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Abstract
This work addresses the problem of path tracking control of a suspended load using a
tilt-rotor UAV. The main challenge in controlling this kind of system arises from the dynamic
behavior imposed by the load, which is usually coupled to the UAV by means of a rope,
adding unactuated degrees of freedom to the whole system. Furthermore, to perform the
load transportation it is often needed the knowledge of the load position to accomplish the
task. Since available sensors are commonly embedded in the mobile platform, information
on the load position may not be directly available. To solve this problem in this work,
initially, the kinematics of the multi-body mechanical system are formulated from the load’s
perspective, from which a detailed dynamic model is derived using the Euler-Lagrange
approach, yielding a highly coupled, nonlinear state-space representation of the system, affine
in the inputs, with the load’s position and orientation directly represented by state variables.
A zonotopic state estimator is proposed to solve the problem of estimating the load position
and orientation, which is formulated based on sensors located at the aircraft, with different
sampling times, and unknown-but-bounded measurement noise. To solve the path tracking
problem, a discrete-time mixed H2/H∞ controller with pole-placement constraints is designed
with guaranteed time-response properties and robust to unmodeled dynamics, parametric
uncertainties, and external disturbances. Results from numerical experiments, performed in
a platform based on the Gazebo simulator and on a Computer Aided Design (CAD) model
of the system, are presented to corroborate the performance of the zonotopic state estimator
along with the designed controller.
Keywords: Load transportation, Tilt-rotor UAV, Zonotopic state estimation, Path tracking
control
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1. Introduction

The problem of slung load transportation arises in a variety of essential tasks, such as
transportation of containers in harbors [1], aerial delivery of supplies in search-and-rescue
missions [2], and landmine detection [3]. The suspended load is usually connected to the
mobile platform by means of a rope, considerably changing its dynamic behavior and adding
unactuated degrees of freedom to the whole system. Moreover, the rope is a non-rigid body
and is not always taut, which increases the task challenge. Several studies can be found
in the literature, concerning different modeling approaches and control strategies for load
transportation using overhead cranes [4], robotic manipulators [5], and aerial vehicles [6, 7].

An important issue in slung load transportation is the recurrent necessity of knowing the
load position to accomplish the task, mainly when precise positioning of the load is required.
Since available sensors are often embedded in the mobile platform, information on the load
position may not be directly obtained. The problem of estimating the load position then
arises, being commonly addressed through visual systems and Bayesian state estimators. The
Kalman filter is employed in [8] for state estimation of a quadrotor unmanned aerial vehicle
(UAV) with suspended load, in which measurements are provided by external cameras and
sensors embedded at the aircraft. Considering a helicopter with suspended load platform, [9]
designs a data fusion algorithm based on the unscented Kalman filter (UKF) to estimate the
load’s position and velocity with measurements from an inertia measurement unit (IMU)
and a vision system, both located at the helicopter. In [10], algorithms based on the UKF
are proposed for estimation of the full state vector of a helicopter with suspended load,
with measurements provided by a Global Positioning System (GPS), a magnetometer, a
camera, an IMU on the helicopter and another one on the load. Kalman filtering algorithms
require knowledge on statistical properties of existing process and measurement disturbances,
which may not be easily obtained. In view of the exposed, the present work pursues set-
membership estimation approaches, which require knowledge only on bounds of existing
disturbances. These techniques are based on the construction of sets that include, with
guarantee, the system states consistent with available measurements [11, 12]. This work
extends the zonotopic state estimation strategy proposed in [11] to receive measurements
provided by sensors with different sampling times.

The versatility and autonomous operation of UAVs are useful advantages in aerial load
transportation. The main control design objectives in the literature include path tracking of
the UAV with load swing attenuation [6, 13–19], obstacle avoidance [20, 21], transportation by
multiple aircrafts [22, 23], and trajectory tracking of the suspended load [24–26]. This paper
focuses on the latter, which is the appropriate goal in tasks requiring precise maneuvering of
the load. In contrast to the swing attenuation problem, the knowledge on the load position
is usually required for such purpose. A model-free, open-loop approach based on trajectory
generation by machine learning is proposed in [24] for path tracking of a suspended load
using a quadrotor UAV. However, the lack of a feedback structure prevents compensation of
external disturbances affecting the load. A nonlinear cascade control strategy is designed in
[25], based on model decoupling, for trajectory tracking of a suspended load using a quadrotor
UAV. Nevertheless, compensation of unmodelled dynamics and external disturbances is not
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addressed in the proposed strategy, and convergence issues are well known for cascade control
systems. Assuming the aircraft as a system actuated by total thrust and orientation, [26]
proposes another nonlinear solution to the problem of suspended load path tracking using
a quadrotor UAV. Nevertheless, such assumption is valid for a very limited repertory of
mechanical systems, which do not comprise the convertible UAV configuration addressed by
this work.

Most of the unmanned aerial vehicles used in load transportation tasks are in helicopter and
quadrotor configurations. These rotary-wing UAVs have vertical take-off and landing (VTOL)
and hovering capabilities, and achieve high maneuverability in low velocities. However, due
to their limited flight envelope, such UAVs are not appropriate for missions that require
long distance traveling, such as deployment of supplies to risky zones. To overcome such
constraint, researches are looking into the design of small-scale convertible aircrafts, being
the tilt-rotor configuration among the most popular ones [27–29]. Provided with both
fixed and rotary wings, tilt-rotor UAVs achieve an enlarged flight envelope by switching
between helicopter and airplane flight-modes through tilting of the thrusters. However,
such advantages come with several design and control challenges, since these aircrafts are
complex, underactuated mechanical systems with highly coupled dynamics. Additionally,
when these UAVs are connected to a payload through a rope, the dynamic behavior of the
system varies due to the load’s swing, which can destabilize the whole system if it is not
well attenuated. A model predictive control (MPC) strategy is designed in [16] for path
tracking of a tilt-rotor UAV with suspended load, in which the aircraft tracked a desired
trajectory, while the load remained stable. A cascade strategy composed of three levels of
feedback linearization controllers is proposed in [14], for trajectory tracking of a tilt-rotor
UAV with load swing attenuation. The problem of path tracking of a suspended load using
a tilt-rotor UAV is solved in [30], in which a model predictive controller is designed, taking
into account time-varying load’s mass and rope’s length, and estimating the load’s position
and orientation by means of an unscented Kalman filter. However, the state estimation is not
guaranteed, and nothing can be said about the transient response of the closed-loop system.
The present work addresses the problem of trajectory tracking of a suspended load using a
tilt-rotor UAV as mobile platform, with guaranteed time-response properties, compensation
of unmodelled dynamics and external disturbances, and state estimation of the load’s position
and orientation, based on the set-membership approach to perform the task.

This paper is an extended, consolidated version of the previous work presented in [31]. To
solve the aforementioned challenges, this work develops the whole-body dynamic equations
of a tilt-rotor UAV with suspended load, from the perspective of the load. The position
and orientation of the latter are chosen as degrees of freedom of the system, yielding a
nonlinear state-space representation with these variables among the system states. As shown
in [30, 31], this choice allows state-feedback control strategies to steer the trajectory of the
load with respect to an inertial reference frame. In contrast to previous works, a reduced
number of assumptions is made with respect to the physical system. This work designs
a discrete-time state-feedback mixed H2/H∞ control strategy with an enlarged domain of
attraction for path tracking of the suspended load with disturbance rejection and guaranteed
time-response properties, taking into account the desired accelerations of the load in the
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control design through an uncertain linear parameter-varying framework. In addition, this
work proposes a zonotopic state estimation strategy to estimate the load’s position and
orientation when available measurements are provided by sensors with different sampling
times. To demonstrate and compare the performance of the proposed state estimator, a
Kalman filter is also designed. The performance of the proposed strategies are demonstrated
through numerical experiments, performed in a platform based on the Gazebo simulator and
on a Computer Aided Design (CAD) model of the system. The contributions of this work can
be summarized as: (i) a detailed modeling from the load’s point of view that comprises the
dynamic coupling of the load and the tilt-rotor UAV, with few assumptions on the system,
leading to an input-affine state-space representation with the load’s position and orientation
as state variables; (ii) a set-membership state estimation strategy based on zonotopes to
provide the load’s position and orientation, formulated for measurements with different
sampling times and unknown-but-bounded disturbances; (iii) a single-loop state-feedback
control strategy for trajectory tracking of the suspended load, robust to unmodeled dynamics,
parametric uncertainties and external disturbances, with enlarged domain of attraction; and
(iv) formulation of pole placement constraints in discrete-time for overshoot requirements.

This paper is organized as follows: the dynamic equations of the tilt-rotor UAV with
suspended load are developed in Section 2, from the perspective of the load; Section 3 proposes
the zonotopic state estimation strategy to provide the entire state vector, formulated for
sensors with different sampling times, and also the derivation of a Kalman filter is presented
for comparison purposes; Section 4 presents the design of the state-feedback mixed H2/H∞
control strategy with constraints in pole placement for path tracking of the suspended load,
with feedback from estimated states; Section 5 presents results from numerical experiments
to demonstrate and compare the performance of the zonotopic state estimator along with
the designed controller; and Section 6 concludes the work.

2. System modeling from the perspective of the load

This section develops the equations of motion of the tilt-rotor UAV with suspended
load, formulated from the perspective of the load. The system is regarded as a multi-body
mechanical system, and its dynamic equations are obtained through the Euler-Lagrange
formulation. The dynamic coupling between the aircraft and the load is taken into account
naturally. By choosing the latter’s position and orientation as degrees of freedom, nonlinear
state-space equations are obtained with these coordinates represented by state variables. The
aircraft’s position and orientation are described only with respect to the load.

2.1. System description
The tilt-rotor UAV with suspended load is regarded as a multi-body mechanical system

composed of four rigid bodies: (i) the aircraft’s main body, composed of Acrylonitrile
Butadiene Styrene (ABS) structure, landing skids, batteries, instrumentation and electronics;
(ii) the right thruster group, composed of the right thruster and a tilting mechanism (a
revolute joint); (iii) the left thruster group, composed of the left thruster and a tilting
mechanism; and (iv) the suspended load group, composed of the load and the rope. The
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actuators of the system are the aircraft’s thrusters and servomotors. The Computer Aided
Design (CAD) model of the tilt-rotor UAV with suspended load is shown in Figure 1.

Figure 1: The tilt-rotor UAV with suspended load (CAD model).

For control purposes, the rope is assumed to be rigid and massless. Moreover, the aircraft’s
center of mass is displaced from its geometric center in order to improve pitch moment and
to yield non-null equilibria for the angular positions of the tilting mechanisms and pitch
angle. This mechanical feature improves the controllability of the aircraft in hover flight,
yielding horizontal projections of the thrust forces without tilting the thrusters.

2.2. Kinematics from the perspective of the load
The approach presented in this paper consists in formulating the forward kinematics of

the system considering the load as a free rigid body, while the tilt-rotor UAV as a multi-link
system rigidly coupled to it. For such objective, six reference frames are defined, shown in
Figure 2: (i) the inertial reference frame, I; (ii) the suspended load group center of mass
frame, L; (iii) the aircraft’s geometric center frame, B; (iv) the main body center of mass
frame, C1; (v) the right thruster group center of mass frame, C2; and (vi) the left thruster
group center of mass frame, C3. Three auxiliary frames are also defined: (i) a reference frame
attached to the point of connection of the rope to the aircraft, A1; (ii) a reference frame
attached to the tilting axis of the right servomotor, A2; and (iii) a reference frame attached
to the tilting axis of the left servomotor, A3.

The position of the load with respect to the inertial frame I is denoted by ξ , [x y z]T .
The displacement vector from L to A1 corresponds to the rope, and is defined in L by
dLA1 , [0 0 l]T , where l is the rope’s length. The displacement vectors from A1 to B, from B
to C1, from B to Ai, and from Ai to Ci are model parameters of the tilt-rotor UAV, denoted by
dA1
B , dBC1 , dBAi , d

Ai
Ci , respectively, expressed in the respective previous frames, with i ∈ {2, 3}.

The orientation of the load with respect to I is parametrized by Euler angles, η , [φ θ ψ]T ,
using the ZY X convention about local axes. The associated rotation matrix is defined by

RIL , Rz,ψRy,θRx,φ =

cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 . (1)
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Figure 2: Kinematic definitions, input forces and torques.

Since the rope is assumed rigid, it cannot twist. Thus, the orientation of frame A1
with respect to L, corresponding to the orientation of the UAV with respect to the rope, is
parametrized by two angles, γ , [γ1 γ2]T , such that

RLA1 , Rx,−γ1Ry,−γ2 =

 cγ2 0 −sγ2

sγ1sγ2 cγ1 sγ1cγ2

cγ1sγ2 −sγ1 cγ1cγ2

 . (2)

The orientations of the thrusters’ groups with respect to B are defined by

RBA2,Rx,−βRy,αR=

 cαR 0 sαR

−sβsαR cβ sβcαR

−cβsαR −sβ cβcαR

, RBA3,Rx,βRy,αL=

 cαL 0 sαL

sβsαL cβ −sβcαL

−cβsαL sβ cβcαL

 , (3)

where αR and αL are the tilting angles of the right and left servomotors, respectively,
and β is a fixed inclination angle of the thrusters towards the aircraft geometric center,
designed to improve the aircraft controllability [32]. The reference frames A1, B, and C1 are
parallel to each other and attached to the same rigid body, thus the relative orientation
is null, i.e., RA1

B = RBC1 = I3×3
1. Similarly, we have that RA2

C2 = RA3
C3 = I3×3. Then,

RLB , R
L
A1R

A1
B = RLA1 , and RBCi , R

B
AiR

Ai
Ci = RBAi , for i ∈ {2, 3}.

1In this work, In×n is an identity matrix with dimension n, 0n×m denotes an n by m matrix of zeros,
and 1n×m is an n by m matrix of ones.
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Given that ṘIL = RILS(ωLIL), where ωLIL denotes the angular velocity of L with respect
to I, expressed in L, and S(·) denotes an operator that maps a vector to a skew-symmetric
matrix [33], we have ωLIL = Wηη̇. Similarly, the remainder angular velocities of the system
are given by ωA1

LA1 = Qγ̇, ωBA1B = ωC1BC1 = ωC2A2C2 = ωC3A3C3 = 03×1, ωA2
BA2 = ayα̇R, and

ωA3
BA3 = ayα̇L, with

Wη ,

1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ

 , Q ,

−cγ2 0
0 −1

sγ2 0

 , (4)

and ay , [0 1 0]T . Moreover, ωBLB , ωBLA1 + ωBA1B = (RA1
B )TωA1

LA1 + ωBA1B = ωA1
LA1 ,

ωC2BC2 , ωC2BA2 + ωC2A2C2 = (RA2
C2 )TωA2

BA2 + ωC2A2C2 = ωA2
BA2 , and ωC3BC3 , ωC3BA3 + ωC3A3C3 =

(RA3
C3 )TωA3

BA3 + ωC3A3C3 = ωA3
BA3 .

The defined rigid transformations yield the forward kinematics of points that belong to
each rigid body, given by

pIL = ξ +RILpLL, (5)
pIC1 = ξ +RILdLA1 +RILRLB(dA1

C1 ) +RILRLBRBC1p
C1
C1 , (6)

pICi = ξ +RILdLA1 +RILRLB(dA1
Ai ) +RILRLBRBCi(d

Ai
Ci + pCiCi), (7)

where dA1
C1 , d

A1
B + dBC1 and dA1

Ai , d
A1
B + dBAi , pL is the position of a point that belongs to

the suspended load body, and pCi belongs to the rigid body with attached frame Ci.
The generalized coordinates of the system are chosen according to the defined rigid

transformations. Note that, since the load’s position and orientation are defined with respect
to I, such variables are independent of each other. Therefore, these are included in the
generalized coordinates vector, which is chosen as

q ,
[
ξT ηT γT αR αL

]T
∈ R10. (8)

Due to the chosen perspective, the position and orientation of the aircraft with respect
to I are not degrees of freedom of the system, being not included in (8). Consequently, their
time evolution will not be described explicitly by the obtained equations of motion.

2.3. Equations of motion
In order to derive the equations of motion through the Euler-Lagrange formulation, on

one hand the kinetic and potential energies of each body of the mechanical system must
be obtained. These energies can be computed for the j-th rigid body through the volume
integrals [33]

Kj = 1
2

∫
Vj
ρj(ṗIj )T (ṗIj )dVj, (9)

Uj = −
∫
Vj
ρjĝ

TpICjdVj = −mjĝ
ToICj , (10)
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respectively, where ρj denotes its density, Vj its volume, mj ,
∫
Vj
ρjdVj its mass, ĝ ,

[0 0 − ĝz]T corresponds to the gravitational acceleration vector expressed in I, and oICj is
the position vector obtained from the forward kinematics of the origin of Cj. The quadratic
terms (ṗIL)T ṗIL, (ṗIC1)T ṗIC1 , and (ṗICi)

T ṗICi are computed using the time derivatives of (5)–(7),
respectively. Moreover, by defining the inertia tensors IL =

∫
VL
ρLS(pLL)TS(pLL)dVL and

Ij =
∫
Vj
ρjS(pCjCj)

TS(pCjCj)dVj, taking into account the parallel axis theorem [34], yields Jj ,
mjS(dAjCj )TS(dAjCj ) + R

Aj
Cj Ij(R

Aj
Cj )T , j ∈ {1, 2, 3}, Ei , miS(dA1

Ai )
TS(dA1

Ai ) + RA1
Ai Ii(R

A1
Ai )

T ,
D1 , m1S(dLA1)

TS(dLA1) + RLA1J1(RLA1)
T , and Di , miS(dLA1)

TS(dLA1) + RLA1Ei(RLA1)
T ,

i ∈ {2, 3}.
The total kinetic energy of the system is given by K = KL+∑3

j=1Kj , in which the kinetic
energy of each rigid body is obtained using (9). Then, by defining Φi , RBCiS(mid

Ai
Ci )T (RBCi)

T ,
Φ̃i , RBCiS(mid

Ai
Ci )T , Θi , S(dA1

Ai )Φi, and Θ̃i , S(dA1
Ai )Φ̃i, and using several properties of

skew-symmetric matrices [33], writing the total kinetic energy as K = 1
2 q̇

TM(q)q̇ leads to
the inertia matrix M(q) ∈ R10×10,

M(q) =


(mL +m)I3×3 M12 M13 RILR

L
BΦ̃2ay RILR

L
BΦ̃3ay

∗ M22 M23 M24 M25
∗ ∗ M33 QT [RBC2J2 + Θ̃2]ay QT [RBC3J3 + Θ̃3]ay
∗ ∗ ∗ aTy J2ay 0
∗ ∗ ∗ ∗ aTy J3ay

 , (11)

where ∗ denotes elements that are deduced by symmetry, and
M12 = −mRILS(dLA1)Wη −RILRLBS(dm)(RLB)TWη +RLBRLBΦ(RLB)TWη, (12)
M13 = −RILRLBS(dm)Q+RILRLBΦQ, (13)
M22 = W T

η

[
IL +D − S(dLA1)RLBS(dm)(RLB)T −RLBS(dm)(RLB)TS(dLA1) (14)

+S(dLA1)RLBΦ(RLB)T −RLBΦT (RLB)TS(dLA1) +RLB(Θ + ΘT )(RLB)T
]
Wη,

M23 = W T
η

[
−S(dLA1)RLBS(dm) +RLB(J1 +E) + S(dLA1)RLBΦ +RLB(Θ + ΘT )

]
Q, (15)

M24 = W T
η

[
RLBR

B
C2J2 + S(dLA1)RLBΦ̃2 +RLBΘ̃2

]
ay, (16)

M25 = W T
η

[
RLBR

B
C3J3 + S(dLA1)RLBΦ̃3 +RLBΘ̃3

]
ay, (17)

M33 = QT [J1 +E + Θ + ΘT ]Q, (18)

with m ,
∑3
j=1mj, E ,

∑3
i=2Ei, D ,

∑3
j=1Dj, Φ ,

∑3
i=2 Φi, Θ ,

∑3
i=2 Θi, and

dm , m1d
A1
C1 +∑3

i=2mid
A1
Ai . Note from the inertia matrix that the dynamics of the four rigid

bodies are coupled, allowing one to consider the existing interactions in the control design
without the need of cascade control structures.

The Coriolis and centripetal forces matrix, C(q, q̇) ∈ R10×10, is obtained through Christof-
fel symbols of the first kind [33]. The element of its k-th row and j-th column is given
by

Ckj =
10∑
i=1

1
2

(
∂Mkj

∂qi
+ ∂Mki

∂qj
− ∂Mij

∂qk

)
q̇i, (19)
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where k, j ∈ {1, 2, . . . , 10}, with M being an element of the inertia matrix (11).
The forward kinematics of each body’s center of mass is obtained using (5)–(7), with the

potential energies of the load and of each body of the aircraft then computed using (10).
The total potential energy of the system is given by U = UL +∑3

j=1 Uj, yielding

U = −ĝT
[
(mL +m)ξ +mRILd

L
A1 +RILRLBdm +

3∑
i=2

miR
I
LR
L
BR
B
Cid
Ai
Ci

]
. (20)

The gravitational force vector is then obtained through

g(q) = ∂U
∂q
∈ R10. (21)

On the other hand, this work assumes that the system is also subject to generalized
forces from the aircraft’s actuators, viscous friction, and external disturbances affecting the
load. Therefore, let f ∈ R3 and τ ∈ R3 denote non-conservative force and torque vectors,
respectively, actuating on the mechanical system. Furthermore, let p ∈ R3 denote the point
of application of f , and F be a reference frame rigidly attached to the body to which τ is
applied. The contributions of f and τ to the generalized forces can be computed through
[35]

ϑf = (Jp)TfI ∈ Rn, (22)
ϑτ = (WF)Tτ I ∈ Rn, (23)

where Jp , ∂ṗI/∂q̇ ∈ R3×n, and WF , ∂ωIIF/∂q̇ ∈ R3×n.
The input forces and torques of the system are the right and left thrust forces, denoted

by fR and fL, and right and left servomotor torques, denoted by ταR and ταL , respectively.
They are expressed in their respective frames by fC2R = azfR, fC3L = azfL, τ C2αR

= ayταR , and
τ C3αL

= ayταL , where az , [0 0 1]T (see Figure 2). Therefore, in the inertial reference frame,
we have

fIR = RIC2f
C2
R = RILR

L
BR
B
C2azfR, (24)

fIL = RIC3f
C3
L = RILR

L
BR
B
C3azfL, (25)

τ IαR
= RIC2τ

C2
αR

= RILR
L
BR
B
C2ayταR , (26)

τ IαL
= RIC3τ

C3
αL

= RILR
L
BR
B
C3ayταL . (27)

Besides, this work assumes that the thrust forces are applied to the centers of mass of
the respective thrusters’ groups, i.e, the origins of C2 and C3. To obtain the corresponding
mappings to generalized forces, it is necessary to compute JoC2 = ∂ȯIC2/∂q̇ and JoC3 =
∂ȯIC3/∂q̇. Firstly, making pC2C2 = oC2C2 = 03×1 in the time derivative of (7) leads to

ȯIC2 = ξ̇+
(
RILS(dLA1)T+RILRLBS(dA1

A2)T (RLB)T+RILRLBRBC2S(dA2
C2 )T (RLBRBC2)T

)
Wηη̇

+
(
RILR

L
BS(dA1

A2)T +RILRLBRBC2S(dA2
C2 )T (RBC2)T

)
Qγ̇ +RILRLBRBC2S(dA2

C2 )Tayα̇R.
(28)
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Then, using (22) and (24) yields

ϑfR = (Jo2)TfIR =
(
∂ȯIC2/∂q̇

)T
fIR

=


RILR

L
BR
B
C2az

W T
η S(dLA1)RLBRBC2az +W T

η R
L
BS(dA1

A2)RBC2az +W T
η R

L
BR
B
C2S(dA2

C2 )az
QTS(dA1

A2)RBC2az +QTRBC2S(dA2
C2 )az

aTy S(dA2
C2 )az

0

 fR. (29)

Analogously, for the left thrust force, we have

ϑfL =


RILR

L
BR
B
C3az

W T
η S(dLA1)RLBRBC3az +W T

η R
L
BS(dA1

A3)RBC3az +W T
η R

L
BR
B
C3S(dA3

C3 )az
QTS(dA1

A3)RBC3az +QTRBC3S(dA3
C3 )az

0
aTy S(dA3

C3 )az

 fR. (30)

The servomotor torques are applied to the respective thrusters’ bodies, and opposite
torques due to reaction are applied to the aircraft’s main body. These torques are mapped
to generalized forces through (23). From the addition of angular velocities [33], we have

ωIIB = ωIIL + ωILB = RILω
L
IL+RILRLBωBLB =

[
03×3 RILWη RILR

L
BQ 03×1 03×1

]
q̇, (31)

ωIIC2 = ωIIL + ωILB + ωIBC2 =
[
03×3 RILWη RILR

L
BQ RILR

L
BR
B
C2ay 03×1

]
q̇, (32)

ωIIC3 = ωIIL + ωILB + ωIBC3 =
[
03×3 RILWη RILR

L
BQ 03×1 RILR

L
BR
B
C3ay

]
q̇. (33)

Recalling that ωIIB =WBq̇, ωIIC2 =WC2 q̇ and ωIIC3 =WC3 q̇, leads to

ϑταR
= (WC2)Tτ IαR

+ (WB)T (−τ IαR
)

=




03×3

W T
η (RIL)T

QT (RILRLB)T
aTy (RILRLBRBC2)T

01×3

−


03×3
W T

η (RIL)T
QT (RILRLB)T

01×3
01×3



R
I
LR
L
BR
B
C2ayταR =


03×1
03×1
02×1

1
0

 ταR , (34)

ϑταL
= (WC3)Tτ IαL

+ (WB)T (−τ IαL
)

=




03×3

W T
η (RIL)T

QT (RILRLB)T
01×3

aTy (RILRLBRBC3)T

−


03×3
W T

η (RIL)T
QT (RILRLB)T

01×3
01×3



R
I
LR
L
BR
B
C3ayταL =


03×1
03×1
02×1

0
1

 ταL . (35)
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This work also takes into account drag torques generated by the propellers, which are
reaction torques applied to the thrusters’ bodies, due to the blades’ acceleration and drag
[36]. Assuming steady-state for the angular velocity of the blades, the drag torques are given
in the thrusters’ reference frames by

τ C2drag,R = λR
kτ
b
fC2R , τ C3drag,L = λL

kτ
b
fC3L , (36)

where kτ and b are parameters obtained experimentally, and λR and λL are given according to
the direction of rotation of the corresponding propeller: if counter-clockwise, 1; if clockwise,
−1. In the inertial reference frame, we then have

τ Idrag,R = RIC2τ
C2
drag,R = λR

kτ
b
RIC2f

C2
R = λR

kτ
b
RILR

L
BR
B
C2azfR, (37)

τ Idrag,L = RIC3τ
C3
drag,L = λL

kτ
b
RIC3f

C3
L = λL

kτ
b
RILR

L
BR
B
C3azfL. (38)

The drag torques are applied to the thrusters’ bodies, then from (23), (32), (33), (37),
and (38), yields

ϑτdrag,R = (WC2)Tτ Idrag,R = λR
kτ
b


03×1

W T
η R

L
BR
B
C2az

QTRBC2az
0
0

 fR, (39)

ϑτdrag,L = (WC3)Tτ Idrag,L = λL
kτ
b


03×1

W T
η R

L
BR
B
C3az

QTRBC3az
0
0

 fL. (40)

Finally, the complete mapping of the control inputs to generalized forces is obtained by
summing up the contributions of the thrust forces, servomotor torques, and drag torques.
Thus, from (29), (30), (34), (35), (39), and (40),

ϑin = ϑfR + ϑfL + ϑταR
+ ϑταL

+ ϑτdrag,R + ϑτdrag,L

=


RILR

L
BR
B
C2az RILR

L
BR
B
C3az 03×1 03×1

W T
η ΛRaz W T

η ΛLaz 03×1 03×1
QTΓRaz QTΓLaz 02×1 02×1
aTy S(dA2

C2 )az 0 1 0
0 aTy S(dA3

C3 )az 0 1



fR
fL
ταR

ταL

 , Lin(q)u, (41)

where

ΛR , S(dLA1)RLBRBC2 +RLBS(dA1
A2)RBC2 +RLBRBC2S(dA2

C2 ) + λR
kτ
b
RLBR

B
C2 , (42)
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ΛL , S(dLA1)RLBRBC3 +RLBS(dA1
A3)RBC3 +RLBRBC3S(dA3

C3 ) + λL
kτ
b
RLBR

B
C3 , (43)

ΓR , S(dA1
A2)RBC2+RBC2S(dA2

C2 )+λR
kτ
b
RBC2 , ΓL , S(dA1

A3)RBC3+RBC3S(dA3
C3 )+λL

kτ
b
RBC3 . (44)

Although in this work no aerodynamic surfaces are considered for the tilt-rotor UAV (see
Figure 1), the modeling approach presented here is general enough to describe the dynamics
of any tilt-rotor carrying a suspended load, from the perspective of the latter. For such
purpose, the aircraft must be regarded as a multi-body system with frame definitions similar
to those shown in Figure 2. Moreover, if aerodynamics surfaces are considered (e.g. wings,
horizontal and vertical stabilizers), the resulting lift and drag forces can be added to the
model in a straightforward manner, by including the corresponding contributions in (41),
allowing the model to cope with both helicopter and airplane flight modes.

Viscous friction is taken into account at the servomotors composing the tilting mechanisms,
and also at the point of connection between the rope and the tilt-rotor UAV. The resulting
friction torques are assumed to be mapped to generalized forces by

ϑfr = −Lfrq̇, (45)

where Lfr , diag(0, 0, 0, 0, 0, 0, µγ, µγ, µα, µα) with µγ and µα constant parameters.
External disturbances applied to the suspended load are also considered, which may

represent wind gusts affecting the system. Defining these disturbances in the inertial reference
frame as the force vector d ∈ R3, and assuming applied to the load’s center of mass, it can
be mapped to generalized forces through (22), yielding

ϑdb = (∂ȯIL/∂q̇)Td =
[
I3×3 03×3 03×2 03×1 03×1

]T
d , Ldbd, (46)

where ȯIL = ξ̇ is obtained by making pLL = 03×1 in the time derivative of (5).
The equations of motion of the tilt-rotor UAV with suspended load can be written in the

Euler-Lagrange formulation as [33]

M (q)q̈ +C(q, q̇)q̇ + g(q) = ϑ, (47)

where M(q), C(q, q̇) and g(q) are given by (11), (19), and (21), respectively, and ϑ is the
total generalized forces vector, obtained by ϑ = ϑin + ϑfr + ϑdb = Lin(q)u−Lfrq̇ +Ldbd.
By defining the state vector

x ,
[
qT q̇T

]T
∈ R20, (48)

the dynamic equations (47) can be written in the state-space representation

ẋ = ϕ(x,u,d) =
[

q̇
M (q)−1 [−(C(q, q̇) +Lfr)q̇ − g(q) +Lin(q)u+Ldbd]

]
, (49)

which is nonlinear and highly coupled. Since the position and orientation of the load belong to
the generalized coordinates (8), they are represented by the state variables (48). Consequently,
the load’s behavior is described explicitly by (49). On the other hand, the aircraft’s position
and orientation are described only with respect to the load, thus appearing in (49) only
implicitly.
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3. State estimation

The developed state-space representation (49) describes explicitly the dynamics of the
load’s position and orientation, which are represented by state variables. This fact allows
state-feedback control strategies to directly steer the trajectory of the suspended load with
respect to the inertial reference frame. However, in real applications, often the available
sensors provide information only about the aircraft’s position and orientation, which prevents
to directly measure all the system states (48).

This section proposes the design of a zonotopic state estimator (ZSE) to provide the state
variables of the tilt-rotor UAV with suspended load. A realistic scenario is considered, in
which the load’s position and orientation with respect to the inertial reference frame are not
measured. For comparison purposes, the derivation of a Kalman filter (KF) is also presented.
The following sensors are assumed to be available: (i) a Global Positioning System (GPS),
providing the position of the UAV with respect to the inertial reference frame I, along axes
x and y; (ii) a barometer, providing the position of the UAV with respect to I, along axis z;
(iii) an Inertial Measurement Unit (IMU), providing the orientation and angular velocities
of the UAV with respect to I, the latter expressed in the geometric center frame B; (iv) a
camera, providing the load’s position with respect to the point of connection of the rope,
expressed in A1; and (v) embedded sensors at the servomotors, providing the tilting angles
of the propellers and their time derivatives. The measured information is assumed to be
corrupted with noise, and each sensor has its own sampling time.

3.1. Measurement equation
In order to design the state estimators, consider a measurement equation of the form

yk = π(xk) + vk, where yk is the measured vector at time instant k, vk corresponds to
measurement noise, and π(xk) is a nonlinear mapping of the system states to the measured
variables.

This work assumes that the GPS, barometer, and IMU are located at the geometric
center of the aircraft, whilst the camera is located at the origin of A1. Let ξB , [xB yB zB]T
denote the position of the tilt-rotor UAV with respect to I, as shown in Figure 3. Then, by
forward kinematics, we have that

ξB(ξ,η) = ξ +RILdLA1 +RILRLBdA1
B . (50)

The orientation of the aircraft with respect to I is assumed to be parametrized by Euler
angles, denoted by ηB , [φB θB ψB]T , using the local roll-pitch-yaw convention. Therefore,

RIB , Rz,ψBRy,θBRx,φB =

cψBcθB cψBsθBsφB − sψBcφB cψBsθBcφB + sψBsφB
sψBcθB sψBsθBsφB + cψBcφB sψBsθBcφB − cψBsφB
−sθB cθBsφB cθBcφB

 , (51)

from which, since RIB = RILR
L
B, the following holds

φB(η,γ) = arctan
(

(RILRLB)32
(RILRLB)33

)
, (52)
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Figure 3: Measured position and orientation of the tilt-rotor UAV, and measured position of the load.

θB(η,γ) = arcsin
(
−(RILRLB)31

)
, (53)

ψB(η,γ) = arctan
(

(RILRLB)21
(RILRLB)11

)
, (54)

for θB 6= ±π/2, where (·)ij denotes the element from the i-th line and j-th column.
The angular velocity provided by the IMU is given by

ωBIB(η,γ, η̇, γ̇) = ωBIL + ωBLB = (RLB)TWηη̇ +Qγ̇, (55)

where Wη and Q were defined in (4).
Let dA1

A1L denote the measurement provided by the camera, which correspond to the
displacement vector from A1 to L, expressed in A1 (see Figure 3). Therefore,

dA1
A1L(γ) = −dA1

LA1 = −(RLA1)TdLLA1 = −(RLB)TdLLA1 , −(RLB)TdLA1 . (56)

Gathering equations (50) through (56) along with the system states αR, αL, α̇R and α̇L,
measured by the sensors at the servomotors, and considering the measurement noise vk,
yields the nonlinear measurement equation

yk = π(xk) + vk ,



ξB(ξ,η)
φB(η,γ)
θB(η,γ)
ψB(η,γ)

ωBIB(η,γ, η̇, γ̇)
dA1
A1L(γ)
αR
αL
α̇R
α̇L



+ vk =



ξ +RILdLA1 +RILRLBdA1
B

arctan
(
(RILRLB)32/(RILRLB)33

)
arcsin

(
−(RILRLB)31

)
arctan

(
(RILRLB)21/(RILRLB)11

)
(RLB)TWηη̇ +Qγ̇
−(RLB)TdLA1

αR
αL
α̇R
α̇L



+ vk. (57)
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Since the sensors have different sampling times, the dimension of yk and vk actually changes
for each k. Let I , {1, 2, . . . , 16}, Ik denote the set of available measurements at time instant
k, such that Ik ⊆ I. Moreover, let ιk denote the number of elements of Ik, then yk,vk ∈ Rιk .
Assuming that at least one measurement is available for each k, we have that 1 ≤ ιk ≤ 16.
Then, the time-switching nonlinear mapping is defined as

π[k](xk) = [π(xk)(i)]i∈Ik , (58)

where π(xk)(i) denotes the i-th line of π(xk), and the brackets denote vertical concatenation.

3.2. Linearized dynamic equations
Initially, the state-space equations (49) are linearized around a time-varying trajectory.

Before proceeding, some facts must be pointed out. It is possible to verify that the inertia
matrix (11) and the mapping matrix (41) are not functions of ξ, and that the Coriolis
matrix obtained using (19) is neither a function of ξ nor of ξ̇. Moreover, assuming constant
gravitational acceleration, the gravitational forces vector (21) is not a function of ξ2. Thus,
by defining ζ , [ηT γT αR αL]T ∈ R7, we have that M ,M(ζ), C , C(ζ, ζ̇), g , g(ζ),
Lin , Lin(ζ). Let xtr(t) and utr(t) denote trajectory values for x and u, respectively. This
work assumes that the desired trajectory is feasible for a disturbance-free scenario, i.e.,

ẋtr = ϕ(xtr,utr,03×1). (59)

Linearizing the state-space equations (49) around these variables, through first-order
expansion in Taylor series, yields the time-varying system

δẋ = Ac(t)δx+Bc(t)δu+ Fc(t)d, (60)

with ‘c’ denoting continuous-time, δx , x− xtr, δu , u− utr, and

Ac(t) = ∂ϕ(x,u,d)
∂x

∣∣∣∣∣x=xtr(t)
u=utr(t)
d=dtr(t)

=
[

010×10 I10×10
Āc(ζtr(t), ζ̇tr(t),utr(t))

]
∈ R20×20, (61)

Bc(t) = ∂ϕ(x,u,d)
∂u

∣∣∣∣∣x=xtr(t)
u=utr(t)
d=dtr(t)

=
[

010×4
M (ζtr(t))−1Lin(ζtr(t))

]
∈ R20×4, (62)

Fc(t) = ∂ϕ(x,u,d)
∂d

∣∣∣∣∣x=xtr(t)
u=utr(t)
d=dtr(t)

=
[

010×3
M(ζtr(t))−1Ldb

]
∈ R20×3. (63)

The linearized state-space equations (60) are then evaluated around an equilibrium point,
resulting in a time-invariant system, and discretized using the zero-order-holder (ZOH)
method for a given sampling time Ts, yielding3

∆xk = Ad∆xk−1 +Bd∆uk−1 + Fddk−1 +wk−1, (64)

2In fact, since the gravitational acceleration is assumed constant, and effects due to aerodynamic forces
and air friction are being neglected, it is expected that the system dynamics are independent of its position
and velocity with respect to the inertial frame.

3In order to avoid misleading, (·)tr , (·)eq and δ(·) , ∆(·).
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with ‘d’ denoting discrete-time, Ad ∈ R20×20, Bd ∈ R20×4 and Fd ∈ R20×3, with w ∈ R20

corresponding to unmodeled dynamics associated with linearization (truncated terms of the
Taylor series expansion).

To improve state estimation, the external disturbances are also estimated by augmenting
the state vector, as[

∆xk
dk

]
︸ ︷︷ ︸

νk

=
[
Ad Fd

03×20 I3×3

]
︸ ︷︷ ︸

Aν

[
∆xk−1
dk−1

]
︸ ︷︷ ︸

νk−1

+
[
Bd
03×4

]
︸ ︷︷ ︸
Bν

∆uk−1 +
[
wk−1
d̃k−1

]
︸ ︷︷ ︸
w̄k−1

, (65)

where d̃k−1 , dk − dk−1. Moreover, linearizing the measurement equation (57) around an
equilibrium point yields

yk = π(xeq) +Hd∆xk + vk, Hd ,
∂π(x)
∂x

∣∣∣∣∣
x=xeq

∈ R16×20, (66)

with vk now including unmodeled dynamics due to linearization. The last equation can be
rewritten as

yk =
[
Hd 016×3

]
︸ ︷︷ ︸

Hν

[
∆xk
dk

]
︸ ︷︷ ︸

νk

+π(xeq) + vk︸ ︷︷ ︸
v̄k

. (67)

Now, taking into account the different sampling times, yields

yk =
[
H

[k]
d 0ιk×3

]
︸ ︷︷ ︸

H
[k]
ν

[
∆xk
dk

]
︸ ︷︷ ︸

νk

+π[k](xeq) + vk︸ ︷︷ ︸
v̄k

, H
[k]
d ,

∂π[k](x)
∂x

∣∣∣∣∣
x=xeq

∈ Rιk×20, (68)

where π[k](x) is given by (58).

3.3. Zonotopic state estimator
This subsection proposes the design of the zonotopic state estimator for the tilt-rotor

UAV with suspended load, which extends the state estimation algorithm of [11], based on
zonotopes and strips, assuming measurements with different sampling times.

Let IR denote the set of real compact intervals. Define aqx = [a, a] , {a : a ≤ a ≤
a, a, a ∈ R} ∈ IR. Then, interval arithmetic operations are defined as aqx � bqx , {a� b :
a ∈ aqx , b ∈ bqx }, with � denoting ‘+’, ‘−’, ‘·’ or ‘/’. Elementary functions of aqx , such as
sin( aqx ), are defined through their ranges over aqx . Furthermore, mid( aqx ) , (1/2)(a+a) and
diam( aqx ) , (a− a). Interval vectors and matrices are denoted by aqx and Aqx , respectively,
for which mid(·) and diam(·) are defined component-wise. Moreover, an interval extension of
a real valued function f is denoted by �{f} [37].

Let the unitary interval be defined as B , [−1, 1]. Then Br denotes a r-dimensional unitary
box. An affine transformation of Br, given by {c+Gb : b ∈ Br} = c⊕GBr, defines a r-order
zonotope, with center c ∈ Rn and generator matrixG ∈ Rn×r, where⊕ denotes the Minkowski
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sum of sets. A family of zonotopes, generated by an affine transformation of Br through an
interval matrix, is denoted by Z q

x
= c⊕ Gqx Br , {c+Gb : G ∈ Gqx , b ∈ Br}. A zonotope

inclusion is defined by �{Z q
x
} , c⊕ [mid( Gqx ) H ]Bn+r, with Hii , (1/2)∑r

j=1 diam( Gqx )ij ,
such that Z q

x
⊆ �{Z q

x
}. A strip is defined by S , {x ∈ Rn : |ρTx− γ| ≤ σ}, with γ, σ ∈ R,

ρ ∈ Rn [11].
Consider the nonlinear discrete-time system

xk = f(xk−1,wk−1),
yk = g(xk,vk),

(69)

where xk ∈ Rnx are the state variables, yk ∈ Rny are the measured outputs, wk ∈ Rnw

corresponds to process disturbances and parametric uncertainties, and vk ∈ Rnv represents
measurement noise. Assume that wk, vk, and x0 belong to known compact sets W, V,
and X0, respectively. Given the compact set Xk−1, such that xk−1 ∈ Xk−1, the uncertain
trajectory of the system (69), denoted by f(Xk−1,W), is defined as the set of values that
the time-update equation f achieves for all xk−1 ∈ Xk−1 and w ∈W. Moreover, given the
measured output yk, the consistent state set is defined as Xyk , {x ∈ Rnx : yk ∈ g(x,V)},
and the exact uncertain state set is defined by Xk , f(Xk−1.W) ∩ Xyk .

According to [38], uncertain trajectories of discrete-time systems can be bounded by
zonotopes with sub-exponential overestimation. Consider the following theorems, presented
in [11], whose proofs are omitted.

Theorem 1 (Generalization of Kühn’s method). Given a function f(x,w) with x ∈ X ⊂
Rnx and w ∈ W ⊂ Rnw , in which X , cx ⊕ GxBrx and W , cw ⊕ GwBrw are known
zonotopes. Define a zonotope Zq , cq ⊕GqBrq such that f(cx,W) ⊆ Zq; an interval matrix
M q
x , �{∇xf(X,W)}Gx; and a zonotope ZΨ , Zq ⊕ �{ M q

x Brx}. Then f(X,W) ⊆ ZΨ.

Theorem 2. Given the zonotope X̄k ⊂ Rnx and the i-th measured output yk(i). De-
fine ρ ∈ Rnx, s ∈ R and σ ∈ R, obtained through interval arithmetic, such that ρ =
mid(�{∇xg(i)(X̄k,V)}) and ρT X̄k−g(i)(X̄k,V) ⊆ [s−σ, s+σ]. Then, X̄k∩Xyk(i) ⊆ X̄k∩X̄yk(i),
where X̄yk(i) , {x ∈ Rnx : |ρTx− yk(i)− s| ≤ σ}.

Theorem 3. Given a zonotope Z , c⊕GBr ⊂ Rn, a strip S , {x ∈ Rn : |ρTx− γ| ≤ σ}
and a vector λ ∈ Rn. Define cI(λ) , c + λ(γ − ρTc) and GI(λ) , [(In×n − λρT )G σλ].
Then, Z ∩ S ⊆ ZI(λ) , cI(λ)⊕GI(λ)Br+1.

Theorem 4. Let ZI(λ) = cI(λ) ⊕GI(λ)Br+1 ⊂ Rn, where cI(λ) , c + λ(γ − ρTc) and
GI(λ) , [(In×n−λρT )G σλ]. Then, λ = (GGTρ)/(ρTGGTρ+σ2) minimizes the Frobenius
norm of GI(λ).

Assume that a previously estimated set X̂k−1 is available. Then, a zonotope X̄k bounding
the uncertain trajectory f(X̂k−1,W) can be obtained through Theorem 1. This operation is
called prediction step [12], as an analogy to the Kalman filter algorithm. Moreover, given the
i-th measured output yk(i) and the zonotope X̄k, a strip X̄yk(i) can be computed through
Theorem 2, such that X̄k ∩ Xyk(i) ⊆ X̄k ∩ X̄yk(i). Then, a zonotope bounding X̄k ∩ X̄yk(i) is
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obtained through Theorem 3. These operations together are called update step. The resulting
zonotope is parametrized by a vector λ ∈ Rnx , which is chosen according to specific criteria.
A choice that minimizes the Frobenius norm of its generator matrix is given by Theorem 4.
Furthermore, Algorithm 1, proposed by [39], can be used to prevent the complexity of X̂k

from increasing indefinitely, by computing a lower-order zonotope bounding X̂k.

Algorithm 1 Zonotope order reduction algorithm
1: procedure order reduction(X̂k, rmax)
2: H ← columns of Gx̂k ordered in decreasing Euclidean norm
3: HT ← first rmax − nx columns of H
4: for i = 1, ..., nx do
5: Qii ←

∑rx̂k
j=rmax−nx+1 |Hij|

6: end for
7: X̂k ← cx̂k ⊕ [HT Q]Brmax

8: return X̂k

9: end procedure

The ZSE is summarized in Algorithm 2. It can be applied to multi-output systems by
performing the update step using each element of the measured output vector iteratively [12].
Moreover, the possibility of dealing with measurements individually allows one to handle
situations in which sensors have different sampling times in a straightforward manner.

Algorithm 2 Zonotopic state estimator algorithm
1: Compute the zonotope X̄k ⊇ f(X̂k−1,W) through Theorem 1
2: Compute the strip X̄yk through Theorem 2
3: Compute the zonotope X̂k(λ) ⊇ X̄k ∩ X̄yk(i) through Theorem 3

Although the zonotopic state estimator is formulated for nonlinear systems, the computa-
tional effort of computing the prediction step for (49) is very high4. Therefore, the linearized
system (64) is used instead. Moreover, the whole predicted set X̄k appears at least twice
in the computation of the parameters s and σ (Theorem 2), which is performed through
interval arithmetic. Therefore, due to interval dependency [37], it may yield a very large
strip such that the intersection is X̄k itself. The next proposition shows that this problem
can be avoided if the measurement equation is linear.

Proposition 1. Consider the predicted zonotope X̄k and the linear measurement equation
yk = g(xk,vk) , Hxk + vk, where yk ∈ Rny are the measured outputs, xk ∈ Rnx are the
system states, vk ∈ V, V , cv ⊕ GvBrv ⊂ Rny , corresponds to measurement noise, and

4Theorem 1 requires online computation of interval extensions over the Jacobian of the time-update
equation. However, due to limited computational resources, an analytical expression for M(q)−1 could not
be obtained, hence neither for ϕ(x,u,d), and consequently for the associated Jacobian.
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H ∈ Rny×nx. If interval extensions are performed at a proper step, the strip obtained through
Theorem 2 using the i-th measurement yk(i) is invariant with respect to X̄k.

Proof. Let yk(i) = g(i)(xk,vk), where (i) denotes i-th line. From Theorem 2,

ρ = mid(� {∇x(g(i)(xk,vk))} |xk=X̄k
vk=V ) = mid(� {∇x(H(i)xk + vk(i))} |xk=X̄k

vk=V )
= mid(�

{
H(i)T

}
|xk=X̄k
vk=V ) = mid(H(i)T ) = H(i)T .

Define h(xk,vk) , ρTxk − g(i)(xk,vk). We have that h(xk,vk) = ρTxk − (H(i)xk +
vk(i)) = H(i)xk −H(i)xk − vk(i) = −vk(i). Then, � {h(xk,vk)}|xk=X̄k

vk=V gives

� {−vk(i)} |xk=X̄k
vk=V = − (cv ⊕ rs (Gv)Brv) (i) = −(cv(i)⊕

rv∑
j=1
|Gv(i, j)|B)

= [−cv(i)−
rv∑
j=1
|Gv(i, j)|, −cv(i) +

rv∑
j=1
|Gv(i, j)|] , [s− σ, s+ σ],

where (i, j) denotes i-th line and j-th column, and rs(·) denotes row sum [38]. Hence,
ρ = H(i)T , s = −cv(i), and σ = ∑rv

j=1 |Gv(i, j)|, which do not depend on X̄k. �

We now propose the zonotopic state estimation algorithm for the tilt-rotor UAV with
suspended load, considering the time-update equation (65) and measurement (67).

Proposition 2. Let νk−1, w̄ and v̄ belong to zonotopes X̂k−1 , cx̂k−1 ⊕Gx̂k−1B
rx̂k−1 , W̄ ,

cw̄⊕Gw̄Brw̄ and V̄ , cv̄⊕Gv̄Brv̄ , respectively. Denote Ik as the set of available measurements
at time instant k, which is given according to the sensors’ sampling times. Applying Algorithm
2 for equations (65) and (67), being the update step performed iteratively for each measurement
available at time instant k, leads to Algorithm 3.

Proof. Step 1 of Algorithm 3 is obtained from application of Theorem 1 to (65), through the
use of closed operations for linear image and Minkowski sum of zonotopes [38]. Steps 3 to
11 are obtained from iterative use of Theorems 2 through 4 for each measurement available
based on (67), and step 12 correspond to the use of Algorithm 1 to limit the order of the
estimated zonotope. �

The design of the zonotopic state estimator lies in the appropriate choice of the zonotopes
W̄ and V̄. On the other hand, to obtain X̂0 a zonotope X̄0 containing the system’s initial
states must be known, to which an initial update step is applied using initial measurements
y0. As a drawback from using a linearized model for the zonotopic state estimation algorithm,
the property νk ∈ X̂k is guaranteed only if the chosen zonotopes W̄ and V̄ contain all the
unmodelled dynamics due to linearization. Moreover, by augmenting the state vector with
the external disturbances, bounds must be assumed on their variations within the controller
sampling time, instead of bounds on their magnitudes. The latter may result in reduced
overestimation in cases with non-abrupt disturbances.
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Algorithm 3 Zonotopic state estimator for the tilt-rotor UAV with suspended load
1: procedure ZSE(X̂k−1,∆uk−1,yk, W̄, V̄, Ik, rmax)
2: X̄k ← (Aνcx̂k−1 +Bν∆uk−1 + cw̄)⊕ [Gw̄ AνGx̂k−1 ]Brw̄+rx̂k−1

3: X̃k ← X̄k

4: for all i ∈ Ik do
5: ρ←Hν(i)T
6: s← −cv̄(i)
7: σ ← ∑rv̄

j=1 |Gv̄(i, j)|
8: λ← (Gx̃kG

T
x̃k
ρ)/(ρTGx̃kG

T
x̃k
ρ+ σ2)

9: X̃k ← (cx̃k + λ(yk(i) + s− ρTcx̃k))⊕ [(I23×23 − λρT )Gx̃k σλ]Brx̃k+1

10: end for
11: X̂k ← X̃k

12: X̂k ← order reduction(X̂k, rmax)
13: return X̂k

14: end procedure

3.4. Kalman filter
This section presents the derivation of a Kalman filter, for comparison purposes with the

proposed zonotopic state estimation strategy. To design a KF for the tilt-rotor UAV with
suspended load based on (65) and (68), w̄ is regarded as process noise. Moreover, w̄ and
v, are assumed to be white, mutually uncorrelated, zero-mean Gaussian distributions, with
known constant covariance matrices denoted by Pw ∈ R23×23 and P v[k] ∈ Rιk×ιk , respectively,
where P v[k] is a diagonal matrix formed by all P v(i, i) such that i ∈ Ik, with P v ∈ R16×16,
and (i, i) denoting i-th line and i-th column. Let (̂·) denote estimated variables, and (·)m|n
denote information at time instant m given measurements up to instant n. Then, given a
previous estimation ν̂k−1|k−1, the state vector ν̂k|k−1 is given by the prediction step [40]

ν̂k|k−1 = Aν ν̂k−1|k−1 +Bν∆uk−1, (70)

whilst ν̂k|k is given by the correction step, defined as

ν̂k|k = ν̂k|k−1 +Nk(yk − (H [k]
ν ν̂k|k−1 + π[k](xeq))), (71)

being Nk the Kalman gain. Define ν̃k , νk − ν̂k|k as the estimation error, and let P ν
k|k ,

E
[
ν̃kν̃

T
k

]
, where E [·] denotes expectation. Then, the covariance propagations are computed

from (65) as P ν
k|k−1 = AνP

ν
k−1|k−1A

T
ν +Pw, and from the correction step as P ν

k|k = (I20×20−
NkH

[k]
ν )P ν

k|k−1(I20×20 −NkH
[k]
ν )T +NkP

v[k]NT
k . The Kalman gain is obtained such that

the KF provides minimum variance estimation. The well-known solution of this optimization
problem is the gain update equation

Nk = P ν
k|k−1(H [k]

ν )T (H [k]
ν P

ν
k|k−1(H [k]

ν )T + P v[k])−1. (72)
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4. Control design

This section presents the design of a state-feedback control strategy for trajectory tracking
of the suspended load with stabilization of the tilt-rotor UAV. Since the load’s position and
orientation are represented by state variables, state-feedback strategies can directly steer the
trajectory of the suspended load with respect to the inertial reference frame. Besides, the
aircraft’s behavior is implicit in the state-space equations, then stabilization of the system
implies stabilization of the tilt-rotor UAV. Moreover, although the multi-body structure of
the tilt-rotor UAV with suspended load system (see Section 2) may not impose additional
difficulties to the state estimation in comparison to other UAV configurations for load
transportation, it generates challenges to the control design due to the dynamic couplings
between the rigid bodies and the indirect input mapping from the tilting mechanism’s torques
to the load’s pose [41]. Therefore, to cope with the resulting issues, the proposed control
strategies are based on the whole-body dynamic equations developed in Section 2, without
requiring the formulation of cascade control structures.

Since in future works the control algorithm will be implemented on an embedded system
in the real aircraft, a discrete-time control strategy is designed. Therefore, based on discrete-
time, augmented linearized error dynamics, a mixed H2/H∞ controller with pole placement
constraints is proposed. The controller features constant disturbances rejection, and achieves
improved disturbance attenuation by mininizing the H2 norm of the closed-loop system
while guaranteeing a specified upper-bound for its H∞ norm. Furthermore, time response
requirements are satisfied by imposing constraints in the pole placement process.

4.1. Linearized parameter-varying error dynamics
The tilt-rotor UAV with suspended load is a mechanical system with more degrees of

freedom than control inputs, therefore being characterized as an underactuated mechanical
system. As it has four control inputs, only up to four degrees of freedom can be steered along
a desired, arbitrary trajectory, while the remaining DOF can only be stabilized. Aiming path
tracking control of the suspended load, the position ξ = [x y z]T and yaw angle ψ of the load
are chosen to be regulated.

Define the auxiliary variable ζtr(t) , [φeq θeq ψtr(t) (γeq)T αeq
R αeq

L ]T . Assuming that ψtr

is constant for the desired trajectory, we have that ζtr is also constant. Then, ζ̇tr = 07×1, and
by defining qtr , [(ξtr)T (ζtr)T ]T , we have that q̇tr = [(ξ̇tr)T 01×7]T and q̈tr = [(ξ̈tr)T 01×7]T .
Moreover, define xtr , [(qtr)T (q̇tr)T ]T and utr , [f tr

R f tr
L τ tr

αR
τ tr
αL

]T . Evaluating (60) around
xtr and utr, leads to the error dynamics δẋ = Ac(t)δx+Bcδu+ Fcd, in which Bc and Fc
are constant matrices, and Ac(t) is time-varying only due to utr(t) (see equation (61)).

For control design, this work assumes that the desired accelerations are not negligible,
i.e., the time-varying matrix Ac(t) can not be approximated by Ac(t)|utr=ueq . To take into
account this fact in the control design approach, the desired accelerations are regarded as
bounded uncertain parameters. Recalling the dynamics (59), approximated values for utr(t)
can be obtained by

utr(t) = Lin(qtr)+
[
M (qtr)q̈tr + (C(qtr, q̇tr) +Lfr)q̇tr + g(qtr)

]
, (73)
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where Lin(qtr)+ denotes the left Moore-Penrose pseudo-inverse of Lin(qtr). In the same
lines of the discussion in Section 3.2, it can be shown that (73) is not a function of ξtr

and ξ̇tr. Thus, by defining the vector of parameters σ , ξ̈tr, we have that utr(t) , u(σ),
which is an affine function of σ. Moreover, since the state-space equations (49) are affine in
the inputs, the Jacobian (61) is also affine. Thus, by substituting (73) in (61), yields the
parameter-varying matrix Ac(σ), which is also affine in the parameters σ.

Furthermore, to improve the trajectory tracking and provide rejection to constant distur-
bances, the state vector δx is augmented with integral actions, computed by integrating the
error of the regulated degrees of freedom, yielding

χ ,

 δx∫
(ξ − ξtr)∫
(ψ − ψtr)

 ∈ R24, (74)

whose parameter-varying dynamics are given by

χ̇ =


Ac(σ) 020×4

1 0 0 0 0 0

04×14 04×4
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1


︸ ︷︷ ︸

Ãc(σ)

χ+
[
Bc

04×4

]
︸ ︷︷ ︸
B̃c

δu+
[
Fc

04×3

]
︸ ︷︷ ︸

F̃c

d. (75)

Finally, since the control design will be performed in discrete-time, the linear parameter-
varying (LPV) system (75) is discretized through Euler approximation for the sampling time
Ts, yielding the discrete-time, augmented LPV error dynamics

χk+1 = Aχ(σ)χk +Bχδuk + Fχdk, (76)

with Aχ(σ) , I24×24 + TsÃc(σ) ∈ R24×24, Bχ , TsB̃c ∈ R24×4 and Fχ , TsF̃c ∈ R24×3.
Since Ãc(σ) is affine in σ, note that Aχ(σ) is also affine in the parameters σ. Thus,
assuming bounded desired accelerations, we have that the LPV system (76) can be rewritten
in a convex polytopic representation, by defining Aχ(σ) , Aχ(σ̃) = ∑8

i=1 σ̃iA
i
χ, with Ai

χ

denoting the i-th vertex of Aχ(σ̃), and ∑8
i=1 σ̃i = 1. Resulting errors from linearization and

discretization will be taken into account as unmodeled dynamics, and the controller will be
assumed to be robust enough to deal with the subsequent effects.

4.2. Discrete-time mixed H2/H∞ control
The present mixed H2/H∞ control paradigm is an extension for discrete-time linear

systems of the method proposed in [42]. In order to design a discrete-time mixed H2/H∞
controller for trajectory tracking of the suspended load with stabilization of the tilt-rotor
UAV, consider the discrete-time uncertain linear system

χk+1 = Aχ(σ)χk +Bχδuk + Fχdk,
z

(2)
k = Hzχk +Dzuδuk,

z
(∞)
k = Hzχk +Dzuδuk +Dzddk,

(77)
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where z(2)
k , z

(∞)
k ∈ Rnz are cost variables, Hz ∈ Rnz×24, Dzu ∈ Rnz×4, and Dzd ∈ Rnz×3 are

weighting matrices. Let Ψ(2)
dz (ς) and Ψ(∞)

dz (ς) denote the discrete-time transfer matrices from
dk to z(2)

k and dk to z(∞)
k , respectively, and ‖Ψ(2)

dz ‖2 and ‖Ψ(∞)
dz ‖∞ denote the correspondingH2

andH∞ norms. The objective is to design a state-feedback controller of the form δuk = −Kχ
that minimizes ‖Ψ(2)

dz ‖2
2 ,

∑∞
k=0 tr

{
Ψ(2)
dz,k(Ψ

(2)
dz,k)T

}
while guaranteeing a specified upper-

bound for ‖Ψ(∞)
dz ‖∞, where Ψ(2)

dz,k , Z−1{Ψ(2)
dz (ς)}, with Z denoting the z-transform, ensuring

better transient response and disturbance attenuation for the closed-loop system. The gain
matrix K that minimizes tr {Ω} > ‖Ψ(2)

dz ‖2
2 while guaranteeing a given bound γ̃ > ‖Ψ(∞)

dz ‖2
∞,

is computed by K = −Y X−1, where Y and X are obtained by solving the optimization
problem [43]

min
P ,X,Y ,Ω

trace{Ω} subject to[
Ω HzX +DzuY
∗ X +XT − P

]
> 0, (78)P Ai

χX +BχY Fχ
∗ X +XT − P 024×3
∗ ∗ I3×3

 > 0, (79)


P Ai

χX +BχY Fχ 024×nz
∗ X +XT − P 024×3 XTHT

z + Y TDT
zu

∗ ∗ I3×3 DT
zd

∗ ∗ ∗ γ̃Inz×nz

 > 0, (80)

with i = 1, 2, . . . , 8, P = P T > 0, X > 0 and Ω = ΩT .
In order to guarantee time response specifications for the closed-loop system, constraints

in the form of Linear Matrix Inequality (LMI) regions are imposed on the pole placement
performed by the controller. An LMI region is defined as a convex subset of the complex
plane that can be expressed as D , {ς ∈ C : U + ςV + ς∗V T < 0} [42], whose shape is
defined by the matrices U = UT ∈ RnD×nD and V ∈ RnD×nD . Such regions are symmetric
with respect to the real axis, and the intersection between two of them is also an LMI region.

To ensure minimum and maximum settling times, maximum percentage overshoot, and
also to avoid the ringing effect, three regions are of interest (see Figure 4): D1 , {ς ∈ C :
Re(ς) > ε ≥ 0}, D2 , {ς ∈ C : 0 ≤ |ς| < $} and D3 , {ς ∈ C : 0 ≤ |Im(ς)| < τ}. The
eigenvalues of the closed-loop system matrix Aχ(σ)−BχK belong to ⋂3

j=1 Dj if, and only
if, there exists a symmetric matrix T > 0 such that

T (Ai
χ)T +Ai

χT + Y TBT
χ +BχY − 2εT > 0, (81)[

−$T Ai
χT +BχY

∗ −$T

]
< 0, (82)[

−2τT T (Ai
χ)T−Ai

χT + Y TBT
χ−BχY

∗ −2τT

]
< 0, (83)
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Figure 4: LMI regions considered in this work.

from which K = −Y T−1. The LMI constraints (81)–(83) are considered in the control
design along with (78)–(80) by imposing X = XT = T > 0.

Since the control signals provided by the mixed H2/H∞ controller are associated with the
linearized dynamics (76), to apply the control signals to the tilt-rotor UAV with suspended
load, the feed-forward term (73) is computed at each k. The control law is then given by

uk = δuk + utr
k = −Kχk +Lin(qtr

k )+
[
M (qtr

k )q̈tr
k + (C(qtr

k , q̇
tr
k ) +Lfr)q̇tr

k + g(qtr
k )
]

, (84)

where qtr
k , q̇tr

k and q̈tr
k are reference signals given at instant k. On the other hand, since utr

k

is a least-squares solution to (73), which assumes a scenario without disturbances, it is an
exact solution to the dynamic equations (47) only if the desired trajectory satisfies (59).
Moreover, the control signal utr

k will be sustained for Ts seconds. The subsequent errors are
also considered as unmodeled dynamics, and the controller is assumed to be robust enough
to deal with these effects.

The described control strategy rely on full information about the system states (48) in
order to achieve path tracking of the suspended load. Considering the scenario described in
Section 3, the feedback connection in (84) is performed using an estimated state vector χ̂k,
defined according to

χ̂ ,

 x̂− xtr∫
(ξ̂ − ξtr)∫
(ψ̂ − ψtr)

 ∈ R24, (85)

where the estimated states x̂k are obtained from the center of the zonotope provided by
Algorithm 3. Equilibrium values are added and subtracted to the estimated states and control
signals, to adapt them for the control strategy and state estimation algorithm, respectively,
as shown in Figure 5. In the case of the Kalman filter, the estimated state vector is obtained
from (71).

5. Numerical experiments

This section evaluates the performance of the proposed control and state estimation
strategies through experiments in the ProVANT simulation environment.
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Figure 5: Control structure.

5.1. Experiment description
The ProVANT simulator5 is a simulation environment for tilt-rotor UAVs, developed

in the ProVANT project6, based on the robotic applications framework Robot Operating
System (ROS) [44] and the open-source robot simulation environment Gazebo [45]. Based
on Computer Aided Design (CAD) 3D models, the main purpose of the ProVANT simulator
is the validation of control strategies designed for tilt-rotor UAVs, in a stage previous to
experiments in the real aircraft. Figure 6 illustrates the CAD model of the tilt-rotor UAV
with suspended load, as shown in the simulation environment.

Figure 6: The tilt-rotor UAV with suspended load (CAD model), as shown in the ProVANT simulator.

The experiment consists in performing trajectory tracking of the suspended load, with
stabilization of the tilt-rotor UAV. The desired trajectory is composed of several connected
paths, defined in Table 1. The initial position of the UAV is given by xB = 0 m, yB = 0
m and zB = 1.619 m, the rope initial angles are given by γ1 = γ2 = 15o, and the UAV

5https://github.com/Guiraffo/ProVANT-Simulator
6The ProVANT project is a collaborative work involving the brazilian universities Federal University of

Santa Catarina and Federal University of Minas Gerais, and the University of Sevilla, Spain. The objective
is the development and research of convertible UAVs in the tilt-rotor configuration.
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initial orientation ηB and tilting angles αR, αL are equal to zero. This trajectory is proposed
to evaluate the performance of the designed strategies in a scenario starting with vertical
take-off in a spiral path, straight line following with rapid changing in direction, and vertical
landing, with ψtr = 0o. Moreover, to evaluate the robustness against external disturbances
of the proposed strategy, aerodynamic disturbance forces are applied to the suspended load
during the experiment, resulting from environmental wind and drag. The disturbance forces
are generated according to [17]

dLi = 1
2ρairaS|κLi |κLi , (86)

where dLi denotes the i-th component of dL, from which the disturbance force vector in I
is computed by d = RILd

L, with ρair the air density, aS the equivalent flat plate area of
the load, given by ρair = 1.21 kg/m3 and aS = 0.01 m2, respectively, and κL = κLW − κLL
the relative wind velocity expressed in L, with κLW = (RIL)TκIW the environmental wind
velocity expressed in L, and κLL = (RIL)T ξ̇ the load velocity expressed in L. The profile of
the environmental wind κIW is shown in Figure 7.

Table 1: Paths composing the reference trajectory.

Time (sec) xtr(t) (m) ytr(t) (m) ztr(t) (m)
0 ≤ t < 10 0.01t2 cos

(
πt
4
)

sin
(
πt
20
)

sin
(
πt
4
)

3.5− 2.5 cos
(
πt
10
)

10 ≤ t < 19 −π
4 (t− 10) 1 6

19 ≤ t < 20 −9π
4 − 0.5 sin

(
π
2 (t− 19)

)
1.5− 0.5 cos

(
π
2 (t− 19)

)
6

20 ≤ t < 29 −9π
4 − 0.5 1.5 + π

4 (t− 20) 6
29 ≤ t < 30 −9π

4 − 0.5 cos
(
π
2 (t− 29)

)
1.5+9π

4 +0.5 sin
(
π
2 (t− 29)

)
6

30 ≤ t < 40 −9π
4 + π

4 (t− 30) 2 + 9π
4 6

40 ≤ t − π
80 t

2 + 5π
4 t−

119π
4 2 + 9π

4 3.5+2.5 cos
(
π
10(t− 40)

)

t (sec)

κ
I W

(m
/s

)

0 5 10 15 20 25 30 35 40 45 50

0

4.5

9
κIW,x κIW,y

Figure 7: Profile of the enviromental wind disturbances applied to the load.

Table 2 shows the parameters of the sensors used in the experiment. The noise bounds of
the GPS, barometer/IMU, and the servos’ sensors were taken from the Novatel OEMStar GPS
receiver, Xsens MTi-G, and Herkulex DRS-0101/DRS-0201 sensors datasheets, respectively.
The noise bounds of the camera were chosen empirically. The assumptions on probability
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density functions were made for simulation purposes, being only the knowledge on the
noise bounds used for the zonotopic state estimator design. For Gaussian distributions,
‘noise bound’ means three times the standard deviation. The union of all sets I of sensors
whose measurements are available at time instant k yields the set Ik employed in both
state estimation algorithms. Moreover, although not explicitly taken into account in the
experiment, the presence of parameter uncertainties in the system can be expressed implicitly
by the considered noise bounds.

Table 2: Parameters of the sensors.

Sensor I Noise bound Sampling time PDF (for simulation)
GPS {1, 2} ±0.15 m 120 ms Gaussian (truncated)

Barometer {3} ±0.51 m 12 ms Gaussian (truncated)

IMU {4, 5, 6} ±2.618·10−3 rad 12 ms Gaussian (truncated){7, 8, 9} ±16.558·10−3 rad/s

Camera {10, 11} ±0.005 m 24 ms Uniform{12} ±0.02 m

Servos {13, 14} ±5.67·10−3 rad 12 ms Uniform{15, 16} ±0.50772 rad/s

5.2. Model, estimator and control design parameters
Table 3 shows the model parameters of the tilt-rotor UAV with suspended load. Mass,

inertia and displacement parameters were computed from the system’s CAD 3D model,
designed using the Solidworks R© software. The gravitational acceleration is assumed constant.
The experimental parameters kτ and b are the same considered in [14], while λR and λL are
given according to the direction of rotation of the UAV’s propellers: the right one rotates
counter-clockwise, and the left one rotates clockwise. The parameters related to viscous
friction were chosen empirically.

Using the presented data, and assuming d = 03×1, the following equilibrium point was
obtained for the nonlinear system (49):

qeq = [0 0 0 0 0 0 0.00013170 0.01396015 0.01400528 0.01380910]T ,
ueq = [11.73225673 11.76760246 4.13886816·10−7 1.01209997·10−5]T .

(87)

The mixed H2/H∞ control design was performed using the Yalmip toolbox [46] with
the SDPT3 solver [47]. The design parameters for the LMI regions are given by ε = 0.55,
$ = 0.994 and τ = 0.3. The Bryson’s rule [48] was used as starting point to synthesize the
weighting matrices of the mixed H2/H∞ controller, which are given by

Hz = diag
(√

10
2 ,

√
10
2 ,

√
10
2 ,

√
0.5
π/2 ,

√
0.5
π/2 ,

√
5
π
,

1
π/2 ,

1
π/2 ,

0.1
π/2 ,

0.1
π/2 ,

1
2 ,

1
2 ,

1
2 , (88)

1
π/3 ,

1
π/3 ,

1
π/4 ,

√
5

3π ,
√

5
3π ,

0.1
3π ,

0.1
3π ,
√

5,
√

5,
√

5,
√

0.1
)

,
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Table 3: Model parameters of the tilt-rotor UAV with suspended load.

Parameter Value
(mL,m1,m2,m3) (0.5, 1.7068, 0.08978, 0.08978) Kg

(dLA1 ,d
A1
B ) ([0 0 0.5]T , [0 0 0.119]T ) m

dBC1 [−0.004321 0.000601 − 0.045113]T m
(dBA2 ,d

B
A3) ([0 − 0.275433 0.056262]T , [0 0.275433 0.056261]T ) m

(dA2
C2 ,d

A3
C3 ) ([0 0 0.056472]T , [0 0 0.056482]T ) m

IL 8.333 · 10−6 · I3×3 Kg·m2

I1

4047.04 0.860582 9.65766
∗ 881.618 −0.873079
∗ ∗ 4173.18

 · 10−6 Kg·m2

I2

335.737 −1.33011·10−15 −2.85046·10−15

∗ 335.737 −6.81597·10−16

∗ ∗ 641.59

 · 10−6 Kg·m2

I3

335.737 −5.26914·10−16 2.9351·10−15

∗ 335.737 −1.24077·10−16

∗ ∗ 641.59

 · 10−6 Kg·m2

ĝ [0 0 − 9.81]T m/s2

(kτ , b) (1.7·10−7 N·m·s2, 9.5·10−6 N·s2)
(λR, λL, β, µγ, µα) (1, -1, 5o, 0.005 N·m/(rad/s), 0.005 N·m/(rad/s))

Dzu =



√
750

30− f eq
R

0 0 0

0
√

750
30− f eq

L
0 0

0 0
√

5000
2− τ eq

αR

0
02×1 02×1 02×1 02×1

0 0 0
√

5000
2− τ eq

αL
018×1 018×1 018×1 018×1



, Dzd =



010×3
I3×3
N

0.5·11×3
N

02×3
I3×3

0.5·11×3


, (89)

with N ,

[
0 1 0
1 0 0

]
, f eq

R , f eq
L , τ eq

αR
and τ eq

αL
are equilibrium values from (87), and Dzd

was adjusted by trial and error. The chosen upper bound for the H∞ norm is given by
‖Ψ(∞)

dz ‖2
∞ < 81, for which ‖Ψ(2)

dz ‖2
2 < 2.7643. Moreover, due to infeasibility issues in solving

the optimization problem for the uncertain system, when considering the whole range of
desired accelerations for the load, these were assumed to be bounded by ẍtr(t) ∈ [−0.5, 0.5],
ÿtr(t) ∈ [−0.5, 0.5], and z̈tr(t) ∈ [−0.3, 0.3].

For the zonotopic state estimator, the chosen initial zonotope X̄0 is a box centered
at the desired trajectory, given by X̄0 = [(ξtr

0 )T 01×20]T ⊕Gx̄0B23, with generator matrix
Gx̄0 = diag

(
0.5·13×1,

π
4 ·17×1,113×1

)
. To prevent its complexity from increasing indefinitely,
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the order of the estimated zonotope X̂k was limited to 75 times its dimension. Moreover, the
zonotopes W̄ and V̄ were adjusted as W̄ = 023×1 ⊕Gw̄B23 and V̄ = π(xeq)⊕Gv̄B16, with
generator matrices7

Gw̄ = diag(10−4·18×1, 1.5·10−4·12×1, 10−4·13×1, 0.01·13×1, 0.05·12×1, 10−4·12×1, (90)
0.01·13×1),

Gv̄ = diag(0.18·12×1, 0.612, 3.1416·10−3, 3.1416·10−3, 0.03, 19.872·10−3, 19.872·10−3, (91)
0.24, 0.006·12×1, 0.06, 6.8067·10−3·12×1, 0.6093·12×1).

For comparison purposes, the initial states of the Kalman filter are given by ∆x̂0|0 =
[(ξtr

0 )T 01×20]T , and the covariance matrices are diagonal, computed based on the generator
matrices of the zonotopic state estimator, by regarding radius as three times the corresponding
standard deviation, as P ν

0|0(i, i) = (Gx̄0(i, i)/3)2, Pw(i, i) = (Gw̄(i, i)/3)2 and P v(i, i) =
(Gv̄(i, i)/3)2, from which P v[k] is formed using all i ∈ Ik (see Section 3.4).

5.3. Experiment results and discussion
The trajectories performed by the UAV and the load are shown in Figure 8.8 The path

tracking of the load was performed with success, from take-off to landing, using the proposed
zonotopic state estimator and the mixed H2/H∞ controller. Moreover, despite temporary
deviations from the desired trajectory, the disturbances affecting the load were rejected in
steady-state, as shown by the evolution of the tracking error, depicted in Figure 9. Even
under different sampling times and non-Gaussian measurement noise (see Table 2), the
proposed zonotopic state estimator was capable of providing the system states to the mixed
H2/H∞ controller.

Figure 10 shows the time evolution of the remaining degrees of freedom of the system,
which were kept stable as the trajectory was performed by the load. Through these results,
one can conclude that the UAV remained stable as well, since the aircraft’s behavior with
respect to the inertial frame is described implicitly by these variables. Moreover, the designed
mixed H2/H∞ controller was able to stabilize the aircraft without the need of a cascade
control structure. Figure 11 shows the actuator signals generated by the mixed H2/H∞
control law. Despite the existing noise, the inertial properties of the aircraft actuators would
straightforwardly attenuate such noise in a physical setup.

Figure 12 shows the estimation error of the generalized coordinates using the proposed
zonotopic state estimator. As expected from Algorithm 3, the estimation error remained
inside the associated confidence limits9, which implies that the real states remained inside
the estimated zonotope during the experiment. Thus, the proposed zonotopic state estimator
was able to provide the system states with consistency. Moreover, some patterns can be
noted in the confidence limits, which were generated by the different sampling times of the

7The zonotope V̄ was chosen using the noise bounds from Table 2 as starting point, then adjusted
empirically in order to accommodate the unmodeled dynamics due to linearization.

8See accompanying video.
9These limits were obtained through the interval hull of the estimated zonotope [38].
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Figure 8: Trajectories performed by the UAV and the load using the ZSE in the ProVANT simulator.
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Figure 9: Tracking error of the regulated variables.

available sensors. These also appear in the time evolution of the Frobenius norm of the
generator matrix, depicted in Figure 13.

Regarding the results obtained using the Kalman filter, the associated tracking error is
shown in Figure 9. Furthermore, the time evolution of the remaining degrees of freedom,
as well as the associated control signals, are also shown in Figures 10 and 11, respectively.
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Figure 10: Time evolution of the remaining degrees of freedom.
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Figure 11: Control signals applied to the aircraft’s actuators, generated by the mixed H2/H∞ controller.

The estimation error is shown in Figure 14, in which the patterns due to different sampling
times also appear. It is apparent that the time evolution of some variables were less noisy in
comparison with the zonotopic state estimator experiment. This result is expected, since the
Kalman filter provides minimum-variance estimation.

For comparison purposes, the Root Mean Square Error (RMSE) was computed for the
tracking error and estimation error of the regulated variables for both estimators, and is
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Figure 13: Frobenius norm of the estimated zonotope’s generator matrix.

shown in Table 4. In terms of the RMSE, the zonotopic state estimator provided considerably
better estimates for x, y, while the Kalman filter provided slightly better estimates for
the altitude z and yaw angle ψ. Nevertheless, despite the tighter confidence limits (see
Figure 14), the Kalman filter was unable to estimate all the system states with consistency,
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depicted by the fact that the estimation error for most variables exceeded the confidence
limits of the filter in several points during the experiment. Finally, note that the most critical
deviations of the Kalman filter occurred during the initial transient due to the non-equilibrium
initial conditions, and also during rapid changes in the trajectory tracking direction, which
demonstrate its inability to cope with the nonlinearities of the system effectively.

Table 4: Root mean square error of the regulated variables.

Variable Estimation error Tracking error
ZSE KF ZSE/KF ZSE KF ZSE/KF

x 0.0300 0.0679 44.15% 0.1064 0.1546 68.82%
y 0.0315 0.0697 45.13% 0.1011 0.1504 67.23%
z 0.0342 0.0289 118.27% 0.0502 0.0466 107.71%
ψ 0.0030 0.0027 112.07% 0.1547 0.1548 99.95%
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Figure 14: Estimation error of the generalized coordinates using the Kalman filter. Solid lines denote
estimation error, while dashed lines denote confidence limits.
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6. Conclusions and future work

This paper dealt with the problem of trajectory tracking of a suspended load using a
tilt-rotor UAV as mobile platform. In order to solve the challenge, a detailed model of the
system was developed from the perspective of the load, with a reduced number of assumptions
in comparison to previous works. The position and orientation of the load were chosen
as degrees of freedom of the system, yielding a nonlinear state-space representation with
these variables among the system states, with the UAV’s position and orientation being
described with respect to the load. A discrete-time state-feedback mixed H2/H∞ control
strategy was designed for path tracking of the suspended load, with disturbance compensation
and guaranteed transient response properties, with an enlarged domain of attraction, by
considering the desired accelerations for the load in the control design through an uncertain
linear parameter-varying framework.

Considering a recurrent scenario in which available information is provided by sensors
embedded at the UAV, a set-membership zonotopic state estimator was designed, to provide
the load’s position and orientation, which was able to cope with different sampling times
and unknown-but-bounded uncertainties. To demonstrate and compare the performance of
the proposed state estimator, a Kalman filter was also designed. The performance of the
proposed strategies were demonstrated through numerical experiments, performed in the
ProVANT simulation environment, a platform based on the Gazebo simulator and on a CAD
3D model of the system. In contrast to the Kalman filter, the zonotopic state estimator was
able to provide the system states with consistency. The path tracking was performed with
success by the suspended load, from take-off to landing, using the designed mixed H2/H∞
control strategy with the proposed control structure.

This work dealt with hover flights, with the tilt-rotor UAV in helicopter flight-mode. For
future works, the inclusion of aerodynamic surfaces into the proposed model is straightforward,
and an enlarged flight envelope will be explored. Another future research step consists in
validating the designed strategies in an experimental setup.

References

[1] Q. H. Ngo, K.-S. Hong, Sliding-mode antisway control of an offshore container crane, IEEE/AMSE
Transactions on Mechatronics 17 (2) (2012) 201–209.

[2] M. Bernard, K. Kondak, I. Maza, A. Ollero, Autonomous transportation and deployment with aerial
robots for search and rescue missions, Journal of Field Robotics 28 (6) (2011) 914–931.

[3] M. Bisgaard, Modeling, estimation and control of helicopter slung load system, Ph.D. thesis, Aalborg
University (2008).

[4] Z. Wu, X. Xia, B. Zhu, Model prediction control for improving operational efficiency of overhead cranes,
Nonlinear Dynamics 79 (4) (2015) 2639–2657.

[5] S. J. Chen, B. Hein, H. Wörn, Swing attenuation of suspended objects transported by robot manipulator
using acceleration compensation, in: 2007 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2007, pp. 2919–2924.

[6] M. Bisgaard, A. la Cour-Harbo, J. D. Bendtsen, Swing damping for helicopter slung load systems using
delayed feedback, in: AIAA Guidance, Navigation, and Control Conference, 2009, pp. 1–11.

[7] D. Fusato, G. Guglieri, R. Celi, Flight dynamics of an articulated rotor helicopter with an external
slung load, Journal of the American Helicopter Society 46 (1) (2001) 3–13.

34



[8] R. P. K. Jain, Transportation of a cable suspended load using unmanned aerial vehicles, Master’s thesis,
Delft University of Technology (2015).

[9] M. Bisgaard, A. la Cour-Harbo, E. N. Johnson, J. D. Bendtsen, Vision aided state estimator for
helicopter slung load system, in: 17th IFAC Symposium on Automatic Control in Aerospace, 2007, pp.
425–430.

[10] M. Bisgaard, A. la Cour-Harbo, E. N. Johnson, J. D. Bendtsen, Full state estimation for helicopter
slung load system, in: AIAA Guidance, Navigation and Control Conference and Exhibit, 2007, pp. 1–15.

[11] T. Alamo, J. Bravo, E. Camacho, Guaranteed state estimation by zonotopes, Automatica 41 (6) (2005)
1035–1043.

[12] V. T. H. Le, C. Stoica, T. Alamo, E. F. Camacho, D. Dumur, Zonotopic guaranteed state estimation for
uncertain systems, Automatica 49 (11) (2013) 3418–3424.

[13] I. Palunko, P. Cruz, R. Fierro, Agile load transportation: safe and efficient load manipulation with
aerial robots, IEEE Robotics & Automation Magazine 19 (3) (2012) 69–79.

[14] M. M. Almeida, G. V. Raffo, Nonlinear control of a tiltrotor UAV for load transportation, in: 11th
IFAC Symposium on Robot Control, 2015, pp. 234–239.

[15] G. V. Raffo, M. M. Almeida, Nonlinear robust control of a quadrotor UAV for load transportation with
swing improvement, in: American Control Conference, 2016, pp. 3156–3162.

[16] M. A. Santos, G. V. Raffo, Path tracking model predictive control of a tilt-rotor uav carrying a suspended
load, in: Proc. of the IEEE 19th International Conference on Intelligent Transportation Systems (ITSC),
2016, pp. 1458–1463.

[17] T. Oktay, C. Sultan, Modeling and control of a helicopter slung-load system, Aerospace Science and
Technology 29 (1) (2013) 206–222.

[18] X. Liang, Y. Fang, N. Sun, Nonlinear hierarchical control for unmanned quadrotor transportation
systems, IEEE Transactions on Industrial Electronics 65 (4) (2018) 3395–3405.

[19] M. E. Guerrero-Sanchez, D. A. Mercado-Ravell, R. Lozano, C. D. Garćıa-Beltrán, Swing-attenuation for
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[38] W. Kühn, Rigorously computed orbits of dynamical systems without the wrapping effect, Computing

61 (1) (1998) 47–67.
[39] C. Combastel, A state bounding observer based on zonotopes, in: 2003 European Control Conference,

2003, pp. 2589–2594.
[40] D. Simon, Optimal State Estimation: Kalman, H∞ and Nonlinear Approaches, John Wiley & Sons, Inc,

2006.
[41] G. Raffo, M. Almeida, A load transportation nonlinear control strategy using a tilt-rotor uav, Journal

of Advanced Transportation 2018 (2018) 1–20.
[42] M. Chilali, P. Gahinet, H∞ design with pole placement constraints: an lmi approach, IEEE Transactions

on Automatic Control 41 (3) (1996) 358–367.
[43] M. C. de Oliveira, J. C. Geromel, J. Bernussou, Extended H2 and H∞ norm characterizations and

controller parametrizations for discrete-time systems, International Journal of Control 75 (9) (2002)
666–679.

[44] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, A. Ng, ROS: an
open-source robot operating system, in: Proc. of the Open-Source Software Workshop of the International
Conference on Robotics and Automation, 2009, pp. 2054–2059.

[45] N. Koenig, A. Howard, Design and use paradigms for Gazebo, an open-source multi-robot simulator, in:
Proc. of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004, pp.
2149–2154.
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