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Abstract 

This paper discusses formation problem for robotic swarms when multiple robotic swarms 

cross one another’s path. To realize the crossing motion, collision avoidance between 

agents is an important issue, with the potential to cause a general mix-up of formation 

during the crossing motion. To realize an orderly and well-organized crossing motion with 

the least mix-up, as well as collision avoidance, we propose a distributed controller. This 

well-organized crossing motion can realize visually appealing and highly entertaining 

robotic mass games. This paper proposes a distributed controller using the gradient of the 

cost functions about the formation maintenance, collision avoidance, and tracking to the 

desired trajectory. We then prove that we can achieve a well-organized crossing motion of 

multiple robotic swarms under several assumptions. Finally, experimental and numerical 

simulations are carried out to investigate whether the well-organized crossing motion can 

be achieved.  
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1. Introduction  

Recently, the need for cooperative work by multi-robot systems has been highlighted in various 

fields, including cooperative transportation, and environmental exploration and monitoring [1-3]. In 

particular, robotic swarms with multi-robot systems have potential advantages such as robustness for 

some faults, flexibility for various environments or tasks, and scalability in terms of number of robots, 

compared to single-robot systems [4-7]. In terms of controlling robotic swarms, including distributed 

robotics, many of the major problems have already been solved, including flocking, consensus, and 

the rendezvous problem (see, for example, [8-14]).  

On the other hand, studies have been carried out to realize visually amusing motion, like mass 

games, by controlling the formation of robotic swarms. A mass game is one in which many 

individuals act as a group, for example, dancing or doing gymnastics while maintaining population 

synchrony. Mass games are often performed at school and international athletic events to indicate 

group solidarity. Izumi et al. proposed distributed controllers for mass games with multi-robots by 

combining a coverage control method with halftone image processing, and generated formations of 
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agents displaying specified gray-scale images [15]. To display images and animation of a group of 

mobile robots, Alonso-Mora et al. proposed a display method that generated the desired robot 

positions and robot assignments to goal positions, with a distributed collision-avoidance algorithm 

that determined a collision-free velocity for each robot [16]. Yamane et al. realized the display of 

stick-figure animations using a centralized motion-planning algorithm [17]. Further, Rubenstein et al. 

replicated desired forms by creating a thousand real robotic swarms [18]. 

These studies realized visually amusing motion by displaying forms or patterns created by a group 

of robots. However, in a human mass game, we see not only the motion that forms a character or 

pattern but also crossing motions between groups without collisions. To realize such motion, 

including crossing, we need to consider situations in which multiple robotic swarms pass each other. 

van den Berg et al. realized crossing motion without collision with multiple robots using the mutual 

collision avoidance algorithm called Reciprocal Velocity Obstacles (RVO), which is based on 

velocity obstacles [19, 20]. In addition, this method was extended to three-dimensional (3-D) space, 

and applied to three unmanned aerial vehicles (UAVs) [21]. To achieve visually pleasing 

group-formation transition in the formation transform of multi-agents, Xu et al. proposed a control 

method based on the social-force model, with pair assignments and mutual information [22].  

In the crossing motion seen in mass games, it is thought that the absence of formation mix-ups and 

the stationary postures in transient states are important issues for visual appeal. However, to the best 

of our knowledge, no research has considered such transient states in the crossing of robotic swarms. 

For example, previous studies [15, 16, 18] did not explicitly treat form configuration in crossing, or 

the transform of the formation. Thus, these controllers are not appropriate for performing motions that 

include crossing.  

There have been many studies about the formation control of multi-agents forming one group 

[23-26]. One of the problems in formation control is collision avoidance between agents. For example, 

since the relative position between agents changes as agents generate the desired formation from their 

initial positions, collision avoidance between agents is essential [27-31]. However, previous studies 

have not addressed the crossing motion of multiple robotic swarms and formation mix-ups in transient 

states, nor are the finding of those studies appropriate for the performance of motion including 

crossing. Although it is possible that crossing occurred in [17], the target was stick figures, different 

from that in a general mass game. While crossing motion between groups was treated in [19-21], 

problems such as formation mix-up, stationary postures, and excessive circumvention in an 

environment where there is a high density of robots has not yet been clarified. In addition, while [22] 

simulated the crossing of two groups, no formation was maintained. Thus, the objectives of these 

studies were not directed at the realization of a visually appealing, well-organized crossing motion for 

mass games. For a definition of visually appealing, well-organized crossing motion, see section 2.2. 

We previously proposed a control method that realizes well-organized crossing motion of multiple 

robotic swarms [32]. The method consists of offline path planning based on model predictive control, 
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online trajectory tracking to the generated path, and collision avoidance based on RVO [19]. However, 

the optimized solution for the mixed-integer quadratic programming problem is used for the offline 

path planning, and thus requires a long computational time. In particular, computational time 

increases substantially with the number of robots, and it is difficult to realize crossing like that seen in 

human mass games with many robots.  

One possible solution for this is a distributed controller. Computational time in a distributed 

controller does not depend on the number of robots, and thus it can be adapted to bigger robotic 

swarms. Wang et al. proposed a distributed controller that solves the optimal control problem by 

integrating formation control, collision avoidance, and trajectory tracking to control the formation of 

multiple UAVs [33]. Falconi et al. reported a distributed controller for both formation control and 

collision avoidance of groups of mobile robots based on the graph Laplacian [34]. However, these 

studies did not focus on crossing motion, or mention mix-ups in formation. 

This paper proposes a distributed formation controller that considers formation maintenance, 

collision avoidance, and tracking to the desired trajectory in the transient states when multiple robotic 

swarms cross one another. With this controller, we realize visually appealing and highly entertaining 

mass robotic games. In the control of multi-agent systems, collision avoidance between agents is the 

essential requirement, and many collision avoidance methods have been proposed using artificial 

potential functions and barrier functions [27-31]. Nevertheless, well-organized crossing motion by 

multiple robotic swarms has not been realized. The distributed controller proposed here employs the 

artificial potential method to realize well-organized crossing motion. It could thus be applied to 

robotic mass games, or to exploring and monitoring the environment. 

The latter application has the potential to quickly and efficiently perform assigned tasks. However, 

once multiple robotic swarms have crossed one another, perhaps finishing a task in different places, 

they generally return to the starting point. If the multiple robotic swarms explore different rooms in 

the interior of a building, for example, it is a possible there could be conflict at traffic intersections on 

the return pathway. In particular, space will be limited inside the building, and thus crossing motion 

with the fewest formation mix-ups will be necessary. The main difference between the proposed 

controller and our previously developed one [32] is that this one is a distributed controller, and thus is 

scalable with a low computational cost.  

The remainder of this paper is organized as follows. The problem is formulated in section 2, and the 

distributed controller is proposed in section 3. Section 4 presents the mathematical analysis to prove 

the stability of the closed-loop system. Experiments and numerical simulations with mobile robots are 

described in section 5 to determine whether the well-organized crossing motion of multiple robotic 

swarms can be achieved. Finally, we conclude the paper in section 6. 

 

2. Problem Formulation 
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2.1. Model of Robots and Swarms 

Fig. 1 shows the i-th group consisting of mi omni-directional mobile robots in the two-dimensional 

plane for ni ,,1= . We refer to the i-th group as group i. Let 2 1[ ,  ]T

i i i
x y = z  be the representative 

position of group i. The equations of motion of the j-th robot in group i are described by 

ijij vz = , (1) 

ijij uv = , (2) 

where 
imj ,,1= , 2 1[ ,  ]T

ij ij ij
x y = z  and 2 1[ ,  ]T

ij ij ij
x y = v  are the position and velocity of the 

corresponding robot, respectively. In addition, uij=[uijx, uijy]
T 2 1  is the acceleration input. The j-th 

robot in group i is denoted as robot ij. Here we assume that the size of robot ij fits inside a circle of 

radius r. The relationship between 
iz  and position zij of robot ij is expressed as 

ijiij σzz += , (3) 

where σij
2 1  is the relative position of robot ij from 

iz . 

The desired trajectory of group i’s representative position 2 1d

i

z , the number of robots, and the 

shape of the formation are given by the mass game program’s designer. When the designer sets the 

desired trajectory, we assume that d

iz  is designed without considering collision with the other 

groups. Here, let us set the following relationship between d

iz  and the desired trajectory of robot ij, 

2 1d

ij

z : 

d

ij

d

i

d

ij σzz += , (4) 

where 2 1d

ij

σ  is the relative desired position of robot ij from d

iz , set by the designer of the mass 

game program. Now, we assume that d

ijσ  is constant; that is, the desired formation of the group does 

not change during the mass game (See the Appendix for definitions of frequently used symbols). 

2.2. Well-Organized Crossing 

We now consider the kind of crossing motion that will be visually appealing in a well-organized 

mass game. Fig. 2(a) and (b) show simulation results in which two robotic swarms with 2×4 

formation cross each other. The colored circles represent the robots. A collision avoidance algorithm 

is installed in each robot, and thus collisions were avoided. The initial formations were the same in 

group
group

target

trajectory of

group

target trajectory of

group

representativepoint

of group

robot

 

Fig. 1. Group i and robot ij. 
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both cases, but the initial positions were not. The formation was maintained during the crossing in Fig. 

2(a), but was mixed up during the crossing in 2(b). From these figures, we consider that the elements 

involved in the visual appeal of a well-organized crossing in a mass game include the beauty of the 

geometric form. Thus, we consider formation maintenance to be an important issue when deciding 

whether a crossing is visually appealing. As a result, we focus on formation maintenance during 

crossing. We also note that the non-crossing method, in which each group makes a big detour, fails in 

the crossing treated in this paper. It is therefore better to keep the error between the desired trajectory 

and the actual trajectory small. 

To summarize, we set the robot crossing to be a visually appealing, well-organized crossing motion 

so that the formation would be maintained, and the error between the desired trajectory and actual 

trajectory would be as small as possible. Of course, collision avoidance is clearly essential. We 

propose a distributed controller satisfying the following three issues: 1) formation maintenance; 2) 

collision avoidance; and 3) tracking to the desired trajectory. 

2.3. Control Objective 

We describe the relationship between robots in group i by graph representation. Let 

},,2 ,1{ ii mV = , and iii VVE   be a set of nodes (robots) and a set of edges of undirected graph 

Gi = (Vi, Ei). Here, Vi is the set of the robots in group i, and Ei is the set of communication links 

among the robots. Let }),(:{ iiij EkjVkN =  be the neighbors of robot ij. Thus, lNij  robot ij 

can obtain the information of robot il. In this paper, we consider an undirected and connected graph 

for the network structure within the same group, and thus the set Nij has the symmetry property: lNij 

  jNil. Further, robot ij can know its own information, but jNij. The graph Laplacian m mi i
i

L   

of Gi is defined as follows: 









−

=

=

,)(otherwise          0 

),(        1 

),(     || 

)( ),( ij

ij

lji Nl

ljN

L , (5) 

t = 0 t = 18

t = 32 t = 50

 

t = 0 t = 18

t = 32 t = 50

 

(a)  “well-organized” crossing. (b)  not “well-organized” crossing. 

Fig. 2.  Crossing motion. 
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where ),()( ljiL  represents the (j, l)-th element of matrix iL , and |Nij| is the cardinal number of set Nij. 

It is known that the graph Laplacian iL  of Gi is symmetric and positive semidefinite, and that it has 

the following property: 
ii mmiL 01 = , where 1[ , , ]T k

k
a a = a  for a  [35].  

Robot ij must maintain the formation and avoid collisions using the local information of its 

neighbors prescribed by the Laplacian iL  and the information of the robots in other groups. Thus, the 

control objective is to propose a distributed controller satisfying the followings: for all (i, j) and all (k, 

l) ≠ (i, j), 

−


 )( d

iiiL σz , (6) 

rklij 2  − zz , (7) 

0=−
→

)(lim d

ijij
t

zz , (8) 

where 2 1

1
[ , ,  ] mT T T i

i i imi

= z z z , 2 1mi
i i

= v z , 2 1mi
i i

= u v , 2 1

1
[( ) , ,  ( ) ] md d T d T T i

i i imi

= z z z , 

2 1md d i
i i

= v z , 2 1md d i
i i

= u v , 2 1

1
[( ) , ,  ( ) ] md d T d T T i

i i imi

= σ σ σ , and 2 2

2

m mi i
i i

L L =  I . Here, Ik is an 

identity matrix of size k, and   is the Kronecker product. The reason that Li is defined as 

2I= ii LL  is because the states of robot zij and vij have two components of the x-axis and y-axis. For 

any vector a = [a1, a2]
T 2 1 ,  

[ , , ]T T T

i
L =a a 0 , (9) 

holds. 2 1md i
i

σ  is the offset vector to determine the desired form of the formation of group i.  

The left-hand side (LHS) of (6) corresponds to a mix-up of the formation, and its value becomes 

large when the formation is disarranged. In fact, the LHS of (6) can be written as follows: 

1 1 1 1

1 1

{( ) ( )} { ( )}

( )                                         

{( ) ( )} { ( )}

d d d d

i i ij ij i ij i ij
j N j Ni i

d

i i i

d d d d

im im ij ij im ij im iji i i i
j N j Nim imi i

L

 

 

   − − − − − −
   
   

− = =
   
   − − − − − −
      

 

 

z σ z σ z z σ σ

z σ

z σ z σ z z σ σ

2 1  .mi  (10) 

Each element of this vector is the sum of the error between the relative position and the desired 

relative position between the corresponding robot and its neighbors. Thus, the maximum value of 

such a vector’s elements − ||)(|| d

iiiL σz  can be represented as a formation mix-up. In addition, we 

obtain =− )( d

iiiL σz  0=TT

i

T

iiL ],,[ zz   when the formation of the group coincides with the desired 

formation, TTd

imi

Td

iii i
])(,,)[( 1 σzσzz ++=  . Considering this, condition (6) means that the mix-up of 

the formation is below a value  , even if the state of the robot is transient, such as during a crossing 

motion. On the other hand, condition (7) means that the distance between two different robots is 

larger than or equal to 2r, and thus, the two robots do not collide. Further, condition (8) means that the 

error between zij and d

ijz  converges to zero as →t . 
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3. Distributed Formation Controller 

In the control of multi-agent systems, collision avoidance between agents is an essential 

requirement, as mentioned, and many collision avoidance methods using the artificial potential 

functions and barrier functions have been proposed [27-31]. None, however, have realized 

well-organized crossing motion by multiple robotic swarms. Here, we employ the artificial potential 

method in designing the controller, and propose a distributed controller using the gradient of the cost 

functions about the conditions (6)-(8) to realize well-organized crossing motion for a mass game. In 

particular, the main points for realizing a well-organized crossing motion are defining an index about 

the mix-up of the formation by (6) and (10), and proposing the cost function for maintaining the 

formation with the fewest mix-ups by (14). 

3.1. Cost Functions 

Let us define the following cost functions: 

zzzz JJJJ ,3,2,1 ++= , (11) 

vvvv JJJJ ,3,2,1 ++= , (12) 

where the subscripts z and v mean that the corresponding cost function is about the position and 

velocity, respectively. In addition, the subscripts 1, 2, and 3 show that the corresponding cost function 

is about formation maintenance, collision avoidance, and trajectory tracking, respectively. Using the 

cost functions Jz, Jv, and the desired trajectory of the acceleration ud, we design the controller as 

follows: 

dvz JJ
u

v

x

z

x
u +




−




−=

)()(
, (13) 

where 2 1

1
[ , ,  ]T T T m

n

= z z z , 2 1m= v z , 2 1m= u v , 4 1[ ,  ]T T T m= x z v , 

2 1

1
[( ) , ,  ( ) ]d d T d T T m

n

= u u u , and  = =
=

n

i

m

j

im
1 1

1  is the total number of the robots in all groups. 

3.2. Cost of Formation Maintenance 

We introduce the following costs about the formation maintenance: 

)2)((
  2

2

,1

,1 m
c

J crT

m

z

z −= zD1



, (14) 

vv L
c

J Tv

v
2

,1

,1 = , (15) 

where c1,z and c1,v are positive weighting coefficients. In addition, 

2 1

11, 11, 12, 12, ,

1 1 1 1 1
( ) ,  ,  ,  ,  , ,

cos( ) cos( ) cos( ) cos( ) cos( )

T

cr m

x y x y nm yn
D D D D D




= 
 

D z  (16) 
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, 2 1

,

{( ) ( )} ,
2

ij x

ij ij il il ij
l Nij y ij

D

D









 
= − − − =  

 
 z σ z σ D  (17) 

2 1

11 12
( ) ( ) [ , , , ] ,

2

T T T T m

nmn
L




= − = D z z σ D D D  (18) 

2 2

1
diag( , , ) ,m m

n
L L L =     2 1

1
[( ) , ,( ) ] .d T d T T m

n

= σ σ σ  (19) 

Here, if any element of the vector L(z–σ) goes to ±ε, the corresponding element of D becomes ±π/2, 

and thus the corresponding element of Dcr diverges. That is, the motivation for selecting the cosine 

function in (16) is to obtain the situation in which the corresponding element of Dcr diverges when 

any element of the vector L(z–σ) goes to ±ε. Therefore, J1,z diverges when (6) does not hold. On the 

other hand, J1,v represents the degree of velocity mismatch. The velocity mismatch between 

neighboring robots leads to a mix-up of the formation. To avoid this problem, J1,v is introduced. 

The gradients of J1,z and J1,v can be computed as follows: 

)()(
2)(

,12

,1,1
zDzD1

Dz

D

z

x
sc

z

crT

m

zz
Lc

cJ
=








=








, (20) 

v
v

x
Lc

J
v

v

,1

,1 )(
=




, (21) 

where  

 

 
,11, 2 1

11 2 2

11, ,

sin( )sin( )
( ) ( ) , ,( ) , , .

cos ( ) cos ( )

T

T
nm yxsc sc T sc T mn

nmn

x nm yn

DD

D D


 

 = =   
  

D z D D  (22) 

3.3. Cost of Collision Avoidance 

We design the cost about the collision avoidance as follows: 

  
= = 

=
n

i

m

j Nlk

z

klijzz

i

z
ij

GcJ
1 1 ),(

,,2,2   , (23) 

  
= = 

=
n

i

m

j Nlk

v

klijvv

i

v
ij

GcJ
1 1 ),(

,,2,2   , (24) 

where c2,z and c2,v are positive weighting coefficients, )},(),( , : ),{( safe, jilkRLlkN klij

z

ij = , 

 ,:),{( sense, RLlkN klij

v

ij = }ik  , and ||||, klijklijL zz −= . Further, Rsafe and Rsense are positive 

parameters larger than 2r. For the derivation of the optimal values of Rsafe and Rsense, we have not yet 

obtained the solution. Thus, we determined their values by trial and error in the experiment and 

numerical simulation. The cost (23) means that the robot keeps an appropriate distance from other 

robots that enter inside a circle with a radius Rsafe around it, and (24) is the cost for the robot to avoid 

collisions with the robots inside a circle with a radius Rsense around it. Here, note that the range of the 

third summation in (24) has k ≠ i, and thus the collision avoidance of (24) is not applicable to the 

robots belonging to same group. Thus, the collision avoidance in (24) is for robots belonging to 
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groups different from the robot’s own group. Here, one guideline for setting Rsafe and Rsense is to make 

sure it satisfies the following relation: Rsafe < Rsense, where Rsense corresponds to the radius of the robot’s 

sensing area. The cost (24) allows the robot to undertake collision avoidance behavior long before colliding 

with the robots belonging to the other group. If we consider only (23), collision avoidance is not assured 

before the robot could collide the other robots, and thus it is possible that the formation would be mixed up 

by the collision avoidance. However, combining (23) and (24) is expected to lessen this possibility. 

Therefore, satisfying Rsafe < Rsense is preferred for well-organized crossing motion with the least mix-up. 

3.3.1. Collision avoidance cost by J2,z 

Let us define z

klijG ,  as follows: 















=

),2(definednot 

),2(

),(0

,

safe,

safe,

,

rL

RLrg

RL

G

klij

klij

z

ij,kl

klij

z

klij  (25) 

222

,

22

,

2

safe

22

safe

,
})2({

)(

})2({8

1

rL

LR

rR
g

klij

klijz

klij
−

−

−
= . (26) 

Although z

klijg ,  is 0  when Lij,kl > Rsafe, 
z

klijg , increases smoothly with decreasing Lij,kl in the region of 

Lij,kl ≤ Rsafe. If Lij,kl increased to 2r, that is, a collision were to occur, z
klijg ,  would diverge. Thus, J2,z 

diverges when (7) is not satisfied, and the input by the gradient of this cost becomes a repulsive force 

so that the robot moves away from another robot entering a circle of a radius Rsafe. Here, note that the 

following hold from the definitions: 

z

kl

z

ij NjiNlk  ),(),( , (27) 

ijklklij LL ,, = ,     z

ijkl

z

klij GG ,, = ,  (28) 

ij

z

ilkl

ij

z

klij GG

zz 


=




,,

,     
kl

z

klij

ij

z

klij GG

zz 


−=



 ,,
. (29) 

So, the following equality holds: 


 


=


















+




=





z
ij

z
ij Nlk ij

z

klij

z
Nlk ij

z

ijkl

ij

z

klij

z

ij

z
G

c
GG

c
J

),(

,

,2
),(

,,

,2

,2
2

zzzz
. (30) 

And the gradient of J2,z is written as 





















−−

−−

=












z

nnm

nn

z

Nlk
klnm

z

klnm

Nlk
kl

z

kl

z

ij

z

c

c

c
J

),(
,

),(
11,11

,2

,2

)(

)(
11

zz

zz

z
 , (31) 

where  
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2 2

safe ,

, 2 2 3

,

( )

{ (2 ) }

ij klz

ij kl

ij kl

R L
c

L r

−
= 

−
. (32) 

3.3.2. Collision avoidance cost by J2,v 

Next, let us define the following v

klijG ,  based on the procedures in [33]: 















=

),2(definednot 

),2(

),(0

,

sense,

sense,

,

rL

RLrg

RL

G

klij

klij

v

ij,kl

klij

v

klij  (33) 









−
−

−



=
),(||||

})2({

)(

4

1

),(0

,,

2pref

,,222

,

22

,

2

sense

,,

,
klijklijklijklij

klij

klij

klijklij

z

klij

rL

LRg




vv
 (34) 

where 

klijklij vvv −=, ,     ||||min arg ,
} ,{

pref

,

,,

klijklij

klijklij

vvv
vvv

−=
+−

,  (35) 

klijklijklijklij CC ,,

1

,, )(
00

01
)( vv −









=  , (36) 















−

−
=

|||| ||||

)(
arccos

,

,

,

klijijkl

klij

T

ijkl

klij
vzz

vzz
 , (37) 


























=

),( /2

),(arcsin

safe,

safe,

,

safe

,

RL

RL
L

R

klij

klij

klijklij



  (38) 

klijijklijklklij xxyy ,, ),(2atan  −−=  ,  (39) 








 −
=






cossin

sincos
)(C ,     )arg(),(2atan jyxxy += ,  (40) 

where j in (40) is the imaginary unit. The geometric relations in (35)-(39) are shown in Fig. 3. As may 

be seen, −

klij ,v  and +

klij ,v  are projections of klij ,v  onto two tangent lines of a circle of radius Rsafe 

around zkl through zij. We set pref

,klijv  as the lesser value of the error norm between −

klij ,v  and klij ,v , and 

the error norm between +

klij ,v  and klij ,v . We show pref

,, klijklij vv −  as the red arrow in Fig. 3. In the case 

of Fig. 3, since |||||||| ,,,,

+− −− klijklijklijklij vvvv , we obtain −= klijklij ,

pref

, vv . The collision avoidance cost, 

v

klijg , , becomes zero when pref

,, klijklij vv = . So, in Fig. 3, the cost v

klijg ,  puts the relative positional relation 

of robot ij and robot kl on a tangential direction of a circle of radius Rsafe around robot kl. In addition, 

the coefficient 222

,

22

,

2

sense })2(/{)( rLLR klijklij −−  increases smoothly as the distance between the robot ij 

and robot kl is closed. Here, note that if we set a large value for Rsafe, it is difficult for a robot to cross 

another robotic swarm. 
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Using the notation }:),{( ,, klijklij

v

ij

v

ij lkNN  =   in (24) yields 

 
= = 

−
−

−
=

n

i

m

j
klijklij

Nlk klij

klij

vv

i

v
ij

vv
rL

LR
cJ

1 1

2pref

,,
),(

222

,

22

,

2

sense

,2,2 ||||
})2({

)(

4

1
. (41) 

Now, let us define the matrix C2(θ) as  









=








= −






2

2

1

2
sinsincos

sincoscos
)(

00

01
)()( CCC . (42) 

Then, pref

,klijv  can be expressed as follows: 

klijklijklij C ,

pref

,2

pref

, )( vv = ,    ||))((||min arg ,22
} ,{

pref

,

,,

klijklij C
klijklij

vI 


−=
+−

.  (43) 

Here note that C2(θ) and I2–C2(θ) have the following properties regardless of θ: 

222 CCCT = ,     222222 )()( CCC T −=−− III .  (44) 

Thus, these two matrixes are semi-definite, and these properties lead to the following: 

( ) . )()()(|||| ,

pref

,22,

pref

,,

pref

,,

2pref

,, klijklij

T

klijklijklij

T

klijklijklijklij C vIvvvvvvv −=−−=−  (45) 

On the other hand, from (35), (37)-(39), and Fig. 4, which shows pref

,klijv  and pref

,ijklv , we found  

klijijkl ,, vv −= ,     klijijkl ,,  = , (46) 

klijijkl ,,  = ,      += pref

,

pref

, klijijkl . (47) 

Here, the following relation holds because of C2(θ+π) = C2(θ): 

pref

,,

pref

,2

pref

, )( klijijklijklijkl C vvv −==  . (48) 

Further, since v

kl

v

ij NjiNlk  ),(),(  because of (46) and (47), we can show that v

klijG ,  has the 

following property: 

v

ijkl

v

klij GG ,, = ,    
ij

v

ijkl

ij

v

klij GG

vv 


=



 ,,
,    

kl

v

ijkl

ij

v

klij GG

vv 


−=



 ,,
.  (49) 

 
 

Fig. 3.  Variables in collision-avoidance cost. 

 

Fig. 4.  pref
,klijv  and pref

,ijklv . 
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Thus, the following equality holds: 


 


=





v
ijNlk ij

v

klij

v

ij

v
G

c
J

),(

,

,2

,2
2

vv
. (50) 

From (45) and (50), we obtain 





















−

−

=












v

nnm

nnn

v

Nlk
klnmklnm

v

klnm

Nlk
klkl

v

kl

v

v

c

c

c
J

),(

pref

,,,

),(

pref

,11,11,11

,2

,2

)(

)(
11

vv

vv

v
 , (51) 

where  

2 2 2

sense ,

, 2 2 2

,

( )

{ (2 ) }

ij klv

ij kl

ij kl

R L
c

L r

−
= 

−
. (52) 

3.4. Cost of Tracking 

The tracking costs J3,z and J3,v are defined as follows:  

)()(
2

,3

,3

dTdz

z

c
J zzzz −−= , (53) 

)()(
2

,3

,3

dTdv

v

c
J vvvv −−= , (54) 

where 2 1

1
[( ) , ,  ( ) ]d d T d T T m

n

= z z z  and 2 1

1
[( ) , ,  ( ) ]d d T d T T m

n

= v v v  are given desired trajectories, and 

c3,z and c3,v are positive weighting coefficients. The gradients of the tracking costs can be computed as 

follows:  

)(,3

,3 d

z

z
c

J
zz

z
−=




,    )(,3

,3 d

v

v
c

J
vv

z
−=




.  (55) 

  

3.5. Control Input 

To summarize, the control input can be written as  

.)()(        

)(

)(

)(

)(

,3,3

),(

pref

,,,

),(

pref

,11,11,11

,2

),(
,

),(
11,11

,2,1,1

1111

dd

v

d

z

Nlk
klnmklnm

v

klnm

Nlk
klkl

v

kl

v

Nlk
klnm

z

klnm

Nlk
kl

z

kl

zv

sc

z

cc

c

c

c

c

c

cLcLc

v

nnm

nnn

v

z

nnm

nn

z

uvvzz

vv

vv

zz

zz

vDu

+−−−−





















−

−

−





















−−

−−

−−−=


















 (56) 

Here, the control input iju  for robot ij becomes 



- 13 - 

 

.)()(        

)()()}()({

,3,3

),(

pref

,,,,2

),(

,,2,1,1

d

ij

d

ijijv

d

ijijz

Nlk

klijklij

v

klijv

Nlk

ijkl

z

klijz
Nl

ilijv

SC

il

SC

ijzij

cc

cccccc
v
ij

z
ijij

uvvzz

vvzzvvDDu

+−−−−

−−−−−+−−= 


 (57) 

We find that this control input uses the information of the robots inside a distance, and of the robots 

specified by the graph Laplacian. Thus, this controller is the distributed controller. 

 

4. Stability Analysis 

The closed-loop system under the controller (56) can be written as  
















+−−−−





















−

−

−





















−−

−−

−−−=

=

















dd

v

d

z

Nlk
klnmklnm

v

klnm

Nlk
klkl

v

kl

v

Nlk
klnm

z

klnm

Nlk
kl

z

kl

zv

sc

z

cc

c

c

c

c

c

cLcLc

v

nnm

nnn

v

z

nnm

nn

z

uvvzz

vv

vv

zz

zz

vDv

vz

)()(      

)(

)(

)(

)(

,3,3

),(

pref

,,,

),(

pref

,11,11,11

,2

),(
,

),(
11,11

,2,1,1

1111





 (58) 

Now, we investigate if the closed-loop system (58) satisfies conditions (6)-(8). 

4.1. Fulfill the Conditions about Formation Maintenance and Collision Avoidance   

First, we set several assumptions. 

Assumption 1: Conditions (6) and (7) are satisfied in the initial states at 0=t . 

Assumption 2: The values of ||)0(|| v  and ||)0()0(|| dzz −  are bounded in the initial states at 

0=t . 

Assumption 3: v

ij

z

ij NN  ø for all i and j   0== dd vz . 

Here, ø is an empty set. Assumption 3 means that the desired trajectory is the static desired point in 

the case where some robots approach and avoid collision. 

Theorem 1: Under Assumption 1, 2, and 3, the closed-loop system (58) satisfies conditions (6) and 

(7). 

Proof: For condition (6) and formation maintenance cost J1,z, and for condition (7) and collision 

avoidance cost J2,z, the following hold: for all (i, j) and for all (k, l) ≠ (i, j), 

=
−→− 

z
L

J ,1
0||)(||

lim
σz

,    =
−→−

z
r

J
klij

,2
02||||

lim
zz

,  (59) 

where )(lim
0

xf
ax −→

 is the left-hand limit of f(x) at x=a. Thus, if assumption 1 is satisfied, we obtain 

− ||)(||  1,1 σzLMJ z ,    rMJ klijz 2||||  2,2 − zz ,  (60) 

for all (i, j) and for all (k, l) ≠ (i, j). Here, M1 and M2 are sufficiently large positive constants. That is, 
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conditions (6) and (7) are satisfied if we show that J1,z and J2,z are bounded. 

Using the variable transformations dzzz −=ˆ , dvvv −=ˆ , duuu −=ˆ , TTT ]ˆ,ˆ[ˆ vzx =  in (56) yields 

.ˆˆ
ˆˆ

ˆ)ˆ(ˆ
,3,3

1 1 ),(

,

,2
1 1 ),(

,

,2,1,1 vz
vz

vzDu vz

n

i

m

j Nlk

v

klij

v

n

i

m

j Nlk

z

klij

zv

sc

z cc
G

c
G

cLcLc
i

v
ij

i

z
ij

−−



−




−−−=   

= = = = 

 (61) 

Now, let us define the Lyapunov function candidate as follows: 

zzz

T JJJV ,3,2,1
ˆˆ

2

1
)ˆ( +++= vvx . (62) 

Here, note that 0)ˆ( xV  for all 0ˆ x , but we cannot say 0)ˆ( =xV  when 0ˆ =x . The time 

derivative of )ˆ(xV  along the solution of (58) is given by 

,)(
2

)()(
2

ˆˆ          

)(
2

ˆˆ        

)(
2

)()(ˆˆ          

)(ˆˆ        

)()(ˆˆ
ˆ

ˆˆˆ        

ˆˆ
ˆ

)ˆ()ˆ(ˆˆˆ)(

1 1 ),(
,,,

,2

1 1 ),(
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,,,,

,2

,3

1 1 ),(
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,,,,

,2

,1

1 1 ),(
,,,

,2

1 1 ),(

pref

,,,,2,3

1 1 ),(
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,,,,2,1

1 1 ),(
,,2,3

1 1 ),(

,

,2,1

,3
1 1 ),(

,

,2,1

  

 

  

 

  

 

= = = = 

= = 

= = = = 

= = 

= = = = 

= = 

+−+−

−−−=

+−+−

−−−=

−+−



−−=

+



+++=
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Td
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klij

v
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vT

v

n
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m

j Nlk
klijklij

T

klij

v

klij

vT

v

n

i

m

j Nlk
ijkl

Td

klij

z

klij
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n
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m

j Nlk
klijklij

Td

ij

v
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T

v

n

i
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j Nlk
klijklij

T

ij

v

klijv

T

v

n

i

m

j Nlk
ijkl

Td

ij

z

klijz

T

v

n

i

m

j Nlk

v

klijT

v

T

v

T

z

n

i

m

j Nlk

z

klijTd

z

scT

z

T

i

z
ij

i

v
ij

i

v
ij

i

z
ij

i

v
ij

i

v
ij

i

z
ij

i

v
ij

i

z
ij

c
c

c
c

c

c
c

Lc

c
c

ccc

ccLc

ccc
G

cLc

c
G

cLcxV

zvvvvvv

vvvvv

zvvvvvv

vvvvv

zzvvv
v

vvv

zv
z

vvzDvuv

 (63) 

where d

kl

d

ij

d

klij vvv −=, , and zkl, ij = zkl – zij. From assumption 3, we obtain 0=d

klij ,v , and thus 

.))((
2

ˆˆˆˆ)(
1 1 ),(

,

pref

,22,,

,2

,3,1  
= = 

−−−−=
n

i

m

j Nlk
klijklij

T

klij

v

klij

vT

v

T

v

i

v
ij

Cc
c

cLcxV vIvvvvv   (64) 

Here, the graph Laplacian L is positive semi-definite, v

klijc ,  is a positive scalar, and )( pref

,22 klijC −I  is 

positive semi-definite because of (44). Thus, we obtain 

.0)( xV  (65) 

Further, )(xV  becomes zero only if 0ˆ =v  and =vN ø. Here,  

,
11

v

ij

m

j

n

i

v NN
i


==

=  (66) 

and =vN ø means that J2,v is zero and the third term of the right-hand side (RHS) in (64) is zero. In 

addition, the initial value of V ( V(t = 0) = V0 ) is finite, and this leads to 

.ˆˆ
2

1
0,3,2,1 VJJJ zzz

T +++vv  (67) 
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Here, all terms of the LHS of (67) are larger than or equal to zero, and the following holds: 

.    , 0,20,1 VJVJ zz   (68) 

Therefore, the closed-loop system (58) satisfies conditions (6) and (7).   ∎ 

4.2. Convergence  

We investigated the convergence of the solution of the closed-loop system (58), and showed that 

condition (8) is satisfied. Now, we set several assumptions. 

Assumption 4: jljiRd

il

d

ij

d

il

d

ij −=−    ),,(    , ||||  |||| safeσσzz . 

Assumption 5: The parameter ε in (6) is sufficiently small, and collision avoidance behavior 

does not occur in robots of the same group. 

Assumption 6: After a sufficiently large amount of time has passed, the crossing motions 

between robotic swarms are finished, and =vN ø and =zN ø hold, where z

ij

m

j

n

i

z NN
i


11 ==

= . 

Assumption 4 indicates that, in the desired formation, all robots belonging to the same group keep 

more than Rsafe away from their neighbors. Using this assumption leads to 0)ˆ( =xV  when 0ˆ =x . 

Assumption 5 means that the distance between robots in the same group is not less than Rsafe, because 

all robots belonging to the same group keep more than Rsafe away from their neighbors by virtue of 

Assumption 4, Theorem 1, (6), (10), and the assumption that ε is sufficiently small. Assumption 6 

means that the robots do not have to consider collision avoidance with robots in other groups after a 

sufficient amount of time has passed. In this paper, we consider the well-organized crossing motion, 

like human mass games. The mass games have crossing motions, which lead to visually amusing 

motion, but there are few ending with crossing motion in the mass game program. Therefore, we 

consider Assumption 6 is not too strong for the mass game. 

Theorem 2: Under Assumption 4, 5, and 6, the closed-loop system (58) satisfies condition (8). 

Proof: From Assumption 6, the second and fourth terms in the RHS of (63) become zero, and the 

fifth term becomes the following: 

,0)(
2

)(
2 1 1

,,,

,2

1 1 ),(
,,,

,2

,

==   
= = = = 

n

i

m

j Nl
ijil

Td

ilij

z

ilij

z
n

i

m

j Nlk
ijkl

Td

klij

z

klij

z
i

z
iij

i

z
ij

c
c

c
c

zvzv  (69) 

where } : { safe,, RLlN ilij

z

iij =  (note that 0=d

ilij,v ). Thus, (63) can be rewritten as  

0ˆˆ ˆˆ)( ,3,1 −−= vvvv T

v

T

v cLcxV . (70) 

Here, )(xV  becomes zero only if 0ˆ =v , and in that case, 0ˆ =u  because of 0ˆ =v . Substituting 

these facts into (61) yields 
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z
z

zD ˆ
ˆ

)ˆ( ,3
1 1 ),(

,

,2,1 z

n

i

m

j Nlk

z

klij

z

sc

z c
G

cLc
i

z
ij

−



−−=  

= = 

0 . (71) 

Using Assumption 5 in (71) leads to 

zzD ˆ)ˆ( ,3,1 z

sc

z cLc −−=0 . (72) 

Now, we show that (72) is satisfied only if 0=ẑ . Multiplying Tẑ  in (72) leads to 

zzzDz ˆˆ)ˆ(ˆ
,3,1

T

z

scT

z cLc −−=0 . (73) 

The first term of the RHS in (73) can be expanded as  

.
)(cos

)sin(

)(cos

)sin(2
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

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


zDDzDzzDz  (74) 

In the derivation of the second equality, we used (9) and (18). Since ẑ  satisfies condition (6), we 

obtain 2/|| , xijD  and 2/|| , yijD . This means  
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and thus, 0)ˆ(ˆ zDz scT L  if 0ẑ . Thus, if 0ẑ , 

0ˆˆ)ˆ(ˆ
,3,1 −− zzzDz T

z

scT

z cLc . (76) 

This is in contradiction to (72), and (72) is satisfied only if 0=ẑ . Therefore, from the LaSalle’s 

invariant principle, we found that condition (8) holds.     ∎ 

Therefore, we found that the distributed controller (56) satisfies conditions (6)-(8). 

 

5. Experiment and Numerical Simulation 

To investigate whether the well-organized crossing motion can be realized, we carried out an 

experiment. For the experiment, we used six mobile robots. As six was the maximum number we 

 

TABLE 1   PARAMETERS USED IN EXPERIMENTS 

Parameter Value 

Control period Ts 0.1 s 

Robot radius r 0.12 m 

Rsafe 0.36 m 

Rsense 10 m 

c1,z 0.010 

c1,v 1.000 

c2,z 0.002  10−3 

c2,v 0.002  10−1 

c3,z 0.005 

c3,v 0.200 
 Fig. 5.  Omni-directional robot. 
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could prepare, to consider the motion for a larger number of robots, we also carried out numerical 

simulations. 

5.1. Experiment 

5.1.1. Experimental Environment 

Fig. 5 shows the omni-directional mobile robot used in this experiment. Each robot had three 

omniwheels. To measure the positions of robots, we used a motion-capture system that included 

high-speed cameras and tracking software. Although we used a global sensor for the motion-capture 

system, the controller used only the local information of each robot, and thus we constructed a 

distributed controller in the experiment. The controller was implemented in the computer, and the 

velocity command for each robot was communicated via Bluetooth. The robot was then controlled by 

the received velocity command.The size of the field where the robots moved was 3.5 m × 3.5 m. 

Although we were able to realize a decentralized controller, the experimental system is a centralized 

system. We do, however, consider that a decentralized controller in a decentralized system could be 

 

Fig. 6.  Screenshots of experiment by proposed method. 

 

              

(a) The index for formation mix-up           (b) The minimum distance      (c) The error norm of the trajectory tracking 

Fig. 7.  Experimental results by proposed method. 
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achieved as follows: A computer and a laser rangefinder are mounted on each robot, and we assume 

that each robot knows its own initial position. The position of the robot is then measured by odometry, 

and the positions of other robots are measured by the laser rangefinder. It would then be possibble to  

construct the controller (57) using the obtained data. 

The parameters of the robot and controller are listed in Table 1. In the experiment, two robotic 

swarms, with each swarm consisting of three robots, were obliquely crossed from the given initial 

position to the given final positions. Here, the desired values were fixed values; that is, 0d d= =z v . 

For comparison, we carried out two experiments: experiment 1 used the proposed controller, and 

experiment 2 used only the collision avoidance method by RVO [19]. 

RVO is the distributed algorithm that finds the input velocity at which collisions do not occur. For 

robot ij, the algorithm finds the velocity regions RVOij where robot ij would collide with its neighbors 

if robot ij were to move at its present speed. The algorithm then seeks the velocity input for robot ij 

from the region outside. That is, the velocity input uij is determined for robot ij as 

||||min d

ij
RVO

ij ij
uvu

v
−=


, where d

iju  is the desired velocity. In this experiment, we set d
iju  as 

 

Fig. 8.  Screenshots of experiment by RVO. 

 

               

(a) The index for formation mix-up           (b) The minimum distance       (c) The error norm of the trajectory tracking 

Fig. 9.  Experimental results by RVO. 
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)( d

ijijp

d

ij zzKu −−= , where pK  is the feedback gain set as the identity matrix. Here, note that the 

desired trajectory of robot ij, d

ijz , is the constant in this section. 

5.1.2. Experimental Results 

We first show the results of experiment 1. Fig. 6 contains screenshots of the experiment, and Fig. 7 

shows the experimental results by the proposed method for − ||)(|| d

iiiL σz , the minimum distance 

between robots, and 2|||| dzz − . In each figure, the horizontal axis shows the time, and the vertical 

axis shows the corresponding value. Here we set the parameter of the formation maintenance   in 

(6) as 1.0= . 

As shown in Fig. 6, we found that the robotic swarms maintained their formations, and collisions 

did not occur during the crossing motion. In fact, the index for formation mix-up, − ||)(|| d

iiiL σz , 

was less than the value of 1.0= ; in addition, the minimum distance between robots was larger than 

2r in Fig. 7(a) and (b). The error norm of the trajectory tracking converged to zero in Fig. 7(c). Thus, 

the robotic swarm could realize the crossing motion satisfying conditions (6)-(8) by the proposed 

controller (56). 

Next, we show the results of experiment 2. Fig. 8 contains screenshots of the experiment and Fig. 9 

 

Fig. 10.  Screenshots of simulation by proposed method. 

 

                 

(a) The index for formation mix-up          (b) The minimum distance        (c) The error norm of the trajectory tracking 

Fig. 11.  Simulation results by proposed method. 
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shows the experimental results using RVO. In this case, although collision avoidance was realized, we 

found that formation mix-up occurred in the crossing. As Fig. 9(a) shows, the index for formation 

mix-up was larger than the value of 1.0= . This index value was five times larger than the value of 

the proposed method, and the formation was not maintained. Through the experiment, we found that 

the proposed method works well, and realized the well-organized crossing motion satisfying the 

conditions (6)-(8).  

5.2. Numerical Simulations 

5.2.1.  Numerical Simulation 1 

To investigate whether the well-organized crossing motion can be realized for a larger number of 

robots, we carried out numerical simulations. In the simulation, we used the same parameters as the 

experiment in Table 1, with four robotic swarms in which each swarm consisted of twelve robots 

obliquely crossing from the given initial position to the given final positions. Here, the desired values 

were fixed values, that is, 0== dd vz .  

Fig. 10 shows the screenshots of the simulation by the proposed method. In the figure, the colored 

 

Fig. 12.  Screenshots of simulation with asymmetric setup. 

 

                 

(a) The index for formation mix-up          (b) The minimum distance          (c) The error norm of the trajectory tracking 

Fig. 13.  Simulation results with asymmetric setup. 
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circles represent the robots, the open circles show the desired positions of the corresponding robots, 

and the black line segment at the robots shows the speed of the corresponding robot. In the figure at t 

= 0, the arrows show the moving direction of each group. In addition, Fig. 11 shows the simulation 

results for − ||)(|| d

iiiL σz , the minimum distance between robots, and 2|||| dzz − . From Figs. 10 and 

11(a), we found that the robotic swarms maintained their formation, and the index for formation 

mix-up − ||)(|| d

iiiL σz  was less than the value of 1.0= . Further, we found that the minimum 

distance between robots was larger than 2r from Fig. 11(b), which means that a collision did not occur 

during the crossing motion. Finally, the error norm of the tracking converged to zero in Fig. 11(c). 

Thus, the proposed method could realize the crossing motion satisfying conditions (6)-(8), and the 

well-organized crossing motion under the proposed method can be realized even for a large number of 

robots. 

5.2.2. Numerical Simulation 2 

To investigate the validity of the proposed controller for asymmetric setups, including the initial 

configuration, number of agents, and direction of motion, we carried out a numerical simulation. The 

parameters used are shown in Table 1. This simulation had two robotic swarms, one with six robots 

and the other with five. The two swarms crossed from the initial position to the final position, and 

both the initial positions and motion directions of the swarms were set asymmetrically. Here, the 

desired values were fixed values; that is, 0== dd vz . 

Fig. 12 shows screenshots of the simulation results. As in the case of Fig. 10, the colored circles 

indicate the robots, the open circles show the desired positions, and the black line segments show the 

speed of corresponding robots. In the figure at t = 0, the arrows represent the moving direction, and 

we can see the asymmetric setups about the initial positions, number of agents, and direction of 

motion. Fig. 13 shows the simulation results for − ||)(|| d

iiiL σz , the minimum distance between 

robots, and 2|||| dzz − . From these figures, we found that the proposed method could realize the 

crossing motion satisfying conditions (6)-(8); thus, well-organized crossing motion under the 

proposed method can be realized even for asymmetric setups in the initial positions, number of agents, 

and direction of motion. 

 

6. Conclusions 

This paper proposed a distributed formation controller to realize a well-organized crossing motion 

for a mass game by robotic swarms. To achieve such crossing motion, we imposed the following three 

conditions on the motion of the swarms: formation maintenance, collision avoidance, and tracking 

during motion. To satisfy these conditions, we defined the cost functions and proposed a distributed 

controller using the gradient of the cost functions. We then proved that the closed-loop system 

satisfied the three conditions under several assumptions. Finally, we carried out experiments and 
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numerical simulations. Results showed that the well-organized crossing motion of robotic swarms 

could be realized under the proposed controller.  

When we set a wide distance between robots in the desired formation, as in the experiment and 

simulations, the deadlock problem of robotic swarms did not occur. However, it is possible that a 

deadlock could occur if the distance between robots in the desired formation were short. We have not 

yet investigated the conditions under which deadlock could occur. This will be the next problem we 

address. On the other hand, the individuals constituting a group in a human mass game have distinct 

differences. Therefore, it is an interesting problem to consider the formation control for heterogeneous 

robotic swarms with crossing motion. Here, heterogeneous robotic swarms mean that each agent has 

different abilities, including translational velocity, sensing distance, etc., as in our previous study [36, 

37]. In addition, we did not consider the extension of the proposed controller to the case in which the 

underlying systems are in an uncertain or time-varying networked environment [38]. From a practical 

perspective, a distributed controller design for the underlying systems in an uncertain or time-varying 

networked environment is a useful and challenging topic, and this will be a focus of future research. 

 

Appendix 

The symbols used frequently in this paper are listed in Table 2. 
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