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Abstract
This study investigates the problem of tracking control of nonlinear fuzzy systems with a limited network com-
munication. A new adaptive event-triggered data transmission scheme is proposed to save the limited network
bandwidth. The threshold of event-triggered condition has a great influence on the rate of data releasing. Dif-
ferent from the conventional method by presetting the threshold as a fixed value, the threshold, in this study,
is regulated by the error state of nonlinear systems and the reference model adaptively, which denotes that the
rate of data releasing is followed by the external variation. By constructing a proper Lyapunov function with
consideration of the proposed adaptive event-triggering condition, an off-line co-design method to achieve the
fuzzy controller gains and the parameters of event-triggering condition is developed. An example of Duffing
forced-oscillation system with the limited network communication tracking the states of linear reference model
is applied to demonstrate the effectiveness of the proposed method.

Key words: Networked control systems; Adaptive event-triggered scheme; Fuzzy tracking control; Threshold.

1. Introduction

In the past several years, the study of networked control systems (NCSs) has received a
great deal of attention due to their potential wide application, such as mobile robot [1], inte-
grated manufacturing system [2–4], unmanned aircraft system [5] and so on. Using such a
mode of communication to transmit the control signal decreases the control performance due
to the communication network with a feature of no real-time owning to the limited network-
bandwidth, although it has a lot of great advantages like low cost, easy installation, and conve-
nient maintenance etc. [6, 7]. It has yielded fruitful and important results on the stability and
stabilization of NCSs [8–15] and the references therein.

It is more difficult to study the network-based tracking control comparing with the stabi-
lization of NCSs [16, 17]. Recently, tracking control of NCSs has received a considerable re-
search interest, for example, the design of tacking control for linear systems was investigated in
[18, 19], while the problem of nonlinear T-S fuzzy tracking control was studied in [16, 17, 20–
24]. In [9, 11, 21], the feature of network such as network-induced delay, data drop-out was
considered, and the corresponding compensative controllers were designed. Comparing with
these methods, the event-triggered method is a more active way. The data transmission is im-
plemented only when a so-called “event-triggering condition” is invoked, rather than on the
lapse of a fixed time period. Thus the quality of service (QOS) of network can be improved by
using such an event-triggered scheme (ETS) [25–28]. Under the ETS, the rate of data releasing
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is largely decreased [29]. Therefore, developing a suitable event-triggering condition becomes
much important in dealing with the problem of networked tracking control based on ETS since
the external input of the tracking system is on-changing.

Notice that the threshold in the event-triggering condition plays a great role in deciding
whether or not to release the sampled data on NCSs. In [23, 25, 30], the authors proposed an
event-triggering condition as

eT (t)Ωe(t) − εxT (ikh + jh)Ωx(ikh + jh) < 0 (1)

where ε is a predetermined threshold, e(t) = x(ikh) − x(ikh + jh), x(ikh) and x(ikh + jh) are the
latest released data and the current sampling data, respectively. The threshold taking a different
value leads to a different data releasing rate. For example, if one selects ε = 0, the case then
reduces to a time-triggered scheme, that is, the condition in (1) is invoked at every sampling
instant. It is noted that the input of the tracking system which includes the input of the reference
model and the disturbance of the plant (see [16, 18]) is always on-changing. The instantaneous
data releasing rate should depend on the input of the tracking system, However, the fact is the
threshold keeps a predetermined constant regardless of the variation of the external condition
in the existed literature. Therefore, it will be more reasonable to design an adaptive law to
drive the threshold vary with the external conditions adaptively. This is the main motivation of
this study.

In this paper, we mainly focus on developing a novel adaptive event-triggered scheme
(AETS) for network-based continuous-time T-S fuzzy tracking control system. The main con-
tributions are as follows: Firstly, a novel AETS with adaptive threshold is developed. The
proposed threshold depends on the variation of the error states between the input of reference
model and the states of the plant. Thus the instantaneous data releasing rate can be regulated
by the external variation adaptively. Secondly, a new Lyapunov function with consideration of
the adaptive law is proposed; Thirdly, a less conservative result can be obtained by comparing
the error with the latest released data in designing AETS, rather than with the current sam-
pling data as in the conventional method; Finally, a co-design method to solve both the fuzzy
controller and the weight of the AETS is developed by using Lyapunov theory. Moreover the
effectiveness of the proposed method is illustrated by an example of Duffing forced-oscillation
system tracking the states of the linear reference model via network communication.

The remainder of the paper is organized as follows. In section 2, the strategy of track-
ing control and the AETS is formulated. Section 3 gives the co-design method of achieving
the fuzzy controllers and the weight of the AETS. Simulation is performed on the tracking
control for Duffing forced-oscillation system via network communication to demonstrate the
effectiveness of the proposed approach.

2. Problem formulation

2.1. The T-S Fuzzy model and the reference model
Consider the following nonlinear system represented by the T-S fuzzy model as
Rule i :

IF θ1(t) is Θi
1 and · · · and θg(t) is Θi

g

THEN ẋ(t) = Aix(t) + Biu(t) + Diω(t) (2)

where θ(t) = [θ1(t), θ2(t), · · · , θg(t)]T is the premise variables, Θi
j(i ∈ Ψ , {1, 2, · · · , r}; j =

1, 2, · · · , g) is the fuzzy set which is corresponding to θ(t) and fuzzy rules; Ai, Bi and Di are
constant matrices with compatible dimensions.
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The fuzzy system (2) can be interfered as follows by using the center-average defuzzifier,
product inference and singleton fuzzifier[31]

ẋ(t) =

r∑
i=1

µi(θ(t)) [Aix(t) + Biu(t) + Diω(t)] (3)

where

µi(θ(t)) =
ωi(θ(t))∑r

i=1 ωi(θ(t))
, ωi(θ(t)) =

g∏
j=1

Θi
j(θ j(t)) (4)

In this paper, we assume ωi(θ(t)) ≥ 0 for all t > 0. Then there exist properties that µi(θ(t)) >
0 and

∑r
i=1 µi(θ(t)) = 1. For notational simplicity, µi(θ(t)) will be written as µi in the next

presentation.
The objective of this study is to design a novel AETS and fuzzy tracking controllers to make

the system states in (3) track those of the following reference model via a network connection.

ẋr(t) = Ar xr(t) + Drr(t) (5)

where xr(t) ∈ Rn and r(t) ∈ Rnr are the reference state and the bounded reference input,
respectively. Ar and Dr are known real constant matrices with Hurwitz.

Figure 1: The framework of AETS-based tracking control system
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2.2. Adaptive event-triggered scheme
From Figure 1, one can see that the control signal is transmitted via network. To mitigate

the burden of the network communication, in this study, an adaptive event-triggered generator
(AETG) is introduced , the periodic sampling data are “selected” by the AETG to transmit
over the network. Here, we give an example to make a clear explanation on the mechanism of
AETS, which is shown in Figure 2. The error between the state of reference model and that of
the nonlinear tracking system is sampled periodically at instants 0h, 1h, 2h, · · · , however, the
packets at instants 1h, 3h, 4h, 6h, · · · are discarded actively by AETG due to their not satisfying
the releasing condition, in the contrary, the packets at instant 0h, 2h, 5h, 7h, · · · are transmitted
over the network.

The control input keeps the last updated value within the interval t ∈ Πik , [ikh+τik , ik+1h+

τik+1) until the next data-packet comes due to zero order holder (ZOH), where h is a sampling
period and ik is a releasing sequence; {0h, 2h, 5h, 7h, · · · } in Figure 2 is a set of releasing se-
quence; τik is a transmitted delay of the sampling data at instant ikh, which satisfies τ ≤ τik ≤ τ̄.
Defining e(t) = x(t) − xr(t), we construct the fuzzy control as follows

u(t) =

r∑
j=1

µτjK je(ikh) (6)

for t ∈ Πik under the rules as
Rule i :

IF θ1(t) is Θi
1 and · · · and θg(t) is Θi

g

THEN u(t) = K je(ikh) (7)

where µτj , µ j(θ(t − τik)), K j is the fuzzy controller gain to be determined.

Remark 1. Here we assume the sate of the system is available. Output feedback control strat-
egy with a similar format as in [32] can be used if the state is unavailable.

Similar to the previous work in [25], we divide the interval [ikh + τik , ik+1h + τik+1) into
l + 1 parts, that is, Πik = ∪l

s=0$
s
ik
, $s

ik
= [ikh + sh + τ̄s, ikh + sh + h + τ̄s+1). Here, τ̄m (

m ∈ {0, 1, · · · , l + 1}) is defined by

τ̄m =


τik m = 0
τik+1 m = l + 1
τ̄ik others

(8)

arriving instantreleasing instant

Sampler

Actuator

sampling instant

Figure 2: An example of time sequence of AETS
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where τ̄ik is a positive constant that guarantees $s
ik

being well defined. The number of max-
imum allowable drop-out (NMAD) under AETS depends on the following event-triggering
condition

εT (t)Ωε(t) − ϑ(t)eT (ikh)Ωe(ikh) < 0 (9)

where ε(t) = e(ikh)− e(ikh + sh), Ω is a weighting parameter to be designed, ϑ(t) with ϑ(0) > 0
is a function regulated by the following adaptive law

ϑ̇(t) =
1
ϑ(t)

[
1
ϑ(t)
− δ

]
εT (t)Ωε(t) (10)

where δ is a given positive constant.
From the above analysis, one can see that l is NMAD. The next releasing instant is then

decided by:

ik+1h = ikh + (l + 1)h (11)

where l = max
s≥0

s s.t. (9) and (10).

Remark 2. In (8), τ̄ik is an artificial delay. In fact τ̄ik in (8) can be unified as τ̄ik = τik+m

from (11) on the condition that $s
ik

is well defined. By the definition in (8), it simplifies the
complicated definition about τ(t) as in [25, 33].

Remark 3. From (9), one can see that the threshold is not a predetermined constant, but a
varying parameter regulated by the adptive law expressed in (10). The adaptive law depends
on the error state between the latest updated releasing data and the current sampling data which
reflects the input of the reference model and the disturbance of the plant.

Remark 4. If one selects δ = 1
ϑ(0) , the adaptive law ϑ̇(t) ≡ 0, the condition then reduces to the

conventional case as in [23, 25, 33]. If the system tends to be stable, then ϑ̇(t) → 0, which
denotes that the threshold does not need to regulate any more.

Remark 5. ϑ(t) is a non-monotonic function by using the adaptive law in (10), that is, the
threshold can make a proper regulation as stated in Remark 3, therefore it is more reasonable
than the one with the format in [30].

2.3. The overall model of AETS-based tracking control system
Defining η(t) = t − (ikh + sh) for t ∈ $s

ik
, we have

e(ikh) = ε(t) + e(t − η(t)) (12)

where 0 < ηm ≤ η(t) ≤ h + τ̄ = ηM.

Remark 6. It is noted that one difference of event-triggering condition between (9) in this
study and the one in [23, 25, 30] is that the error ε(t) compares with the latest released data
e(ikh) while not the current sampling data e(ikh+ sh), which may give rise to a less conservative
result. The reason is that this type of event-triggering condition can introduce more relax items
in the stable criteria which can be seen in (16) together with (9) and (12).
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Combining with (3), (5), (6) and (12), we can obtain the overall model of error tracking
system as

ė(t) =

r∑
i=1

r∑
j=1

µiµ
τ
j

[
Aie(t) + BiK jε(t) + BiK je(t − η(t)) + ve(t)

]
(13)

where ve(t) = (Ai − Ar)xr(t) + Diω(t) − Brr(t). For presentation convenience, we define
ζ(t) =

[
xT (t) xT (t − ηm) xT (t − η(t)) xT (t − ηM) eT (t) vT

e (t)
]T

, then the system (13) can
be rewritten as

ė(t) =

r∑
i=1

r∑
j=1

µiµ
τ
jAi jζ(t) (14)

whereAi j =
[
Ai 0 BiK j 0 BiK j I

]
.

The objective of this paper then turns to design a fuzzy controller such that the system (13)
satisfies the following tracking performance under the event-triggering condition in (9).∫ t f

t0
eT (t)Me(t)dt ≤ V(0) + γ2

∫ t f

t0
vT

e (t)ve(t)dt (15)

where γ > 0 is a given attenuation level; M is a positive definite matrix; t0 and t f are the initial
and terminal time, respectively.

3. AETS-based tracking control

In this section, we are in position to co-design the fuzzy controller K j ( j ∈ Ψ ) in (6) and
the weight of AETS in (9) for the fuzzy tracking system (13). Firstly, we will derive sufficient
conditions to guarantee the system’s tracking performance.

3.1. Stability analysis
Theorem 1. For given positive scalars ηm, ηM, δ and γ, and a positive weighting matrix M and
gain matrix K j ( j ∈ Ψ ), the system (13) is asymptotically stable with tracking performance in
(15) under the AETS, if there exist Ω > 0, P > 0,Q1 > 0,Q2 > 0,R1 > 0 and R2 > 0 such that
the following LMI holds.

Φi j + Φ ji < 0, i ≤ j; i, j ∈ Ψ (16)

where

Φi j =

[
Πi j ∗

RAi j −R

]
,

Πi j =



Π1i ∗ ∗ ∗ ∗ ∗

R1 −Q1 − R1 − R2 ∗ ∗ ∗ ∗

KT
j BT

i P R2 Ω − 2R2 ∗ ∗ ∗

0 0 R2 −Q2 − R2 ∗ ∗

KT
j BT

i P 0 Ω 0 −δΩ ∗

P 0 0 0 0 −γ2I


,

Π1i = PAi + AT
i P + Q1 + Q2 − R1 + M,

R = η2
mR1 + (ηM − ηm)2R2

6



Proof. Consider the following Lyapunov functional candidate:

V1(t) = eT (t)Pe(t)

V2(t) =

∫ t

t−ηm

eT (s)Q1e(s)ds +

∫ t

t−ηM

eT (s)Q2e(s)ds

V3(t) = ηm

∫ 0

−ηm

∫ t

t−s
ėT (v)R1ė(v)dvds + (ηM − ηm)

∫ −ηm

−ηM

∫ t

t−s
ėT (v)R2ė(v)dvds

V4(t) =
1
2
ϑ2(t)

Taking the time derivation of V(t) along the solution of (13) in t ∈ $s
ik
, we have

V̇(t) ≤
r∑

i=1

r∑
j=1

µiµ
τ
j

{
2xT PAi jζ(t) + xT (t)(Q1 + Q2)x(t)

− xT (t − ηm)Q1x(t − ηm) − xT (t − ηM)Q2x(t − ηM)
+ ζT (t)ATRAζ(t) + ėT (t)Rė(t)

− ηm

∫ t

t−ηm

ėT (v)R1ė(v)dv − (ηM − ηm)
∫ t−ηm

t−ηM

ėT (v)R2ė(v)dv

+ ϑ(t)ϑ̇(t) (17)

Applying Jensens inequality [34] to deal with cross products above yields

−ηm

∫ t

t−ηm

ẋT (v)R1 ẋ(v)dv ≤
[

x(t)
x(t − ηm)

]T [
−R1 ∗

R1 −R1

] [
x(t)

x(t − ηm)

]
(18)

−(ηM − ηm)
∫ t−ηm

t−ηM

ẋT (v)R2 ẋ(v)dv ≤

 x(t − ηm)
x(t − η(t))
x(t − ηM)


T −R2 ∗ ∗

R2 −2R2 ∗

0 R2 −R2


 x(t − ηm)
x(t − η(t))
x(t − ηM)

 (19)

Recalling the event-triggering condition in (9) and the adaptive law in (10), it follows that

ϑ(t)ϑ̇(t) =

[
1
ϑ(t)
− δ

]
εT (t)Ωε(t)

≤ eT (ikh)Ωe(ikh) − δεT (t)Ωε(t)
= [ε(t) + e(t − η(t))]T Ω[ε(t) + e(t − η(t))] − δεT (t)Ωε(t) (20)

Combining (17)-(20), we have

V̇(t) − eT (t)Me(t) + γ2vT
e (t)ve(t) ≤

r∑
i=1

r∑
j=1

µiµ
τ
jζ

T (t)
(
Πi j +AT

i jRAi j

)
ζ(t)

=

r∑
i=1

µ2
i ζ

T (t)
(
Πii +AT

iiRAii j

)
ζ(t)

+

r∑
i=1

r∑
i< j

µiµ
τ
jζ

T (t)
(
Πi j + Π ji +AT

i jRAi j +AT
jiRA ji

)
ζ(t) (21)

By using Schur complement, one can conclude that (16) is a sufficient condition to guarantee

V̇(t) − eT (t)Me(t) + γ2vT
e (t)ve(t) < 0 (22)

7



It is noted that ∪N
k=0Πik = [t0, t f ). Then it yields

V(t f ) − V(0) < −
∫ t f

t0
eT (t)Me(t) +

∫ t f

t0
γ2vT

e (t)ve(t) (23)

which implies that the tracking performance in (15) is satisfied. That completes the proof. �

3.2. Co-design of the controller gains and AETS’s parameters
Theorem 2. For given positive scalars ηm, ηM, δ and γ, and a positive weighting matrix M̄, the
nonlinear system (3) with fuzzy controller (6) is asymptotically stable with tracking perfor-
mance (15) under the AETS, if there exist Ω̄ > 0, X > 0, Q̄1 > 0, Q̄2 > 0, R̄1 > 0 and R̄2 > 0
and matrix F j ( j ∈ Ψ ) such that the following LMI holds.

Φ̄i j + Φ̄ ji < 0, i ≤ j; i, j ∈ Ψ (24)

where

Φ̄i j =

[
Π̄i j ∗

Āi j −2αX + α2R̄

]
,

Π̄i j =



Π̄1i ∗ ∗ ∗ ∗ ∗

R̄1 −Q̄1 − R̄1 − R̄2 ∗ ∗ ∗ ∗

FT
j BT

i R̄2 Ω − 2R̄2 ∗ ∗ ∗

0 0 R̄2 −Q̄2 − R̄2 ∗ ∗

FT
j BT

i 0 Ω 0 −δΩ̄ ∗

IT 0 0 0 0 −γ2I


,

Π̄1i = AiX + XAT
i + Q̄1 + Q̄2 − R̄1 + M̄,

R̄ = η2
mR̄1 + (ηM − ηm)2R̄2,

Āi j =
[
AiX 0 BiF j 0 BiF j I

]
Furthermore, the fuzzy controller gains in (6) and the weight of AETS in (9) are K j =

F jX−1, Ω = XΩ̄X, respectively.

Proof. Define X = P−1, R̄1 = XR1X, R̄2 = XR2X, Q̄1 = XQ1X, Q̄2 = XQ2X, Ω̄ = XΩX, M̄ =

XMX and F j = K jX. Pre- and post-multiplying (16) with diag{X, X, X, X, X, I, PR−1} and theirs
transposes, we have

Φ̃i j + Φ̃ ji < 0, i ≤ j; i, j ∈ Ψ (25)

where

Φ̃i j =

[
Πi j ∗

Ai j −PR−1P

]
(26)

Using the property of −PR−1P ≤ −2αP+α2R̄, one can know that Φ̂i j +Φ̂ ji < 0 (i ≤ j; i, j ∈
Π) is a sufficient condition to guarantee (25) holds, where

Φ̂i j =

[
Πi j ∗

Ai j −2αP + α2R̄

]
(27)

It follows that (27) is equivanent to (24) by pre- and post-multiplying Φ̂i j + Φ̂ ji < 0 with
diag{I, I, I, I, I, I, X} and theirs transposes. The proof is completed. �
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4. A numerical example

In this section, a simulation of the states of Duffing forced-oscillation system tracking those
of a linear reference model via network communication is given by using the proposed method.
The dynamic of such a nonlinear system is as follows[16, 35]:ẋ1(t) = x2(t)

ẋ2(t) = −x3
1(t) − 0.1x2(t) + 12 cos(t) + u(t)

(28)

The system can be expressed by T-S fuzzy model with the format of (3) by assuming that
the state satisfies x1(t) ∈ [−5, 5], whose parameters are as follows:

A1 =

[
0 1
0 −0.1

]
, A2 =

[
0 1
−25 −0.1

]
, B1 =

[
0
1

]
,

B2 = B1 = D1 = D2

and the membership functions reported in [35] are µ1(x1(t)) = 1− x2
1

25 , µ2(x1(t)) = 1− µ1(x1(t)).
The reference model is given by

ẋr(t) =

[
0 1
−3 −2

]
xr(t) +

[
0
1

]
r(t) (29)

where r(t) = 4sin(t).
Assume the sampling period h = 20 ms; the delay bounds in (12) are given by ηm = 0.01

ms and ηM = 60 ms. We can get the gains of fuzzy controller in (6) and the weight of AETS in
(9) with the index of attenuation level of tracking performance γ = 0.81 in (15), δ = 5, α = 1
in (24) by solving Theorem 2 as follows:

K1 =
[
−15.0101 −8.3216

]
,K2 =

[
−8.6828 −9.8111

]
,

Ω =

[
26.3000 −224
−224 3331

]
Figure 3-Figure 6 show the responses of the tracking control system under AETS with

the initial states of x(0) = [0.2 − 0.1]T and xr(0) = [−0.5 0.1]T for t ∈ [−ηM, 0). From
the state trajectories shown in Figure 3 and Figure 4, one can see that the proposed method
can guarantee the states of the nonlinear system track those of the reference model with a
better tracking performance. Figure 5 depicts the trajectory of adaptive threshold of the event-
triggering condition, from which it can be seen that the threshold is not a fixed predetermined
value as the conventional method on event-triggering scheme but varying with the sampled
data from the states of plant and the reference model. The threshold converges to a constant
when the system tends to be stable. Under this AETS, the “unnecessary” sampled data will be
discarded due to its not invoking the event-triggering condition. As shown in Figure 6, about
76% sampling data are regarded as “necessary” data to the tracking system while the others
are discarded. Consequently, the limited network bandwidth can be allocated to the other more
necessary task.

5. Conclusion

A new adaptive event-triggered scheme has been proposed to nonlinear tracking control
system via network communication. Under this AETS, the event of data releasing is triggered
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Figure 3: Tracking trajectories of the states of plant x1(t) and the reference model xr1(t)
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adaptively by the states of both the nonlinear system and the reference model which reflect the
variation of the external input. Despite of a large amount of sampling data being discarded,
the tracking performance still remains a good level. An example of Duffing forced-oscillation
system tracking the states of a reference model is given to illustrate the effectiveness of the pro-
posed method. The future research would be devoted to improve the precision of the tracking
control under the condition of limited network communication.
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