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Abstract

This paper is devoted to the problem of designing an ℋ2 (ℋ∞)-based
optimal sparse static output feedback (SOF) controller for continuous
linear time invariant systems. Incorporating an extra term for penalis-
ing the number of non-zero entries of the static output (state) feedback
gain into the optimisation objective function, we propose an explicit
scheme and an iterative process in order to identify the desired sparse
structure of the feedback gain. In doing so, the so-called reweighted
ℓ1-norm, which is known as a convex relaxation of the ℓ0-norm, is ex-
ploited to make a convex problem through an iterative process rather
than the original NP-hard problem. This paper will also show that
this problem reformulation allows us to incorporate additional con-
straints, such as regional pole placement constraints which provide
more control over the satisfactory transient behavior and closed-loop
pole location, into the designing problem. Then using the obtained
structural constraints, we solve the structural ℋ2 (ℋ∞) SOF prob-
lem. Illustrative examples are presented to show the effectiveness of
the proposed approaches.
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1 Introduction
Control systems that utilise spatially distributed components have been stud-
ied and researched for a while. In early control systems, the information
of the distributed sensors was transmitted to a central station (controller)
through direct hard-wired links and then the generated control commands
were sent to the spatially distributed actuators. With the recent advances
in communication technology, efficient communication networks have been
used in control systems, which has opened a new research area to consider
the influences of the communication networks on control systems. Spatially
distributed control systems which exploit communication networks in their
loop have been regarded as networked control systems (NCSs) [23].

On the other hand, decentralised or distributed control architectures have
been proposed and used in the literature [37, 30, 2, 16]. The general idea
behind the decentralised control scheme is to use only the local state informa-
tion in order to control the subsystems and thus there is no control network.
This can be effective only when the interconnections between the subsys-
tems are not strong [33], [28]. In other words, when the interconnections are
strong, utilising distributed control frameworks has been considered. In this
strategy, each subsystem can exploit local state as well as the state of some
other subsystems. Hence, compared to the decentralised control scheme, dis-
tributed control scheme can ensure the stability of the overall system in the
presence of stronger subsystem interconnections [31]. Meantime, it also has
less complexity and improved computational aspects compared to the cen-
tralised control scheme.

Some work in the literature considers the problem of designing centralised
and distributed control systems, with imposing a priori constraints on com-
munication network structure. It is shown that the problem of designing the
structured optimal controllers can be set as a convex optimisation problem
[25, 24]. Furthermore, another arising research problem, for the centralised
or distributed control systems, is to design the control network with the
minimum number of communication links while satisfying a global control
objective [23]. Indeed, a trade off between the control performance and
sparsity of the feedback gain matrices should be considered [20, 38, 14]. It
is worth noting that several algorithms have been proposed in the field of
sparse signal reconstruction and representation to gain a quick reconstruc-
tion and a reduced requirement on the number of measurements compared
to the classical ℓ1 approach (see [19, 32, 6, 7]), and among them reweighted
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ℓ1 (REL1) and reweighted iterative support detection (RISD) algorithms are
employed in this paper for sparse pattern recognition purposes.

A major drawback in most of the aforementioned references is the as-
sumption of the availability of all the system states. Hence, it is natural to
use e.g. the static output feedback (SOF) scheme to control the system by
directly employing the measured system outputs [29, 15, 12, 11, 8]. The main
difficulty for the SOF problem is that, in general, the output feedback gain
matrix cannot be directly obtained. Therefore, roughly speaking, most of the
methods in the literature to solve (e.g. ℋ2) SOF problems utilise iterative
processes [29, 15, 12], and their solutions and more importantly their con-
vergence depend quite significantly on the initial conditions. Exceptionally,
several explicit expressions for SOF are presented in [36, 34, 35]. However,
these explicit expressions are not desirable for structured feedback problems.
Recently, in order to address this issue, a novel scheme is proposed in [26] for
ℋ∞ SOF problems employing a similar method for SF problems. Motivated
by this method, this paper aims to extend it to different control problems
such as the structured optimal SOF problems and, more importantly, optimal
sparse SOF problems.

The method presented in [20] solves the ℋ2 problem, by incorporating
a sparsity promoting penalty function to its objective function, to obtain a
sub-optimal sparse state-feedback (SF) controller. This paper uses a similar
strategy for penalising the number of nonzero entries of the feedback gain.
However, this paper’s contributions are essentially different from those pre-
sented in [20]; we develop an alternative explicit formulation which not only
can address the structured and sparse SF controller design problem, but also
enables us to extend it to the structured and sparse SOF control problem.
Besides, this scheme allows us to impose more convex restrictions on the
closed-loop dynamics, e.g. pole-placement can be incorporated within stan-
dard convex regions of the complex plane (e.g. circles, cones and strips) [9].

In order to penalise the communication links in the feedback matrix,
we firstly incorporate the ℓ0-norm (cardinality function) of the feedback
gain matrix into the objective function of the optimisation problem. As
the ℓ0-norm in the optimisation objective function results in a non-convex
problem, the so-called reweighted ℓ1-norm [3], which is known as a convex
relaxation of the cardinality function, will be used here to make a convex
optimisation problem. Employing the reweighted ℓ1-norm in the objective
function, we then propose two iterative processes in order to find the desired
sparse structure with respect to the given sparsity regularisation parameter
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exploited in the objective function. Finally, using the identified structure
we design the structured static output (or state) feedback for the underlying
system.

In summary, the major focus of this paper is on the development of an
approach for optimal selection of a subset of available communication links
while minimising the variance amplification (i.e. ℋ2 or ℋ∞ norm of the
closed-loop system). In order to deal with this issue, this paper includes
several novel initiatives as follows:
- This paper develops a novel framework for the design of a ℋ2 (ℋ∞) sparse
SOF. To the authors’ best knowledge, this is a new technology which uses the
system’s output only and, in the meantime, can satisfy structural constraints
on the feedback gain as well as performance specifications and regional pole
placements constraints.
- Further, as the approach in this paper does not employ an iterative method
to find the SOF gain, it is very attractive for the second purpose of this paper
which is to identify sparse subsets of communication links while minimising
the performance degradation.
- This paper also includes two schemes (reweighted ℓ1 norm (REL1) and
reweighted iterative support detection (RISD)) for the identification of favourable
sparse patterns for the SOF.
- Roughly speaking, most of the proposed methods in the literature, for iden-
tifying the most sparse feedback gain, are not able to provide control over
the transient behaviour and closed-loop pole locations. To address this issue,
we propose augmenting the optimisation problems exploited for the control
synthesis by a set of LMI constraints to guarantee the poles of the closed-loop
system be located in a suitable subregion.

Notation: ℝ and ℂ denote the sets of real and complex numbers, re-
spectively. 󰀺Σ𝑖𝑗󰀻𝑞×𝑞 is a block matrix with block entries Σ𝑖𝑗 , 𝑖 = 1, ⋯, 𝑞, 𝑗 =
1, ⋯, 𝑞. diag󰀺Σ𝑖󰀻

𝑞
𝑖=1 is a block-diagonal matrix with block entries Σ𝑖, 𝑖 =

1, ⋯, 𝑞. {∘} denotes an operator for Ξ = [𝜉𝑖𝑗]ℎ×ℎ in which 𝜉𝑖𝑗 ∈ ℝ and
𝑊 = [𝑊𝑖𝑗]ℎ×ℎ in which 𝑊𝑖𝑗 ∈ ℝ𝑟𝑖×𝑠𝑗 such that Ξ ∘ 𝑊 = [𝜉𝑖𝑗𝑊𝑖𝑗]ℎ×ℎ.

2 Problem Formulation and Preliminaries
Consider the following overall LTI system:

󰂱
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵2𝑢(𝑡) + 𝐵1𝑓(𝑡),
𝑧(𝑡) = 𝐶𝑧𝑥(𝑡) + 𝐷𝑧𝑢(𝑡), (1)
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where 𝑥 ∈ ℝ𝑛, 𝑢 ∈ ℝ𝑚 and 𝑧(𝑡) ∈ ℝ𝑞 are the state vector, control input vector
and performance output vector of the overall system, respectively. The ma-
trices in (1) are constant and of appropriate dimensions. Moreover, 𝐵1, 𝐵2,
𝐶𝑧 and 𝐷𝑧 in (1) are block diagonal matrices as diag[𝐵1,𝑖]ℎ

𝑖=1, diag[𝐵2,𝑖]ℎ
𝑖=1,

diag[𝐶𝑧,𝑖]ℎ
𝑖=1 and diag[𝐷𝑧,𝑖]ℎ

𝑖=1, respectively, in which ℎ denotes the number
of subsystems and 𝐵1,𝑖 ∈ ℝ𝑛𝑖×𝑟𝑖, 𝐵2,𝑖 ∈ ℝ𝑛𝑖×𝑚𝑖, 𝐶𝑧,𝑖 ∈ ℝ𝑞𝑖×𝑛𝑖 and 𝐷𝑧,𝑖 ∈ ℝ𝑞𝑖×𝑚𝑖.
In addition, matrix 𝐴 is an overall matrix that contains sub-systems’ dy-
namics and their mutual interactions, i.e. 𝐴 = diag[𝐴𝑖]ℎ

𝑖=1 + 󰀺𝐴𝑖𝑗󰀻ℎ×ℎ, with
𝐴𝑖 ∈ ℝ𝑛𝑖×𝑛𝑖 and 𝐴𝑖𝑗 ∈ ℝ𝑛𝑖×𝑛𝑗 , where 𝐴𝑖𝑗 ≠ 0 if the sub-system 𝑗 influences
directly the sub-system 𝑖. Without loss of generality, it is also assumed that
𝑚 ≤ 𝑞 ≤ 𝑛 and rank(𝐵2) = 𝑚. Also

𝐶𝑧 = 󰀺𝑄𝑇
𝑠 0󰀻

𝑇 , 𝐷𝑧 = 󰁾0 𝑅
1
2 󰁿

𝑇
,

where 𝐶𝑇
𝑧 𝐶𝑧 = 𝑄𝑇

𝑠 𝑄𝑠 ≜ 𝑄 ≥ 0, with 𝑄𝑠 ∈ ℝ𝑠×𝑛 is a full rank matrix in which
0 < 𝑠 = 𝑞 − 𝑚 ≤ 𝑛, and 𝐷𝑇

𝑧 𝐷𝑧 = 𝑅 > 0. 𝑓(𝑡) is the external disturbance of
system. It is also assumed that (𝐴,𝐵2) is stabilisable.
Our main objective in this paper is to design an ℋ2-based optimal distributed
SOF gain, exploiting feedback from (some of) other subsystems, to stabilise
the overall system in (1) through a sparse control network. Notice that the
ℋ2-based sparse SOF gains, in this paper, will be attained by solving an
explicit LMI optimisation problem, derived from the associated SF LMI for-
mulation through LMI variables transformations. Hence, firstly, we consider
the ℋ2-based sparse SF gain design problem and then generalise the problem
to the case that only the underlying system outputs are available.

Definition 1. A matrix is said to be structure matrix if its elements are either
0 or 1. The structure matrix of a block matrix 𝑌 = [𝑌𝑖𝑗]𝑚×𝑛 with 𝑌𝑖𝑗 ∈ ℝ𝑟𝑖×𝑠𝑗

is 𝒮 (𝑌 ) ≜ [𝑠𝑖𝑗]𝑚×𝑛 with

𝑠𝑖𝑗 = 󰂱
0 if 𝑌𝑖𝑗 = 0
1 otherwise.

Definition 2. Two matrices 𝑌1 and 𝑌2 are said to have the same structure
if 𝒮 (𝑌1) = 𝒮 (𝑌2).

Definition 3. The matrix 𝑌1 with 𝒮 (𝑌1) ≜ [𝑠1
𝑖𝑗]𝑚×𝑛 is said to be structurally

subset of 𝑌2 with 𝒮 (𝑌2) ≜ [𝑠2
𝑖𝑗]𝑚×𝑛 while 𝑠2

𝑖𝑗 − 𝑠1
𝑖𝑗 ≥ 0. We denote this as

𝒮 (𝑌1) ⊆ 𝒮 (𝑌2).
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2.1 ℋ2-based structured SF design
This subsection aims at the design of the ℋ2-based SF, subject to structural
constraints. Let the structure matrix Γ = [𝛾𝑖𝑗]ℎ×ℎ denotes a priori specified
structure for the control gain. Assume that there exists a gain 𝐹 ∈ ℝ𝑚×𝑛, with
𝒮 (𝐹 ) ⊆ Γ, making the closed loop system 𝐴 + 𝐵2𝐹 stable while minimising
the following cost functional,

𝐽(𝐹 ) = trace(𝐵𝑇
1 𝑋̄𝐵1), (2)

where 𝑋̄ is the closed-loop observability Gramian

𝑋̄ = ∫
∞

0
𝑒(𝐴+𝐵2𝐹 )𝑇 𝑡(𝑄 + 𝐹 𝑇 𝑅𝐹 )𝑒(𝐴+𝐵2𝐹 )𝑡𝑑𝑡. (3)

It is also known that 𝑋̄ can solve the following Lyapunov equation,

(𝐴 + 𝐵2𝐹 )𝑇 𝑋̄ + 𝑋̄(𝐴 + 𝐵2𝐹 ) + 𝑄 + 𝐹 𝑇 𝑅𝐹 = 0. (4)

Letting 𝑋 = 𝑋̄−1 and pre and post multiplying 𝑋 to (4), we have

𝑋(𝐴 + 𝐵2𝐹 )𝑇 + (𝐴 + 𝐵2𝐹 )𝑋 + 𝑋𝑄𝑋 + 𝑋𝐹 𝑇 𝑅𝐹 𝑋 = 0. (5)

By relaxing the equality in (5) to the following inequality

𝑋(𝐴 + 𝐵2𝐹 )𝑇 + (𝐴 + 𝐵2𝐹 )𝑋 + 𝑋𝑄𝑋 + 𝑋𝐹 𝑇 𝑅𝐹 𝑋 < 0, (6)

and letting 𝑋 = 𝑋̄−1 be a block diagonal matrix variable, that is, 𝑋 =
diag[𝑋𝑖]ℎ

𝑖=1, and 𝑋𝑖 ∈ ℝ𝑛𝑖×𝑛𝑖, rather than the minimisation problem explained
in (2), we consider a sub-optimal problem utilising the LMI approach,

minimise trace (𝑍) subject to (SSF)

⎡
⎢
⎢
⎣

𝐴𝑋 + 𝑋𝐴𝑇 + 𝐵2𝑌 + 𝑌 𝑇 𝐵𝑇
2 ⋆ ⋆

𝑄𝑠𝑋 −𝐼 ⋆
𝑅

1
2 𝑌 0 −𝐼

⎤
⎥
⎥
⎦

< 0, (7)

󰂮
−𝑍 ⋆
𝐵1 −𝑋󰂯 < 0 (8)

where 𝑌 = Γ ∘ ̄𝑌 with ̄𝑌 ∈ ℝ𝑚×𝑛 and 𝑍 is a slack variable. Thus, the struc-
tural state-feedback would be obtained as 𝐹 = 𝑌 𝑋−1. Notice that it is a
usual technique to treat 𝐹 𝑋 as a new variable; e.g. 𝑌 , in order to have a
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convex representation. However, as recovering the SF matrix 𝐹 requires a
reverse transformation, 𝐹 = 𝑌 𝑋−1 would not necessarily regain the structure
of Γ, unless a structural assumption (block diagonal pattern) is made on the
decision matrix 𝑋.

Remark 1. It is also easy to realise that

𝒮 (𝑋−1) = 𝒮 (𝑋) = 𝐼,

and since 𝒮 (𝑌 ) ⊆ Γ, thus

𝒮 (𝑌 𝑋−1) ⊆ Γ.

This means that the SF gain 𝐹 obtained from 𝑌 𝑋−1 would have the desired
structure Γ.

2.2 ℋ2-based sparse SF design
Previous subsection has studied the problem of designing ℋ2-based struc-
tured SF with imposing a priori constraints directly on the control gain.
Here, instead, we search for sparse feedback structures without imposing any
a priori structure on the sparsity patterns of the matrix. We now consider
an optimisation framework in which the sparsity of the feedback gain is di-
rectly incorporated into the objective function [20]. This problem can be
formulated as:

minimise trace (𝑍) + 𝜂card(𝒮 (𝑌 )),
subject to (7), (8) and 𝒮 (𝑋) = 𝐼, (9)

where 𝑌 ∈ ℝ𝑚×𝑛 in (7) does not have any preset structure, card(⋅) denotes the
cardinality function (the number of nonzero elements of a matrix) and 𝜂 > 0 is
the regularisation parameter that implies the emphasis on the sparsity of the
SF matrix 𝐹 ; i.e. a larger 𝜂 will result in a more sparse 𝐹 and inversely 𝜂 = 0
converts the minimisation problem (9) to a standard ℋ2 problem. Owing
to the existence of the quasi-norm card(⋅) in the objective functional in (9),
this problem is indeed a combinatorial problem. The ℓ1-norm and weighted
ℓ1-norm are used in the literature as a convex relaxation of the cardinality
function [14, 3, 20]. However, the weighted ℓ1-norm is not implementable for
this problem as the weights depend on the feedback gain. Alternatively, an
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iterative scheme referred to as reweighted ℓ1 algorithm can be used to deal
with the problem. In this scheme the weights obtained in the previous itera-
tion are exploited in the current iteration; e.g. see [5, 21]. We now propose a
reweighted ℓ1 algorithm (see Algorithm A.1 in Appendix) for finding an ℋ2
sparse SF. Now the optimisation problem (9) can be cast as

minimise trace(𝑍) + 𝜂 ‖𝑊 ∘ 𝑌 ‖ℓ1
(SPSF)

subject to (7), (8) and 𝒮 (𝑋) = 𝐼,

where 𝑊 is a given weighting matrix with the same dimension of 𝒮 (𝐹 ).
We denote the favourable structure, obtained from solving the minimisation
problem in (SPSF), as 𝒮 (𝐹 ) ≜ Γ𝐹 . Now we turn to the minimisation problem
introduced in (SSF), by letting Γ = Γ𝐹 , in order to find the ℋ2 structured
SF.

Remark 2. It should be noted that the value of the ℋ2 cost obtained from
(SSF) is not the true one, due to the conservatism introduced by assuming the
block diagonal structure for 𝑋. Nevertheless, the true value can be computed
by solving the following Lyapunov equation

𝑋𝑡𝑟𝑢𝑒(𝐴 + 𝐵2𝐹 ) + (𝐴 + 𝐵2𝐹 )𝑇 𝑋𝑡𝑟𝑢𝑒 + 𝑄 + 𝐹 𝑇 𝑅𝐹 = 0. (10)

Then one can find the ℋ2 cost as √trace(𝐵𝑇
1 𝑋𝑡𝑟𝑢𝑒𝐵1).

Remark 3. Notice that although in the methods proposed in [20, 13] no
diagonal structural assumption needs to be imposed on the matrix decision
variables, the downside is that the iterative processes utilised in [20, 13] are
more computationally intensive and moreover have no convergence guaran-
tees.

3 ℋ2-Based Sparse SOF Design
Let the system in (1) has the measured output vector 𝑦(𝑡) ∈ ℝ𝑝, and

𝑦(𝑡) = 𝐶𝑥(𝑡), (11)

where 𝐶 ∈ ℝ𝑝×𝑛 is a full row rank matrix, i.e. rank(𝐶) = 𝑝. In this section,
we seek for the ℋ2 sparse SOF of the form

𝑢(𝑡) = 𝐹𝑦𝑦(𝑡), (12)
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where 𝐹𝑦 ∈ ℝ𝑚×𝑝. It can be shown that

𝑢(𝑡) = 𝐹𝑦𝐶𝑥(𝑡). (13)

Now the ℋ2-based sparse SOF problem can be considered as a constrained
sparse SF problem in which the SF matrix 𝐹 should satisfy the constraint
𝐹 = 𝐹𝑦𝐶.

3.1 ℋ2-based structured SOF design
The problem of designing an ℋ2-based structured SOF can be cast as the
following optimisation problem:

minimise trace (𝑍)
subject to (7), (8) and 𝑌 𝑋−1 = 𝐹𝑦𝐶 and 𝒮 (𝐹𝑦) = Γ𝑦, (14)

where Γ𝑦 is a certain structure matrix. Notice that an effective scheme to
address a similar non-convex optimisation problem, for the design of an ℋ∞
SOF, is proposed in [26]. This scheme indeed introduces specific LMI decision
variable (𝑋 and 𝑌 ) transformations as

𝑋 = 𝑁𝑋𝑁𝑁𝑇 + 𝑀𝑋𝑀𝑀𝑇 ,
𝑌 = 𝑌𝑀𝑀𝑇 , (15)

where 𝑋𝑁 ∈ ℝ(𝑛−𝑝)×(𝑛−𝑝) and 𝑋𝑀 ∈ ℝ𝑝×𝑝 are symmetric matrices, and 𝑌𝑀 ∈
ℝ𝑚×𝑝. Besides, 𝑁 = null(𝐶) ∈ ℝ𝑛×(𝑛−𝑝) and 𝑀 ∈ ℝ𝑛×𝑝 is any matrix that
satisfies 𝐶𝑀 = 𝐼 . In general form, 𝑀 can be considered as 𝑀 = 𝐶† + 𝑁𝐷,
where 𝐷 ∈ ℝ(𝑛−𝑝)×𝑝 is a given matrix and 𝐶† = 𝐶𝑇 (𝐶𝐶𝑇 )−1. Now by letting
the LMI variables 𝑋 and 𝑌 to be as (15), the SOF gain would be simply
obtained through the following lemma.

Lemma 3.1 ([26]). Let 𝑋 = 𝑁𝑋𝑁𝑁𝑇 + 𝑀𝑋𝑀𝑀𝑇 and 𝑌 = 𝑌𝑀𝑀𝑇 , then 𝑋
is invertible if and only if 𝑋𝑀 is invertible. Besides we have 𝑌 𝑋−1 = 𝐹𝑦𝐶
with 𝐹𝑦 = 𝑌𝑀𝑋−1

𝑀 .

Now the ℋ2-based structured SOF problem can be set as an optimisation
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problem by exploiting LMI approach,

minimise trace (𝑍) subject to (SSOF)

⎡
⎢
⎢
⎣

𝐴𝑁𝑋𝑁𝑁𝑇 + 𝑁𝑋𝑁𝑁𝑇 𝐴𝑇 + 𝐴𝑀𝑋𝑀𝑀𝑇 + 𝑀𝑋𝑀𝑀𝑇 𝐴𝑇 + 𝐵2𝑌𝑀𝑀𝑇 + 𝑀𝑌 𝑇
𝑀𝐵𝑇

2 ⋆ ⋆
𝑄𝑠(𝑁𝑋𝑁𝑁𝑇 + 𝑀𝑋𝑀𝑀𝑇 ) −𝐼 ⋆

𝑅
1
2 𝑌𝑀𝑀𝑇 0 −𝐼

⎤
⎥
⎥
⎦

< 0,

(16)

󰂮
−𝑍 ⋆
𝐵1 −𝑁𝑋𝑁𝑁𝑇 − 𝑀𝑋𝑀𝑀𝑇 󰂯 < 0, (17)

where 𝑋𝑀 is defined as a block diagonal matrix variable, 𝑌𝑀 = Γ𝑦 ∘ ̄𝑌𝑀 with
̄𝑌𝑀 ∈ ℝ𝑚×𝑝 and 𝑍 is a slack variable. The structural SOF is obtained as

𝐹𝑦 = 𝑌𝑀𝑋−1
𝑀 . Besides, notice that 𝒮 (𝑋−1

𝑀 ) = 𝒮 (𝑋𝑀 ), and thus 𝒮 (𝑌𝑀𝑋−1
𝑀 ) ⊆

𝒮 (𝑌𝑀 ) ⊆ Γ𝑦.

Remark 4. 1) The scheme proposed here is a framework for the design of
structured ℋ2 SOF for LTI systems. This novel scheme is of importance as
most existing methods [29, 15, 12] i) employ iterative processes for addressing
SOF design problem and so their solutions and their convergence depend
quite significantly on the initial conditions, ii) have shortcomings in terms of
imposing structural constraints on the feedback gains.
2) As stated in [26], the solution of the problem in (SSOF) may not necessarily
be an optimal solution of (14). Nevertheless, it is an effective way to minimise
the cost function on a set that satisfies all the constraints in (14).
3) Matrix 𝐷 plays an important role in this strategy. A simplified choice
is 𝐷 = 0. An advanced choice of 𝐷 is also presented in [22] which is 𝐷 =
(𝑁𝑇 𝑁)−1𝑁𝑇 𝑋𝐶𝑇 (𝐶𝑋𝐶𝑇 )−1. This choice, however, requires solving the SF
optimisation problem in advance. A benefit of this choice is that if no solution
can be attained by the ideal SF problem, no further efforts is required for the
output feedback problem.

3.2 ℋ2-based sparse SOF design
While the previous section considered the problem of designing the ℋ2-based
structured SOF having a certain structure constraint for the control gain,
this section explores favourable sparse SOF gains without imposing a priori
structure constraint on the sparsity patterns of the control gain. Similar to
the SF case, an optimisation framework, in which the sparsity of the feedback
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gain is directly incorporated into the objective function [20], is considered
here. This problem can be formally formulated as:

minimise trace (𝑍) + 𝜂𝑦card(𝒮 (𝑌𝑀 )),
subject to (16), (17) and 𝒮 (𝑋𝑀 ) = 𝐼, (18)

where 𝑌𝑀 here is a full decision matrix that does not have any a priori struc-
ture and 𝜂𝑦 > 0 is the regularisation parameter. A reweighted ℓ1 algorithm
(see Algorithm B.1 in Appendix) can be exploited again to design an ℋ2
sparse SOF gain. The optimisation problem (18) can be cast as

minimise trace(𝑍) + 𝜂𝑦 ‖𝑊𝑜 ∘ 𝑌𝑀‖ℓ1
(SPSOF)

subject to (16), (17) and 𝒮 (𝑋𝑀 ) = 𝐼,

where 𝑊𝑜 is a known weighting matrix with the same dimension of 𝒮 (𝐹𝑦).
We denote the obtained structure of the minimisation problem (MSOP), as
𝒮 (𝐹𝑦) ≜ Γ𝐹𝑦

. Eventually, in order to find the ℋ2 structured SOF with given
Γ𝑦 = Γ𝐹𝑦

, we turn to the minimisation problem in (SSOF).

Remark 5. Notice that in the case of dealing with distributed systems, the
sparsification procedure is implemented at the level of system components
rather than the subsystems, and thus, the matrix decision variable 𝑋𝑀 would
be a diagonal matrix, that is, 𝑋𝑀 = diag[𝑋𝑀,𝑖]𝑛

𝑖=1, where 𝑛 denotes the order
of system and 𝑋𝑀,𝑖 ∈ ℝ. Accordingly, for the SF case 𝑋 = diag[𝑋𝑖]𝑛

𝑖=1, where
𝑋𝑖 ∈ ℝ. Besides, penalising the nonzero elements of the feedback gains should
be implemented at the level of individual components. Hence, the reweighted
process given for the design of static output (state) feedback gains should be
revised by replacing ‖(𝑌𝑀 )𝑖𝑗‖𝐹 (or ‖𝑌𝑖𝑗‖𝐹 ), where ‖⋅‖𝐹 denotes the Frobenius
norm, with |(𝑌𝑀 )𝑖𝑗| (or |𝑌𝑖𝑗|) (see Algorithm B.1, A.1 in Appendix).

3.3 Reweighted iterative support detection (RISD) al-
gorithm for sparsity promoting penalty function

One drawback of reweighted ℓ1 algorithms compared to the traditional ℓ1
ones is their slow execution. This issue is clearly of great importance, since
one of the main challenges of the numerical optimisation-based schemes for
real-time pattern identification for controller structure is computational com-
plexity and computation time. In order to speed up the reweighted algo-
rithms, [19] develops a scheme referred to as reweighted iterative support

11



detection (RISD) algorithm. Indeed, the iterative support detection (ISD)
scheme (see, e.g., [32]) aims to improve the existing signal recovery meth-
ods by incorporating prior information, e.g., support (the locations of the
nonzero elements). Assume 𝚂 is the support of col󰀷col(𝑌𝑀,𝑖𝑗)𝑝

𝑗=1󰀸
𝑚
𝑖=1 (in our

case) with the subset of Λ, which denotes the known information, that is,

∀ 𝑖, 𝑗 ∈ Λ 𝑌𝑀,𝑖𝑗 ≠ 0.

Hence, for recovering 𝑌𝑀 we only need to minimise ∑𝑖,𝑗∈Λ𝐶 |𝑌𝑀,𝑖𝑗| (Λ𝐶 is the
absolute complement of Λ) subject to the involved control specifications, and
there is no need to penalise the non-zero entries whose locations are known.
This idea referred to as nonuniform sparsity promoting utilises prior infor-
mation [19]. The prior information here may include two distinct types of
knowledge: i) the knowledge of some very unattractive communication chan-
nels or components (e.g., due to the high execution cost or faulty situation);
i.e., those components can be added in the subset Λ𝐶 , ii) the knowledge
of the previous feedback gain structure before, e.g., a fault happening; i.e.,
those non-faulty components can be added in the subset Λ.

Without prior information, ISD and its reweighted form [32, 19] still
sparsify the solution by incorporating useful information from the current
iteration into the next iteration. The subset Λ will be detected and updated
automatically between iterations, that is,

Λ𝑙+1 = 󰂁𝑖,𝑗 󰂌 |𝑌 𝑙
𝑀,𝑖𝑗| > 𝜖𝑙󰂂,

where 𝑙 denotes the iteration number and 𝜖𝑙 is a threshold obtained iteratively
according to the so-called first jump rule; see, e.g., [32, 19]. The proposed
RISD algorithm is given in the Appendix. As can be seen in this scheme,
there is a higher probability of remaining nonzero for the elements in Λ𝑙.
Choosing the smaller 𝜖𝑙 will increase the reliability of Λ𝐶 . Compared to the
REL1 algorithm, this scheme does not require a regularisation parameter.
Moreover, 𝜇𝑙 here, with 𝜌 = 1, can be regarded as the average jump in
col󰁻col(|𝑌 𝑙

𝑀,𝑖𝑗|)𝑝
𝑗=1󰁼

𝑚

𝑖=1
, and the parameter 𝜌 can be considered as a design

freedom which can be tuned for different applications. One may also imagine
a variety of different alternatives for 𝜇𝑙; see, e.g., [19] and [32]. Our extensive
numerical tests show that the threshholding system proposed here is effective
for most of the problems.
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Notice again that the above algorithm identifies the favourable sparse pat-
tern and, in order to design the ℋ2 structured static output feedback with
the obtained structure, one needs to turn to the minimisation problem in
(SSOF) (polishing step).

3.4 Augmenting the problem with regional pole place-
ment constraints

As argued before, the proposed method here for the design of structured
and sparse static output (state) feedback gains makes it possible to intro-
duce extra convex constraints, with appropriate LMI representations, on the
closed-loop dynamics. A satisfactory transient response can be ensured by
placing the closed-loop system poles in a predetermined region [9]. Roughly
speaking, the proposed methods in the literature, for identifying the most
sparse feedback gains, are not able to provide control over the transient be-
havior and closed-loop pole location. Without having additional constraints
to control the closed-loop transient behaviour, a very sparse structure might
be identified, whereas an unsatisfactory time response and closed-loop damp-
ing may occur. Hence, the objective now is not only to solve the optimisation
problem described in (MSOP), but also to guarantee that the poles of the
overall closed-loop system are located in a suitable subregion. In brief, an
LMI region is a subset 𝒟 of the complex plane as

𝒟 ≔ {𝑧 ∈ ℂ ∶ 𝑓𝒟 (𝑧) ≜ Ξ + 𝑧Π + ̄𝑧Π𝑇 < 0} (19)

in which Ξ = Ξ𝑇 and Π are real matrices. 𝑓𝒟 (𝑧) is referred to as the charac-
teristic equation of the region 𝒟 .

Definition 4 ([10]). A real matrix 𝒜 is said to be 𝒟 -stable if all its eigen-
values lie within the LMI region 𝒟 .

Lemma 3.2 ([10]). A real matrix 𝒜 is 𝒟 -stable if and only if a symmetric
matrix 𝑋𝒟 > 0 exists such that

Ξ ⊗ 𝑋𝒟 + Π ⊗ (𝒜𝑋𝒟 ) + Π𝑇 ⊗ (𝑋𝒟 𝒜 𝑇 ) < 0, (20)

where ⊗ denotes the Kronecker product.
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Now, the ℋ2-based structured SOF problem with pole placement con-
straint can be set as

minimise trace (𝑍) (21)
subject to (7), (8), (15), 𝒮 (𝑋𝑀 ) = 𝐼, 𝒮 (𝑌𝑀 ) ⊆ Γ𝑦, and

Ξ ⊗ 𝑋𝒟 + Π ⊗ (𝒜𝑐𝑙𝑋𝒟 ) + Π𝑇 ⊗ (𝑋𝒟 𝒜 𝑇
𝑐𝑙 ) < 0,

where 𝒜𝑐𝑙 = 𝐴 + 𝐵2𝐹𝑦𝐶. The above problem is not convex in the variables
𝑋, 𝑌 , 𝑋𝒟 . However, the convexity can be obtained by enforcing 𝑋𝒟 = 𝑋.
As an illustration, we aim now to confine the closed-loop poles to the re-
gion 𝖲(𝛼,𝑟,𝜃) (see [9]) which can ensure a minimum decay rate 𝛼, a mini-
mum damping ratio 𝜁 = cos𝜃, and a maximum undamped natural frequency
𝜔𝑑 = 𝑟sin𝜃, while minimising the ℋ2-norm of the closed-loop transfer func-
tion from 𝑓 to 𝑧, and satisfying the structural constraint 𝒮 (𝑌 ) ⊆ Γ𝑦. Notice
that 𝖲(𝛼,𝑟,𝜃) is indeed the intersection of three elementary LMI regions: an
𝛼-stability region with the following LMI characterisation,

𝒜𝑐𝑙𝑋𝒟1
+ 𝒜 𝑇

𝑐𝑙 𝑋𝒟1
+ 2𝛼𝑋𝒟1

< 0, 𝑋𝒟1
> 0,

a disk with a radius 𝑟 characterised in terms of LMIs as,

󰂮
−𝑟𝑋𝒟2

⋆
(𝒜𝑐𝑙𝑋𝒟2

)𝑇 −𝑟𝑋𝒟2
󰂯 < 0, 𝑋𝒟2

> 0,

and the conic sector with the LMI characterisation as,

(𝑊𝜃 ⊗ 𝒜𝑐𝑙)diag(𝑋𝒟3
,𝑋𝒟3

) + diag(𝑋𝒟3
,𝑋𝒟3

)(𝑊𝜃 ⊗ 𝒜𝑐𝑙)𝑇 < 0,
𝑋𝒟3

> 0,

with 𝑊𝜃 = 󰀺 sin 𝜃 cos 𝜃
− cos 𝜃 sin 𝜃 󰀻. When the desired region is the intersection of several

elementary LMI regions, as discussed in [10], the synthesis problem would
not be convex when different Lyapunov matrix is used for each constraint.
One alternative to address this issue is to use the same matrix decision vari-
able for all the LMIs involved in the problem; i.e. 𝑋 = 𝑋𝒟1

= 𝑋𝒟2
= 𝑋𝒟3

,
at the expense of additional conservatism. However, as stated in [10], the
conservatism emanated from this limitation is modest in most applications.
Finally, we augment the optimisation problem described in (MSOP) with the
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three elementary LMI regions as

minimise trace(𝑍) + 𝜂𝑦 ‖𝑊𝑜 ∘ 𝑌𝑀‖ℓ1
, (SPRPP)

subject to (15), (16), (17), 𝒮 (𝑋𝑀 ) = 𝐼, and
𝐴𝑋 + 𝑋𝐴𝑇 + 𝐵2𝑌 + 𝑌 𝑇 𝐵𝑇

2 + 2𝛼𝑋 < 0 (22)

󰂮
(𝐴𝑋 + 𝑋𝐴𝑇 + 𝐵2𝑌 + 𝑌 𝑇 𝐵𝑇

2 )sin𝜃 ⋆
(𝐴𝑋 − 𝑋𝐴𝑇 + 𝐵2𝑌 − 𝑌 𝑇 𝐵𝑇

2 )𝑇 cos𝜃 (𝐴𝑋 + 𝑋𝐴𝑇 + 𝐵2𝑌 + 𝑌 𝑇 𝐵𝑇
2 )sin𝜃󰂯 < 0

(23)

󰂮
−𝑟𝑋 ⋆

(𝐴𝑋 + 𝐵2𝑌 )𝑇 −𝑟𝑋󰂯 < 0 (24)

Then the poles of 𝐴 + 𝐵2𝐹𝑦𝐶, in which 𝐹𝑦 is a sparse SOF obtained from
the optimisation problem in (SPRPP), lie within the region 𝖲(𝛼,𝑟,𝜃).

4 ℋ∞-Based Sparse SOF Design With Regional
Pole Placement Constraints

This section would alternatively consider a tradeoff between the number of
communication links, i.e. the number of nonzero entries in the feedback gain,
and the achievable ℋ∞ performance of the system. Consider the following
output performance signal

𝑧∞(𝑡) = 𝐶∞𝑥(𝑡) + 𝐷∞𝑢(𝑡), (25)

where matrices 𝐶∞ and 𝐷∞ are constant and of appropriate dimensions. The
standard 𝐻∞ SF control problem can be solved through the following LMI
[4]:

󰂮
𝐴𝑋∞ + 𝑋∞𝐴𝑇 + 𝐵2𝑌∞ + 𝑌 𝑇

∞𝐵𝑇
2 + 𝛾−2𝐵1𝐵𝑇

1 ⋆
𝐶∞𝑋∞ + 𝐷∞𝑌∞ −𝐼󰂯 < 0, (26)

𝑋∞ > 0, (27)

where the decision matrices 𝑋∞ > 0 and 𝑌∞ are of appropriate dimensions,
𝛾 > 0 is a scalar parameter which indeed bounds the 𝐻∞-norm of the closed-
loop transfer function from 𝑓 to 𝑧∞. In this case the SF gain is obtained
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as 𝐹∞ = 𝑌∞𝑋−1
∞ . One may search for the smallest value of 𝛾 under static

output-feedback through the following optimisation problem

minimise 𝛾 subject to (26), (27), 𝑌∞𝑋−1
∞ = 𝐹 ∞

𝑦 𝐶,

where 𝐹 ∞
𝑦 ∈ ℝ𝑚×𝑝. Notice that the above optimisation problem is not convex

in the current form. By introducing 𝜆 = 𝛾−2, we can alternatively make the
following convex optimisation problem

minimise − 𝜆 subject to (26), (27), 𝑌∞𝑋−1
∞ = 𝐹 ∞

𝑦 𝐶.

Now the 𝐻∞ structured SOF problem can be cast as the following optimisa-
tion problem

minimise − 𝜆 subject to (26), (27), (HI)
𝑌∞𝑋−1

∞ = 𝐹 ∞
𝑦 𝐶, 𝒮 (𝑌∞) ⊆ Γ𝑦, 𝒮 (𝑋∞) = 𝐼.

This problem will be solved via similar LMI decision variable (𝑋∞ and 𝑌∞)
transformations introduced in Section 3 as

𝑋∞ = 𝑁𝑋𝑁
∞ 𝑁𝑇 + 𝑀𝑋𝑀

∞ 𝑀𝑇 ,
𝑌 = 𝑌 𝑀

∞ 𝑀𝑇 , (28)

where 𝑋𝑁
∞ ∈ ℝ(𝑛−𝑝)×(𝑛−𝑝) and 𝑋𝑀

∞ ∈ ℝ𝑝×𝑝 are symmetric matrices, and 𝑌 𝑀
∞ ∈

ℝ𝑚×𝑝. Moreover, 𝑁 and 𝑀 are introduced in Section 3. In addition the
minimisation problem (HI) may be augmented by the regional constraints
similarly as in (22), (23) and (24). Then (HI) will be converted to

minimise − 𝜆 subject to (26), (27), (28), (SOHI)
𝒮 (𝑌 𝑀

∞ ) ⊆ Γ𝑦, 𝒮 (𝑋𝑀
∞ ) = 𝐼, (22), (23) and (24),

by letting 𝑋 = 𝑋∞, 𝑌 = 𝑌∞.

Accordingly, the problem of designing the sparse ℋ∞ SOF gains can be set
as the following optimisation problem,

minimise − 𝜆 + 𝜂𝑦 ‖𝑊𝑜 ∘ 𝑌 𝑀
∞ ‖ℓ1

(SPOHI)

subject to (26), (27), (28), 𝒮 (𝑋𝑀
∞ ) = 𝐼, (22), (23) and (24),

by letting 𝑋 = 𝑋∞, 𝑌 = 𝑌∞,
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where 𝜂𝑦 > 0 is the regularisation parameter and 𝑊𝑜 is a known weighting
matrix with the same dimension of 𝖲(𝐹 ∞

𝑦 ). A similar reweighted ℓ1 algorithm
(obtained by replacing trace(𝑍) with −𝜆 in Algorithm B.1) can be used then
to identify a pattern for ℋ∞ sparse SOF gain regarding the specific value of
𝜂𝑦. Following to the identified pattern, we build it into the structure matrix
Γ𝑦 and solve (SOHI) to obtain the ℋ∞ structured SOF gain.

5 Numerical examples

5.1 Example 1: Sparse SF design with pole placement
As the first example, a decentralised interconnected system, presented in [27]
and [18] that consists of three subsystems with two states, is considered. We
have the partitioned matrices:

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0.5 1 0.6 0
−2 −3 1 0 0 1
0 2 0.5 1 1 0.5
1 3 0 0.5 0 −0.5
0 1 1 0 1 0

−3 −4 0 0.5 0.5 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝐵2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
1 0 0 0
0 3 0 0
0 0 4 0
0 0 0 2
0 0 0 3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

𝐵1 = 𝐼, 𝑄 = 𝐼, 𝑅 = 𝐼.

As can be seen, this system is unstable and fully coupled. Solving the
convex problem in (SSF), by assuming a block diagonal structure for matrix
decision variable 𝑋 as diag[𝑋𝑖]3

𝑖=1 with 𝑋𝑖 ∈ ℝ2×2, would result in a true value
ℋ2 cost of 4.2295. Utilising Algorithm A.1 in Appendix with the revisions
explained in Remark 5 and 𝜅 = 0.01, 𝜖 = 0.1, and by increasing 𝜂 from zero,
the number of nonzero off-diagonal blocks of the SF gain decreases; see Fig. 1.
When the sparsity structures of controllers are identified for different 𝜂, the
obtained patterns are used to solve (SSF) and obtain the optimal structured
controllers. Notice that in the case of fully decentralised feedback the ℋ2
cost is 4.4682 which is only about 6% worse than that of the centralised
feedback gain. Notice that the most sparse structure reported by [27] for the
controller is not decentralised structure, whereas this reference does not even
penalise the level of control effort in the associated objective function; i.e.
𝑧(𝑡) = 𝐼𝑥(𝑡). In other words, according to the control structure sparsification
scheme proposed in our paper, we may stabilise the system under study with a
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Figure 1: Structure of ℋ2 sparse SF gains for different values of 𝜂 for Example
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Figure 2: Structure of ℋ2 sparse SF gains for different values of 𝜂 with
additional pole placement constraints for Example 1

decentralised SF controller and, in such a case, the performance degradation
remains in an acceptable range.
Now we aim to assign the closed-loop poles within the intersection of the
half-plane 𝑥 < −𝛼 < −1 with the disk of radius 𝑟 = 15 centered at the origin
and the sector centred at the origin making an angle of 𝜃 = 𝜋/3. Once again
we use Algorithm A.1 in the Appendix by imposing additional pole placement
constraints introduced in (22), (23) and (24) and assuming 𝜅 = 1e−6, 𝜖 = 0.01
and increasing 𝜂 from zero to a very large value. In this case, however, the
rate of truncation of the off-diagonal blocks is slower compared with the
previous case. Besides as can be seen in Fig. 2, even by increasing 𝜂 to a very
large number, the most sparse structure that could satisfy the optimisation
problem in (SPRPP) (with 𝐶 = 𝐼𝑛) is not the decentralised feedback gain.
Fig. 5 demonstrates the closed-loop pole locations using the decentralised
feedback gain obtained from the structured optimisation problem in (SSF)
that does not involve any regional pole-placement constraints and the most
sparse structure obtained in the second case with regional constraints on the
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Figure 3: Closed-loop pole locations using the most sparse structure obtained
in the second case (∗), the decentralised structure for the first case (o) and
𝖣(1,15, 𝜋

3 ) for Example 1

nominal closed-loop poles.

5.2 Example 2: Sparse SOF design
Consider the system given in [26] with the following matrices; which is
element-wise without any partition:

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎣

−4 0 −2 0 0
0 −2 0 2 0
0 0 −2 0 −1
0 −2 0 −1 0
3 0 −2 0 −1

⎤
⎥
⎥
⎥
⎥
⎦

, 𝐵2 =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0
1 0 0
0 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

,

𝐶 =
⎡
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

⎤
⎥
⎥
⎦

, 𝐵1 = 󰀺1 1 1 1 1󰀻
𝑇 , 𝑄 = 𝐼, 𝑅 = 𝐼.

Besides, we select

𝑀 = 󰂮
0 0 −1 0 0
0 0 0 1 0󰂯, 𝑁𝑇 =

⎡
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

⎤
⎥
⎥
⎦

, 𝐷 = 0.
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5.2.1 Sparse ℋ2 SOF

With imposing no structure on 𝑌𝑀 and 𝑋𝑀 , the ℋ2 cost is 2.0903. However,
this value will be 2.1504 for the case of 𝒮 (𝑋𝑀 ) = 𝐼 . Exploiting Algorithm B.1
in Appendix with 𝜅𝑦 = 0.001, 𝜖𝑦 = 0.0001 and by increasing 𝜂𝑦 from zero, the
number of nonzero off-diagonal entries of the SOF gain decreases. The most
sparse structure is identified by 𝜂𝑦 ≥ 0.752. With the identified structure we
solve (SSOF) to obtain a suboptimal structured SOF controller as

𝐹 1
𝑦 =

⎡
⎢
⎢
⎣

0 0 0
0 0 0
0 0 −3.1264

⎤
⎥
⎥
⎦

.

In this case the ℋ2 cost is 2.3148. It means that only about 8% performance
degradation happens compared to the centralised feedback gain.
Now let us repeat this example to ensure that the complex conjugate pairs of
poles of the closed-loop system have a damping ratio greater than 0.7660. To
this end, we enforce the closed-loop poles to lie in the sector centred at the
origin making an angle of ±2𝜋/9 relative to the negative real axis. In order
to ensure this, we solve the optimisation problem in (MSOP) together with
the constraint in (23). The most sparse pattern is achieved by 𝜂𝑦 ≥ 0.297.
The SOF controller is then

𝐹 2
𝑦 =

⎡
⎢
⎢
⎣

0 0 0
0 1.3409 0
0 0 −3.1498

⎤
⎥
⎥
⎦

.

The ℋ2 cost is 2.4959 and the closed-loop poles are {−4.6607±1.2063𝑖,−0.8283,−1.5000±
1.0335𝑖} which satisfy the damping ratio constraint.

5.2.2 Sparse ℋ∞ SOF

Let us once again consider the system given in this example but considering
the ℋ∞ performance. In doing so, we set 𝐶∞ = 𝐶𝑧 and 𝐷∞ = 𝐷𝑧 and recall
the optimisation problem in (HI) without imposing any structure on 𝑋∞

𝑀 and
𝑌 ∞

𝑀 to obtain the ℋ∞ performance level of the closed loop with centralised
controller, which is 1.2077. Besides, this value will increase to 1.2364 for the
case of 𝒮 (𝑋∞

𝑀 ) = 𝐼 . We now exploit Algorithm B.1 in Appendix, which is
revised by replacing trace(𝑍) with −𝜆. With 𝜅𝑦 = 0.001, 𝜖𝑦 = 0.01 and by
increasing 𝜂𝑦 from zero, it can be seen that the number of nonzero off-diagonal
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Figure 4: Upper bound of the ℋ∞ performance of closed loop versus different
sparsity levels of the feedback gain

entries of the SOF gain decreases. Fig. 4 shows the upper bound of ℋ∞
norm of the closed-loop system versus different sparsity level of the feedback
gains. As can be seen, almost no remarkable performance degradation is
visible between the centralised controller with 𝒮 (𝑋∞

𝑀 ) = 𝐼 and a distributed
controller up to 𝐜𝐚𝐫𝐝(𝐹 ∞

𝑦 ) = 2. Note that 𝐜𝐚𝐫𝐝(𝐹 ∞
𝑦 ) = 2 corresponds to the

entries (1,1) and (3,3), and 𝐜𝐚𝐫𝐝(𝐹 ∞
𝑦 ) = 1 corresponds to the entry (3,3). It

is shown in Fig. 4 that the entry (1,1) is significant for the closed-loop control
performance as there is a large performance degradation when removing it
from the controller gain.

5.3 Example 3: Sparse ℋ2 SF design
As the last example we consider a first-order system with 𝒩 = 5 nodes dis-
tributed over a circle. This example is studied in [38] by using the alternating
direction method of multipliers (ADMM) as a tool for solving the problem
numerically. Here, we show the effectiveness of our LMI-based algorithm.
The dynamics of the system are defined by

𝐴 = Toeplitz([−2, 1,

𝒩 −3

⏞⏞⏞0, ⋯, 0, 1]),
𝐵2 = 𝐵1 = 𝐼𝒩 , 𝑄 = 𝐼𝒩 , 𝑅 = 𝐼𝒩 .

The centralised gain leads to an ℋ2 cost of 1.3853. Also letting the decision
matrix 𝑋 in (SSF) to be a diagonal one with the full decision matrix 𝑌 will
result in an ℋ2 cost of 1.4614, which shows 5% conservatism. By increasing
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𝜂 from zero to 5 in Algorithm A.1 (in Appendix) with 𝜅 = 0.001, 𝜖 = 0.1,
the number of nonzero off-diagonal entries of the SF gain decreases, such
that when 𝜂 ≥ 1.8×10−6 the identified pattern is diagonal for the SF. Solving
the ℋ2 optimal structured problem in (7) and (8) by imposing the diagonal
structure on both 𝑋 and 𝑌 would result in the following SF

𝐹 = −𝐼𝒩 .

Moreover, the ℋ2 cost, in this case, is 1.5076, which is about 9% worse than
that of the centralised feedback. This performance degradation, introduced
by the diagonal structure of the SF into the optimisation problem, roughly
speaking, is same as the one reported in [38].

5.4 Example 4: Flight control
In over-actuated systems, there is the possibility to select a subset of avail-
able actuators in order to, for example, minimise power or fuel consumption
and/or actuator wear and tear, etc [17]. The optimisation problem proposed
in (9) (or its relaxed version in (SPSF)), achieved by incorporating a sec-
ondary cost function into the main cost function, can be revised so that it
can select a subset of available actuators/effectors in an optimal manner.
This problem can be formulated as:

minimise trace(𝑍) + 𝜂 ‖𝑌 ‖row−ℓ0
, (ROW0)

subject to (7) and (8),

where 𝑋 > 0 and 𝑌 are full decision matrices that do not have any a pri-
ori structures, the row-ℓ0 norm is a quasi-norm that counts the number of
non-zero rows of 𝑌 , and 𝜂 > 0 is the regularisation parameter that implies
the emphasis on the row-sparsity of 𝑌 , and thus the SF gain 𝐹 . Indeed, the
row-sparse structure of the feedback gain defines the redundant components
of the control inputs or the redundant actuators in the system. However, the
variable selection, as proposed earlier in this paper, amounts to the selection
of important individual variables (elements in the feedback gain) rather than
the important groups of variables (rows).

Let us now recast the optimisation problem (ROW0) as

minimise trace(𝑍) + 𝜂𝑓(𝑌 ) (MSOP)
subject to (7) and (8),
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where 𝑓(⋅) denotes the relaxed row-sparsity promoting function for which a
choice can be proposed as:

𝑓(𝑌 ) = ∑
𝑖,𝑗

𝑊𝑖|𝑌𝑖𝑗|. (29)

Let the update rule be as

𝑊 𝑙
𝑖 = 1

∑𝑗 |𝑌 (𝑙−1)
𝑖𝑗 | + 𝜖

, (30)

where 𝑙 denotes the current iteration and 0 < 𝜖 ≪ 1 is used to provide sta-
bility and to ensure that a zero valued entry in 𝑌 does not strictly prevent
a non-zero value at the next step. The weighting matrix can be formed as
𝑊 = diag[𝑊𝑖]𝑚

𝑖=1. In other words, each entry of the diagonal weighting matrix
will be updated inversely proportional to the ℓ1-norm of its corresponding
row in the feedback gain obtained at the previous iteration. Notice that one
can also imagine a variety of possible norms in place of (30), e.g., ℓ2-norm
and ℓ∞-norm. Finally, Algorithm A.1 can be revised according to the above-
mentioned formulations so that it can identify a row sparse SF.

Now we consider the B747 aircraft [1] whose 12 rigid body states can
be split into two separate axes: 6 longitudinal axis states and 6 lateral and
directional axes states. Same as in [1], we only consider the first four states
of the lateral axis which are the roll rate 𝑝, yaw rate 𝑟, sideslip angle 𝛽, and
roll angle 𝜙. Considering an operating condition of 263,000 𝐾𝑔, 92.6 𝑚/𝑠 true
airspeed, and 600 𝑚 altitude at 25.6 % of maximum thrust and at a 20∘ flap
position, a linear model can be obtained. In this case, the lateral system,
about the trim condition, is represented as:

𝐴 =
⎡
⎢
⎢
⎢
⎣

−1.0579 0.1718 −1.6478 0.0004
−0.1186 −0.2066 0.2767 −0.0019
0.1014 −0.9887 −0.0999 0.1055
1.0000 0.0893 0 0

⎤
⎥
⎥
⎥
⎦

, (31)
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𝐵 =
⎡
⎢
⎢
⎢
⎣

−0.0832 0.0832 −0.2285 0.2285 −0.2625 −0.0678 0.0678
−0.0154 0.0154 −0.0123 0.0123 −0.0180 −0.0052 0.0052

0 0 0 0 0.0017 0.0006 −0.0006
0 0 0 0 0 0 0

0.2625 0.1187 0.0246 0.0140 −0.0140 −0.0246
0.0180 −0.2478 0.1269 0.0724 −0.0724 −0.1269

−0.0017 0.0174 0.0005 0.0005 −0.0005 −0.0005
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

.

Note that the lateral control surfaces are

𝛿𝑙𝑎𝑡 = 󰀺𝛿𝑎𝑖𝑟 𝛿𝑎𝑖𝑙 𝛿𝑎𝑜𝑟 𝛿𝑎𝑜𝑙 𝛿𝑠𝑝1−4 𝛿𝑠𝑝5 𝛿𝑠𝑝8

𝛿𝑠𝑝9−12 𝛿𝑟 𝑒1 𝑒2 𝑒3 𝑒4󰀻 . (32)

denoting aileron deflection (right and left - inner and outer)(rad), spoiler
deflections (left: 1-4 and 5, right: 8 and 9-12) (rad), rudder deflection (rad)
and lateral contributions to the engine pressure ratios (EPR), respectively.
Let the system outputs be sideslip angle 𝛽 and roll angle 𝜙, and thus the
output distribution matrix is

𝐶 = 󰂮
0 0 1 0
0 0 0 1󰂯. (33)

A tracking facility can be included in the problem, by exploiting an integral
action. Defining

̇𝜉(𝑡) = 𝗋(𝑡) − 𝑦(𝑡), (34)

where 𝗋(𝑡) is the input reference to be tracked by 𝑦(𝑡) = 𝐶𝑥(𝑡) ∈ ℝ𝑝, and 𝜉
represents the integral of the tracking error, i.e. 𝗋(𝑡) − 𝑦(𝑡), and introducing
𝑥̃ ≔ 󰀺

𝑥
𝜉 󰀻, an augmented system can be derived as:

̇𝑥̃(𝑡) = ̃𝐴𝑥̃(𝑡) + ̃𝐵𝑢(𝑡) + ̃𝐵1𝑓(𝑡) + 𝐵𝗋𝗋(𝑡) (35)
̃𝑧(𝑡) = ̃𝐶𝑧𝑥̃(𝑡) + 𝐷̃𝑧𝑢(𝑡),

with

̃𝐴 = 󰂮
𝐴 0

−𝐶 0󰂯, ̃𝐵 = 󰂮
𝐵2
0 󰂯, ̃𝐵1 = 󰂮

𝐵1
0 󰂯 = 󰂮

𝐼4
0 󰂯, 𝐵𝗋 = 󰂮

0
𝐼𝑝󰂯, (36)

̃𝐶𝑧 = 󰂮
diag(10,10,1,1,0.1,0.1)

013×6 󰂯, 𝐷̃𝑧 = 󰂮
06×13

diag(√0.5𝐼8,√2𝐼5)󰂯
.
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Note that the last two nonzero terms of ̃𝐶𝑧 are associated with the integral
action and are less heavily weighted. Further, the first and second nonzero
terms of ̃𝐶𝑧 are more strongly weighted in comparison with the third and
fourth nonzero terms to provide an adequate quick closed-loop response in
terms of the angular acceleration in roll and yaw. Note also that if the matrix
pair (𝐴,𝐵2) is controllable and the matrix triplet (𝐴,𝐵2,𝐶) has no zeros at
the origin, it can be shown that ( ̃𝐴, ̃𝐵) is controllable [1]. It is assumed the
whole system states are available to the controller. Now the control law can
be considered as:

𝑢(𝑡) = 󰀺𝐹 𝐹𝗋󰀻󰂮
𝑥(𝑡)
𝜉(𝑡)󰂯 ≜ ℱ𝑥̃(𝑡), (37)

where 𝐹 ∈ ℝ𝑚×𝑛 is the SF gain, 𝐹𝗋 ∈ ℝ𝑚×𝑝 is the feed-forward gain due to the
reference signal 𝗋(𝑡). It is also aimed to assign the closed-loop poles in the
half-plane 𝑥 < −𝛼 < −0.1. Imposing no structure on 𝑌 , solving the optimisa-
tion problem in (MSOP), which is augmented with the constraint in (22), the
upper bound of the ℋ2-norm is 10.5907. We then use Algorithm A.1 in the
Appendix with 𝜅 = 0.01, 𝜖 = 0.0001 and exploit the row-sparsity promoting
function (29) and the update rule in (30). By increasing 𝜂 from zero, the
number of non-zero rows of the SF gain decreases; e.g., letting 𝜂 = 2000 the
most row-sparse is suggested by the algorithm, i.e. exploiting only 𝛿𝑠𝑝1−4 and
𝛿𝑟. With the identified structure for 𝑌 ; i.e. 𝒮 (𝑌 ) ⊆ Γ, we turn to the problem
in (SSF), by letting 𝑋 > 0 be a full decision matrix, to obtain a suboptimal
structured SF controller. In this case, the upper bound of ℋ2-norm of the
closed-loop system is 12.4986, which is about 18% worse than that obtained
by the non-structured feedback gain.
Now, we run the RISD algorithm (Algorithm C.1), revised for the row-wise
sparsity pattern recognition by letting Λ𝑙+1 = 󰂁𝑖 󰂌 ∑𝑝

𝑗=1 |𝑌 𝑙
𝑀,𝑖𝑗| > 𝜖𝑙󰂂, replac-

ing col󰀷col(|𝑌𝑀,𝑖𝑗|)𝑝
𝑗=1󰀸

𝑚
𝑖=1 by col󰀷∑𝑝

𝑗=1 |𝑌𝑀,𝑖𝑗|󰀸
𝑚
𝑖=1, defining

𝜇𝑙 =
range󰁻col󰁻∑𝑝

𝑗=1 |𝑌 𝑙
𝑀,𝑖𝑗|󰁼

𝑚

𝑖=1󰁼
𝜌 ⋅ (𝑚 − 1)

, (38)

letting the weighting matrix be diagonal, i.e. 𝑊0 = 𝐼𝑚×𝑚, and changing the
element-wise multiplication by matrix multiplication, i.e. 𝑊𝑜𝑌𝑀 . We also
use the given parameters above in addition to 𝜌 = 1 and 𝜂 = 2000. It can
be found that this algorithm promotes the same row-sparse structure as the
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Figure 5: System states for lateral control

one suggested by the REL1 algorithm. However, it only takes 3 iterations
for the RISD to satisfy the termination criterion, while the REL1 method
terminates in 4 iterations. As can be seen, the RISD algorithm achieves the
solution faster than REL1, which leads to a less computational time. It is
worth noting that although the RISD algorithm gains slight improvements
over REL1 in terms of computation time in this specific example, it has the
potential to improve the computation time in different applications.
Considering a step change of 10 degrees for 𝛽 during 30 to 70 𝑠 as well as
a step change of 5 degrees for 𝜙 during 120 to 160 𝑠 , Figs. 5 and 6 show
the tracking responses of the system when the controller governs 1) all the
control surfaces (i.e. 𝛿𝑙𝑎𝑡 in (32)), and 2) only 𝛿𝑠𝑝1−4 and 𝛿𝑟.

6 Conclusions
This paper proposes a framework for addressing the issue of designing ℋ2
(ℋ∞) optimal (block) sparsely distributed control by utilising only system
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Figure 6: Control efforts for lateral control

sensors’ signals. Besides it is discussed that this framework is capable of
incorporating additional regional pole placement constraints on the feedback
gain matrix as well as the structural constraints. This framework includes an
explicit scheme and an iterative process in order to identify the desired sparse
structure of the feedback gain. To this end, the so-called reweighted ℓ1-norm,
which is known as a convex relaxation of the ℓ0-norm, is utilised to make
a convex problem. Following this, the ℋ2 (ℋ∞) structured static output
(state) feedback design problem is solved using the achieved structure for
the feedback gain. The simulation results are given to show the effectiveness
of our proposed approach. Comparing to the existing literature, while our
framework has the possibility of performing the SOF control design with
additional constraints, the performance of our approach is quite acceptable
when applied to the normal sparse SF gain design problem.
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Appendices

A Reweighted ℓ1 minimisation method for the
sparse SF problem

Using the reweighted ℓ1 norm as a promoting sparsity has been considered
in e.g. [14, 3]. Define the matrix 𝑉 which has the same dimension as 𝑌 ,
and all its entries equal to one. It can be shown that (e.g. see [14, 3]) the
optimisation problem in (SPSF) is equivalent to

minimise trace(𝑍) + 𝜂trace(𝑉 𝑇 𝐺)
subject to (7), (8), 𝒮 (𝑋) = 𝐼 and
− 𝐺 ≤ 𝑊 ∘ 𝑌 ≤ 𝐺, (39)

where 0 < 𝑋 ∈ ℝ𝑛×𝑛, 𝑌 ∈ ℝ𝑚×𝑛, 𝑍 is a slack variable, 𝑊 denotes the weighting
matrix and the last inequality is element-wise with 𝐺 ∈ ℝ𝑚×𝑛 whose entries
are nonnegative. Then the algorithm to solve the above optimisation problem
is as the following,

Algorithm A.1. 1) With given 𝜖 > 0, 𝜅 > 0 and 𝜂 > 0, initialise 𝑊 =
1ℎ×ℎ, 𝑙 = 1 and 𝑌 𝑙 = 0.
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2) Solve the minimisation problem (39) to obtain 𝐹 ⋆ = 𝑌 ⋆𝑋⋆−1
.

3) Update 𝑊𝑖𝑗 = 1

‖𝑌 ⋆
𝑖𝑗 ‖𝐹

+𝜖
and form 𝑊 = [𝑊𝑖𝑗]ℎ×ℎ.

5) If ‖𝑌 ⋆ − 𝑌 𝑙‖ ≤ 𝜅 go to Step 6, else 𝑌 𝑙 = 𝑌 ⋆, 𝑙 = 𝑙 +1 and return to Step
2.

6) Return 𝐹 ⋆ = 𝑌 ⋆𝑋⋆−1
.

Solving Algorithm A.1 gives the most effective sparse structure of 𝐹 .
Then, by ignoring the unnecessary entries in 𝐹 we find the structure matrix
Γ.

B Reweighted ℓ1 minimisation method for the
sparse SOF problem

The optimisation problem in (MSOP) is equivalent to

minimise trace(𝑍) + 𝜂𝑦trace(𝑉 𝑇
𝑜 𝐺𝑜)

subject to (17), (16), 𝒮 (𝑋𝑀 ) = 𝐼 and
− 𝐺𝑜 ≤ 𝑊𝑜 ∘ 𝑌𝑀 ≤ 𝐺𝑜, (40)

where 𝑊𝑜 denotes the weighting matrix, the last inequality is element-wise
with 𝐺𝑜 ∈ ℝ𝑚×𝑝 whose entries are nonnegative and 𝑉𝑜 ∈ ℝ𝑚×𝑝 whose all entries
are equal to one. Besides, to solve the above optimisation problem, the
following algorithm is utilised,

Algorithm B.1. 1) With given 𝜖𝑦 > 0, 𝜅𝑦 > 0 and 𝜂𝑦 > 0, initialise 𝑊𝑜 =
1ℎ×ℎ, 𝑙 = 1 and 𝑌 𝑙

𝑀 = 0.

2) Solve the minimisation problem (40) to obtain 𝐹 ⋆
𝑦 = 𝑌 ⋆

𝑀𝑋⋆−1

𝑀 .

3) Update (𝑊𝑜)𝑖𝑗 = 1
‖(𝑌 ⋆

𝑀 )𝑖𝑗‖𝐹 +𝜖𝑦
and form 𝑊𝑜 = [(𝑊𝑜)𝑖𝑗]ℎ×ℎ.

5) If ‖𝑌 ⋆
𝑀 − 𝑌 𝑙

𝑀‖ ≤ 𝜅𝑦 go to Step 6, else 𝑌 𝑙
𝑀 = 𝑌 ⋆

𝑀 , 𝑙 = 𝑙 + 1 and return to
Step 2.

6) Return 𝐹 ⋆
𝑦 = 𝑌 ⋆

𝑀𝑋⋆−1

𝑀 .
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Solving Algorithm B.1 gives the most effective sparse structure of 𝐹𝑦. By
letting the unnecessary entries of 𝐹𝑦 as zero, we achieve the structure matrix
Γ𝑦.

C RISD method for the sparse SOF problem
at component level

Algorithm C.1. 1) With given 𝜅 > 0 and 𝜂 > 0, initialise Λ0 = {}, 𝑊𝑜 =
1𝑚×𝑝, 𝑙 = 1 and 𝑌 𝑙

𝑀 = 0.

2) Solve the minimisation problem (40) to obtain 𝐹 ⋆
𝑦 = 𝑌 ⋆

𝑀𝑋⋆−1

𝑀 .

3) Update 𝜖𝑙 according to the first jump rule.

𝑖) Sort col󰁻col(|𝑌 𝑙
𝑀,𝑖𝑗|)𝑝

𝑗=1󰁼
𝑚

𝑖=1
→ 𝑦𝑙 in ascending order and let 𝑦𝑙

ℎ be

the magnitude of the ℎ-th largest element of 𝑦𝑙.
𝑖𝑖) Find the smallest ℎ such that 󰁈𝑦𝑙

ℎ+1 − 𝑦𝑙
ℎ󰁈 > 𝜇𝑙, with

𝜇𝑙 =
range󰁻col󰁻col(|𝑌 𝑙

𝑀,𝑖𝑗|)𝑝
𝑗=1󰁼

𝑚

𝑖=1󰁼
𝜌 ⋅ (𝑚𝑝 − 1)

, (41)

with 𝜌 some constants, which is discussed in Subsection 3.3.
𝑖𝑖𝑖) Set 𝜖𝑙 = 𝑦𝑙

ℎ.

4) Update the detected support

Λ𝑙 = 󰂁𝑖,𝑗 󰂌 |𝑌 𝑙
𝑀,𝑖𝑗| > 𝜖𝑙󰂂.

5) Update weights as

𝑊 𝑙
𝑖𝑗 =

⎧⎪
⎨
⎪⎩

1
|𝑌 𝑙

𝑀,𝑖𝑗|
if 𝑖 ∈ Λ𝑙

1
𝜖𝑙

if 𝑖 ∈ Λ𝐶
𝑙 ,

(42)

and form 𝑊 𝑙 = [𝑊 𝑙
𝑖𝑗]𝑚×𝑝.
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6) If ‖𝑌 ⋆
𝑀 − 𝑌 𝑙

𝑀‖ ≤ 𝜅 go to Step 7, else 𝑌 𝑙
𝑀 = 𝑌 ⋆

𝑀 , 𝑙 = 𝑙 + 1 and return to
Step 2.

7) Let the unnecessary rows of 𝑌 ⋆
𝑀 be zero and return Γ⋆ = 𝒮 (𝐹 ⋆

𝑦 ) = 𝒮 (𝑌 ⋆
𝑀 ).
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