𝜏 = 82.12 and the observer gains as 465 

follows: 466 

𝐻 =

[

0.6429 −0.2143 0.4286
−0.2143 0.0714 −0.1429
0.4286 −0.1429 0.2857
0 0 0
0 0 0
0 0 0
0 0 0 ]

, 𝑆 =

[

0.3571 0.2143 −0.4286 0 0 0 −0.6429
0.2143 0.9286 0.1429 0 0 0 0.2143
−0.4286 0.1429 0.7143 0 0 0 −0.4286

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1 ]

, 467 



𝐾 = 𝐾1 + 𝐾2 =

[

−19.35 −230.8 147.7
−122.2 1131 754.2
−167.5 870.0 684.1
0.3586 5.770 2.347
20.67 −106.8 −84.39
2.493 32.88 12.70
79.06 −393.1 −315.1]

, 468 

𝑅 =

[

−0.7785 −227.1 −159.5 0 −0.6429 0.3571 −0.8500
6.350 1094 −830.7 0 0.2143 0.2143 4.707
7.401 −813.1 −792.8 0 −0.4286 −0.4286 6.687
0.0428 −5.904 −2.080 0 0 0 0.0428
−0.9818 100.2 97.52 0 0 0 −0.9818
−0.0644 −33.69 −11.08 1 0 0 −0.0644
−3.555 367.9 365.5 0 1 0 −3.555 ]

By choosing the above parameters, and using the Euler–Maruyama method to simulate the standard Brownian 469 

motions with 50 state trajectories, we can obtain Figs. 6-10 to exhibit the estimation performances for the trends 470 

of full system states, actuator fault and sensor fault, respectively. Like Example 5.1, 𝑑1 is decoupled while the471 

influences of 𝑑2 and Brownian motions are attenuated.472 

473 

Fig. 6. State 𝑥1 and its estimation474 



475 

Fig. 7. State 𝑥2 and its estimation 476 

477 

Fig. 8. State 𝑥3 and its estimation 478 



479 

Fig. 9. 𝑓𝑎 and its estimation 480 

481 

Fig. 10. 𝑓𝑠 and its estimation 482 

483 

484 

485 

486 

487 

488 

 From the above figures, one can find the proposed algorithms work excellently on the quadratic 

inner-bounded nonlinear systems, which are more general than Lipschitz and one-side Lipschitz nonlinear 

systems as discussed in majority of the existing literature. Both actuator faults and sensor faults can be 

robustly estimated together with system states. The influences from unknown inputs and Brownian motions 

have been attenuated successfully and the convergence time of the estimation errors are finite. 

Remark 5.1: It is noticed the proposed algorithms are designed offline, and we do not need to tune the 

gains online. Therefore, the computation complexity is not a crucial issue from the viewpoint of the 

real-time 

489 



implementation and applications. As a result, the proposed methods are effective and applicable in practice 490 

engineering systems.  491 

6. Conclusion and future work492 

In the paper, robust fault estimation has been investigated for stochastic nonlinear systems subject to unknown 493 

inputs disturbances and Brownian parameter perturbations.  Firstly, the sufficient conditions of the stochastic 494 

input-to-state stability and the finite-time stochastic input-to-state stablity for stochastic nonlinear systems have 495 

been addressed with mathematical proofs. The UIO-based fault estimation techniques have been to estimate the 496 

trends of the concerned faults. The robustness of the estimation errors dynamics have been ensured by integrating 497 

UIO decoupling methods and LMI optimization techniques. The effectiveness of the proposed fault 498 

reconstruction algorithms has been demonstrated by two numerical examples. 499 

500 

501 

502 

503 

504 

Driven by the effectiveness of the presented results, it would be of interest to extend the proposed 

fault estimation techniques to more general stochastic nonlinear systems such as Takagi-Sugeno nonlinear 

systems [53-55] with stochastic dynamics.  Moreover, fault tolerant control [56, 57] for stochastic 

Brownian systems would be another challenging but interesting research topic which is encouraged to develop. 
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