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Abstract

In this paper, a novel rectilinearity-based localization method for mixed near-field (NF) and far-field (FF) sources

is proposed under unknown mutual coupling. The multiple parameters including direction of arrival (DOA), range

and mutual coupling coefficient (MCC) are decoupled, thus only three one-dimensional (1-D) spectral searches are re-

quired to estimate the parameters of mixed rectilinear signals successively. Furthermore, the closed-form deterministic

Cramer-Rao bound (CRB) of the concerned problem is also derived. Simulation results are provided to demonstrate

the effectiveness of the proposed method for the classification and localization of mixed rectilinear sources.

Keywords:
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1. Introduction

As one representative application in numerous areas such as sonar, radar and wireless communications, the

direction-of-arrival (DOA) estimation problem based on antenna arrays has drawn considerable attention [1–4]. Many

high resolution algorithms [5–8] have been proposed for DOA estimation under the assumption of far-field (FF) sig-

nals (whose wavefronts are plane waves). However, in many interesting situations, the radiating sources are located

close to the array, and thus called near-field (NF) signals (whose wavefronts are spherical waves), where both the

DOA and range parameters need to be characterized. Consequently, traditional FF DOA estimation algorithms would

be unreliable for NF source localization. Fortunately, various methods have been developed specifically for NF source

localization [9–14]. Recently, simultaneous localization of both NF and FF signals has drawn a lot of attention in the

array signal processing community given its many practical applications such as speaker localization using micro-

phone arrays and guidance (homing) systems.

1.1. Related Work

In [15], Liang et al. proposed a two-stage MUSIC method based on two special fourth-order cumulant (FOC)

matrices. By using FOC matrices, localization of mixed sources with sparse signal reconstruction was studied in [16,
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17] and mixed-order MUSIC algorithms were proposed in [18–20], respectively. However, one common issue with

these cumulant-based methods is their high computational complexity to construct FOC matrices. To avoid it, a series

of second-order statistics (SOS)-based methods were presented in [21–23]. In [21], an oblique projection MUSIC-

based algorithm was proposed to separate the NF and FF sources, which unfortunately yields extra estimation errors.

As a result, Zuo et al. developed an alternating iterative method in [22] by recalculating the oblique projector without

eigendecomposition. Resorting to the spatial differencing technique, a mixed localization method was presented in

[23] by eliminating the FF and noise components from the covariance matrix of the array observation.

However, an ideal array manifold has been commonly assumed for all the abovementioned methods. In practice,

an antenna array may have systematic errors, such as mutual coupling (MC) [24–26], gain and phase errors [27–

30], etc., which will result in a tremendous degradation in parameter estimation performance. In particular, mutual

coupling is a serious issue since in order to avoid phase ambiguities, all the abovementioned mixed source localization

methods require the inter-sensor spacing to be constrained within a quarter wavelength, which inevitably results in the

mutual coupling effect between closely located elements [24–26]. Mutual coupling is the electromagnetic interaction

between the antenna elements in an array. The current developed in each antenna element of an array depends on

their own excitation and also on the contributions from adjacent antenna elements. The mutual coupling effect can

be considered as a kind of interference caused to the received antenna signal by neighboring antennas. Only in [31],

a mixed source localization method was introduced in the presence of mutual coupling, but it would cause the array

aperture loss problem when the principle of rank reduction (RARE) [45, 46] is used to decouple the FF DOAs and

MC. The differencing RARE estimator adopted in [31] also has the array aperture loss problem in estimating the NF

DOAs. When less array elements or strong MC presented, the method in [31] will fail to function.

On the other hand, strictly noncircular or rectilinear signals [32–40], including amplitude modulated (AM) and

binary phase shift keying (BPSK) signals, are usually encountered in the context of radio communications, for which a

significant gain in terms of DOA estimation performance can be achieved by taking into consideration both covariance

matrix and conjugate covariance matrix of noncircular signals to expand the virtual array aperture. In [41–43], some

rectilinearity-based methods are proposed to deal with the imperfect problem of array manifold in DOA estimation.

But all of them have focused on FF DOA estimation only.

1.2. Contribution of the Paper

To the best of our knowledge, no work on rectilinearity-based localization of mixed NF and FF signals in the

presence of unknown MC has been reported thus far. Therefore, in this paper, based on a uniform linear array (ULA),

we propose a localization method for mixed NF and FF sources by exploiting the rectilinear information of the signals

under unknown MC. By using the RARE principle, it is shown that only three one-dimensional (1-D) spectral searches

are required to successively estimate the parameters of mixed NF and FF noncircular sources including DOA, range

and mutual coupling coefficient (MCC). Meanwhile, distinguishing the types of sources is also solved without any

extra processing. The main contributions of this paper are listed as follows.
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1) To solve the aperture loss problem in [31], an extended new data model is constructed via stacking the original

observed data and its conjugate counterpart under unknown MC to locate the mixed NF and FF signals based on

rectilinearity. Instead of direct multiple dimensional (MD) searching method, a two-stage localization process is

adopted. In the first stage, the FF DOAs are estimated with the extended noise subspace based on RARE principle,

MC and FF noncircular phases are achieved with a unique eigenvector. In the second stage, based on twice RARE

principle, the NF DOAs and ranges are decoupled with the estimated MC, and NF noncircular phases are estimated

with another unique eigenvector.

2) We analyze the maximum number of incident mixed signals of the proposed method, which is more than that

of the method in [31], to demonstrate the advantage of using the rectilinearity.

3) The computational complexity of the proposed method, direct MD searching method, the method by He et al.

[21], and the method by Xie et al.[31] are analyzed. Our method gains the estimation performance at the expense of

high complexity as compared to the He’s method [21], and the Xie’s method [31], but has better efficiency than the

MD searching method by two-stage decoupling process.

4) The closed-form deterministic Cramer-Rao bound (CRB) of the concerned problem is derived to serve as the

benchmark for performance assessment, whereas the CRB in [31] is only valid for the estimation of the circular

signals.

1.3. Organization of the Paper

The rest of the paper is organized as follows. Section II describes the array signal model with mutual coupling. The

proposed method is described in Section III, followed by the newly derived deterministic Cramer-Rao bound (CRB)

in Section IV. The performance of our method is evaluated via computer simulations in Section V, and conclusions

are drawn in Section VI.

Notations: (·)∗, (·)T , (·)H , and (·)−1 represent operations of conjugation, transpose, conjugate transpose, and inverse,

respectively; E[·] is the expectation operation; arg(·) is the phase operator of complex numbers; diag{·} stands for the

diagonalization operation; Ip denotes the p-dimensional identity matrix; 1p denotes the p-dimensional row vector of

1s; 0mn denotes the m × n matrix of 0s; the p × p matrix Πp is an exchange matrix with ones on its anti-diagonal

and zeros elsewhere; blkdiag{Z1,Z2} represents a block diagonal matrix with diagonal entries Z1 and Z2. Re{·} and

Im{·} denote the real and imaginary parts, respectively, while tr{·}, vec{·}, and det[·] denote the trace, vectorization

and determinant of a matrix, respectively. ⊗ and � are the Kronecker product and Hadamard product operations,

respectively.

2. Array Signal Model

Similar to the scenario considered in [31], we suppose that there are K uncorrelated narrowband rectilinear sources

sk(l) (k = 1, 2, . . . ,K; l = 1, 2, . . . , L) located in NF and FF regions, impinging onto a symmetric ULA with M =

3
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2N + 1 sensors. Here, l is the snapshot index and L is the total number of snapshots. A rectilinear signal can be

represented as the product of a complex scalar e jψ/2 and a real valued signal so(t). Without loss of generality, the

first K1 incoming sources sN,k(l) are assumed to be NF parameterized by (θk, rk), where θk and rk are the DOA of

range and NF sources(k = 1, 2, . . . ,K1), while the remaining K2 = K − K1 sources sF,k(l) are FF parameterized by

(θk,∞) (k = K1 + 1,K1 + 2, . . . ,K), where K1 and K2 are known in advance. As pointed out in [15], an FF source

can be considered as a special NF one where the range rk approaches to ∞. With the array center indexed by 0 being

the phase reference point, the lth snapshot of the array observed signal x(l) = [x−N(l), · · · , x0(l), · · · , xN(l)]T can be

expressed in matrix form as

x(l)=ANsN(l) + AFsF(l) + n(l)

=As(l) + n(l)
(1)

where n(l)= [n−N(l), · · · , n0(l), · · · , nN(l)]T represents the vector of circular Gaussian noise, with zero mean and vari-

ance σ2
n, which is uncorrelated with the impinging signal, s(l)=

[
sT

N(l) sT
F(l)

]T
, sN(l) and sF(l) are the signal vectors

of NF and FF sources, respectively, and A=

[
AN AF

]
, AN and AF are the corresponding array steering matrices,

composed of the steering vectors aN(θk, rk) and aF(θk) at their kth column, respectively, i.e.,

AN=
[
aN(θ1, r1), · · · , aN(θK1 , rK1 )

]
(2)

with

aN(θk, rk) = [e j(−Nγk+N2χk), · · · , 1, · · · , e j(Nγk+N2χk)]T (3)

AF= [aN(θK1+1,∞), · · · , aN(θK ,∞)]

= [aF(θK1+1), · · · , aF(θK)]
(4)

with

aF(θk) = [e j(−Nγk), · · · , 1, · · · , e j(Nγk)]T (5)

where γk = −2πdsinθk/λ and χk = πd2cos2θk/(λrk) are called electric angles with λ being the wavelength of the

incoming signal, θk ∈
[
− π2 , π2

]
, k = 1, · · ·K, the DOA of the kth NF or FF signal, d the spacing between the sensors

satisfying d ≤ λ/4 [14–23] and rk the range of the kth NF signal that is within the Fresnel region [10, 11] and satisfies

rk ∈
[
0.62(D3/λ)1/2, 2D2/λ

]
, k = 1, · · ·K1, with D being the array aperture.

With the rectilinearity of the signal, the signal vectors sN(l) and sF(l) can be expressed as [39, 40]

sN(l) = ψ1/2
No sNo(l) (6)

sF(l) = ψ1/2
Fo sFo(l) (7)

where sNo(l) = [so,1(l), · · · , so,K1 (l)]T and sFo(l) = [so,K1+1(l), · · · , so,K(l)]T are the NF and FF real-valued signals,

respectively. The diagonal matrices ψ1/2
No = ψN = diag(e jψ1/2, · · · , e jψK1 /2) and ψ1/2

Fo = ψF = diag(e jψK1+1/2, · · · , e jψK/2)

are the arbitrary phase shifts corresponding to the NF and FF strictly non-circular sources sN(l) and sF(l), respectively.
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In order to avoid phase ambiguities, the inter-element spacing d should be within a quarter wavelength, which will

greatly increase the mutual coupling effect between the neighboring sensors. In the presence of mutual coupling, (1)

should be modified into

x(l)=CANsN(l) + CAFsF(l) + n(l) (8)

where C denotes the M × M MCC matrix of the ULA, which is modeled as the following banded symmetric Toeplitz

matrix with P + 1 nonzero MCCs [24–26] as

C = toeplitz(c, c) (9)

where toeplitz(·, ·) is the toeplitzation operation, and c = [1, cT
0 ]T , c0 = [c1, c2, . . . , cP]T .

3. The Proposed Method

The DOA estimation performance of traditional subspace methods based on (8) would degrade without compen-

sating for mutual coupling. Thus, in this section, we develop a two-stage RARE-based DOA estimation method to

determine the DOAs (θk, k = 1, 2, · · · ,K) and ranges (rk, k = 1, 2, · · · ,K1) of the mixed NF and FF strictly noncir-

cular sources under unknown mutual coupling. In the first stage, the FF DOAs are firstly decoupled by RARE under

unknown mutual coupling. Second, the MCC matrix is reconstructed with the estimates of FF DOAs. In the second

stage, by compensating for mutual coupling, the NF DOAs are decoupled though another RARE estimator based on

the symmetry of the ULA. Finally, with the estimated NF DOAs, the range parameters of NF sources can be obtained

through a third RARE estimator. The proposed method is described in detail in the following.

To exploit the noncircularity of the mixed incident signals, a new vector z(l) is constructed by stacking the observed

data vector x(l) and its conjugate counterpart x∗(l) as follows

z(l) =


x(l)

x∗(l)



= CeAeNsN(l) + CeAeFsF(l) + ne(l)

(10)

where

Ce = blkdiag{C,C∗} (11)

AeN=


AN

AN
∗ψN

∗



= [aeN(θ1, r1, ψ1), · · · , aeN(θK1 , rK1 , ψK1 )]

(12)

with

aeN(θk, rk, ψk) =


aN(θk, rk)

aN
∗(θk, rk)e− jψk

 (13)
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AeF=


AF

AF
∗ψF

∗



= [aeF(θK1+1, ψK1+1), · · · , aeF(θK , ψK)]

(14)

with

aeF(θk, ψk) =


aF(θk)

aF
∗(θk)e− jψk

 (15)

ne(l) =


n(l)

n∗(l)

 (16)

The covariance matrix of z(l) is written as

R = E[z(l)zH(l)]

= CeAeNRsNAH
eNCH

e + CeAeFRsFAH
eFCH

e + σ2
nI2M

(17)

where RsN = E[sN(l)sH
N (l)], RsF = E[sF(l)sH

F (l)] and Rs = E[s(l)sH(l)] are the covariance matrices of NF, FF and total

mixed signals, respectively. The eigenvalue decomposition of R is given by

R = UsΛsUH
s + UnΛnUH

n (18)

where the 2M×K matrix Us and the 2M×(2M−K) matrix Un are the signal subspace and noise subspace, respectively.

The K × K matrix Λs = diag{λ1, λ2, . . . , λK} and the (2M − K)× (2M − K) matrix Λn = diag{λK+1, λK+2, . . . , λ2M} are

diagonal matrices, where λ1 ≥ λ2 ≥ · · · ≥ λK > λK+1= · · ·=λ2M=σ2
n are the eigenvalues of R.

3.1. DOA Estimation of FF Sources and MCC Estimation

According to [25, 26], CaF(θ) has an alternative expression as

CaF(θ) = Tx(θ)c (19)

where

Tx(θ) = Tx1(θ) + Tx2(θ) (20)

[Tx1(θ)]i, j=


[aF(θ)]i+ j−1 i + j ≤ M + 1

0 otherwise
(21)

[Tx2(θ)]i, j=


[aF(θ)]i− j+1 i ≥ j ≥ 2

0 otherwise
(22)

Obviously, based on the orthogonality between the noise subspace spanned by Un and the signal subspace spanned by

Us, the signal subspace can also be spanned by CeAeN combined with CeAeF jointly. Therefore, we have

UH
n CeaeN(θk, rk, ψk) = 0, k = 1, 2, . . . ,K1. (23)

1Becasuse an FF source can be considered as a special NF one where the range rk approaches to∞, (23) holds for both NF and FF sources.
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UH
n CeaeF(θk, ψk) = 0, k = K1 + 1,K1 + 2, . . . ,K. (24)

In order to avoid multi-dimensional spectral search for estimating the DOA-range pairs, we can decouple the multi-

parameters to reduce the computational load. First, FF DOA parameters are decoupled from other parameters. Sub-

stituting (11) and (15) into (24) and using (19), we obtain

UH
n T(θk)ζ(c, ψk) = 0 (25)

where T(θk) = blkdiag{Tx(θk),T∗x(θk)}, ζ(c, ψk) =


c

c∗e− jψk

. We now define a function pF(θ) related to the DOA

parameter as follows

pF(θ) = {det[QF(θ)]}−1. (26)

where QF(θ) = TH(θ)UnUH
n T(θ).

Note that ζ(c, ψk) , 0, UH
n T(θk)ζ(c, ψk) = 0 holds for k = K1 + 1,K1 + 2, . . . ,K. Based on the RARE principle, if

and only if θ = θk, (k = K1 + 1, . . . ,K), the matrix QF(θ) is rank deficient or equivalently det[QF(θ)] = 0. If searched

over the confined region θ ∈
[
− π2 , π2

]
, the DOA estimates of all FF sources could be obtained from the K2 highest

peaks.

Then, with the estimated DOA of FF sources, {ĉ, ψ̂k} can be obtained by finding the minima of the following

function

{ĉ, ψ̂k} = min
c,ψ

ζ(c, ψ)HQF(θ̂)ζ(c, ψ), (27)

which implies that ζ(ĉ, ψ̂k) is just the unique eigenvector corresponding to the smallest eigenvalue of QF(θ̂k), namely,

ζ̂k = ζ(ĉ, ψ̂k) = emin[QF(θ̂k)], emin(1) = 1. (28)

And we obtain the MCCs ĉ0 as

ĉ0 =
K∑

k=K1+1
ζ̂k(2 : P + 1)/(K − K1) (29)

and the noncircular phase estimate of FF sources as

ψ̂F,k = −arg(ζ̂k(P + 2)) (30)

The mutual coupling matrix Ĉ can be reconstructed according to its banded symmetric Toeplitz structure in (9) with

estimated MCCs.

3.2. DOA and Range Estimation of NF Sources

With estimated MCC, Ĉ can be reconstructed to compensate for the mutual coupling in the NF source direction-

finding process, and DOA and range estimation of NF sources can be obtained with (23).

Since the array is symmetric about the center sensor, (3) can be rewritten as

aN(θk, rk) = KN(θk)ςN(θk, rk) (31)
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Table 1: Summary of the proposed method

Input: L snapshots of the constructed array output vector, {ẑ(l)}Ll=1.

Output: DOA estimates θ̂k of all mixed NF and FF signals; range estimates r̂k of NF signals; MCC estimates.

Stage 1: DOA estimation of FF sources and MCC estimation

1) Estimate the covariance matrix R̂ ≈ 1
L

L∑
l=1

ẑ(l)ẑH(l).

2) Perform subspace decomposition R̂ = ÛsΛ̂sÛ
H
s + ÛnΛ̂nÛ

H
n to get Ûn.

3) Decouple T(θk) related to FF sources under unknown mutual coupling.

4) Construct and search through p̂F(θ) to obtain DOAs θ̂k of FF signals based on the RARE principle.

5) Obtain MCC ĉ0 =
K∑

k=K1+1
ζ̂k(2 : P + 1)/(K − K1) with the estimated FF DOAs θ̂k.

Stage 2: DOA and range estimation of NF sources

6) Reconstruct the extended MCC matrix Ĉe with the estimated MCC ĉ0.

7) Construct and search through p̂N(θ) to obtain DOAs θ̂k of NF signals based on the RARE principle.

8) Construct and search through p̂N(r) to obtain ranges r̂k of NF signals with the estimated θ̂k using the RARE principle.

where KN(θk) is a (2N + 1) × (N + 1) matrix, whose elements depend only on the DOA parameter, i.e.,

KN(θk)=
[

VT
1 (θk) vT

2 (θk) VT
3 (θk)

]T
(32)

where

V1(θk) = [P1(θk), 0N×1]N×(N+1) (33)

with

P1(θk) = diag{e j(−N)γk , e j(−N+1)γk , ..., e− jγk } (34)

v2(θk) = [0, . . . , 0, 1]1×(N+1) (35)

V3(θk) = [ΠNP3(θk), 0N×1]N×(N+1) (36)

with

P3(θk) = diag{e j(N)γk , e j(N−1)γk , ..., e jγk } (37)

Meanwhile, ςN(θk, rk) is dependent on both the DOA and range parameters, as given by

ςN(θk, rk) = [e j(−N)2χk , e j(−N+1)2χk , ..., 1]T (38)

Then, with (31), (23) can be rewritten as

0 = UH
n ĈeaeN(θk, rk, ψk)

= UH
n ĈeΓN(θk)ΥN(θk, rk)ιN(ψk)

(39)

8
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where

ΓN(θk)=blkdiag{KN(θk),K∗N(θk)} (40)

ΥN(θk, rk)=blkdiag{ςN(θk, rk), ς∗N(θk, rk)} (41)

ιN(ψk)=


1

e− jψk

 (42)

We now define a function pN(θ) that is related only to the DOA parameter as follows

pN(θ) = {det[QN1(θ)]}−1. (43)

where QN1(θ) = ΓH
N (θ)Ĉ

H
e UnUH

n ĈeΓN(θ). Similarly, notice that ΥN(θk, rk) , 0, ιN(ψk) , 0,

and UH
n ĈeΓN(θk)ΥN(θk, rk)ιN(ψk) = 0, k = 1, 2 . . .K′, (K′ ≤ K).2 Based on the RARE principle, the DOAs θk of

all mixed signals can be obtained from the highest peaks of pN(θ) over the confined region θ ∈
[
− π2 , π2

]
. Next, we

substitute the estimated θ̂k from (43) into (39) and obtain the following function of the range parameter r:

pN(r) = {det[QN2(θ̂k, r)]}−1. (44)

where

QN2(θ̂k, r) = ΥH
N (θ̂k, r)ΓH

N (θ̂k)Ĉ
H
e UnUH

n ĈeΓN(θ̂k)ΥN(θ̂k, r).

Again, by searching for the range r over
[
0.62(D3/λ)1/2, 2D2/λ

]
, the corresponding range of the NF signals can be

obtained from the peaks of pN(r). If the range cannot be found in the Fresnel region with the estimated DOAs, then

we can determine that the sources corresponding to the estimated DOAs are FF signals. It should be pointed out that

the two-stage DOA estimation process introduced in Sec. 3.1 and 3.2 can identify the DOAs of FF sources by (26)

and (43), respectively. But we use the first DOA estimator (26) to find the DOAs of FF sources, because the second

DOA estimator (43) is based on the estimated extended Ĉe in the first DOA estimation stage, which would cause error

accumulation in estimating the DOAs of FF sources.

With the estimated DOA and range of NF sources, the noncircular phase ψ̂N,k of NF sources can be achieved as

ι̂k = ιN(ψ̂k) = emin[QN2(θ̂k, r̂k)], emin(1) = 1. (45)

ψ̂N,k = −arg(ι̂k(2)) (46)

The proposed method for mixed NF and FF strictly sources localization under mutual coupling is summarized in

Table 1.

2Here, it should be pointed out that when some of the NF signals have the same DOAs as the FF signals, we only get K′ DOAs which are no

more than K true DOAs, namely K′ ≤ K.
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Table 2: Computational complexity comparison for different methods.

Methods Matrices construction EVDs Spectral searching

Xie[31] O
(
(2N + 1)2L

)
O

(
4/3(2N + 1)3

) O
(
2 π

∆θ
(2N + 1)2

+ K1
2D2/λ−0.62(D3/λ)1/2

∆r (2N + 1)2
)

He[21]
O

(
(2N + 1)2L

+ (N + 2)2N
)

O
(
4/3(2N + 1)3

+ 4/3(N + 2)3
)

O
(
π

∆θ
(2N + 1)2 + π

∆θ
(N + 2)2

+ K1
2D2/λ−0.62(D3/λ)1/2

∆r (2N + 1)2
)

Proposed O
(
(4N + 2)2L

)
O

(
4/3(4N + 2)3

) O
(
2 π

∆θ
(4N + 2)2

+ K1
2D2/λ−0.62(D3/λ)1/2

∆r (4N + 2)2
)

MD searching O
(
(4N + 2)2L

)
O

(
4/3(4N + 2)3

) O
(
π

∆θ
2π
∆ψ

(4N + 2)2

+ π
∆θ

2D2/λ−0.62(D3/λ)1/2

∆r
2π
∆ψ

(4N + 2)2
)

Remark 1: In practice, only a finite number of observed data samples are available. Thus, R is replaced by its

finite-sample estimate

R̂ ≈ 1
L

L∑

l=1

ẑ(l)ẑH(l). (47)

Remark 2: In the proposed method, we have applied the RARE criterion to QF(θ), QN1(θ) and QN2(θ̂k, r), respec-

tively. According to the RARE criterion, if we have 2(2N + 1) − K ≥ 2(P + 1), i.e., K ≤ 4N − 2P, then QF(θ) is

in general of full rank. And if and only if the desired DOAs are obtained, the matrix QF(θ) becomes rank deficient

or equivalently det[QF(θ)] = 0. Similarly, the conditions K ≤ 2N and K ≤ 4N should be satisfied for QN1(θ) and

QN2(θ̂k, r), respectively. In summary, the number of incident mixed signals K for the proposed method should satisfy

K ≤ min{4N − 2P, 2N}, while that of the method in [31] should satisfy K ≤ 2N − P and K1 ≤ N. Therefore, the

proposed method can distinguish more signals than the method in [31], which can be demonstrated in Sec.5.1.

Remark 3: The computational complexity of the proposed method is compared with the direct MD spatial spectrum

searching method, the He et al. method [21], and the Xie et al. method [31] in terms of the number of complex-valued

multiplications, including the construction of R̂, performing EVD of R̂ and spectral searching. For comparison, we

consider an array of 2N + 1 sensors for all the methods. Define the scanning interval for DOA θ ∈
[
− π2 , π2

]
, range

r ∈
[
0.62(D3/λ)1/2, 2D2/λ

]
and noncircular phase ψ ∈ [0, 2π] parameters as 4θ, 4r and 4ψ, respectively. The method

of He et al. [21] involves constructing two covariance matrices with dimensions (2N+1)×(2N+1) and (N+2)×(N+2),

performing EVDs of the two matrices, and executing spectral searching for DOA and range estimation. The method

of Xie et al. [31] constructs a (2N + 1) × (2N + 1) covariance matrix, requires performing two EVDs as well as

spectral searching for DOA and range estimation. For the proposed method, a 2(2N + 1) × 2(2N + 1) covariance

matrix is constructed, and one EVD is performed, followed by spectral searching for DOA and range estimation. The

computational complexity comparison for these methods is summarized in Table 2, from which it can be concluded

that the proposed method has much higher complexity than the methods in [21] and [31] due to the extended array
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aperture to improve the estimation accuracy, while it is more efficient than the MD searching method since it only

need three 1-D searches.

4. Deterministic Rectilinear Cramer-Rao bound (CRB) under unknown mutual coupling

With the deterministic data assumption, a closed-form expression of the deterministic CRB for both DOA and

range parameters of mixed sources is derived as an estimation benchmark for the scenario with mixed NF and FF

strictly noncircular signals under unknown mutual coupling. The derivation is based on the Slepian-Bangs formula,

and the result is summarized in the following theorem.

Theorem 1: Define a real-valued vector of the unknown parameters as ξ =

[
θT

N rT
N ΨT

N θT
F ΨT

F cT
R cT

I sT
o σ2

n

]T

with θN = [θ1, θ2, ..., θK1 ]T , rN = [r1, r2, ..., rK1 ]T ,ΨN = [ψ1, ..., ψK1 ]T , θF = [θK1+1, θK1+2, ..., θK]T ,ΨF = [ψK1+1, ..., ψK]T ,

cR = Re{c0} , cI = Im{c0} and so = [sT
o (1), sT

o (2), ..., sT
o (L)]T . We mainly focus on the interesting parameter vector

$ =

[
θT

N rT
N ΨT

N θT
F ΨT

F

]T
and τ =

[
cT

R cT
I

]T
. Resorting to the inversion formula of 3 × 3 block-

partitioned matrices of

F =



F$$ F$τ F$so

Fτ$ Fττ Fτso

Fso$ Fsoτ Fsoso


(48)

the deterministic CRB of$ and τ for the mixed NF and FF strictly noncircular signals under unknown mutual coupling

can be written respectively as

Cnc($)

=
(
F$$ − F$so F−1

soso
Fso$ −

(
F$τ − F$so F−1

soso
Fsoτ

)

×
(
Fττ − Fτso F−1

soso
Fsoτ

)−1 (
Fτ$ − Fτso F−1

soso
Fso$

))−1
(49)

Cnc(τ)

=
(
Fττ − Fτso F−1

soso
Fsoτ −

(
Fτ$ − Fτso F−1

soso
Fso$

)

×
(
F$$ − F$so F−1

soso
Fso$

)−1 (
F$τ − F$so F−1

soso
Fsoτ

))−1
(50)

where

F$$=
2L
σ2

n
Re{(D̃H

D̃) � ˆ̃Rs} (51)

FT
τ$ = F$τ=

2
σ2

n

˜̃ST
o (IL ⊗ Re{D̃H

C̃})S̆o (52)

FT
so$ = F$so=

2
σ2

n

˜̃ST
o (IL ⊗ Re{D̃H

Ã}) (53)

Fττ =
2
σ2

n
S̆

T
o (IL ⊗ Re{C̃H

C̃})S̆o (54)

FT
soτ = Fτso =

2
σ2

n
S̆

T
o (IL ⊗ Re{C̃H

Ã}) (55)
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Fsoso =
2
σ2

n
IL ⊗ Re{ÃH

Ã} (56)

where D̃ = [D̃θN , D̃rN , D̃ψN , D̃θF , D̃ψF] = [CDθNψN ,CDrNψN ,
j
2 CANψN ,CDθFψF ,

j
2 CAFψF],

DθN=
[
dθN(θ1, r1),dθN(θ2, r2), · · · ,dθN(θK1 , rK1 )

]
with dθN(θk, rk) =

∂aN (θk ,rk)
∂θk

,

DrN=
[
drN(θ1, r1),drN(θ2, r2), · · · ,drN(θK1 , rK1 )

]
with drN(θk, rk) =

∂aN (θk ,rk)
∂rk

, DθF=
[
dθF(θK1+1),dθF(θK1+2), · · · ,dθF(θK)

]

with dθF(θk) =
∂aF (θk)
∂θk

, C̃ = [1, j] ⊗ [D̃R,1, D̃R,2, ..., D̃R,P] with D̃R,m = ∂C
∂cR,m

Aψ, Ã = CAψ, ψ= blkdiag{ψN ,ψF},

ˆ̃Rs =


13 ⊗ 1T

3 ⊗ R̂SNoSNo , 12 ⊗ 1T
3 ⊗ R̂SNoSFo

13 ⊗ 1T
2 ⊗ R̂T

SNoSFo
, 12 ⊗ 1T

2 ⊗ R̂SFoSFo

 (57)

where R̂SNoSNo=
1
L SNoST

No, and R̂SFoSFo=
1
L SFoST

Fo are the unconjugated covariance matrices of SNo and SFo, respectively,

R̂SNoSFo=
1
L SNoST

Fo are the unconjugated cross covariance matrices of SNo and SFo,

˜̃So = J(3K1+2K2)Lblkdiag{I3 ⊗ S̃
T
No, I2 ⊗ S̃

T
Fo} (58)

where S̃No= [S̃No(1), S̃No(2), ..., S̃No(L)]T with S̃No(l) = diag{sNo(l)}, S̃Fo= [S̃Fo(1), S̃Fo(2), ..., S̃Fo(L)]T with S̃Fo(l) =

diag{sFo(l)}, the commutation matrix J(3K1+2K2)L has the form of

J(3K1+2K2)L =



IL ⊗ IK1 0K1(2K1+2K2)

IL ⊗ 0K1K1 IK1 0K1(K1+2K2)

IL ⊗ 0K12K1 IK1 0K12K2

IL ⊗ 0K23K1 IK2 0K1K2

IL ⊗ 0K2(3K1+K2)IK2 0K2K2



T

(59)

S̆o = [s̆T
o (1), s̆T

o (2), ..., s̆T
o (L)]T (60)

where s̆o(l) = I2P ⊗ so(l).

The proof of Theorem 1 is given in Appendix A.

5. Simulation Results

In this section, the performance of the proposed method in localizing the mixed NF and FF strictly noncircular

sources under unknown mutual coupling is compared with the He et al. method [21] and the Xie et al. method [31]

as well as the deterministic CRB in Theorem 1 using a ULA with d = λ/4. For the first set of simulations, the ULA

consists of M = 7 (or N = 3) sensors, while for the remaining set of simulations, the sensor number is M = 9 (or N

= 4). The impinging sources are equi-power BPSK signals, and the additive noise is assumed to be spatially white

complex Gaussian, and the SNR is defined relative to each signal. Further, as the MC effect is inversely proportional

to the sensor distance, the nonzero MCCs are set to be [1, 0.3515+0.4656i, 0.0916-0.1218i]. The root mean square

error (RMSE) of DOA and range parameters

RMSE(ϑKi ) =

√√√
1

KiMc

Ki∑

k=1

Mc∑

q=1

(ϑ̂qk − ϑk)
2
,Ki = K1,K2,

12



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

DOA (degree) 
-80 -60 -40 -20 0 20 40 60 80

 S
pa

tia
l S

pe
ct

ru
m

 (
dB

)

-120

-100

-80

-60

-40

-20

0
First stage DOA estimator
Second stage DOA estimator

(a)

Range (wavelength) 
0.5 1 1.5 2 2.5 3 3.5 4 4.5

 S
pa

tia
l S

pe
ct

ru
m

 (
dB

)

-70

-60

-50

-40

-30

-20

-10

0
First NF range
Second NF range

(b)

Fig. 1: Spatial spectrum for the DOA and range estimation results.
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Fig. 2: RMSE versus SNR for the DOA, range and MCC estimation results.
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Fig. 3: RMSE versus snapshots for the DOA, range and MCC estimation results.

is adopted for quantitative evaluation, where Mc is the number of Monte Carlo simulations, Ki is the number of NF

or FF signals, ϑ̂q,k is the estimate of the parameter θ̂k or r̂k in the qth Monte Carlo simulation, and ϑk is the true value

standing for either θk or rk. The RMSE of estimated MCCs is defined as

RMSE =

√√√
1

Mc ‖c0‖22

Mc∑

i=1

∥∥∥ĉ0,i − c0

∥∥∥2

2

where ĉ0,i is the estimated c0 in the ith Monte Carlo simulation, ‖·‖2 denotes the Euclidean norm. The results of the

first set of simulations are obtained from 20 independent Monte Carlo trials, and the remaining sets are from 500

independent Monte Carlo trials.

5.1. Spatial spectrum resolution

In the first set of simulations, two NF signals are located at (−38◦, 1.15λ), (3◦, 1.25λ), and three FF signals are

located at (−15◦,+∞), (−60◦,+∞), (20◦,+∞), respectively, which satisfies the number of incident mixed signals
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K1 + K2 = 5 ≤ min{4N − 2P, 2N} = min{8, 6} = 6. The SNR is 40 dB, and the number of snapshots is fixed at 500.

The spatial spectrum resolution for DOA and range estimation is shown in Fig. 1(a)-(b). From Fig. 1(a), we can

clearly see that only the DOAs of the FF sources can be identified in the first stage DOA estimation process, and after

eliminating the mutual coupling effect, all the DOAs of mixed sources have been identified successfully since the FF

source can be considered as a special NF one. From Fig. 1(b), only the range of the NF sources can be identified in the

Fresnel region. Thus, we have successfully distinguished the types of mixed sources. However, the existing methods

[21, 31] failed in this circumstance(K = 5 > 2N − P = 4) because of the limited array aperture or uncompensated

mutual coupling.

5.2. Performance versus SNR

In the second set of simulations, we investigate the RMSE of DOA, range and MCC estimates when the SNR

varies from 0 dB to 20 dB, with the number of snapshots fixed at 500. Two NF signals are located at (5◦, 1.9λ),

(30◦, 2.6λ), and two FF signals are located at (5◦,+∞), (−25◦,+∞), respectively. The RMSEs of DOA, range and

MCC estimation are shown in Fig.2(a)-(c). In Fig. 2, it is obvious that the proposed method outperforms the methods

in [21] and [31] for DOA estimation of both NF and FF sources, the range estimation as well as the MCC estimation.

In addition, the RMSEs of the proposed method decrease monotonically as the SNR increases, and all the DOA, range

and MCC estimation RMSEs are reasonably close to the corresponding CRBs. This is because the proposed method

exploits the noncircular information of mixed signals, which increases the array aperture to some extent as compared

to the methods in [21] and [31]. Furthermore, auto-calibration is adopted for the FF sources, while mutual coupling

is compensated for the NF sources in the proposed method. However, as the SNR increases, the RMSEs of the He’s

method [21] remain uncharged, since the model error induced by mutual coupling is uncompensated.

5.3. Performance versus snapshots

In the third set of simulations, we examine the performance of the proposed method in comparison with the exist-

ing methods versus the number of snapshots. The simulation conditions are similar to those in the second example,

except that the SNR is set at 10dB, and the number of snapshots varies from 100 to 1000. The results of DOA, range

and MCC estimation are shown in Fig.3(a)-(c). As observed, as the number of snapshots increases, the proposed

method is always superior to the existing ones in DOA, range and MCC estimation due to the use of noncircular infor-

mation in mixed signals, and the RMSEs of DOA, range and MCC of the proposed method decrease monotonically

and are close to the corresponding CRBs. The reason is that a better estimate of the covariance matrix can be obtained

with a larger number of snapshots. While the mutual coupling effect is eliminated in the proposed method, the RMSEs

of the He’s method [21] remain almost constant due to it not being able to account for the mutual coupling effect.

5.4. Performance versus correlation factor

In the fourth set of simulations, we investigate the performance of the proposed method in comparison with the

existing methods versus the correlation factor ρ varying from 0 to 0.95 between s1(t) and s4(t). The simulation
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Fig. 4: RMSE versus correlation factor for the DOA and range estimation results.

conditions are similar to those in the second example, except that the SNR is set at 10dB, and the number of snapshots

is 500. The results of DOA and range estimation are shown in Fig.4(a)-(b). From the results in Fig.4, we can

see that the proposed method significantly outperforms the methods in [21] and [31] in terms of DOA and range

estimation, and as ρ increases, the correlation between s1(t) and s4(t) becomes strong, the RMSEs of the proposed

method and Xie’s method [31] becomes large. Therefore, the proposed method works only for independent or weakly

correlated signals. On the contrary, the He’s method [21] is completely failed to estimate the DOAs and ranges even

in uncorrelated sources case due to the uncompensated mutual coupling.

6. Conclusion

We have presented an effective method for the localization of mixed FF and NF sources using the noncircular

information of the impinging signals under unknown mutual coupling. Compared with the existing mixed source

localization methods, the proposed one has its superiority under unknown mutual coupling and is capable of identi-

fying source types reasonably. Moreover, high complexity multidimensional spectral search has been avoided in the

proposed method by decoupling the array steering matrix of NF and FF signals. We have also derived the determin-

istic CRB of the problem under consideration as a benchmark. As demonstrated by simulation results, the proposed

method is effective and outperforms two existing ones in the considered scenarios.

Appendix A. Proof of Theorem 1

Inspired by the analysis in [44], here we derive the CRB for the mixed NF and FF strictly noncircular sources

under unknown mutual coupling by the Slepian-Bangs formulation. We first rewrite (8) with the support of (6), (7) as
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follows
x(l) = CANψNsNo(l) + CAFψFsFo(l) + n(l)

= CAψso(l) + n(l)
(A.1)

where so(l)=
[

sT
No(l) sT

Fo(l)
]T

, and with L subsequent time samples, the observations can be modeled in matrix form

as
X = CANψNSNo + CAFψFSFo + N

= CAψSo + N
(A.2)

where X = [x(1), x(2), ..., x(L)], SNo = [sNo(1), sNo(2), ..., sNo(L)], SFo = [sFo(1), sFo(2), ..., sFo(L)],

So = [so(1), so(2), ..., so(L)] and N = [n(1),n(2), ...,n(L)].

For convenience, we first vectorize the data model in (A.2) as follows

x = vec(X)

= (IL ⊗ CANψN)sNo + (IL ⊗ CAFψF)sFo + n

= (IL ⊗ CAψ)so + n

(A.3)

where sNo = vec{SNo}, sFo = vec{SFo}, so = vec{So} and n = vec{N}. In (A.3), we have used the property that for

arbitrary matrices P, B, and X of appropriate sizes, it holds that vec{PXB} = (BT ⊗ P)vec{X}. To comply with the

deterministic data assumption, the signal vectors s0 is assumed to be deterministic and unknown to the receiver, while

the sensor noise n is zero-mean circularly symmetric white complex Gaussian distributed, and therefore, we have the

mean % and the covariance matrix Σ of the array output vector x as follows.

% = (IL ⊗ CANψN)sNo + (IL ⊗ CAFψF)sFo

= (IL ⊗ CAψ)so

(A.4)

Σ = σ2
nILM (A.5)

The set of parameters that need to be considered for the deterministic CRB is then given by

ξ =

[
θT

N rT
N ΨT

N θT
F ΨT

F cT
R cT

I sT
o σ2

n

]T
(A.6)

where θN = [θ1, θ2, ..., θK1 ]T , rN = [r1, r2, ..., rK1 ]T ,ΨN = [ψ1, ..., ψK1 ]T , θF = [θK1+1, θK1+2, ..., θK]T ,ΨF = [ψK1+1, ..., ψK]T ,

cR = Re{c0} , cI = Im{c0} and so = [sT
o (1), sT

o (2), ..., sT
o (L)]T .

The principal parameter vector $ =

[
θT

N rT
N ΨT

N θT
F ΨT

F

]T
and τ =

[
cT

R cT
I

]T
are of interest to

us, while the remaining ones are nuisance parameters.

The desired CRB matrix Cnc ($) and Cnc (τ)for the mixed NF and FF strictly noncircular sources in the presence

of unknown mutual coupling is usually computed by taking the inverse of the Fisher information matrix (FIM) F [44]

for the parameter vector ξ. In order to compute the FIM F, the Slepian-Bangs formulation [44] can be applied if the

data vector is Gaussian distributed. In this case, according to (A.4), the Slepian-Bangs formula is still valid for the

deterministic data model in (A.3). The Slepian-Bangs formulation of F for the parameter vector ξ is given by [44]

Fξp,ξq = tr

{
Σ−1 ∂Σ

∂ξp
Σ−1 ∂Σ

∂ξq

}
+ 2Re

{
(
∂%

∂ξp
)

H

Σ−1 ∂%

∂ξq

}
(A.7)
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where p, q = 1, . . . , 3K1 + 2K2 + 2P + LK + 1.

Since the covariance matrix Σ depends only on σ2
n, the first part of (A.7) can be ignored. Therefore, (A.7) can be

rewritten as

Fξp,ξq = 2Re

{
(
∂%

∂ξp
)

H

Σ−1 ∂%

∂ξq

}
(A.8)

Then, the partial derivatives of %with respect to the parameters θT
N , r

T
N ,Ψ

T
N , θ

T
F ,Ψ

T
F and sT

o in (A.6) can be calculated

directly as
∂%

∂θT
N

=
(
IL ⊗ D̃θN

)
S̃No (A.9)

∂%

∂rT
N

=
(
IL ⊗ D̃rN

)
S̃No (A.10)

∂%

∂ΨT
N

= j
(
IL ⊗ D̃ψN

)
S̃No/2 (A.11)

∂%

∂θT
F

=
(
IL ⊗ D̃θF

)
S̃Fo (A.12)

∂%

∂ΨT
F

= j
(
IL ⊗ D̃ψF

)
S̃Fo/2 (A.13)

∂%

∂sT
o

= IL ⊗ Ã (A.14)

∂%

∂cR,m
= (IL ⊗ D̃R,m)so (A.15)

∂%

∂cI,m
= j(IL ⊗ D̃R,m)so (A.16)

It is easy to see that F = FT . Consequently, we only need to compute the block matrices on and above the diagonal

of F. In the following derivation, we use the fact that for arbitrary vectors a, b, and a matrix G, diag{a}Gdiag{b} =

G � (abT ) holds. For the block matrices FθN ,θN , FθN ,rN , FθN ,ΨN , FθN ,θF , FθN ,ΨF , FθN ,cR,m , FθN ,cI,m , FθN ,so , FrN ,rN , FrN ,ΨN ,

FrN ,θF , FrN ,ΨF , FrN ,cR,m , FrN ,cI,m , FrN ,so , FΨN ,ΨN , FΨN ,θF , FΨN ,ΨF , FΨN ,cR,m , FΨN ,cI,m , FΨN ,so , FθF ,θF , FθF ,ΨF , FθF ,cR,m , FθF ,cI,m ,

FθF ,so , FΨF ,ΨF , FΨF ,cR,m , FΨF ,cI,m , FΨF ,so , FcR,m,cR,m , FcR,m,cI,m , FcR,m,so , FcI,m,cI,m , and FcI,m,so , they can be obtained as

FθN ,θN

= 2
σ2

n

L∑
l=1

Re
{
S̃No (l) D̃

H
θND̃θN S̃No (l)

}

= 2
σ2

n
Re

{(
D̃

H
θND̃θN

)
�

L∑
l=1

sNo (l) sT
No (l)

}

= 2L
σ2

n
Re

{(
D̃

H
θND̃θN

)
� 1

L SNoST
No

}

= 2L
σ2

n
Re

{(
D̃

H
θND̃θN

)
� R̂SNoSNo

}

(A.17)

FθN ,rN =
2L
σ2

n
Re

{(
D̃

H
θND̃rN

)
� R̂SNoSNo

}
(A.18)

FθN ,ΨN =
2L
σ2

n
Re

{(
D̃

H
θND̃ψN

)
� R̂SNoSNo

}
(A.19)
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FθN ,θF =
2L
σ2

n
Re

{(
D̃

H
θND̃θF

)
� R̂SNoSFo

}
(A.20)

FθN ,ΨF =
2L
σ2

n
Re

{(
D̃

H
θND̃ψF

)
� R̂SNoSFo

}
(A.21)

FθN ,cR,m

= 2
σ2

n
Re

{
S̃

T
No

(
IL ⊗ D̃

H
θN

) (
IL ⊗ D̃R,m

)
so

}

= 2
σ2

n
Re

{
S̃

T
No

(
IL ⊗

(
D̃

H
θND̃R,m

))
so

}

= 2
σ2

n
S̃

T
No

(
IL ⊗ Re

{
D̃

H
θND̃R,m

})
so

(A.22)

FθN ,cI,m =
2
σ2

n
S̃

T
No

(
IL ⊗ Re

{
jD̃

H
θND̃R,m

})
so (A.23)

FθN ,so =
2
σ2

n
S̃

T
No

(
IL ⊗ Re

{
D̃

H
θNÃ

})
(A.24)

FrN ,rN =
2L
σ2

n
Re

{(
D̃

H
rND̃rN

)
� R̂SNoSNo

}
(A.25)

FrN ,ΨN =
2L
σ2

n
Re

{(
D̃

H
rND̃ψN

)
� R̂SNoSNo

}
(A.26)

FrN ,θF =
2L
σ2

n
Re

{(
D̃

H
rND̃θF

)
� R̂SNoSFo

}
(A.27)

FrN ,ΨF =
2L
σ2

n
Re

{(
D̃

H
rND̃ψF

)
� R̂SNoSFo

}
(A.28)

FrN ,cR,m =
2
σ2

n
S̃

T
No

(
IL ⊗ Re

{
D̃

H
rND̃R,m

})
so (A.29)

FrN ,cI,m =
2
σ2

n
S̃

T
No

(
IL ⊗ Re

{
jD̃

H
rND̃R,m

})
so (A.30)

FrN ,so =
2
σ2

n
S̃

T
No

(
IL ⊗ Re

{
D̃

H
rNÃ

})
(A.31)

FΨN ,ΨN =
2L
σ2

n
Re

{(
D̃

H
ψND̃ψN

)
� R̂SNoSNo

}
(A.32)

FΨN ,θF =
2L
σ2

n
Re

{(
D̃

H
ψND̃θF

)
� R̂SNoSFo

}
(A.33)

FΨN ,ΨF =
2L
σ2

n
Re

{(
D̃

H
ψND̃ψF

)
� R̂SNoSFo

}
(A.34)

FΨN ,cR,m =
2
σ2

n
S̃

T
No

(
IL ⊗ Re

{
D̃

H
ψND̃R,m

})
so (A.35)

FΨN ,cI,m =
2
σ2

n
S̃

T
No

(
IL ⊗ Re

{
jD̃

H
ψND̃R,m

})
so (A.36)

FΨN ,so =
2
σ2

n
S̃

T
No

(
IL ⊗ Re

{
D̃

H
ψNÃ

})
(A.37)

FθF ,θF =
2L
σ2

n
Re

{(
D̃

H
θFD̃θF

)
� R̂SFoSFo

}
(A.38)
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FθF ,ΨF =
2L
σ2

n
Re

{(
D̃

H
θFD̃ψF

)
� R̂SFoSFo

}
(A.39)

FθF ,cR,m =
2
σ2

n
S̃

T
Fo

(
IL ⊗ Re

{
D̃

H
θFD̃R,m

})
so (A.40)

FθF ,cI,m =
2
σ2

n
S̃

T
Fo

(
IL ⊗ Re

{
jD̃

H
θFD̃R,m

})
so (A.41)

FθF ,so =
2
σ2

n
S̃

T
Fo

(
IL ⊗ Re

{
D̃

H
θFÃ

})
(A.42)

FΨF ,ΨF =
2L
σ2

n
Re

{(
D̃

H
ψFD̃ψF

)
� R̂SFoSFo

}
(A.43)

FΨF ,cR,m =
2
σ2

n
S̃

T
Fo

(
IL ⊗ Re

{
D̃

H
ψFD̃R,m

})
so (A.44)

FΨF ,cI,m =
2
σ2

n
S̃

T
Fo

(
IL ⊗ Re

{
jD̃

H
ψFD̃R,m

})
so (A.45)

FΨF ,so =
2
σ2

n
S̃

T
Fo

(
IL ⊗ Re

{
D̃

H
ψFÃ

})
(A.46)

FcI,m,cI,m = FcR,m,cR,m =
2
σ2

n
sT

o

(
IL ⊗ Re

{
D̃

H
R,mD̃R,m

})
so (A.47)

FcR,m,cI,m =
2
σ2

n
sT

o

(
IL ⊗ Re

{
jD̃

H
R,mD̃R,m

})
so (A.48)

FcR,m,so =
2
σ2

n
sT

o

(
IL ⊗ Re

{
D̃

H
R,mÃ

})
(A.49)

FcI,m,so = − 2
σ2

n
sT

o

(
IL ⊗ Re

{
jD̃

H
R,mA

})
(A.50)

To proceed, we obtain the block matrices F$$, F$τ, F$so , Fττ and Fτso , respectively, as

F$$ =



FθN ,θN FθN ,rN FθN ,ΨN FθN ,θF FθN ,ΨF

FrN ,θN FrN ,rN FrN ,ΨN FrN ,θF FrN ,ΨF

FΨN ,θN FΨN ,rN FΨN ,ΨN FΨN ,θF FΨN ,ΨF

FθN ,θN FθN ,rN FθN ,ΨN FθN ,θF FθN ,ΨF

FΨF ,θN FΨF ,rN FΨF ,ΨN FΨF ,θF FΨF ,ΨF



(A.51)

F$τ =



FθN ,cR FθN ,cI

FrN ,cR FrN ,cI

FΨN ,cR FΨN ,cI

FθN ,cR FθN ,cI

FΨF ,cR FΨF ,cI



(A.52)
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F$so =



FθN ,so

FrN ,so

FΨN ,so

FθN ,so

FΨF ,so



(A.53)

Fττ =


FcR,cR FcR,cI

FcI ,cR FcI ,cI

 (A.54)

Fτso =


FcR,so

FcI ,so

 (A.55)

After a simple derivation, the compact expression of (A.51)-(A.55) can be established immediately in (51)-(55).
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