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Stability of Markov jump systems with quadratic
terms and its application to RLC circuitsI

Alessandro N. Vargasa,1,∗, Gisela Pujolb, Leonardo Achob

aUniversidade Tecnológica Federal do Paraná, UTFPR,
Av. Alberto Carazzai 1640, 86300-000 Cornelio Procópio-PR, Brazil.

bCoDAlab (Control, Dynamics and Applications),
Departament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya,

Comte d’Urgell, 187, 08036 Barcelona, Spain.

Abstract

The paper presents results for the second moment stability of continuous-time Markov
jump systems with quadratic terms, aiming for engineering applications. Quadratic terms
stem from physical constraints in applications, as in electronic circuits based on resistor
(R), inductor (L), and capacitor (C). In the paper, an RLC circuit supplied a load driven
by jumps produced by a Markov chain—the RLC circuit used sensors that measured
the quadratic of electrical currents and voltages. Our result was then used to design
a stabilizing controller for the RLC circuit with measurements based on that quadratic
terms. The experimental data confirm the usefulness of our approach.
Keywords: Stochastic systems; Quadratic systems; Markov jump systems; Stability;
Electronic circuits.

1. Introduction1

Systems subject to Markovian jumps have received attention in recent years because of2

their potential for representing processes subject to abrupt variations—see, for instance,3

some recent applications in economics [6], [16], robotics [21], and direct current (DC)4

motors [17, 19, 20, 25]. In the linear context, recent contributions for Markov jump systems5

can be found in the monographs [3, 7] and in the papers [5, 9, 18, 22, 26, 27, 28, 29]; for6

the nonlinear counterpart, contributions can be found in [14, 23, 24, 32], just to cite a few.7

Although characterizing the stability of nonlinear Markov jump systems has been a8

topic of intensive research [14, 23, 24, 31], little attention has been paid to the stability9

of quadratic Markov jump systems. In reality, to the best of the authors’ knowledge,10
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this paper is the first to consider quadratic terms for Markov jump systems. Presenting11

easy-to-check conditions to guarantee the stability of such systems represents the main12

contribution of this paper.13

To clarify our findings, we now formalize the quadratic Markov jump system under
study. Let (Ω,F , {Ft}, P ) be a fixed, filtered probability space governing the following Itô
stochastic differential equation with Markov jumps:

dx(t) = Aθ(t)x(t)dt+

x(t)′G1,θ(t)x(t)
...

x(t)′Gn,θ(t)x(t)

 dt+Hθ(t)dw(t), ∀t ≥ 0, x(0) = x0 ∈ Rn, (1)

where x(t) denotes an n-dimensional system state, w(t) denotes a standard r-dimensional14

Brownian motion, and {θ(t)} represents an irreducible continuous-time Markov process15

having S = {1, . . . , N} as state space. As usual, x(t), w(t), and θ(t) are mutually indepen-16

dent random variables at t ≥ 0. The value of each tuple of matrices (Ai, Hi, G1,i, . . . , Gn,i),17

i = 1, . . . , N , is given.18

The main contribution of this paper is to present conditions to assure that the quadratic19

Markov jump system in (1) is second moment stable, as follows.20

Definition 1.1. ([1, Defn. 11.3.1, p. 188]). We say the quadratic Markov jump system21

in (1) is second moment stable if there exists some constant c = c(x0) such that22

E[‖x(t)‖2] ≤ c, ∀t ≥ 0.

Now, consider the elements of the n-dimensional vector x(t) written explicitly in the23

form x(t) ≡ [x[1](t), . . . , x[n](t)]
′.24

Assumption 1.1. The elements x[`](t), ` = 1, . . . , n, are uniformly bounded from below25

almost surely. As a result, there exist values µ1, . . . , µn such that26

µ` ≤ lim inf
t→∞

x[`](t), ` = 1, . . . , n, (2)

almost surely.27

The condition in Assumption 1.1 is fundamental in our approach. Assumption 1.128

states a lower bound for x[`](t), but an upper bound on x[`](t) may not exist, that is, x[`](t)29

could diverge to infinity as t goes to infinity. In order to prevent such divergent behaviour30

in (1), we present conditions to guarantee the second moment stability, as in Definition31

1.1.32

The assumption that x[`](t) has a lower bound is mild, since there are many applications33

for which the system states are bounded from below. For instance, in DC motors, both34

the angular velocity and the electrical current are bounded from below [19, 20].35

This paper has two contributions. First, the paper shows conditions to assure the sec-36

ond moment stability of the quadratic system in (1). Second, the paper shows a practical37

application to an electrical circuit based on resistor (R), inductor (L), and capacitor (C).38
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RLC circuits have the electrical current and the voltage as elements of the system-39

state—the lower-bounds required by Assumption 1.1 arise from circuits’ assemblage, as40

illustrated in Section 4. Indeed, we used our theoretical result to design a stabilizing41

Markov jump controller for an RLC circuit in practice. Experiments were carried out, and42

the corresponding experimental data support our findings.43

The paper is organized as follows. Section 2 quotes the notation, definitions, and Sec-44

tion 3 presents the main stability result for the stochastic system (1). Section 4 illustrates45

our findings through a real-time application for an RLC circuit. Finally, Section 5 presents46

some concluding remarks.47

2. Notation and definitions48

Let us denote the n-dimensional Euclidean space by Rn and the corresponding Eu-49

clidean norm by ‖ · ‖. The symbol tr{·} denotes the trace operator. The identity matrix50

on Rn×n is represented by In. The symbol 11C represents the Dirac measure of C, i.e., 11C51

equals 1 when the condition C is true and 0 otherwise. Given two matrices U ∈ Rn×n
52

and V ∈ Rm×m, diag(V, U) represents a square diagonal matrix made up by V and U53

as entries in its diagonal form. For simplicity, we use the notation diag(Vi){i=1,...,N} to54

represent diag(V1, . . . , VN).55

Let ⊗ be the Kronecker product in such a way that U⊗V ∈ Rnm×nm is the correspond-56

ing Kronecker matrix [4]. The Kronecker sum is defined as U ⊕V = U ⊗ Im + In⊗V . Let57

Re(z) denote the real part of the complex number z. Given any matrix U ∈ Rn×n, σ(U)58

represents the spectrum of U ; and the largest real part of the eigenvalues of U is referred59

to as60

Re(λU) := max{Re(λ) : λ ∈ σ(U)}.
When U stands for a set of N matrices, i.e. U = (U1, . . . , UN), we apply the definition61

Re(λU) = max {Re(λUi), i = 1, . . . , N} .

3. Main result62

The main result of this paper is presented in the sequence.63

Let Π = [πij], i, j = 1, . . . , N be the transition rate matrix associated with the Markov64

process {θ(t)}. Accordingly, consider pi(t) := P (θ(t) = i), i = 1, . . . , N , ∀t ≥ 0. Consider65

the second moment matrix66

Xi(t) = E[x(t)x(t)′11θ(t)=i], i = 1, . . . , N, ∀t ≥ 0. (3)

Consider also the symmetric positive semidefinite matrix V (t) ∈ Rn×n, solution of the
matrix differential equation

V̇i(t) = Vi(t)

(
Ai +

n∑
`=1

µ`G`,i

)′
+

(
Ai +

n∑
`=1

µ`G`,i

)
Vi(t)

+
N∑
j=1

πjiVj(t) +HiH
′
ipi(t), i = 1, . . . , N, ∀t ≥ t0, (4)
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with an initial condition Vi(t0) ∈ Rn×n, for each i = 1, . . . , N .67

Now, we are able to present the main result of this paper.68

Theorem 3.1. Assume that the matrices G1,i, . . . , Gn,i, i = 1, . . . , N , are negative semi-69

definite. Then there exists some t0 ≥ 0 such that70

tr{Xi(t)} ≤ tr{Vi(t)}, i = 1, . . . , N, ∀t ≥ t0, (5)

where V (t) satisfies (4) with V (t0) = X(t0).71

The proof of Theorem 3.1 is available in Appendix.72

Remark 3.1. Theorem 3.1 assures that X(t) is bounded from above by V (t), for all t ≥ t0.73

Due to E[‖x(t)‖2] = tr{E[x(t)x(t)′]} =
∑N

i=1 tr{Xi(t)}, we can conclude that the Markov74

jump quadratic system in (1) is second moment stable provided that V (t) is uniformly75

bounded. This conclusion represents the main theoretical novelty of this paper.76

The authors of [11, Thm 5.6], [7, Thm. 3.25, p. 52] have introduced a condition that77

we recall here to check whether V (t) is uniformly bounded. To present such a condition,78

we define the matrix79

A = Π′ ⊗ In2 + diag

((
Ai +

n∑
`=1

µ`G`,i

)
⊕
(
Ai +

n∑
`=1

µ`G`,i

))
{i=1,...,N}

. (6)

Proposition 3.1. ([11, Thm 5.6], [7, Thm. 3.25, p. 52]). If Re(λA) < 0, then the limit80

limt→∞ V (t) in (4) does exist and does not depend on the initial condition V (t0) ∈ Rn×n.81

The existence of limt→∞ V (t) assures that V (t) is uniformly bounded. This conclusion,82

together with Theorem 3.1, Remark 3.1, and Proposition 3.1, allows us to present the next83

result.84

Corollary 3.1. Let the matrices G1,i, . . . , Gn,i, i = 1, . . . , N , be negative semi-definite. If85

Re(λA) < 0, then the quadratic Markov jump system in (1) is second moment stable.86

Remark 3.2. The novelty of Corollary 3.1 is that it reveals a easy-to-check condition87

to verify the second moment stability of the quadratic system in (1), i.e., Re(λA) < 0,88

a condition borrowed from [11, Thm 5.6], [7, Thm. 3.25, p. 52]. Thus, Corollary 3.189

expands the use of the matrix (6) for Markov jump systems with quadratic terms.90

Remark 3.3. Corollary 3.1 has practical implications to design a real-time controller91

subject to Markov jumps in an RLC circuit, where the corresponding experimental data92

confirm the usefulness of Corollary 3.1, as detailed in Section 4.93
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Figure 1: Open-loop diagram of the RLC circuit. The Markov chain generates jumps for both the power
amplifier and the resistive load Rθ(t).

4. RLC circuit with Markov-driven load94

Circuits based on resistor (R), inductor (L), and capacitor (C) are widely used in95

electrical equipments, such as antennas [2, 12], power converters [10, 13], filters [8], and96

oscilators [15]. In many of these applications based on RLC circuits, the load changes as97

the time evolves.98

When electronic elements are connected or disconnected from the load terminals, the99

nominal value of the load changes accordingly. As such, time-varying loads induce time-100

varying voltages in the load terminals; but voltage fluctuations in terminals may represent101

risks of damage for the underlying devices. It is then necessary to keep the voltage supplied102

to the load at a fixed, regulated level.103

The main contribution of this section is that of applying Corollary 3.1 to design a real-104

time controller for the RLC circuit. The aim of the controller is to regulate the voltage105

supplied to the load—the load value jumps according to a Markov chain. Actually, the106

proposed controller depends on quadratic terms. The benefits of such controller become107

clear through real-time experiments, as detailed next.108

4.1. Modelling the RLC circuit with Markov jumps in the load109

The RLC circuit studied in this section is detailed in Fig. 1. As can be seen, the RLC110

circuit has a power amplifier that converts the input signal u(t) into the voltage-current111

required to supply the circuit. The output voltage, vo(t), is applied in the load Rθ(t);112

and the load Rθ(t) changes its value according to a Markov chain. In fact, three distinct113

resistive loads were used in the experiments, and the jumps among them were implemented114

through relays that were programmed to follow a three-state Markov chain.115

To model the RLC circuit shown in Fig. 1, we consider a second-order system with
two state variables (cf., [30]): (i) the current iL(t) flowing through the inductor; and (ii)
the voltage vo(t) available in the terminals of the capacitor. It allows us to represent the
RLC circuit through the next Markov jump system:

d

[
vo(t)
iL(t)

]
=

[
−a(i)11 a12
−a21 −a(i)22

] [
vo(t)
iL(t)

]
dt+

[
0
b(i)

]
u(t)dt+

[
0
h

]
dw(t), (7)
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Figure 2: Laboratory testbed used to the experiments involving the RLC circuit.

with θ(t) = i ∈ {1, 2, 3}, for each t ≥ 0, where a
(i)
11 , a

(i)
22 , b

(i), i = 1, 2, 3, and a12, a21, h are116

positive numbers. These numbers were identified by the next procedure.117

4.2. Experiments for the identification of the RLC circuit118

A laboratory testbed was assembled to carry out the experiments involving the RLC119

circuit, see Fig. 2. The laboratory was equipped with oscilloscopes, microcontrollers, and120

power sources. A digital oscilloscope (Picoscope Model 2205) was used to measure data121

from the input-output of the RLC circuit. In its input, the power amplifier received analog122

signals from an Arduino Due. The Arduino Due was able to generate signals in u(t) from123

0V to 2.7V, and it worked with sampling time of 90 microseconds approximately.124

In the experiments, the resistor Rθ(t) in the load assumed the value of 30Ω when125

θ(t) = 1, 10Ω when θ(t) = 2, and 20Ω when θ(t) = 3. Relays were used to implement the126

jumps among these resistances.127

The power amplifier was assembled with an adjustable regulator, code LM338. A phe-128

nomenon observed in the laboratory is that the internal resistance of the power amplifier129

had changed its value slightly when the load changed. This phenomenon suggests that the130

resistance of the power amplifier was also driven by the Markov jumps; this motivated us131

to account the influence of such jumps in the element b(i) of the model (7).132

In order to identify the parameters of (7), we calculated the mean square error between133

the model in (7) and the corresponding experimental data (see Fig. 3). Square waves with134

distinct amplitudes were applied in the input u(t) of the RLC circuit in practice, and135

the corresponding output data were compared with the values of vo(t) and iL(t) taken by136

simulating (7); this comparison allowed us to find the parameters of (7) that minimized137

that mean square error—these parameters are shown in Table 1.138

4.3. Markov jump control with quadratic terms139

Usually, RLC circuits must have a fixed voltage on the load under all operating condi-140

tions, voltage condition referred to as setpoint. When a Markov jump occurs in the load,141

the nominal value of the load changes, but changing the load creates a gap between the142

desired setpoint and the voltage available in the load terminals—this voltage gap is called143

offset.144
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Figure 2: Data from the RLC circuit for a square wave input. Rows from up to down: θ(t) ≡ 1, θ(t) ≡ 2,
and θ(t) ≡ 3, respectively. The simulated curves were generated by using the values of Table 1.

it is reasonable to design controllers able to remove that voltage offsets, mainly for RLC148

circuits with jumping loads. Designing such a controller with the help of Corollary 3.1149

sets the main contribution of this section.150

The sensors used in the laboratory were designed to measure only the square of the151

output signals. This signifies that the sensors were used to measure vo(t)
2 and iC(t)2. This152

feature lead us to construct a control signal u(t) that depends on vo(t)
2 and iC(t)2 only,153

as detailed next.154

We mention that the load sensor presented a small bias of−50mV in practice, measured155

in the laboratory. For this reason, we set v̄o(t) = vo(t) + 0.05 and adjusted the bias156

accordingly in vo(t)
2.157

Since the Proportional-Integrative (PI) control strategy has produced promising results158

in the control of processes subject to Markovian jumps [20, 17], we decided to adapt the159

PI control to our setup, as detailed in the scheme of Fig. 3. Note from Fig. 3 that the160

Table 1: Parameters of the quadratic Markov jump system representing an RLC circuit.

Parameters i = 1 i = 2 i = 3

a
(i)
11 −3.98 −12.2492 −6.01

a
(i)
22 −7.167 −7.012 −8.3177
b(i) 6.3415 8.101 7.4757

a12 = 11.495 a21 = −10.651 h = 1

7
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Figure 3: Block representing the ‘proportional integrative’ (PI) control strategy. The nonlinear feedback
accounts both the square of voltage in the load and the square of current in the capacitor.

proposed control action is161

u(t) = k1e(t) + k2

∫ t

0

e(τ)dτ + k3iC(t)2, e(t) = r(t)− v̄o(t)2, ∀t ≥ 0, (8)

where r(t) stands for a deterministic setpoint signal. With r(t) ≡ r, r > 0 being a constant162

to be given latter, the control objective was to assure that the statistical mean values of163

both e(t) and ic(t) tend to zero as t tends to infinity.164

Due to the Kirchhoff’s current law, we can write iC(t) = iL(t)− vo(t)/Rθ(t); hence

iC(t)2 =
[
vo(t) iL(t)

] [ 1
R2
θ(t)

−1
Rθ(t)

−1
Rθ(t)

1

] [
vo(t)
iL(t)

]
. (9)

Now, take the system state as x(t) ≡ [vo(t) iL(t) q(t)]′; here q(t) denotes the integral of
the error, i.e., q(t) :=

∫ t
0
e(τ)dτ , so that q̇(t) ≡ e(t). Combining (7)–(9), we obtain the

quadratic Markov jump system (with θ(t) = i):

dx(t) =

 −a(i)11 a12 0

−a21 − 0.1b(i)k1 −a(i)22 b(i)k2
−0.1 0 0

x(t)dt+

x(t)′G1,ix(t)
x(t)′G2,ix(t)
x(t)′G3,ix(t)

 dt

+

 0
b(i)k1(r(t)− 0.0025)

r(t)− 0.0025

 dt+

0
h
0

 dw(t), (10)

where

G1,i = 0, G2,i = b(i)

k3/R2
i − k1 −k3/Ri 0

−k3/Ri k3 0
0 0 0

 , G3,i = diag(−1, 0, 0), i = 1, 2, 3.

The controlled RLC circuit with Markov jumps in (10) satisfies the condition stated165

in Assumption 1.1. Indeed, for the RLC circuit assembled in our laboratory testbed, the166

output voltage vo(t) was greater than −1V as well as the current iL(t) was greater than167

8



−1A for all t ≥ 0. As a result, in (2), we considered µ1 = −1 and µ2 = −1 to cope (2)168

with (10). To complete the analysis, we have assumed that µ3 = −10.169

The Markov jumps on the load were programmed through relays, which followed the170

next transition rate matrix:171

Π =

−53.0492 42.2072 10.8420
42.2072 −53.0492 10.8420
54.2098 54.2098 −108.4196

 .
Corollary 3.1 now plays a key role. In fact, with gains (k1, k2, k3) = (0.5, 0.05,−0.01) ar-172

bitrarily chosen, we have that the corresponding matrix A in (6) yields Re(λA) = −0.0097.173

Consequently, Corollary 3.1 assures that the quadratic Markov jump system in (10) is sec-174

ond moment stable.175

The remaining part of this section shows data collected from experiments that confirm176

the second moment stability; this finding corroborates the usefulness of Corollary 3.1 for177

the RLC circuit.178

4.4. Experimental results: controlled RLC circuit with Markov jumps179

The controlled RLC circuit with Markov jumps shown in Fig. 3 was assembled in the180

laboratory testbed with control gains (k1, k2, k3) as mentioned previously.181

A small sample of data is shown in Fig. 4. The picture shows the output corresponding182

to a step from 0V to 0.6V applied at t = 1.5ms, or equivalently, the reference was r(t) =183

r = 0.36V2 when t ≥ 1.5ms and zero otherwise. As can be seen in Fig. 4, the controller was184

able to overcome the perturbations produced by the Markov jumps on the load, driving185

the load voltage to the setpoint of 0.6V.186

To assess the influence of the Markov jumps in the controlled RLC circuit, we analysed187

the data taken from 12, 000 distinct experiments. Each experiment was carried out for a188

step from 0V to 0.6V and execution time of 20ms. The experimental data were used to189

generate the phase portrait depicted in Fig. 5.190

Fig. 5 shows data for 12, 000 experiments. Since the jumps in the load produced191

perturbations for both voltage and current, Fig. 5 represents the statistical dispersion of192

these perturbations, accounted in the shading of the colors. As can be seen, the statistical193

dispersion of voltage and current tends to follow an spiral path, in the clockwise direction,194

and reach an accumulated point in 0.6V and 0A (colored in red in the middle of the195

picture). This accumulated point represents the statistical mean.196

In summary, Fig. 5 suggests that the controlled RLC circuit be second moment sta-197

ble, an evidence that supports the result of Corollary 3.1—Corollary 3.1 states that the198

quadratic system in (10) is second moment stable.199

Our findings thus reinforce the usefulness of Corollary 3.1 for applications.200

5. Concluding remarks201

In this paper, we have presented conditions to assure the second moment stability of202

Markov jump systems with quadratic terms. To prove our main result, we have borrowed203

from [11, Thm 5.6], [7, Thm. 3.25, p. 52], a condition based on the spectral radius of204
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Figure 4: Typical response of the voltage in the load and current in the capacitor from a controlled RLC
circuit subject to jumps on the load—the jumps driven by a Markov chain generated the perturbations.
Even under perturbations, the proposed controller steered the load voltage to the desired setpoint (i.e.,
0.6V).

the matrix in (6); and this condition is reinforced here to assure the stability of quadratic205

Markov jump systems (see both Assumption 1.1 and Corollary 3.1).206

Besides the theoretical contributions, our findings have practical implications. Indeed,207

we have applied our stability result on the design of a real-time controller for an RLC208

circuit. The RLC circuit, assembled in a laboratory, supplied a resistive load with values209

jumping according to a Markov chain. Interestingly, the sensors used in practice to perform210

the control measured only the square of the corresponding variables (i.e., vo(t)
2 and iC(t)2211

in Fig. 3). This signifies that the control system resulted in a Markov jump system with212

quadratic terms.213

Our main result, Corollary 3.1, was applied on the design of a second moment stabiliz-214

ing controller for the RLC circuit—the experimental data suggested that the RLC circuit215

be second moment stable in practice. This evidence matches the theoretical result, a fact216

that supports the implications of our approach for applications.217

Appendix: Proof of Theorem 3.1218

In the next result, the notation o(h) denotes an infinitesimal of higher order than h,219

i.e., limh↓0 o(h)/h equals zero.220

Proposition 5.1. ([11, Lem. 4.2], [7, Ch. 3]). Assume that f(t) on Rn×m is Ft-221

measurable and that fi(t) := E[f(t)11θ(t)=i] exists. Then E[f(t)d(11θ(t)=i)] =
∑N

j=1 πjifj(t)dt+222

o(dt).223

Now, we are able to present the proof of Theorem 3.1.224

Proof. (Proof of Theorem 3.1).225

10



x0b x1b x2b x3b x4b x5b x6b x7b x8b x9b

y1a

y2a

y3a

y4a

y5a

y6a

y7a

y8a

voltage

cu
rr

en
t

Figure 5: Phase portraits representing the voltage in the load (V) and current in the capacitor (A)
measured in practice from a RLC circuit with Markov jumps—the picture condenses data from 12, 000
distinct realizations. The picture suggests that the RLC circuit be second moment stable, a fact in
accordance with Corollary 3.1.

Before presenting the arguments to prove Theorem 3.1, we need first some definitions.226

Define the quadratic operator Gi : Rn 7→ Rn, i = 1, . . . , N , as227

Gi(x) =

x
′G1,ix

...
x′Gn,ix

 , ∀x ∈ Rn. (11)

The next argument introduces the matrix differential equation for (3). Indeed, by
applying the Itô’s rule in (1), we can write dXi(t) as (e.g., [7, Prop. 3.28, p. 56])

d E[x(t)x(t)′11θ(t)=i] = E[dx(t) dx(t)′11θ(t)=i]

+ E[dx(t)x(t)′11θ(t)=i] + E[x(t) dx(t)′11θ(t)=i] + E[x(t)x(t)′ d(11θ(t)=i)]. (12)

For the sake of clarity, each term in the right-hand side of (12) is evaluated in separate,228

as follows. The first term in the right-hand side of (12) reads as229

E[dx(t) dx(t)′11θ(t)=i] = E
[
Hθ(t)dw(t)dw(t)′H ′θ(t)11θ(t)=i

]
= HiH

′
ipi(t)dt. (13)

The second term in the right-hand side of (12) is identical to (using notation in (3))

E[dx(t)x(t)′11θ(t)=i] = E
[(
Aθ(t)x(t) + Gθ(t)(x(t))

)
x(t)′11θ(t)=i

]
dt+ E[Hθ(t)dw(t)x(t)′11θ(t)=i]

= AiXi(t)dt+ E[Gθ(t)(x(t))x(t)′11θ(t)=i]dt. (14)

The last term in the right-hand side of (12) follows from Proposition 5.1, which assures230

that231

E[x(t)x(t)′ d(11θ(t)=i)] =
N∑
j=1

πjiXj(t)dt+ o(dt). (15)
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Combining (12)–(15) yields

Ẋi(t) = Xi(t)A
′
i + AiXi(t) +

N∑
j=1

πjiXj(t) +HiH
′
ipi(t)

+ E
[
x(t)Gθ(t)(x(t))′11θ(t)=i

]
+ E

[
Gθ(t)(x(t))x(t)′11θ(t)=i

]
. (16)

Note that the trace of the rightmost element of (16) equals232

tr

E


x(t)′G1,ix(t)

...
x(t)′Gn,ix(t)

 [x[1](t), . . . , x[n](t)] 11θ(t)=i


 . (17)

On the other hand, we have from (2) that given ε > 0, there exists some t0 ≥ 0 such233

that234

µ` − ε < x[`](t), ∀t ≥ t0, ` = 1, . . . , n.

Since the matrixG`,i is negative semi-definite by assumption, the value of x[`](t)x(t)′G`,ix(t)
is bounded from above by (µ`− ε)x(t)′G`,ix(t) when t ≥ t0. Thus, we have from (17) that

tr
{

E
[
Gθ(t)(x(t))x(t)′11θ(t)=i

]}
≤

n∑
`=1

tr{E[(µ` − ε)x(t)′G`,ix(t)11θ(t)=i]}

=
n∑
`=1

tr{(µ` − ε)G`,iXi(t)}. (18)

Passing the trace operator on both sides of (16), and using (18), we obtain

tr
{
Ẋi(t)

}
≤ tr

{
Xi(t)

(
Ai +

n∑
`=1

(µ` − ε)G`,i

)′
+

(
Ai +

n∑
`=1

(µ` − ε)G`,i

)
Xi(t)

+
N∑
j=1

πjiXj(t) +HiH
′
ipi(t)

}
. (19)

With V (t) as in (4), V (t0) = X(t0), we obtain tr {Xi(t)} ≤ tr {Vi(t)}, for i = 1, . . . , N ,235

since ε > 0 was taken arbitrarily. The result then follows from (4) and (19).236
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