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Abstract

Composite adaptive control schemes, which use both the system tracking errors
and the prediction error to drive the update laws, have become widespread in
achieving an improvement of system performance. However, a strong persistent-
excitation (PE) condition should be satisfied to guarantee the parameter con-
vergence. This paper proposes a novel composite adaptive control to guarantee
parameter convergence without PE condition for nonlinear teleoperation sys-
tems with dynamic uncertainties and time-varying communication delays. The
stability criteria of the closed-loop teleoperation system are given in terms of
linear matrix inequalities. New tracking performance measures are proposed to
evaluate the position tracking between the master and the slave. Simulation
studies are given to show the effectiveness of the proposed method.

Keywords: Teleoperation, composite adaptive control, time-varying delays,
nonlinear systems, stability

1. Introduction

Bilateral teleoperation systems are one of the most well-known robotic sys-
tems which extend human operators’ intelligence and manipulation skills to the
remote environments. A typical single-master-single-slave teleoperation system
composes of five parts: a human operator, a master manipulator, communica-
tion channel, a slave manipulator and a task environment. The master is directly
operated by a human operator to manipulate the slave in the task environment,
and the signals (positions, velocities or interaction forces) from the slave are sent
back to the master to improve the manipulation performance. Recent years have
witnessed considerable advances in the control studies of teleoperation systems,
owing to their broad engineering applications in telesurgery, space exploration,
nuclear operation, undersea exploration, and so forth.

In practice of teleoperation, there usually exist modeling uncertainties caused
by inaccurate parameters of links, unknown load, etc., in the master and slave
robots. Besides, the slave robot often interacts with unknown environments,
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which also leads to uncertainties in the robot manipulators as well. Adaptive
control is an effective technique for handling structured uncertainties and has
obtained widespread applications in manipulators, where some recent results
can be found in [1, 2, 3, 4]. Classical adaptive control usually uses tracking
error feedback to update the adaptive estimates. The use of the tracking error
is motivated by the need to cancel cross-terms in the closed-loop tracking error
system within a Lyapunov-based analysis. However, these methods can only
guarantee the state tracking of the system, while the parameter convergence to
their true values is kind of problematic. It is well known that the convergence
of the parameters to their true values can improve system performance with
accurate online identification, exponential tracking and robust adaption without
parameter drift. However, these features are not guaranteed unless a condition of
persistent excitation (PE) is satisfied [5]. It is well known that the PE condition
is very stringent and often infeasible in practical control systems [6].

In another line, due to the nature of the long-distance data transmission,
communication time delays should not be neglected in the control of teleop-
eration systems [7, 8, 9]. The master-slave synchronization [10] and stability
analysis of teleoperation systems with various kinds of time delays, such as
constant delays [11], time-varying delays[12, 13, 14, 15, 16, 17], or stochastic
delays[18, 19, 20], and so on, have been hot topics in the study of teleoperation
systems in recent years. To handle parameter uncertainties and communication
delays in a unified framework, classical adaptive control with sliding mode is in-
troduced into the control of teleoperation systems. For example, Chopra et. al.
[21] proposed an adaptive controller for teleoperation systems with constant time
delays and without using scattering transformation. Nuño et. al [22] pointed out
the limitation of Chopra’s results in [21] and proposed a more general adaptive
controller for nonlinear teleoperation systems with constant delays, and further
with time-varying delays [15]. However, these classical adaptive control schemes
only achieve asymptotic convergence of master-slave tracking errors, while pa-
rameter convergence is seldom considered. With the motivation of using more
information to update the parameter estimates to obtain an improved tracking
performance, composite adaptive control has been used in teleoperation systems
[23, 24]. However, in the works [23, 24], the communication delays were assumed
to be constant, which is unrealistic in applications. Moreover, the PE condition
or a relaxed sufficient excitation (SE) condition was still required for parameter
convergence in these works.

Motivated by the above-mentioned facts, in this paper, a new composite
adaptive controller is designed for teleoperation systems with time-varying de-
lays. This paper has some unique features and key contributions over the ex-
isting works in the following ways. First, contrary to the existing works which
guarantee the boundedness of the parameter estimation errors [21, 22, 15], this
paper achieves convergence of parameters to their true values when the com-
munication delays are time-varying, which then gives rise to an improvement of
system performance. Second, a new prediction error is designed to guarantee
the parameter convergence, and neither PE or SE condition is required, thus
the proposed control scheme is more practical in real applications. Third, the
derivatives of the time-varying communication delays are not needed in the con-
troller formulation, which thus makes the controller easier to implement since
the information of the delays’ derivatives is not easy to obtain in real applica-
tions.
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The arrangement of this paper is as follows. In Section 2 the system mod-
eling and some preliminaries are given. In Section 3, the adaptive control with
parameter convergence is proposed. Section 4 summarizes the stability results
of the closed-loop system, while new tracking measures are proposed in Section
5 to evaluate the delayed tracking performance. A simple teleoperation sys-
tem composed of two robots with two degrees of freedom is given in Section 6
as an example to show the effectiveness of the proposed method. Finally, the
summary and conclusion of this paper is given in Section 7.

Notations: Throughout this paper, the superscript T stands for matrix
transposition, I is used to denote the identity matrix with appropriate di-
mensions. ∗ represents a block matrix which is readily referred by symme-
try. Rn denotes the n-dimensional Euclidean space with the vector norm ‖ · ‖,
Rn×m is the set of all n × m real matrices. λmin(M) and λmax(M) denote
the maximum and the minimum eigenvalue of matrix M = MT ∈ Rn×n, re-
spectively. For any function f : [0,∞) → Rn, the L∞-norm is defined as
‖f‖∞ := supt≥0 |f(t)|, and the square of the L2-norm as ‖f‖22 :=

∫∞
0
|f(t)|2dt.

The L∞ and L2 spaces are defined as the sets {f : [0,∞) → Rn, ‖f‖∞ < ∞}
and {f : [0,∞)→ Rn, ‖f‖2 <∞}, respectively.

2. Problem Formulation and Preliminaries

Consider teleoperation systems described as follows:

Mm(qm)q̈m+Cm(qm, q̇m)q̇m+Gm(qm)=Fm+τm (1)

Ms(qs)q̈s+Cs(qs, q̇s)q̇s+Gs(qs) = Fs+τs (2)

where qi, q̇i, q̈i ∈ Rn are the joint positions, velocities and accelerations of the
master and slave devices with i = m or s representing the master or the
slave robot manipulator respectively. Similarly, Mi represents the mass ma-
trix, Ci(qi, q̇i) embodies the Coriolis and centrifugal effects, τi is the control
force, and finally Fm, Fs are the external forces applied to the manipulator end-
effectors. Each robot in (1) and (2) satisfies the structural properties of robotic
systems, i.e., the following properties [25], [26]:

P1. The inertia matrix Mi(qi) is a symmetric positive-definite function and is
lower and upper bounded. i.e., 0 < ρmi I ≤ Mi(qi) ≤ ρMi I < ∞, where
ρmi , ρ

M
i are positive scalars.

P2. The matrix Ṁi(qi)− 2Ci(qi, q̇i) is skew symmetric.

P3. For all qi, x, y ∈ Rn×1, there exists a positive scalar ci such that ‖Ci(qi, x)y‖ ≤
ci‖x‖‖y‖.

P4. The equations of motion of n−link robot can be linearly parameterized as

Mi(qi)q̈i+Ci(qi, q̇i)q̇i+Gi(qi)=Yio(qi, q̇i, q̈i)θi , yi, (3)

where Yio(qi, q̇i, q̈i) , Yio ∈ Rn×ni is a matrix of known functions called
regeressor, and θi ∈ Rni is a vector of unknown parameters.

In this paper, we assume that the master and the slave are coupled with
a communication network with time-varying time delays. Hence, the following
standard assumption is used.
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Assumption 1. There exist positive constants hi and di such that the variable
communication time-delays Ti(t) satisfies

0 ≤ Ti(t) ≤ hi, (4)

|Ṫi(t)| ≤ di < 1. (5)

3. Adaptive Control Design

Suppose the positions of the master and the slave are available for measure-
ment and are transmitted through the delayed network communication. Let
ei ∈ Rn denote the position errors by

em , qm − qs(t− Ts(t)) (6)

es , qs − qm(t− Tm(t)) (7)

and the velocity errors by

evm , q̇m − q̇s(t− Ts(t)) (8)

evs , q̇s − q̇m(t− Tm(t)) (9)

and then

ėm = q̇m − (1− Ṫs(t))q̇s(t− Ts(t)) (10)

ės = q̇s − (1− Ṫm(t))q̇m(t− Tm(t)) (11)

we define the following auxiliary variables:

ηm , q̇m + λmem (12)

ηs , q̇s + λses (13)

where λm, λs are positive definite matrices. By using Property P4, letting

Yiθi = Yi(qi, q̇i, ei, evi)θi

= Mi(qi)λievi + Ci(qi, q̇i)λiei −Gi(qi), (14)

for i = m, s, the following control laws for the master and the slaves are pro-
posed:

τm = −Ymθ̂m −Kmηm (15)

τs = −Ysθ̂s −Ksηs (16)

where θ̂i is the estimate of θi, 0 < Ki ∈ Rn×n.
Substituting the control law (15-16) into the teleoperation dynamics (1-2),

we obtain the following dynamics for t > 0:
Mm(qm)η̇m + Cm(qm, q̇m)ηm +Kmηm

= Ymθ̃m + Fm + λmMm(qm)Ṫsq̇s(t− Ts(t))
Ms(qs)η̇s + Cs(qs, q̇s)ηs +Ksηs

= Ysθ̃s + Fs + λsMs(qs)Ṫmq̇m(t− Tm(t))

(17)

where θ̃i , θi − θ̂i.
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Remark 2. Compared with the existing work [27] which considers time-varying
communication delays for teleoperation systems, Yi does not depend on the
derivative of position error ei in the linear-parametrization term (14) in this
paper, which means that the time derivative of the communication delays are
not required to formulate the matrix Yi. This makes the controller more suitable
for real applications since the values of the time delays and the derivatives of
the time delays are not obtainable in real applications.

A straightforward choice of the adaptive law
˙̂
θi = ΓiY

T
i ηi was first proposed

by J. J. Slotine [28] and has been widely used in adaptive control of teleopera-
tion systems [25, 22, 27]. However, it is pointed that this adaptive law cannot
guarantee accurate estimations of parameters. In order to achieve convergence
of parameters to their true values, the estimation error θ̃i should be introduced
into the control design. However, the value of θ̃i is not obtainable since the true
value of θi is not available, and thus a prediction error eio = Yioθ̃i or its filtered
counterpart eiw = α

∫ t
0
e−δ(t−v)eio(v)dv is used to improve the tracking perfor-

mance. However, the use of eio or eiw still needs the PE condition to make the
system exponential stable. In the following, we introduce an auxiliary variable
zi such that zi = Piθ̃i,where Pi is a designed lower bounded positive-definite
matrix, to adaptive control of the teleoperation system. Thus, the following
adaptive laws are proposed for the master and the slave,

˙̂
θi = Γi(Y

T
i ηi + (ξi + δi)zi) (18)

żi = −µizi + Y Tio eio − Pi
˙̂
θi, zi(0) = 0 (19)

Ṗi = −µiPi + Y Tio Yio, Pi(0) = Pi0 > 0 (20)

µi = µi0(1− κi0‖P−1i ‖) (21)

where

emo , ym − Ymoθ̂m = Ymoθ̃m (22)

eso , ys − Ysoθ̂s = Ysoθ̃s (23)

and κi0 and µi0 are two positive constants specifying the lower bound of the
norm of Pi and the maximum forgetting rate [28], δi is a positive constant.
Γm ∈ Rnm×nm and Γs ∈ Rns×ns are two constant positive definite matrices.
From Eqs. (20) and (21), one can show that ∀t ≥ 0, µi ≥ 0, and Pi ≥ κi0I.

The coefficient ξi is given by

ξi = αi
‖Y Ti ηi‖
κi0

. (24)

where αi > 0 is a constant.

Remark 3. By (22-23), it is easy to see that the prediction error eio is related
to the regressor Yi, which requires the information of joint acceleration. To
avoid this, the adaptive law (18-21) with filtered torques and filtered regressor
Yiw could be used. The filtered prediction errors of estimated parameters are
defined as

emw , ymw − Ymwθ̂m = Ymwθ̃m (25)

esw , ysw − Yswθ̂s = Yswθ̃s (26)
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where yi is the filtered forces τi + Fi, i.e.,

yiw = α

∫ t

0

e−α(t−δ)yidδ

and can be calculated without acceleration terms Mi(qi)q̈i by convolving both
sides of (3) by a filter W (s) = α

s+α [29].

4. Stability Analysis

Denote xm = [ηTm, θ̃m]T , xs = [ηTs , θ̃s]
T , x = [xTm, x

T
s ]T , and define the new

state xt(s) , x(t + s), s ∈ [−h, 0] which take values in C([−h, 0];Rn+m+s),
h = max{hm, hs}

The following theorem summarizes the stability result of the consider tele-
operation system when it is in free motion.

Theorem 4. Consider the bilateral teleoperation system (1-2) controlled by (15-
16) together with the updating law (18-21) under the communication channel
satisfying Assumption 1, if there exist positive-definite matrices Rm, Rs such
that the following linear matrix inequality (LMI) holds, respectively:

Π =


Π1 0 0 −I
∗ Π2 −I 0
∗ ∗ −Rm

hm
0

∗ ∗ ∗ −Rs

hs

 < 0, (27)

with

Π1 = − 1

λm
I + hmRm +

λs(ρ
M
s )2d2m

(1− dm)k2s
I,

Π2 = − 1

λs
I + hsRs +

λm(ρMm )2d2s
(1− ds)k2m

I,

then the following claims hold if the teleoperation system is in free motion, that
is, Fm = Fs = 0:

1. all the signals are bounded and the position errors, velocities and the esti-
mation errors asymptotically converge to zero, that is, limt→∞ qm − qs =
limt→∞ q̇m = limt→∞ q̇s = limt→∞ θ̃m = limt→∞ θ̃s = 0.

2. the estimation errors converge into a specified domain within a given time.

Proof. Defining the following function:

Vi(x, t) =
1

2
ηTi Mi(qi)ηi +

1

2
θ̃i
T

Γ−1i θ̃i (28)

It is obvious that Vi is positive definite and radially unbounded with regard to
ηi and θ̃i. By using the Property P2, the derivative of Vi along the trajectory
of system (17) is

V̇i(x, t) = −ηTi Kiηi + ηTi (λiMi(qi)Ṫj(t)q̇j(t− Tj(t))
−θ̃Ti (ξiPi + δiPi)θ̃i

≤ −ki
2
ηTi ηi − δiκi0θ̃Ti θ̃i

+
λ2i
2ki

(ρMi )2d2j q̇
T
j (t− Tj(t))q̇j(t− Tj(t))

6



where ki = λmin{Ki}, when Fm ≡ 0, Fs ≡ 0. Now we give the following
Lyapunov functional

V = V1 + V2 + V3 + V4 (29)

with

V1 =
2

kmλm
Vm(x, t) +

2

ksλs
Vs(x, t) (30)

V2 = (qm − qs)T (qm − qs) (31)

V3 =
∑
i=m,s

∫ 0

−hi

∫ t

t+θ

q̇Ti (s)Riq̇i(s)dsdθ (32)

V4 =
∑
i=m,s

∫ t

t−Ti(t)

νiq̇
T
i (s)q̇i(s)ds (33)

where νi =
λj(ρ

M
j )2d2i

(1−di)k2j
, i, j = m, s, i 6= j. Obviously, νi > 0.

When the external forces Fm ≡ Fs ≡ 0, by (12), the derivative of V1 along
with the trajectory of system (17) is given by

V̇1(x, t) =
2

kmλm
V̇m(x, t) +

2

ksλs
V̇s(x, t)

≤ −
∑
i=m,s

(
q̇Ti q̇i
λi

+ 2eTi q̇i + λie
T
i ei

+
2δiκi0
kiλi

θ̃Ti θ̃i −
λi
k2i

(ρMi )2d2j‖q̇j(t− Tj(t))‖2)

It is noted that the position error e , qm − qs can be expressed as

e = em − Ls = −es + Lm (34)

where Lm =
∫ t
t−Tm(t)

q̇m(s)ds, Ls =
∫ t
t−Ts(t)

q̇s(s)ds, hence the time derivative

of V2 along with the trajectory of system (17) is given by

V̇2 = 2(em − Ls)T q̇m + 2(es − Lm)T q̇s

Calculating the time derivative of V3, one has that

V̇3 =
∑
i=m,s

hiq̇
T
i Riq̇i −

∫ t

t−hi

q̇Ti (s)Riq̇i(s)ds

≤
∑
i=m,s

hiq̇
T
i Riq̇i −

∫ t

t−Ti(t)

q̇Ti (s)Riq̇i(s)ds

≤
∑
i=m,s

hiq̇
T
i Riq̇i −

1

hi
LiRiLi

by Jensen’s inequality.
The derivative of V4 is given by

V̇4 ≤
∑
i=m,s

νiq̇
T
i q̇i − νi(1− di)q̇Ti (t− Ti(t))q̇i(t− Ti(t))
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Thus, we have

V̇ =
∑

i=1,2,3,4

V̇i ≤ −ξΠξ −
∑
i=m,s

(
2δiκi0
kiλi

|θ̃i|2 + λie
T
i ei) (35)

where ξ = col{q̇m, q̇s, Lm, Ls}, and Π is given in (36).
By (36), we have that V̇ < 0 and V > 0. Hence, all the signals are bounded.

Furthermore, by (29) and (35), one has that ei ∈ L2 ∩ L∞, θ̃i ∈ L2 ∩ L∞,
q̇i ∈ L2 ∩ L∞, Li ∈ L2 ∩ L∞. Thus by (10-11), one has that ėm, ės ∈ L∞. Now
invoking Barbalat’s Lemma, we conclude that limt→∞ ei(t) = 0. Similarly, we
have that limt→∞ Li(t) = 0 by Barbalat’s Lemma. Thus, by (34), we arrive at
limt→∞ e(t) = 0.

Furthermore, the boundedness of qi, q̇i, ei implies that ηi, τi ∈ L∞. Thus by
the dynamic model (1-2) and the Properties P1, P3, we otbain that q̈i ∈ L∞.
Hence involing Barbalat’s Lemma again, we arrive at that limt→∞ q̇i(t) = 0.

Now we show that the parameter estimation error θ̃i approaches to zero as
t→∞. Note that the parameter adaption law (18) implies that

˙̃
θi = −Γi(Y

T
i ηi + (ξi + δi)Piθ̃i) ∈ L∞

Similarly, the conclusion that limt→∞ θ̃i(t) = 0 is guaranteed by using Barbalat’s
Lemma. By now, Claim 1 is established.

To illustrate the transient performance of the teleoperators, we start from the
convergence of estimation errors θ̃i. Obviously, Let Vθ(t) ,

∑
i=m,s

2
kiλi

θ̃Ti Γ−1i θ̃i.
The time derivative of Vθ is given by

V̇θ(t) =
∑
i=m,s

2

kiλi
θ̃Ti Γ−1i

˙̃
θi

≤
∑
i=m,s

2

kiλi
(−θ̃Ti Y Ti ηi − θ̃Ti αi‖Y Ti ηi‖θ̃i − δiκi0θ̃Ti θ̃i)

≤
∑
i=m,s

2

kiλi
((1− αi‖θ̃i‖)‖Y Ti ηi‖‖θ̃i‖ − δiκi0‖θ̃i‖2)

Thus if ‖θi‖ ≥ 1/αi, we have V̇θ(t) ≤ −
∑
i=m,s

2δiκi0

kiλi
‖θ̃i‖2. This implies

that V̇θ is always negative when ‖θ‖ ≥
√

2/α with α = min{αm, αs}. So
the parameter error θ̃(t) = col{θ̃m, θ̃s} will converge to a sphere Ωθ = {θ̃ :

‖θ̃‖ ≤
√

2λθMµ
θ
M/λ

θ
mµ

θ
m/α}, where λθm = min{λmin(Γ−1m ), λmin(Γ−1s )}, λθM =

max{λmax(Γ−1m ), λmax(Γ−1s )},µθm = min{ 1
kmλm

, 1
ksλs
}, µθM = max{ 1

kmλm
, 1
ksλs
}

within a given time. The proof of Claim 2 is concluded.

Remark 5. Compared to the existing works [21, 22, 15], the proposed control
scheme guarantees the convergence of parameters to their true values, while nei-
ther the PE or SE condition is required. This is accomplished by the boundedness
of the matrix Pi in the new-defined prediction error zi.

When the external forces are not zero, we have the following result.
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Proposition 6. Consider the bilateral teleoperation system (1-2) controlled by
(15-16) together with the updating law (18-21) under the communication channel
satisfying Assumption 1, if there exist positive-definite matrices Rm, Rs such
that the following LMI holds, respectively:

Ξ =


Ξ1 0 0 −I
∗ Ξ2 −I 0
∗ ∗ −Rm

hm
0

∗ ∗ ∗ −Rs

hs

 < 0, (36)

with

Ξ1 = − 1

λm
I + hmRm +

2λs(ρ
M
s )2d2m

(1− dm)k2s
I,

Ξ2 = − 1

λs
I + hsRs +

2λm(ρMm )2d2s
(1− ds)k2m

I,

then when the external forces satisfy that Fh, Fe ∈ L∞ ∩ L2, all the signals are
bounded and the position errors, velocities and the estimation errors asymptot-
ically converge to zero, that is, limt→∞ qm − qs = limt→∞ q̇m = limt→∞ q̇s =
limt→∞ θ̃m = limt→∞ θ̃s = 0. Moreover, the estimation errors converge into a
specified domain within a given time.

Proof. Choose the Lyapunov-functional candidate V̄ as follows:

V̄ = 2V1 + V2 + V3 + 2V4 (37)

where V1, V2, V3, V4 are defined in (30), (31), (32), and (33), respectively.Thus
we have

˙̄V ≤ −ξΞξ +
∑
i=m,s

(−4δiκi0
kiλi

|θ̃i|2 − λieTi ei +
4

k2i λi
‖Fi‖2)

Integrating both sides of (38) from 0 to ∞, we have

V̄ (∞)− V̄ (0) ≤ 4

kiλi

∫ ∞
0

‖Fi‖2

which implies that V̄∞ ∈ L∞. Thus following the same line of reasoning in the
proof of Theorem 4, we can obtain the conclusion.

5. New tracking performance measures

In this section, we propose new tracking performance measures for bilateral
teleoperation systems. A requirement for bilateral teleoperation is that the
slave should follow the master’s motion. Specifically, when the slave is in free
motion, there is no environmental force between the slave and the environment,
and hence the slave should follow the master’ motion very tightly. However,
in terms of the tracking performance, it should be noted that the tracking
performance is related to the slave’s desired position, i.e., the master’s position,
and it’s actual position, i.e., the slave’s position. Hence it is naturally to define
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a ratio between the position error and the slave’s desired position as the position
tracking performance measure ∆p, i.e.,

∆i
p =
|qim − qis|
|qim|

, qim 6= 0 (38)

where i = 1, ..., n representing the i-th joint. For simplicity, we assume that
∆i
p = 0 when qim = 0. Similarly, when there is contact between the environment

and the slave robot, the force tracking performance is related a ratio between
the force error and the contact force, that is,

∆i
f =
|F im − F is |
|F is |

|, F is 6= 0. (39)

where i = 1, ..., n, and ∆i
f = 0 when F is = 0.

In the presence of communication, the measures ∆p,∆f should be modified
as

∆i
p =


|qim(t− Tm(t))− qis|

qim(t− Tm(t))
, (qim(t− Tm(t)) 6= 0)

0, (qim(t− Tm(t)) 6= 0)

(40)

∆i
f =


|F im − F is(t− Ts(t))|
|F is(t− Ts)|

, (F is(t− Ts(t)) 6= 0)

0, (F is(t− Ts(t)) = 0)

(41)

where i = 1, ..., n.
In summary , we define performance measure indexes for each joint

∆i
Jp =

∫ ∞
0

|∆i
p(t)|dt, (42)

∆i
Jf

=

∫ ∞
0

|∆i
f (t)|dt (43)

Obviously, the smaller the indexes ∆i
Jp
,∆i

Jf
are, the better the tracking perfor-

mance is for each joint.

6. Simulations

In this section, the simulation results are shown to verify the effective of the
main results.

6.1. Simulation Setup

Consider a 2-DOF teleoperation system with the following dynamics

Mm(qm)q̈m+Cm(qm, q̇m)q̇m+Gm(qm)=JTmFh+τm (44)

Ms(qs)q̈s+Cs(qs, q̇s)q̇s+Gs(qs) = JTs Fe+τs (45)
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where

Mi(qi) =

[
Mi11(qi) Mi12(qi)
Mi21(qi) Mi22(qi)

]
,

Ci(qi, q̇i) =

[
Ci11(qi, q̇i) Ci12(qi, q̇i)
Ci21(qi, q̇i) Ci22(qi, q̇i)

]
,

Gi(qi) =

[
Gi1
Gi2

]
,

for i = m, s, respectively, and

Mi11(qi)= l2i2mi2 +l2i1(mi1 +mi2)+2li1 li2mi2 cos(qi2),

Mi22(qi)= l2i2mi2 ,

Mi12(qi)=Mi21(qi) = l2i2mi2 + li1 li2mi2 cos(qi2),

Ci11(qi, q̇i)=−li1 li2mi2 sin(q2i)q̇i2 ,

Ci12(qi, q̇i)=−li1 li2mi2 sin(q2i)(q̇1i + q̇2i),

Ci21(qi, q̇i)= li1 li2mi2 sin(q2i)q̇1i , Ci22(qi, q̇i) = 0,

Gi1(qi)=
1

li2
gl2i2mi2 cos(q1i + q2i)

+
1

li1
(l2i2mi2 + l2i1(mi1 +mi2)

− l2i2mi2) cos(q1i),

Gi2(qi)=
1

li2
gl2i2mi2 cos(q1i + q2i).

The mass of the manipulators are chosen as mm1 = 1.5kg, mm2 = 0.75kg,

0 5 10 15 20
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30

40
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F
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Figure 1: The rectangle human input force

ms1 = 2.5kg, ms2 = 1.5kg, the length of links for the master and the slave
robots are lm1

= ls1 = 0.5m, lm2
= ls2 = 0.3m. The Jacobians of the master

and slave robots are given by

Ji(qi) =

[
−li1 sin(qi1)−li2 sin(qi1 +qi2) −li2 sin(qi1 +qi2)
li1 cos(qi1)+li2 cos(qi1 +qi2) li2 cos(qi1 +qi2)

]
. (46)
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(b) The second joint

Figure 2: Scenario A: the master and slave robots joint positions

The following parameterization is proposed for both manipulators with i =
m, s, respectively:

Yi(qi, q̇i, q̈i)

=

[
q̈i1 Y12 q̈i2 g cos(qi1 +qi2) g cos(qi1)
0 Y22 q̈i1 +q̈i2 g cos(qi1 +qi2) 0

]
,

Y12 =2cos(qi2 )̈qi1 +cos(qi2 )̈qi2−2sin(qi2)q̇i1 q̇i2−sin(qi2)q̇
2
i2 ,

Y22 = cos(qi2)q̈i1 + sin(qi2)q̇2i1 ,

θi = col{θi1 , θi2 , θi3 , θi4 , θi5},

where θi1 = l2i2mi2 + l2i1(mi1 +mi2), θi1 = l2i2mi2 + l2i1(mi1 +mi2), θi3 = l2i2mi2 ,
θi4 = li2mi2 , θi5 = li1(mi1 +mi2).

We assume that the operator hand force at the Y−direction is generated by
a step signal depicted in Figure 1, while at the X-direction, there is no external
force, then we have Fh = [0, 1]TFhy

.
In the slave side, two scenarios are considered. The first one which we called

as Scenario A is that the slave manipulator is in free motion. The second one
which is named as Scenario B is that there is a wall at y = 0.6 m in the
environment. When the slave end-effector reaches the wall and moves further,

12
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Figure 3: Senario B: the master and slave robots joint positions

the interaction force is 10, 000(y−0.6) N. It can be seen that the wall is very stiff.
In both scenarios, the master and the slave start with zero initial conditions, i.e.,
qm(0) = qs(0) = [0, 0]T rad, q̇m(0) = q̇s(0) = [0, 0]T rad/s. The initial values for

the estimated dynamic parameters are chosen as θ̂m = [0.4, 0.1, 0.2, 0.32, 0.7]T ,

θ̂s = [0.7, 0.2, 0.3, 0.5, 1.7]T . The communication delays are set as: Tm(t) =
0.3 + 0.2 sin(2t) + 0.1 sin(5t), Ts(t) = 0.8 + 0.3 sin(1.5t) + 0.1 sin(5t).

6.2. Stability Verification

First of all, the slave is in free motion. By applying the designed controller
(15), (16), (18), (19), (20), (21) with Km = Ks = 100I, λm = λs = 0.5,
we obtain the simulation results as shown in Figure 2. It can be seen that
under the proposed controller, the presence of parametric uncertainties does
not violate the stability of the bilateral teleoperation. The master and the slave
achieve synchronization around the time t = 10s. Furthermore, the estimated
dynamic parameters are shown in Figure 6(a)and Figure 7(a), respectively. By

Figure 6(a), it is easy to find that the estimate θ̂m converges to its real value
θm after t = 2 s, when the external human force starts to be exerted to the
master manipulator. Similarly, Figure 7(a) reveals the convergence of the slave’s
dynamic parameters to their true values.
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Figure 4: Senario B: The master and slave robots end-effector positions
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Figure 5: Scenario A: The master and slave robots end-effector positions by
using the method in [15]

Secondly, we show the tracking performance when the slave would contact a
wall at y = 0.6 m. From Figure 3-Figure 4, it is easy to find that the system is
stable even there exist dynamic parameter uncertainties. The master and the
slave move forward when the external human force takes action and stop moving
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when the slave contact the wall at Y-direction. The master’s positions gradually
converge to the slave’s positions when the human operator stops exerting forces
to the considered teleoperation system.
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Figure 6: Scenario A: The dynamic parameter θm and the parameter estimate
θ̂m

6.3. Comparison study between this paper and [15]

In order to show the effectiveness of the proposed method, comparative
simulation studies with the method in [15] is given here. Both of the two meth-
ods can achieve asymptotic position tracking under time-varying time delays.
However, the results in [15] did not consider the parameter convergence. The
dynamic parameter estimates in Scenario A under the proposed method in this
paper and the method in [15] are depicted in Figure 6 and Figure 7. It is shown
that the master’s dynamic parameters converge to the true values very quickly
under the proposed method while in contrary the estimates in [15] diverge from
the true values almost all the time. The slave’s dynamic estimates also have
a better tracking performance with its true values under our proposed method
from Figure 7.

When the simulation was implemented in Scenario B, unfortunately, the
controller proposed in [15] with the human input depicted in Figure 1 cannot
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Figure 7: Scenario A: The dynamic parameter θs and the parameter estimate
θ̂s

drive the slave’s end effector moving to the position y = 0.6 m, as it is shown
in Figure 5, and thus the contact with the wall at y = 0.6m could never happen
in this circumstance. This means that the proposed method in [15] needs larger
force to drive the teleoperation system moving. To have a better comparison
between the method in [15] and the proposed method in this paper, we have
to enlarge the human force for the proposed method in [15], which is given by
F̄h = 10Fh, where F̄h is new human force exerted for the teleoperation system
with the controller given in [15], while the other conditions keep the same.

The dynamic parameter estimates in Scenario B under the proposed method
in this paper with the human input Fh and the method in [15] with the human
input F̄h are depicted in Figure 8 and Figure 9. By Figure 6 and Figure 8,
the master’s parameter estimates under the proposed algorithm in this paper
converge to the true values very quickly in both Scenarios. The slave’s dynamic
estimates also have a better tracking performance with its true values under our
proposed method from Figure 7 and Figure 9.

To better describe the tracking performance, we use the proposed tracking
performance measures to evaluate the position tracking performance and the
force tracking performance. Table 1 shows the tracking performance of the tele-
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(a) The proposed method
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Figure 8: Scenario B: The dynamic parameter θm and the parameter estimate
θ̂m

operation system under the proposed method in this paper and in [15] by using
our proposed performance measures. It is obviously that when the simulation
is completed in Scenario A, that is, the slave is in free motion, and there is
no environmental force, the position tracking performance under our proposed
method is better than the one under the controller proposed in [15]. When the
simulation is implemented in Scenario B, both position tracking performance
and force tracking performance could be measured by using the proposed per-
formance measures. It is easy to find that in this case our method still has
advantage over the prosed method in [15].

Table 1: ∆J

∆p(∆f )
The proposed method the method in [15]
Scenario A Scenario B Scenario A Scenario B

∆1
p 3.0677 7.5566 32.9066 17.6223

∆2
p 7.8993 80.3351 43.7317 31.7531

∆1
f - 16.3386 - 20.9547

∆2
f - 20.9843 - 25.8604
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(a) The proposed method
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Figure 9: Scenario B: The dynamic parameter θs and the parameter estimate
θ̂s

7. Conclusion

In this paper, a novel composite adaptive control framework that addressed
dynamic uncertainties and time-varying delays for nonlinear teleoperation sys-
tems was proposed. A new defined prediction error was used to guarantee the
parameter convergence. The stability criteria in terms of LMIs, which give
the sufficient conditions related to the controller gains and the upper bound of
time delays, have been provided. To better describe the tracking performance,
new tracking measures are proposed. The controller performance is verified
via simulations. Further studies for parameter-converging adaptive control of
teleoperation systems with both dynamic and kinematic uncertainties is under
study and the results will be reported in the near future.
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