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Cooperative Optimal Preview Tracking for Linear Descriptor Multi-

Agent Systems 

Abstract In this paper, a cooperative optimal preview tracking problem is considered 

for continuous-time descriptor multi-agent systems with a directed topology containing 

a spanning tree. By the acyclic assumption and state augmentation technique, it is 

shown that the cooperative tracking problem is equivalent to local optimal regulation 

problems of a set of low-dimensional descriptor augmented subsystems. To design 

distributed optimal preview controllers, restricted system equivalent (r.s.e.) and 

preview control theory are first exploited to obtain optimal preview controllers for 

reduced-order normal subsystems. Then, by using the invertibility of restricted 

equivalent relations, a constructive method for designing distributed controller is 

presented which also yields an explicit admissible solution for the generalized algebraic 

Riccati equation. Sufficient conditions for achieving global cooperative preview 

tracking are proposed proving that the distributed controllers are able to stabilize the 

descriptor augmented subsystems asymptotically. Finally, the validity of the theoretical 

results is illustrated via numerical simulation.  

Keyword Descriptor multi-agent systems; cooperative tracking; optimal preview 

control; distributed control 

1. Introduction

Recently, many researchers are increasingly interested in cooperative control of

multi-agent systems, largely because of extensive applications of this subject in various 

fields, such as flocking behavior of animals [1], formation control of spacecraft [2], 

sensor networks [3], and so forth. As one of the most fundamental issues in this field, 

consensus plays an important role in reaching collective behavior. The crucial idea of 

consensus is to design a distributed control scheme, depending on local neighbor 

information, to drive all the agents to reach an agreement on some variables of interest. 

From this perspective, a number of cooperative control problems, such as swarm [4], 

flocking [5] and containment control [6], can be essentially viewed as consensus 



problems. 

In most previous references about cooperative control problems for multi-agent 

systems, stability is mainly discussed. Optimality is also a primary property, and the 

control protocols with optimality can give rise to desirable properties, e.g., robust 

stability. In [7], the authors considered optimal consensus problem for multi-agent 

systems with single-integrator dynamics based on linear quadratic regulator (LQR). 

However, the optimal control proposed in [7] is not distributed. In [8], the authors 

applied inverse optimality and partial stability theorems to devise distributed protocols 

that can guarantee global optimal regulator performance, and provided sufficient 

conditions for the existence of these protocols. Compared with [8], necessary and 

sufficient conditions were established for global optimal cooperative control in [9], 

where the resulting optimal distributed protocols can make multi-agent systems reach 

desirable convergence rate and damping rate asymptotically. In [10], the authors 

brought together cooperative control, game theory and reinforcement learning to 

formulate the notion of differential graphical games for multi-agent systems, and 

designed a policy iteration algorithm on the basis of local information. More recently, 

the problem proposed in [9] was considered in [11], and the approach of [10] was 

extended to address distributed optimal tracking problems [12,13].  

Descriptor systems (also known as singular systems, semi-state systems or 

differential algebraic systems) are natural representations of the real world. On account 

of their special features, such as regularity and impulse mode [14-16, 38], consensus 

problems for descriptor multi-agent systems are more complicated and challenging than 

those of normal multi-agent systems. The admissible consensus problems for descriptor 

multi-agent systems were discussed in [17-19], where static output feedback and 

dynamical output feedback were utilized in [17] and [18], respectively, and the scenario 

of descriptor heterogeneous multi-agent systems was treated in [19]. By resorting to 

feedforward control technique and reduced-order design, the authors of [20] settled the 

cooperative output regulation problem of singular heterogenous multi-agent systems. 

By employing observability decomposition and eigenvalue decomposition techniques, 

the authors of [21] investigated the admissible output consensus problems for singular 



swarm systems. In [22], the authors considered the guaranteed-cost consensus problems 

for descriptor multi-agent systems under switching topologies, and provided a method 

for achieving a trade-off between consensus regulation performance and control energy 

consumption. In [23], the authors converted containment problems for singular swarm 

systems with time delays into stability problems of a set of low-dimensional time-

delayed systems, and presented sufficient conditions for containment control via linear 

matrix inequality. 

In design of control systems, if whole or parts of the reference signals or (and) 

disturbance signals are known in advance, then the advanced information can be 

exploited to improve the system performance. Such a control system, for which the 

future information is available, is usually designated as preview control system. In [24-

25], state augmentation technology and LQR theory were applied to optimal preview 

tracking problem in discrete and continuous time settings, respectively. Based on [25], 

the authors of [26] considered the scenario that reference signals and disturbance 

signals are previewable simultaneously. However, there exist a few inadequacies for 

LQR control in tackling optimal preview tracking problem. To this end, some 

researchers considered the preview tracking problem from the perspective of 
2H and

H
optimal control. Viewing the reference signal as an additional perturbation, the 

authors of [27] adopted differential game approach to study the H
optimal preview

tracking problem for continuous time-varying systems, and derived necessary and

sufficient conditions for saddle-point equilibrium. In [28], the authors extended the 

approach of [27] to the discrete-time case. The authors of [29] considered the H
 

preview full-information control problem, whose analytic solution was obtained by an 

auxiliary matrix Riccati equation. 
2H preview control problem was studied in [30] 

and [31], where the main difference is that the method of [31] can be utilized to treat 

multiple inputs and multiple preview times cases.  

For linear descriptor system, the optimal preview control problem was studied in 

[32]. For multi-agent systems, the cooperative optimal preview tracking problem was 



first considered in [33]. It is worth pointing out that the controller in [32] was designed 

based on the Second Equivalent Form, and the controller in [33] was not distributed. 

Consequently, the following problems arise naturally: through the invertibility of 

restricted equivalent relations, can the optimal preview controller be derived 

constructively with respect to the matrices of original system? In addition, how can we 

devise distributed optimal preview controllers according to communication topology 

among agents? Motivated by [13], as well as the above questions, the current paper 

solves the cooperative optimal preview tracking problem for impulsive-free descriptor 

multi-agent systems. 

Compared with the results in [32-33], this paper has the following four features. 

Firstly, the cooperative preview tracking problem considered in [33] is only a special 

case of the current paper. Secondly, unlike the centralized control method used in [33], 

the distributed design method is provided in this paper, which has the capability to 

decrease the computation complexity. Moreover, it is observed from the structure of the 

controller that preview compensation is only necessary for a small subset of followers 

that can receive information from the leader directly, but all the followers would 

achieve global cooperative preview tracking by using the distributed optimal controllers. 

Thirdly, the current paper develops the results in [32] from two aspects. One is the 

associated results for reaching preview tracking, which are given based on the matrices 

of descriptor system. The other is the numerical simulation that is performed by 

establishing a trapezoidal iteration scheme from original system. Last but by no means 

least, the distributed design approach is valid for descriptor multi-agent systems that 

are heterogenous, and also whose kinetics are impulse controllability and impulse 

observability.  

Throughout this paper, 
n mR   and 

n mC 
 are the sets of n m  real and complex

matrices, respectively; C 
  denotes the closed right half complex plane; 

diag( 1 2, , , nA A A ) denotes a diagonal matrix with submatrices iA , 1,2, ,i n on 

its diagonal and zero elsewhere; A B  represents the Kronecker product of matrix 



A and B ; n1 nR is the column vector with all the entries be one; ‘iff’ means ‘if and

only if ’; †( )A is the Moore-Penrose inverse of A . 

2. Preliminaries

In this section, some basic definitions and conclusions about descriptor systems

and graph theory are presented, which will be utilized in the following part. 

2.1 Related results of descriptor systems 

Consider a linear descriptor system described by 

( ) ( ) ( )

( ) ( )

Ex t Ax t Bu t

y t Cx t

 



(1) 

where E ， n nA R  ， B n rR  ， m nC R  . We shall assume that ( , )E A  is regular 

and ( )rank E q n  . 

Firstly, some definitions on linear descriptor systems are introduced [34]: 

Definition 1 If there exists a scalar 0s C such that 0det( ) 0s E A  , then

matrix pair ( , )E A  is regular. 

Definition 2 If deg(det( ))sE A rankE   holds for any s C , then matrix pair

( , )E A  is impulse-free.   

Definition 3 If all the roots of det( ) 0sE A    have negative real parts, then 

matrix pair ( , )E A  is stable. 

Definition 4 If ( , )E A   is impulse-free and stable, then matrix pair ( , )E A   is 

admissible.  

Secondly, simple criteria for system analysis are given [34]: 

Lemma 1 ( , )E A  is regular and impulse-free iff 

0E
rank n rankE

A E

 
  

 
(2) 

Lemma 2 ( , , )E A B  is stabilizable iff the matrix  sE A B  has full row rank



for any s C  ; ( , , )E A C  is detectable iff the matrix 
sE A

C

 
 
 

has full column rank 

for any s C  . 

Finally, suppose ( , )E A is regular and impulse-free, then there exist two 

nonsingular matrices U  and S  satisfying 

0

qI
UES

 
  
 

, 
1A

UAS
I

 
  
 

, 
1

2

B
UB

B

 
  
 

,  1 2
CS C C (3) 

Suppose further that ( , )E A   is stable under the circumstance, it follows from 

Definition 3 that 1A is stable as well. 

2.2 Basic concepts about graph theory 

A directed graph (digraph)  ,G V E   is defined to consist of a vertex set 

 1 2, , , Nv v vV and an arc set  E V V . For an arc ( , )i jv v E , iv is called the 

parent vertex and jv the child vertex. All the vertices, who have common child vertex

iv , comprise the neighbor set of vertex iv , denoting as  : ( , )i j j iv v v  N V E . For 

a finite nonempty sequence 1 1 2 1 1k k kv e v v e v     with 1( , )i i ie v v  E

( 1,2, , 1i k  ). If none of the arcs and vertices is same, then   is called a directed 

path. Furthermore, a directed path  , whose origin 1v and terminus kv coincide, is 

called a directed circle. For a digraph G , suppose (1) vertex nv has no parent, (2) 

every other vertex is connected by a directed path starting from nv , (3) G  has no 

directed circles, then G  is called a directed tree and nv a root. In addition, if there

exists an arc subset  E E   such that ( , )V E   is a directed tree, then G   is said to 

contain a spanning tree.  

( )ij N Na D   represents an adjacency matrix whose elements ija

( , 1,2, , )i j N are defined by 0ija  if ( , )j iv v E and 0ija  otherwise. 



Besides, it is assumed that digraph G  has no repeated arcs and self-loop, which means 

0iia  . The Laplacian matrix ( ) N N

ijL l R   is defined as: 
ii ijj i
l a


 and 

ij ijl a  for i j . It is obvious that NL1 =0 . 

3. Problem Formulation

Consider a group of agents consisting of N   followers and one leader. The

dynamics of followers are general descriptor systems given by 

( ) ( ) ( )

( ) ( )

i i i

i i

Ex t Ax t Bu t

y t Cx t

 



,  1,2, ,i N (4) 

where ( ) n

ix t R  is the state, ( ) r

iu t R the control input and ( ) m

iy t R the output 

of thi  follower. The output of the leader is ( ) m

dy t R (i.e., reference signal). 

Denote 

1

2

( )

( )
( )

( )N

x t

x t
x t

x t

 
 
 
 
 
 

, 

1

2

( )

( )
( )

( )N

u t

u t
u t

u t

 
 
 
 
 
 

, 

1

2

( )

( )
( )

( )N

y t

y t
y t

y t

 
 
 
 
 
 

then ( ) nNx t R , ( ) rNu t R , ( ) mNy t R , and the global dynamics of the followers is 

written as 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

N N N

N

I E x t I A x t I B u t

y t I C x t

    


 
(5) 

The fundamental communication topology among 1N   agents can be depicted 

by a digraph G , where vertex 0v denotes leader and 
0i i

v


the thi follower. If thj

( 1,2, ,j N ) follower can sense the leader, then 0( , )jv v exists with weight 0jm   

and 0jm   otherwise. In G  , 1 2( , , , )NM diag m m m   refers to leader adjacent 

matrix, and H L M    expresses the connectivity of G  , where L   is the 

Laplacian matrix corresponding to the communication topology G   of followers. 

Using the properties of L , it can be easily shown that ( ) 0ii ii ih l m   , ij ijh a 

for i j , and also N NH M1 1 . 



For the convenience of studying, we first make an assumption on the digraph G . 

A1: The digraph G  is acyclic and contains a directed spanning tree, taking vertex 

0v  as its root. 

Under assumption A1, the following lemma shows the relationship between the 

matrix H  and digraph G . 

Lemma 3[35] All the eigenvalues of matrix H   have positive real parts iff 

assumption A1 holds. 

Defining the regulated error between output of follower iv and reference signal 

as: 

( ) ( ) ( )i i dt y t y t   , 1,2, ,i N (6) 

The cooperative optimal preview tracking problem is to design distributed optimal 

preview controller ( )iu t  for each follower iv ( 1,2, ,i N ), such that lim ( ) 0i
t

t




( 1,2, ,i N ) for all admissible initial conditions 0(0)i ix x . 

However, for each follower in communication topology G , ( )dy t (and thereby 

( )i t ) is not always measurable. Accounting for the outputs of neighbors of iv , a 

virtual regulated error is defined as below 

( ) ( ( ) ( )) ( ( ) ( ))
i

i ij i j i i d

j

e t a y t y t m y t y t


   
N

(7) 

where ija ( ijN ) and im are elements of matrices D and M , respectively.

Let us express the global virtual regulated error as 

1 2
( ) ( ) ( ) ( )

T
T T T

N
e t e t e t e t   

and using (7), we have 

( ) ( ) ( ) ( ) ( )m m re t H I y t M I y t    (8) 

with ( ) ( )r N dy t y t 1 . Also, defining the global regulated error as

1 2
( ) ( ) ( ) ( )

T
T T T

N
t t t t      



and noting the equality N NH M1 1 , (8) can be further expressed as 

( ) ( ) ( )me t H I t  (9) 

It follows from assumption A1 and Lemma 3 that H   is nonsingular, which, 

together with (9), implies that lim ( ) 0
t

e t


   iff lim ( ) 0
t

t


  . In order to achieve 

cooperative optimal preview tracking, we present the following quadratic performance 

function for systems (4) 

0
1

( ( ) ( ) ( ) ( ) ( ) ( ))
N

T T T

i ei i i xi i i i i

i

J e t Q e t x t Q x t u t R u t dt




   (10) 

where m m

eiQ R  and r r

iR R   ( 1,2, ,i N  ) are positive definite matrices, 

n n

xiQ R  is positive semi-definite matrix with the following form 

1
0

0 0

iT

xi

Q
Q S S  

  
 

, 1,2, ,i N (11) 

in which q q

iQ R  is positive definite matrix and S is given in (3).

Noting that ( )iu t is used in (10) rather than ( )iu t , integration of ( )ie t will be 

contained in distributed controllers [25, 26], which has the ability to eliminate the static 

output errors possibly generated in the tracking process. 

Before approaching the problem, we still need some standard assumptions. 

A2: Reference signal ( )dy t is a piecewise differentiable function with finite 

discontinuity points in [0, ) , satisfying 

lim ( )d d
t

y t y


 , lim ( ) 0d
t

y t


  

where dy is a constant vector. Moreover, ( )dy t is previewable, i.e., the values of 

( )dy  are available for systems (4) in  | rt t l    at each instant t , where rl

is called the preview length. 

A3: ( , )E A  is impulse-free. 



A4: ( , , )E A B  is stabilizable and 
0

A B

C

 
 
 

has full row rank. 

A5: ( , , )E A C  is detectable. 

Remark 1 Assumption A2 implies that ( )dy t   and ( )dy t are bounded in 

[0, ) . Assumption A3 ensures that (3) holds, which helps to reduce the optimal 

regulation problems of descriptor subsystems to those of reduced-order normal ones. 

Assumptions A1, A4 and A5 all together guarantee the existence of distributed optimal 

preview controllers. 

We conclude this section by providing the following lemma, whose proof is 

postponed until appendix A. 

Lemma 4 Consider the following descriptor system 

( ) ( ) ( )Ex t Ax t t  , 0 0( ) nx t x R  (12)

suppose that 

ⅰ ( , )E A  is admissible, 

ⅱ ( ) nt R  is bounded in [0, ) and satisfies lim ( ) 0
t

t


 , 

then system (12) is asymptotically stable. 

4. Design of Distributed optimal preview controllers

4.1 Construction of Augmented system 

In what follows, the approach of preview control theory is utilized to construct an 

augmented system, containing global virtual regulated error ( )e t  and the derivation 

of global state vector ( )x t .  

Differentiating both sides of (5) and (8) with respect to t  gives 

( ) ( ) ( ) ( ) ( )m re t H C x t M I y t    (13) 

( ) ( ) ( ) ( ) ( ) ( )N N NI E x t I A x t I B u t     (14) 

Introducing a new augmented state 



( )
( )

( )

e t
z t

x t

 
  
 

one obtains 

( ) ( ) ( ) ( )rEz t Az t Bu t Dy t   (15a) 

with 

0

0 N

I
E

I E

 
  

 
, 

0

0 N

H C
A

I A

 
  

 
, 

0

N

B
I B

 
  

 
, 

0

NM I
D

 
  
 

    According to the control purpose, the observation equation is taken as 

( ) ( )e t Cz t ,  0C I (15b) 

then (15) is the augmented system. 

In terms of the variables in (15), the quadratic performance function (10) can be 

expressed as follows 

0
( ( ) ( ) ( ) ( ))T T

zJ z t Q z t u t Ru t dt


  (16) 

with ( , )z e xQ diag Q Q , 1 2( , , , )e e e eNQ diag Q Q Q , 1 2( , , , )x x x xNQ diag Q Q Q , 

1 2( , , , )NR diag R R R . 

4.2 Problem Conversion 

In subsection 4.1, by establishing an augmented system, the cooperative tracking 

problem for descriptor multi-agent systems has been transformed into a global optimal 

regulation problem for system (15) relating to performance function (16). However, 

when it comes to the cooperative optimal preview tracking problem for large-scale 

multi-agent systems, computational complexity of controller ( )u t   will increase 

dramatically. In consideration of acyclic assumption in digraph G  , a proper 

transformation will be adopted to convert system (15) to a decoupling form, which can 

be exploited to design distributed optimal preview controllers to implement the 

cooperative preview tracking. 

Based on assumption A1, we rename the vertices in G   such that i j   if 

( , )j iv v E . Hence, H becomes a lower triangular matrix correspondingly. Selecting 



 1 2; ; ; NT T T T , where matrix 
kT is defined as

( 1) 1

( 1) 1

k m

km

k

Nm k n

Nm kn

i

i
T

i

i

 

  



 
 
 
 

  
 
 
 
  

in which ri is thr row of identity matrix ( )N m nI   . Applying the coordinate 

transformation 1z T z to (15a) yields 

( ) ( ) ( ) ( )

( ) ( )

rEz t Az t Bu t Dy t

e t Cz t

   




(17) 

where 

1 2, , ,
T

T T T

N
z z z z    , 

k

k

k

e
z

x

 
  
 

1

1 2( , , , )NE TET diag E E E  , 
0

0
k

I
E

E

 
  
 

1 2( , , , )NB TB diag B B B  , 
0

kB
B

 
  
 

1

1 2( , , , )NC CT diag C C C  ,  0kC I

1 2( , , , )ND TD diag D D D  , 
0

k

k

m I
D

 
  
 

1

211

1

1 ( 1)

N

N N N N

A

A
A TAT

A

A A A







 
 
  
 
 
  

, 
0

0

kk

k

h C
A

A

 
  
 

, 
0

0 0

ij

ij

h C
A

 
  
 

1,2, ,k N , 2,3, ,i N , 1i j 

On the basis of the above transformation, we immediately obtain the following 

two lemmas. 

Lemma 5 Under assumption A1, ( , , )E A B   is stabilizable iff ( , , )k k kE A B



( 1,2, ,k N ) is stabilizable. 

Proof. See Appendix B. 

Lemma 6 Under assumption A1, ( , )E A   is impulse-free iff ( , )k kE A

( 1,2, ,k N ) is impulse-free. 

Proof. Based on Lemma 1, the proof of this result is quite similar to that of Lemma 

5 and so is omitted. 

Remark 2 With Lemma 1 and Lemma 2, it is easy to prove that under assumption 

A1(guaranteeing 0kkh   ), the necessary and sufficient conditions for the impulse-

freeness of ( , )k kE A  and the stabilizability of ( , , )k k kE A B  are assumptions A3 and 

A4, respectively. Hence, the immediate consequences of Lemma 5 and Lemma 6 are 

that 

Corollary 1 Under assumption A1, system (17) is impulse-free and stabilizable iff 

assumptions A3 and A4 hold, respectively. 

Lemma 5 and Lemma 6 ensure the following fact, namely, if there exists a 

controller ( ) ( )k k ku t K z t   such that ( , )k k k kE A B K   is admissible for all 

1,2, ,k N , then similar to the proof of Lemma 5, it is easy to see that ( , )E A BK  

is also admissible by 1 2( ) [ ( ), ( ), , ( )]T T T T

Nu t u t u t u t , where K  is a diagonal matrix

with diagonal element kK . From the above consideration, we make virtual descriptor 

subsystem for each follower iv as follows

( ) ( ) ( ) ( )i vi i vi i vi i dE z t Az t Bu t D y t   , 1,2, ,i N (18)

Where 
T

T T
vi vi vi

z e x    . Denoting 
1 2, , ,

T
T T T

v v v vN
z z z z    and expressing (18) into a 

compact form, which has the same dynamical characteristics as system (17). After 

performing the corresponding coordinate transformation to the performance function 

(16), we set following performance function for each virtual subsystem 

0
( ( ) ( ) ( ) ( ))T T

i vi zi vi vi i viJ z t Q z t u t Ru t dt


  , 1,2, ,i N (19)



with ( , )zi ei xiQ diag Q Q . 

    Thus for, the original cooperative preview tracking problem has been transformed 

into optimal regulation problems under systems (18), for which the optimal controller 

( )viu t   is determined to minimize the performance function (19). Once 

( ) ( ) ( )vi i vi iu t K z t f t  is devised using the method of optimal control, such that the 

closed-loop system of (18) is asymptotically stable, ( ) ( ) ( )i i i iu t K z t f t 

( 1,2, ,i N ) can be applied to system (17) to realize the initial control purpose. 

    Remark 3 This new framework provides a kind of distributed design approach for 

addressing cooperative preview tracking problem. 

For system (18), suppose that assumption A3 holds, then according to (3), there 

exist two nonsingular matrices  

0

0

I
U

U

 
  
 

, 
0

0

I
S

S

 
  
 

such that 

0 0

0 0

0 0 0

i

I

UE S I

 
 
 
  

, 

1 2

1

0

0 0

0 0

ii ii

i

h C h C

UAS A

I

 
 
 
  

, 
1

2

0

iUB B

B

 
 


 
  

, 0

0

i

I

UD

 
 
 
  

(20) 

Denote 

1

2

1

vi

vivi

vi

e

xS z

x



 
 

  
 
 

(21) 

then system (18) is r.s.e. to 

1 2

1 1

2

1 2

1 1

2

( ) ( ) ( ) ( )

( ) ( ) ( )

0 ( ) ( )

vi ii vi ii vi d

vi vi vi

vi vi

e t h C x t h C x t y t

x t A x t B u t

x t B u t

   


 


 

, 1,2, ,i N (22) 

Let 
1

T
T T

vi vivi
e xz     , so it follows from 

2 2( ) ( )vi vix t B u t  that 

1 1 1
( )vi i vi i vi i dz A z B u D y t   (23) 

where 



1

1

1

0

0

ii

i

h C
A

A

 
  
 

, 
1

2 2

1

ii

i

h C B
B

B

 
  
 

, 
1 0
i

I
D

 
  
 

    Noting the characteristic of xiQ in (11) and the coordinate transformation (21), 

the performance function (19) is changed into 

0
( ( ) ( ) ( ) ( ))T T

i vi i vi vi i viJ z t Q z t u t Ru t dt


  , 1,2, ,i N (24) 

where ( , )i ei iQ diag Q Q  is a positive definite matrix. 

    Eventually, the cooperative preview tracking problem for descriptor multi-agent 

systems is converted to optimal regulation problem for reduced-order subsystem (23) 

regarding performance function (24). 

    Remark 4 As compared with the results in [34], it is the special selection of xiQ

that makes the current paper avoid the discussion about the positive definiteness of 

weighted matrices in performance function after r.s.e., thereby reducing the design 

complexity of the controller, and meanwhile, that will also assist to establish the 

conclusions of the optimal preview control based on virtual descriptor subsystem. 

4.3 Design of Distributed Controllers 

Because 
iQ is a positive definite matrix, to ensure the existence of optimal 

preview controllers ( )viu t  ( 1,2, ,i N  ) of systems (23), it is only necessary to 

validate the stabilizability of 
1 1

( , )i iA B . 

Lemma 7 Under assumption A1, 
1 1

( , )i iA B  ( 1,2, ,i N  ) is stabilizable iff 

assumption A4 holds. 

To prove the lemma, we need the following conclusion: 

Lemma 8 For a given i , 1,2, ,i N , 
1 1

( , )i iA B is stabilizable iff ( , , )i i iE A B

is stabilizable. 

Proof. The proof of this lemma is similar to that of Lemma 2 in [32] and so is 

omitted. 

Proof of Lemma 7. The lemma is now a direct consequence of Corollary 1 and 

Lemma 8. 



    Based on what we have proved, the following lemma can immediately hold by 

using the results in [26]. 

Lemma 9 Suppose that 
1 1

( , )i iA B   is stabilizable and 
iQ is positive definite 

( 1,2, ,i N ), then the optimal controller of the system (23) that minimizes quadratic 

performance function (24) is given by 

1

1( ) ( ) ( )T

vi i i i vi iu t R B Pz t f t   , 1,2, ,i N (25) 

where 

 
1 1

1

0
( )

Tr
ci

l
AT

i i i i i df t R B e PD y t d
    (26) 

and iP  is a ( ) ( )m q m q    positive definite matrix, satisfying the algebraic Riccati 

equations (ARE) 

1 1 1 1

1 0T T

i i i i i i i i i iA P PA PB R B P Q    (27) 

Moreover, ciA is a stable matrix defined as follows:

1 1 1

1 T

ci i i i i iA A B R B P  , 1,2, ,i N (28) 

    In terms of Lemma 9, a constructive method is adopted to derive optimal preview 

controllers associated with system (18) and quadratic performance function (19). 

Theorem 1 suppose that ( , )i iE A   is impulse-free, ( , , )i i iE A B is stabilizable, 

and also 1 2( , , )i i ziE A Q  is detectable, then the optimal controller of the system (18) that 

minimizes quadratic performance functions (19) is 

1( ) ( ) ( )T

vi i i i vi iu t R B X z t g t   (29) 

where 

 
ˆ1

0
( )

r
i

l
AT T T

i i i i i i i dg t R B X SM e S X D y t d
    (30) 

with 1ˆ [( ) ]T T T T

i i i i i i i iA S A X B R B X SM   , 
†

i iM M , T T

i i iM S E X S , and iX meets 

the generalized algebraic Riccati equation (GARE) 

1 0T T T T

i i i i i i i i i ziA X X A X B R B X Q    (31a) 

0T T

i i i iE X X E  (31b) 



Alternatively, matrix pair 1( , )T

i i i i i iE A B R B X ( 1,2, ,i N ) is admissible. 

    Proof. See Appendix C. 

    Theorem 1 not only offers an optimal preview controller based on system (18), but 

its proof also provides a sort of explicit expression for the admissible solution of GARE 

(31). Actually, to design such a kind of controller, the key part is to obtain an admissible 

solution of GARE (31). In [36], a method for solving GARE (31) is presented, but the 

procedure relies heavily on the Jordan decomposition of a Hamilton matrix relating to 

(31), and also on a negative semi-definite solution of a low dimension ARE. Compared 

with [36], the method proposed in the current paper is easier to operate. 

Under assumption A1, it has proved that assumptions A3 and A4 are necessary and 

sufficient conditions for the impulse-freeness of ( , )i iE A   and stabilizability of 

( , , )i i iE A B  respectively. To guarantee the existence of admissible solution of GARE 

(31), it still needs to prove the detectability of 1 2( , , )i i ziE A Q  . The following lemma 

shows its sufficient condition. 

Lemma 10 Under assumption A1, 1 2( , , )i i ziE A Q  ( 1,2, ,i N  ) is detectable if 

assumption A5 holds. 

Proof. The argument is analogous to that of lemma 5.3 in [26] and so is omitted 

here. 

4.4 Stability of the Closed-loop System 

The stability of the closed-loop system of (18) is discussed below. By substituting 

controller (29) into virtual subsystem (18), we obtain  

1( ) ( ) ( ) ( )T

i vi i i i i i vi iE z t A B R B X z t t   (32) 

where 

( ) ( ) ( )i i i i dt B g t D y t   , 1,2, ,i N

    Theorem 2 Suppose that assumptions A1-A5 hold, then closed-loop system (32) 

is asymptotically stable. 

Proof. According to Lemma 4, if 1( , )T

i i i i i iE A B R B X  ( 1,2, ,i N  ) is 



admissible, furthermore, ( )i t   is bounded on [0, )   and satisfies lim ( ) 0i
t

t


  , 

then the result follows immediately. 

Firstly, assumptions A1, A3-A5 guarantee that the conditions of Theorem 1 hold, 

therefore 1( , )T

i i i i i iE A B R B X is admissible. 

The next thing is to prove the boundedness of ( )i t on [0, )   and 

lim ( ) 0i
t

t


 . From the proof of Theorem 1, we know that ( ) ( )i ig t f t . Due to the 

stability of 
ciA , there exist constants W and 0  , such that ciA

e We
  holds 

for all 0  . Moreover, assumption A2 implies that there exists a constant K  such 

that ( )dy t K , hence 

( ) ( ) ( )i i i i d
t B g t D y t  

( ) ( )i di i
g t y tB D 

( )ii i
f t KB D 

1 1

1

0
( )

Tr
ci

l
T A
ii i i di i

B d KR e PD y tB D
  

0

rl

i
W e d K D

  
1

[ ( 1)]rl

i
W e K D






   

where 
1 1

1 T

i i iii
W B P D WKRB

  , and 
1

[ ( 1)]rl

i
W e K D






   is a constant, 

which means that ( )i t  is bounded on [0, ) . In addition, by using lim ( ) 0d
t

y t


  

and expression of ( )ig t in (30), it is straightforward to show that lim ( ) 0i
t

t


  holds. 

This completes the proof of Theorem 2. 

    Furthermore, it follows from the conclusion of Theorem 2, as well as the 

relationship between systems (17) and (18) that controller 

1 2( ) [ ( ), ( ), , ( )]T T T T

Nu t u t u t u t (33) 

can stabilize the state of closed-loop system of (17) to zero equilibrium point 

asymptotically, where  



1( ) ( ) ( )T

i i i i i iu t R B X z t g t   , 1,2, ,i N (34) 

By the relationship between systems (15) and (17), we know that the closed-loop 

system of (15) is also asymptotically stable by using the following controller 

1( ) ( ) ( )T Tu t R B T XT z t g t  

where  1 2, , , NX diag X X X and  1 2( ) ( ), ( ), , ( )Ng t diag g t g t g t . The above

result implies that lim ( ) 0
t

e t


 , that is to say, controller (34) enables the multi-agent

system (4) realize the cooperative optimal preview tracking. After integrating (34) on 

[ ( ), )rl t  , where   is a suitable small positive number, we summarize what we 

have proved as the following theorem. 

Theorem 3 Suppose 

(a) A1-A5 hold;

(b) eiQ , iR and iQ , 1,2, ,i N , are positive definite matrices,

and let ( ) 0iu t  , ( ) 0dy t  for 0t  , then the distributed optimal preview controller, 

which solves the cooperative preview tracking problem for descriptor multi-agent 

systems (4), is given by  

0
( ) ( ) ( ) ( )

t

i ei i xi i iu t K e d K x t g t     , 1,2, ,i N (35) 

where ( ) r

ig t R is a preview compensation satisfying 

ˆ1

0
( ) ( )

r
i

l
AT T T

i i i i i i i dg t R B X SM e S X D y t d
    (36)

and 
1 T

ei i i eiK R B X , 
1 T

xi i i xiK R B X , =[ ]i ei xiX X X . Alternatively, the expressions 

of iX , ˆ
iA and iM refer to Theorem 1. 

Remark 5 Noting that 
0

i

i

m I
D

 
  
 

in (36), 1,2, ,i N  , then based on the 

definition of im and Theorem 2, we know that it is only necessary to add preview

compensation terms for a small part of followers, then the whole followers will achieve 

cooperative optimal preview tracking globally by exploiting distributed controller (35). 



Remark 6 In essence, the distributed controller (35) is a classical state feedback 

controller. However, when the full set of the states are not measurable, the theory of 

this paper cannot be used directly and distributed estimation through observer method 

will be considered for preview tracking protocol design. Moreover, there might be time 

delay exists in the communication of the agents, which makes the observer design more 

challenging. Recently, functional observers and unknown input functional observers 

proposed in [39-41] will be very useful for this application.  

4.5 Discussion 

The design method proposed in current paper has excellent scalability.  

Firstly, suppose that the multi-agent systems (4) are heterogeneous, namely, the 

dynamic of each follower iv is described as follows: 

( ) ( ) ( )

( ) ( )

i i i i i i

i i i

E x t A x t Bu t

y t C x t

 



,  1,2, ,i N (37) 

where ( ) in

ix t R   denotes the state of thi   follower, we shall also assume that 

( )i i irank E q n  , 1,2, ,i N . In terms of the cooperative preview tracking problem 

for systems (37), the main procedures are almost identical with that for systems (4), the 

major change is reflected in two aspects. one is the substitution of 

0

0
i

i

I
E

E

 
  
 

, 
0

0

ii i

i

i

h C
A

A

 
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 

, 
0

i

i

B
B

 
  
 

, 
0

0
i

i

I
S

S

 
  
 

for iE , 
iA , iB and 

iS in (18). The other is to perform r.s.e. to each descriptor virtual 

subsystem (18) corresponding to (37). Thus, the distributed optimal preview controller 

for solving cooperative preview tracking problem is given by 

0
( ) ( ) ( ) ( )

t

i ei i xi i iu t K e d K x t g t      , 1,2, ,i N (38) 

where 

ˆ1

0
( ) ( )

r
i

l
AT T T

i i i i i i i i i dg t R B X S M e S X D y t d
     (39) 

Secondly, suppose that systems (4) are not impulse-free, but satisfy  

A6: Systems (4) are impulse controllable and impulse observable. 

Now, in order to tackle the cooperative preview tracking problem under the 



framework proposed in the current paper, pre-feedback is needed to transform systems 

(4) to impulse-free systems. It has proved in [34] that there exist output feedback

controllers such that the closed-loop systems of (4) are impulse-free iff systems (4) are 

both impulse controllable and impulse observable. Therefore, we first need to design 

pre-feedback controllers for each follower in (4) as follows: 

( ) ( ) ( )i i iu t Ky t v t  , 1,2, ,i N (40) 

where ( ) m

iv t R is new auxiliary input. Substituting (40) into systems (4) gives 

( ) ( ) ( ) ( )

( ) ( )

i i i

i i

Ex t A BKC x t Bv t

y t Cx t

  



(41) 

Compared with Theorem 3, we present the following result 

Corollary 2 Suppose 

(c) A1, A2 and A4-A6 hold;

(d) eiQ , iR and iQ , 1,2, ,i N , are positive definite matrices,

and let ( ) 0iu t  , ( ) 0dy t  for 0t  , then the distributed optimal preview controller, 

which solves the cooperative preview tracking problem for descriptor multi-agent 

systems (4), is given by  

0
( ) ( ) ( ) ( ) ( )

t

i ei i xi i iu t K e d KC K x t g t      , 1,2, ,i N (42)

where ( ) r

ig t R is a preview compensation satisfying 

ˆ1

0
( ) ( )

r
i

l
AT T T

i i i i i i i dg t R B X SM e S X D y t d
    (43)

Remark 6 According to systems (41), all the 
iA in systems (18) are needed to be

replaced by 
0

0

ii

i

h C
A

A BKC

 
  

 
. Moreover, due to the fact that output feedback does 

not change the stabilizability and detectability of systems (41), thus, under assumption 

A1, assumption A4 is still the necessary and sufficient condition for the stabilizability 

of ( , , )i i iE A B , and assumption A5 the sufficient condition for the detectability of 

1 2( , , )i i ziE A Q . 



Thirdly, if the virtual regulating error ( )ie t has the following form 

1
( ) ( ( ( ) ( )) ( ( ) ( ))

i

i ij i j i i d

jii

e t a y t y t m y t y t
h 

   
N

, 1,2, ,i N

then global virtual regulating error is 

( ) ( ) ( )me t H I t 

where H DH  , 
11 22

1 1 1
, , ,

NN

D diag
h h h

 
  

 
 . Noting that the all of the diagonal 

elements of H   are 1 , so iE , 
iA , iB in (18) are changed into 

0

0
i

I
E E

E

 
   

 
 , 

0

0
i

C
A A

A

 
   

 
, 

0
iB B

B

 
   

 
. Furthermore, let the weighted matrices of 

performance function (10) be the same, namely, ei eQ Q , iR R , xi xQ Q , 

1,2, ,i N , then the gain matrices eiK and xiK with respect to controller ( )iu t

would also be the same, which will decrease the calculation complexity significantly. 

Finally, if E  in systems (4) is nonsingular, then the problem would degenerate 

into the cooperative preview tracking problem for linear multi-agent systems, which 

has been investigated in [33]. After establishing virtual subsystems (18) for each 

follower, the problem will be handled by pre-multiplying 1

iE on both sides of (18) 

rather than performing r.s.e. to iE and 
iA . Consequently, it avoids not only the 

redundant coordinate transformations, but also the constructive process needed in 

Theorem 1. The results about distributed optimal preview controllers in this case are 

immediately obtained by analogy to Lemma 9. 

5. Numerical Simulation

In this section, the effectiveness of the distributed controllers will be demonstrated

by a simulation example. 



Figure 1. Communication topology of multi-agent systems 

Consider a multi-agent system consisting of six followers and one leader, the 

dynamics of followers are (4), where 

1 0
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Based on Lemma1 and Lemma 2, it is easy to see that the E , A , B  and C

satisfy assumptions A3-A5. Alternatively, assuming that ( )dy t is previewable.

Figure 1 shows the communication topology G  among followers and the leader. 

It is observed that the digraph G   contains a spanning tree and the matrix H

associated with G  is 

1 0 0 0 0 0

1 2 0 0 0 0

1 0 1 0 0 0

0 1 0 1 0 0

0 1 1 0 2 0

0 1 0 1 0 2

H

 
 

 
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  
 

  
 

  

Because ( , )E A  is impulse-free, a direct computation gives rise to the matrices 

U and S , 



1 1 0

0 0 0

0 0 1

U

 
 
 
  

, 

1 0 0

1.5 1 1

0 1 0

S

 
  
 
  

In performance function (10), weighted matrices are chosen as 

1 2 6{ , , , } {30.0,10.0,37.5,37.5,37.5,27.5}e e ediag Q Q Q diag

1 2 6 2{ , , , } {0.01,0.01,0.01,0.01,0.01,0.01}diag Q Q Q diag I 

1 2 6{ , , , } {0.275,0.225,0.225,0.225,0.225,0.225}diag R R R diag

The above selection ensures that all the conditions of Theorem 3 hold, then there exist 

distributed controllers such that the followers can track the leader as accurately as 

possible. According to Lemma 9 and Theorem 1, and using Matlab, it can be obtained 

that 

1 2 6{ , , , } { 10.4447, 6.6667, 12.9099, 12.9099, 12.9099, 11.0554}e e ediag K K K diag      

 1 24.4026 0xK  ,  2 27.5104 0xK 

 3 27.0776 0xK  ,  4 27.0776 0xK 

 5 38.0993 0xK  ,  6 35.2916 0xK 

To perform simulation experiment, we intend to employ the trapezoidal method to 

establish the iterative scheme. Specifically, substituting controllers (35) into systems (4) 

yields  

( ) ( ) ( ) ( )i xi i iEx t A BK x t t  

where 

0
0

( ) ( ) ( )
t

i ei i xi i it BK e d BK x Bg t     

According to Euler method and backward Euler method, the above closed-loop system 

can be discretized into the following two forms, namely 

( ) ( )
( ) ( ) ( )i i

xi i i

x t T x t
E A BK x t t

T


 
  

and 

( ) ( )
( ) ( ) ( )i i

xi i i

x t T x t
E A BK x t T t T

T


 
    



where T  denotes iteration step and is selected as 0.1T   in current paper. It can be 

seen that T   ensures the invertibility of ( )
2

xi

T
E A BK   . Adding the above two 

formulas together and carrying on simple calculation immediately gives the following 

trapezoidal iterative scheme 

1

( ) ( ) ( ) ( ) ( ( ) ( ))
2 2 2

i xi xi i i i

T T T
x t T E A BK E A BK x t t t T 


    

            
    

It needs to point out that the integrals in ( )i t will be dealt with by the original 

definition of the integral. 

Select the initial states of six followers as 

1

0.03
(0)

0.03
x

 
  

 
, 2

0.07
(0)

0.09
x

 
  

 
, 3

0.13
(0)

0.15
x

 
  

 

4

0.07
(0)

0.04
x

 
  
 

,  5

0.10
(0)

0.17
x

 
  
 

, 6

0.03
(0)

0.06
x

 
  
 

Figure 2 to 4 show the output trajectories of the multi-agent systems (4) with the 

distributed controllers (35) for different preview lengths, i.e., 0.0( )rl s , 0.1( )rl s , 

0.2( )rl s . 

Figure 2. Output trajectories of multi-agent systems (4) for 0.0( )rl s



Figure 3. Output trajectories of multi-agent systems (4) for 0.1( )rl s

Figure 4. Output trajectories of multi-agent systems (4) for 0.2( )rl s



Figure 5. Output trajectories of the first agent with (35) for different preview lengths 

Figure 6. Regulated outputs of the first agent under different preview lengths 

It can be seen that outputs of followers will converge to that of the leader no matter 

whether there exists preview compensation or not, which demonstrates the 

effectiveness of the designed distributed optimal preview controllers. Moreover, 

compared with figures 2-4, we find that the followers can achieve cooperative preview 

tracking faster and more accurately with appropriate increase of the preview length. 



Figure 5 indicates the output response of the first follower for different preview 

lengths. It can be observed that the adjusting time is reduced significantly and the 

stability is reached faster for the system under the distributed optimal preview 

controllers. Figure 6 shows the tracking error of the first follower, which confirms the 

analysis above. 

6. Conclusion

This paper has analyzed the cooperative preview tracking problem for impulse-

free descriptor multi-agent systems, which contains a directed spanning tree without 

cycle. It has shown that the cooperative preview tracking problem are reached via 

distributed control, and the distributed optimal preview controllers have been obtained 

constructively based on the matrices of original systems rather than those of the 

reduced-order ones. Furthermore, by investigating the asymptotic stability of closed-

loop descriptor subsystems, the sufficient conditions have also been presented for 

cooperative tracking consensus. It is worthy to mention that the distributed design 

framework can be extended to solve cooperative preview tracking problem for 

heterogeneous descriptor multi-agent systems, and also the dynamics of followers 

satisfying impulse controllable and impulse observable. Simulation results have 

indicated the superiority of the developed controllers. 
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Appendices 

We prove Lemma 4 by first introducing the following conclusion. 

Lemma 11 [37] Consider a continuous-time linear system 

0 0

( ) ( ) ( )

( ) n

x t Ax t t

x t x R

 


 

if 



ⅰ A  is stable, 

ⅱ ( ) nt R   is bounded in [0, )  and satisfies lim ( ) 0
t

t


 , 

then the system is asymptotically stable. 

A. Proof of Lemma 4

Proof. If ( , )E A   is admissible, then according to formula (3), there exist two

nonsingular matrices U  and S  such that 

0

0 0

I
UES

 
  
 

, 
1 0

0

A
UAS

I

 
  
 

where 1A is a stable matrix. By letting 
1 1

2

x
S x

x

 
 

 
 , system (12) is r.s.e. to the 

following systems 

1 1 1 1x A x U   ,   1

10 00x S xI
 (A.1) 

2 2x U   ,   1

20 0 2 (0)0x S x UI    (A.2) 

with 
1

2

U
U

U

 
  
 

, 1

q nU R  , 
( )

2

n q nU R   . 

Since system (A.1) meets all the conditions needed in Lemma 11, it follows that 

system (A.1) is asymptotically stable. Alternatively, from formula (A.2), we have 

2 2 2x U U  

It follows from condition ⅱ that 2x stabilizes to 0  asymptotically. 

Based on the asymptotic property of 1x and 2x , and 

1

2

x
Sx

x

 
  

 

1

2

x
S

x

 
  

 
 1 2x xS 

It is evident to see that the lemma holds. 

B. Proof of Lemma 5

Proof. Since nonsingular linear transformation does not change the stabilizability

of linear descriptor system, it follows that ( , , )E A B   and ( , , )E A B   have common 

stabilizability. Thereupon, it suffices to prove the following equivalent proposition, i.e., 



under assumption A1, ( , , )E A B   is stabilizable iff ( , , )k k kE A B  ( 1,2, ,k N ) is 

stabilizable. According to the conclusion of Lemma 2, the proposition can be further 

expressed as: under assumption A1, sE A B     is of full row rank iff

k k ksE A B   ( 1,2, ,k N ) is of full row rank for all s C  . The property that 

elementary transformation does not change the rank of a matrix will be used repeatedly 

in the following proofs. Noting that

11

21 22

1 2

0

0

0 0

0 0 0

0 0 0

0 0 0 0 0

N N NN

sI h C

sE A B

h C sI h C

sE A BsE A B

h C h C sI h C

sE A B

 
 


 
  
 

     
 
 

   
  

Performing simple column exchange for the above formula gives 

11

21 22
def

1 2

0

0

0 0 0

( )0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

N N NN

sI h C

sE A B

h C sI h C

V ssE A B

h C h C sI h C

sE A B

 
 


 
  
 

 
 
 

   
  

The rank of ( )V s  will be discussed in two cases, i.e., 0s  , as well as Re( ) 0s   

and 0s  . 

For 0s   , using 0iih  (invoking assumption A1), the block matrix jih C

( 1j i  ) that has the same column pivot element iih C will be eliminated. That is 



11

22

0 0

0

0 0

0

0 0

0

NN

h C

A B

h C

A B

h C

A B

 
 


 
 
 

 
 
 

 
 
 

It is evident that (0)V  has full row rank iff 

0kkh C
rank m n

A B

 
  

 
, (full row rank) 1,2, ,k N  (B.1) 

For Re( ) 0s   and 0s  , the matrix ijh C ( 1i j  ) that is on the same row 

with sI (nonsingular) can be eliminated. Then the result is 

11

22

0

0

0

0

0

0

NN

sI h C

sE A B

sI h C

sE A B

sI h C

sE A B

 
 


 
 
 

 
 
 

 
 
 

It can be observed that ( )V s  has full row rank for Re( ) 0s   and 0s   iff 

0

0

kksI h C
rank m n

sE A B

 
  

 
, (full row rank) 1,2, ,k N   (B.2) 

According to Lemma 2, (B.1) together with (B.2) constitutes the necessary and 

sufficient condition for the stabilizability of ( , , )k k kE A B  ( 1,2, ,k N ). This 

completes the proof of Lemma 5. 

C. Proof of Theorem 1

Proof. Since the conditions of Theorem 1 can ensure that Lemma 9 holds, it

follows that ARE in Lemma 9 has a unique positive definite solution matrix iP . In 

consistent with the partition 
1i

A , partition iP as 



11 12

12 22

i i

i T

i i

P P
P

P P

 
  
  

, 1,2, ,i N

then (27) can be expressed as 

11 12 11 12 11 12

12 22 12 22 12 22

1

1 1 1

0 0 0

0

i i i i i iii

T T T T T

ii i i i i i i

P P P P P Ph C

h C A AP P P P P P

        
         

            

11 12

12 22

2 2 1

2 2 1

1

0
0

0

i i eiii T T T

i ii T

ii i

P P Qh C B
R h B C B

QB P P


    

         
     

(C.1) 

    The trick of the proof is to expand (C.1) into the following form equivalently 

11 12 11 12 11 12

12 22 12 22 12 22

1

1 1 1

0 0 00 0 0 0 0

0 0 0 0 0 0

0 0 0 00 0 0 0 0 0 0 0 0

i i i i i iii

T T T T T

ii i i i i i i

P P P P P Ph C

h C A P P P P A P P

I I

        
                 
                

11 12

12 22

2 2

1

1 2 2 1 2

2

0 0 0

00 0 0

0 0 00 0 0

i iii ei

TT T T T
i i i iii

P Ph C B Q

RB P P Qh B C B B

B



    
            
        

(C.2) 

and the key equalities are 

2 1 2 1

1 1

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

ii ii ii iiI h C h C h C h C

I A A

I I I

     
     
     
          

(C.3a) 

2 22

1 1

2 2

00

0 0

0 0

iiii
h C BI h C

B BI

B BI

     
     
    
         

(C.3b) 

Substituting (C.3) into (C.2) gives 

11 12 11 12

12 22 12 221 1

2 2

0 00 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0

i i i i

T T T T

ii i i i i

T T

ii ii

P P P PI

h C A I P P P P

h C I h C I

      
      

      
             

11 12

12 22

2 1 2 2

1

11

2

0 00 0 0

0 0 0 0 0 0 0

0 0 0 0 0 00 0 0

i iii ii ii ii

T

ii i

P PI h C h C h C I h C

RBI A P P I

BI I I



         
                 
                

11 12

12 221 2

2

00 0 0 0

0 0 00 0 00

0 0 0 00 0 0

i i ei

TT T
i i i

T

ii

P PI Q

I P P QB B

h C I

    
            
         

(C.4) 

Pre-multiplying (C.4) by TS  and post-multiplying by its transposition, and then 



putting 

11 12

12 22

1

2

00 0

0 0 0

0 0 0 0

i i

T T

i i i

T

ii

P PI

X U I SP P

h C I



  
  

   
     

(C.5) 

Consequently, a formula with respect to iX is obtained based on the restricted 

equivalent forms of 
iA and iB in (20), namely 

1 0T T T T

i i i i i i i i i ziA X X A X B R B X Q   

Furthermore, noting 

11 12

12 22

2
0 0 0 0

=0 0 0 0 0

0 0 0 0 00 0 0

i i ii

T

i i

P P I h C I

P P I I

I

     
     
     
         

11 12

12 22

2

00 00 0

0 00 0 0

00 0 0 0 0 0

i i

T

i i

T

ii

P PII

II P P

h C I

   
   
   
         

(C.6) 

and repeating the preceding operation on it gives 

11 12

12 22

2

1 1

0 0 0 0

=0 0 0 0 0

0 0 0 0 00 0 0

i i ii

T T

i i

P P I h C I

S UU SP P I I

I

  

     
     
     
         

11 12

12 22

1

2

00 00 0

0 00 0 0

00 0 0 0 0 0

i i

T T T T

i i

T

ii

P PII

S U U I SI P P

h C I

  

   
   
   
         

(C.7) 

then according to the restricted equivalent form of iE in (20), (C.7) can be written as

T T

i i i iE X X E

the conclusion about 0T

i iE X  follows from (C.6), and the proof of admissibility 

of 1( , )T

i i i i i iE A B R B X can refer to Corollary 5.3.1 in [36]. 

Next, we get the expression of ( )ig t from ( )if t in Lemma 9. Before expanding 

( )if t , 1,2, ,i N , we first obtain a key formula as follows based on (C.5) 



11 12

12 22

2

00 0

0 0 0

0 0 0 0

i i

T T

i i i

T

ii

P PI

I U X S P P

h C I



  
  

   
     

(C.6) 

Pre-multiplying both sides of (C.6) by 

0 0

0 0

0 0 0

I

I

 
 
 
  

yields

11 12

12 22

00 0

0 0 0

0 0 0 0 0 0

i i

T T

i i i

P PI

U X SI P P


  
      
     

(C.7) 

Applying restricted equivalent form of iE to (C.7) gives

11 12

12 22

0

0

0 0 0

i i

T T T

i i i i

P P

S E X S P P

 
 

  
 
 

(C.8) 

Denoting T T

i i iM S E X S , then 

11 12

12 22

0

0

0 0 0

i i

T

i i i

P P

M P P

 
 

  
 
 

(C.9) 

We now turn to the expansion of ( )if t . As iP is a positive definite matrix, so (26) is 

equivalent to 

1 1

1 1 1

0
( ) exp( ) ( )

rlT T

i i i i i ci i i i i df t R B PP A PP PD y t d      (C.10) 

With the derivation process illustrated by (C.1)-(C.7) and the expression of (C.9), 

1

1 1T

i i i iR B PP   , 1T

ci i iA PP   and 
1i iPD can be easily expressed as 

1

1

TR B XP †

iM , 

1[( ) ]T T T T

i i i i i iS A X B R B X S
†

iM and T T

i iS X D , respectively. Then (30) is a direct 

consequence of what we have proved. 

Thanks to 

1 1

2

1 1 1

2

( )0
( ) = ( )

0 0

viiT T T T

i i i vi i i i i i vi

vi

z tP
R B Pz t R B B R B X z t

x
  

  
     

   

It follows that the expression of ( )viu t   in (25) can be expanded into that in (29)

eventually, which completes the proof of Theorem 1. 
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