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Abstract 

 
In this work, linear (linearized) cyber-physical systems with output feedback control, 

whose sensors are experiencing faults or are under cyber-attack, are studied. Two 

different cases are investigated. First, when all sensors are attacked, then, when some 

sensors are protected from the attacks. Finite time convergent observers, specifically 

the sliding mode ones, including the observers with gain adaptation, are employed for 

on-line reconstruction of the cyber-attacks. The corrupted measured outputs are 

“cleaned” from cyber-attacks, and feedback control that uses the “cleaned” outputs is 

shown to provide elevated cyber-physical system performance close to the one 

without attack. Finally, the proposed methodology is applied to an electric power 

system under cyber-attack. Simulation results illustrate the efficacy of the proposed 

observers. 

Keywords: Cyber-physical systems, Finite Time Convergent (Sliding mode) observer, 

Adaptive sliding mode observer 
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1. Introduction 

 
Cyber Physical Systems (CPS) are the integration of the cyber-world of computing 

and communications with the physical world. In many systems, control of a physical 

plant is integrated with a wireless communication network, for example transportation 

networks, electric power generation and distribution networks, integrated biological 

systems, industrial automation systems, and economic systems [1-3]. 
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Since CPSs use open computation and communication platform architectures, they 

are vulnerable to suffering adversarial physical faults or cyber-attacks. Faults and 

cyber-attacks are referred to as attacks throughout the paper. We have to 

acknowledge that cyber-attacks are relatively new phenomena that cause systems 

faults. Recent real-world cyber-attacks, including multiple power blackouts in Brazil 

[4], the StuxNet attack [5] in 2010 and the Maroochy water bleach in 2000 [6], 

showed the importance of providing security to CPSs. It is suggested in [7] that 

information security mechanisms have to be complemented by specially designed 

resilient control systems. In the other words, information security techniques [8] may 

be not sufficient for protecting systems from sophisticated cyber-attacks. 

Controlling systems with measurement sensors and actuators, which are 

hijacked/corrupted remotely or physically by the attackers is challenging. The use of 

novel control/observation algorithms is proposed in this paper for recovering CPS 

performance on-line if an attacker penetrates the information security mechanisms.  

Cyber security of CPS must provide three main security goals: availability, 

confidentiality, and integrity [8]. This means that the CPS is to be accessible and 

usable upon demand, the information has to be kept secret from unauthorized users, 

and the trustworthiness of data has to be guaranteed. Lack of availability, 

confidentiality, and integrity yields denial of service, disclosure, and deception 

respectively. A specific kind of deception attack called a replay attack has been 

investigated when the system model is unknown to the attackers but they have access 

to the all sensors [9-10].  Replay attacks are carried out by “hijacking” the sensors, 

recording the readings for a certain time, and repeating such readings while injecting 

them as exogenous signal into the system’s sensors. In the case when the system’s 

dynamic model is known to the attacker, another kind of deception attack, called 

covert attack, has been studied in [11], and the proposed algorithm allows cancelling 

out the effect of this attack on the system dynamics. In systems with unstable modes, 

false data injection attacks are applied to make some unstable modes unobservable 

[12]. Denial of service attacks assaults data availability through blocking information 

flows between different components of the CPS. The attacker can jam the 

communication channels, modify devices and prevent them from sending data, violate 

the routing protocols, etc. [13]. In a stealth attack, the attacker modifies some sensor 

readings by physically tampering with the individual meters or by getting access to 

some communication channels [14]. As a result, detecting and isolating cyber-attacks 



3 
 

in CPSs has received immense attention [15], and there is a significant amount of 

publications, which have focused on keeping the system safe from attacks. However, 

how to ensure the CPS control system can continue functioning properly if the cyber-

attack has happened is another serious problem that should be investigated.   

To increase the robustness of CPS to sensor attacks, a lot of effort has been applied 

to counteract the attacks via developing sophisticated software [16-17]. However, if 

despite this an attack still happens, they must be detected, isolated, and, if possible, 

reconstructed and compensated. Therefore, beside prompt detection, on-line attack 

reconstruction is crucial for guaranteeing continuity of service of CPS, often 

supporting critical infrastructures. Thus, both on-line detection and reconstruction of 

attacks on SPC with a consequent compensation are of prime interest in terms of CPS 

research. 

In [18], new adaptive control architectures that can foil malicious sensor and 

actuator attacks are developed without reconstructing the attacks, by means of 

feedback control only. Another approach to protect CPS from attack using on-line 

attack reconstruction/estimation techniques is proposed in [19], [20]. A sparse 

recovery algorithm is applied to reconstruct cyber-attacks in [20]. Sparse recovery 

algorithms are effective when only limited number of sensors is under attacks. In 

[19], a finite time convergent higher order sliding mode (HOSM) observer based on a 

HOSM differentiator and a sparse recovery algorithm are used to reconstruct on-line 

the cyber-attack in a nonlinear system.  

Detection and observation of a scalar attack by a sliding mode observer (SMO) has 

been accomplished for a linearized differential-algebraic model of an electric power 

network when plant and sensor attacks do not occur simultaneously [21].  

A probabilistic risk mitigation model for cyber-attacks against Phasor 

Measurement Unit (PMU) networks is presented in [22], where a risk-mitigation 

technique determines whether a certain PMU should be kept connected to the network 

or removed, while minimizing the maximum threat level for all connected PMUs. In 

[23] the sliding mode-based observation algorithm is used to reconstruct the attacks 

asymptotically. This reconstruction is approximate only, since pseudo-inverse 

techniques are used.  

In this paper, linear/linearized CPSs controlled by output feedback subject to 

sensor attacks are considered. The corrupted/attacked measurements propagate the 

attack signals to the CPS through the feedback controllers causing CPS performance 

degradation. Two CPS configurations are studied: a scenario when all sensors are 
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prone to get attacked and a scenario when some sensors are protected from the 

attacks. 

The main challenge that is addressed in the paper is on-line exact reconstruction of 

the sensor attacks with an application to an electric power network. 

The contributions of this are as follows  

 Two CPS scenarios are investigated: all sensors are prone to attack; and 

some sensors are protected from the attack. 

 Fixed-gain and adaptive-gain SMOs are proposed for the on-line 

reconstruction of sensor attacks. Specially, dynamic filters that address the 

attack propagation dynamics are proposed and employed for attack 

reconstruction for the first time. 

 The measurements corrupted by the attacks are “cleaned” on-line in order 

to stop the sensor attack propagation to the CPS through output feedback 

control. After a finite time transient, needed for the attack reconstruction 

the CPS closed loop performance results as attack free performance. 

 The proposed methodology is applied to an electric power network, whose 

sensors are under attack. Simulation results illustrate the efficacy of the 

proposed observers. 

 

2. System Dynamics 

Consider a completely observable and controllable LTI system (Fig. 1), whose 

measured output is corrupted by an attack. 

 

Fig. 1. The closed-loop dynamical system in the presence of sensor attacks 

The system dynamics in Fig. 1 are given by 

x Ax Bu

y Cx Dd

 

 
      (1) 
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where the triplet  , ,A B C  is completely controllable and observable, 
nx   

denotes the states, qu  is a control signal, and 
py  represents the measured 

output. The ( ) md t   is the smooth norm-bounded sensor attack signal that is to be 

reconstructed on-line.  

The following assumption is made: 

(A1): the Kimura-Davidson condition [24]  

1l p n        (2) 

holds. 

Assuming assumption A1 holds then there exists a static output feedback control  

u Ky       (3) 

where 
l pK   is a gain matrix, that stabilizes the system (1).  

Substituting (3) into (1) results in the closed loop system 

 x A BKC x BKDd

y Cx Dd

  

 
    (4) 

Therefore, the closed-loop system (4) can be rewritten as 

x Ax Bd

y Cx Dd

 

 
      (5) 

where A A BKC   is Hurwitz, and B BKD  . 

Again, note that ( )d d t  is a bounded, smooth sensor cyber-attack signal.  

Discussion: Assume that the sensor attacks are reconstructed, i.e. ˆ( ) ( )d t d t  as 

time increases. Then the polluted measurement y Cx Dd   can be “cleaned” as 

ˆ
cleany y Dd  , and 0cleany y   as time increases, where y Cx  is a measured 

output in the absence of attack. Therefore, substituting y Cx  for y Cx Dd   in (3) 

we obtain 

x Ax Bd x Ax

y Cx Dd y Cx

   
 

   
    (6) 

In the other words, the compensated dynamics of the output feedback control system 

(1), whose sensors are under attack, will converge to the stable system (6) with the 

desired asymptotic dynamics that are not affected by the sensor attack signals. The 

problem of the output feedback controller (3) design is out of the scope of this work. 
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Therefore, the main problem addressed in this paper is on-line reconstruction of the 

sensor attack signal ( )d t  in system (5) with application to an electrical power system 

network shown in Fig. 2. 

 

Fig. 2. Sensor Attack Analyzer 

3. Problem formulation 

 

The problem is to protect system (1) from the norm-bounded smooth sensor 

attack ( ) md t  , with 1 2 1 2( ) , ( ) , , 0d t L d t L L L    by  

(a) reconstructing on-line the sensor attack ( )d t , so that the estimate 

ˆ( ) ( )d t d t       (7) 

as time increases, and  

(b) “cleaning up” the measurement: ˆ
cleany y Dd   to compensate the effects 

of the sensor attack on the system closed-loop performance 

 

4. Sensor attack On-line Reconstruction 

 

Firstly, a case when the number of sensors and the number of attacks is the same (

p m ) is studied, and two different scenarios are investigated: 

(a) all sensors can be attacked,  

(b) k  sensors ( k p ) are protected from the attacks. 

Then, the case when the number of sensors is greater than the number of attacks (

p m ) is studied: 

(c) all sensors can be attacked.  
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4.1. All sensors can be attacked 

Since the system (5) is completely controllable and observable, it can be partitioned 

as 

1 11 12 1 1

2 21 22 2 2

1 1 2 2

x A A x B
d

x A A x B

y C x C x Dd

       
        

       

  

   (8) 

where 
( )

1 2 1 2 2, , , , , ,det( ) 0n p p p n p p p p mp m x x C C D C           . 

Firstly, the closed-loop system (5) is transformed to a form convenient for the 

observer design. Specifically, the state variable 2
px   is replaced by the output 

variable py . This is 

1 21 1 22 23

11 1 12 13

x G x G y G d

y G x G y G d Dd

  

   
    (9) 

where  

1 1
11 1 11 1 12 2 1 2 21 2 22 2 1

1 1
12 1 12 2 2 22 2

1 1
13 1 12 2 1 1 2 22 2 2 2

1
21 11 12 2 1

1
22 12 2

1
23 12 2 1

G C A C A C C C A C A C C

G C A C C A C

G C A C D C B C A C D C B

G A A C C

G A C

G A C D B

 

 

 







   

 

    

 



  

  (10) 

An observer is designed mimicking system (9) 

1 21 1 22

11 1 12

ˆ ˆ ˆ

ˆ ˆ ˆ

x G x G y

y G x G y 

 

  
     (11) 

where p  is the injection term. The estimation errors are introduced 

1 1 1
ˆ ˆ,y xe y y e x x        (12) 

The following assumptions are made concerning matrices in (9) and (10): 

(A2): The matrix 21G  is Hurwitz. 

(A3): The entries of the matrix transfer function  
1

11 21 23 13G sI G G G Ds


    have 

numerators with the roots located in the left hand side of the complex plane (a 

minimum phase case). Here s  is the Laplace variable.  
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(A4): For the term 
111 12 13x yG e G e G d Dd      the following inequality holds at 

least locally:  

11 12 131
1 2 3x yG e G e G DL L L L L L L L L         (13) 

where 
11 12 13 1 1

11 12 13, , , , , ,
x yG G G D x e y eG L G L G L D L e L e L

   
     

11 12 131
1 2 3, , , , , , , , 0

x yG e G e G DL L L L L L L L L  . 

4.1.1 Sensor attack reconstruction via fixed-gain SMO  

The first main result is formulated in the following Theorem: 

Theorem 1: Consider the system in (9) and (10) with the observer (11), whose 

injection term   is designed in a unit vector format  

 3 3, , 0
y

y

e
L L

e
         (14) 

that makes the observer (11) and (14) the SMO. Assume that the assumptions A1-A4 

hold. 

Then the sensor attack signal ( )d t  is exactly reconstructed as 

  
1

1

11 21 23 13
ˆ

eqd G sI G G G Ds 



      (15) 

where eq  is the equivalent injection function, 0ye   in finite time, and 

ˆ( ) ( )d t d t  as time increases in the sliding mode.  

The proof of the Theorem 1 is presented in Appendix. 

Remark 1: Given equivalent control eq , the attack estimate in (15), where the 

dynamic filter appears naturally, is exact. 

Remark 2: Although the equivalent control eq  was conceived as an abstraction to 

allow the analysis of the reduced order sliding motion, a close approximation can be 

obtained in real-time by low-pass filtering of the switching signal (14) [25]. 

Therefore, if eq  satisfies 

 1

y

eq eq

y

e
L

e
           (16) 

where 0   is a (small) time constant, then 

( )eq eq         (17) 
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Therefore, the eq  estimation error in (17) is small, for a small enough choice of τ 

[26].  

Replacing eq  by eq  in (15) we obtain 

  
1

1

11 21 23 13 eqd G sI G G G Ds 



      (18) 

and the attack estimation error after a transient is over can be computed 

( )eq eqd d            (19) 

where  

  
1

1

11 21 23 13 , 0G sI G G G Ds






          (20) 

Note that the low pass filter in (16) is the simplest choice, but other higher order 

systems with low-pass characteristics can be employed.  

Remark 3: In many practical cases the entries of the transfer function 

  
1

1

11 21 23 13G sI G G G Ds



    of the estimator (15) are the regular ones. This fact 

is demonstrated in the case study. It means that the SMC injection term   in (14) can 

be used in (15) instead of eq , bearing in mind that eq  is recovered/estimated 

approximately via the low pass filtering of   that takes place while   is processed 

by the proper transfer function   
1

1

11 21 23 13G sI G G G Ds



   . 

4.1.2 Sensor attack reconstruction via adaptive-gain SMO 

In subsection 4.1.1 it was assumed that the perturbations term   is locally norm-

bounded as in (13), and the boundary 3 0L   is known. In many practical cases this 

bound is unknown, and the gain of the sliding mode injection term (14) in the fixed 

gain SMO in (15) can be overestimated. This gain overestimation could increase 

chattering that is difficult to attenuate. 

In this section an adaptive-gain SMO is considered for the cyber-attack on-line 

reconstruction. The following assumption is made: 

Assumption (A5): The disturbance term   satisfies the conditions 

3 4, ,L L        (21) 

where 3 4, 0L L   exist but are unknown. 
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The dual layer nested adaptive SMO [27] is used for designing the injection term 

  in (13). In accordance with the dual layer nested adaptive sliding mode 

observation algorithm [27] the constant gain 3L  in the injection term (14) is to be 

replaced by the adaptive gain ( )L t  (without ( )L t  overestimation). This is 

 ( ) , 0
y

y

e
L t

e
         (22) 

Following the dual layer nested sliding mode observation adaptive algorithm in [27] 

applied to the unit-vector injection term in (14), an error signal is defined as 

1
( ) ( ) ( )eqt L t t  


       (23) 

where the scalars 0 1  , 0  , and eq  represents a low-pass filtered estimate of 

eq  obtained as 

eq eq         (24) 

The task of selecting 0   is discussed in Remark 2. 

The adaptation dynamics of ( )L t  in (22) are defined as [27] 

( ) ( ) ( ( ))L t r t sign t     (25) 

where ( ) 0r t   is a time-varying scalar that is supposed to supersede the upper-

bound of the rate of change of the generalized attack, 4L  , by some finite time. 

In this paper it is assumed that ( )r t  has the structure  

0( ) ( )r t t      (26) 

where 0  is a fixed positive scalar. The evolution of ( )t  is chosen to satisfy an 

adaptive law [27] 

0( ) ( )
( )

0

t if t
t

otherwise

    
 


    (27) 

where 0, 0    are design scalars. 

The second main result is summarized in the following proposition. 

Proposition 1: Consider the system in (9) and (10), and assume that the assumptions 

A1 – A5, hold. A SMO is designed as in (11) with the adaptive injection term in (22)-

(27). If 0   in (23) is chosen to satisfy 
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2

2 2 4
0

1 1

4

qL
 

 

 
   

 
    (28) 

for any given 0  in (27), 4L  in (21), 1q  , and, 0 1  , then  

 the injection term (22) exploiting the dual layer adaptive scheme given by (23)-(27), 

drives ( )t  to a domain ( ) 2t   in finite time and consequently ensures a 

sliding motion 0ye   can be reached in finite time and sustained thereafter. 

Furthermore, the gains ( )r t and ( )L t  remain bounded; 

 the sensor attack signal ( )d t  is reconstructed in the sliding mode as time increases as 

in (15) with the equivalent adaptive injection term eq  or eq . 

The proof of the Proposition 1 is presented in the Appendix. 

Remark 4: The proposed unit vector injection gain-adaptation algorithm in (22)-

(27) does not require the knowledge of the boundaries 3 4, 0L L  . 

4.2 k  sensors ( ,k p p m  ) are protected from the attacks 

Again consider the system (5), whose sensors are under the attacks.  

Assumption (A6): k  out of p  sensors are protected, and the remaining p k  

sensors might be attacked/corrupted.  

Separating the protected and unprotected measurements, system (5) can be 

partitioned as  

1 11 12 13 1 1

2 21 22 23 2 2

3 31 32 33 3 3

1
131 11 12

2
232 21 22 1

3

0

x A A A x B

x A A A x B d

x A A A x B

x
Cy C C

x d
Cy C C D

x

       
       

 
       
              

 
     

      
       

   (29) 

where 

   

 

1 2 1 2

1 2 3 1 2 3

1 2 3 1 2 3

1

, , , ,

, , , , ,

, , , , ,

T
T T k p k

T
T T T n p k p k

T n p p p k pT T T k p

p k p

y y y y y

x x x x x x x

B B B B B B B

D



 

   

 

   
 

    
 

    
 



 (30) 
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It is assumed that  

Assumption (A7): The square matrices  12
k kC   and 

( ) ( )
23

p k p kC    are non-

singular. 

Next, the partitioned system (29), (30) is transformed to a convenient for the 

Lyapunov analysis form. Specifically, the state variables 2
kx   and 3

p kx   are 

replaced by the output variables 1
ky   and 2

p ky  . This is: 

1 11 1 12 1 13 2 14

1 21 1 22 1 23 2 24

2 31 1 32 1 33 2 34 1

x Q x Q y Q y Q d

y Q x Q y Q y Q d

y Q x Q y Q y Q d D d

   

   

    

   (31) 

where 

   

   

11 11 12 11 13 21

12 12 12 13 22

13 12 13 13 23

14 12 14 13 24 1

21 11 11 12 21 13 31

11 12 12 22 13 32 11 11 13 12 23 13 33 21

22 11 12 12 22 13 32 12 11 13 12 23 13 33 22 ,

Q A A h A h

Q A h A h

Q A h A h

Q A h A h B

Q C A C A C A

C A C A C A h C A C A C A h

Q C A C A C A h C A C A C A h

Q

  

 

 

  

  

     

     

   

   

   

23 11 12 12 22 13 32 13 11 13 12 23 13 33 23

24 11 1 12 2 13 3

31 21 11 22 21 23 31

21 12 22 22 23 32 11 21 13 22 23 23 33 21

32 21 12 22 22 23 32 12 21 13 22 23 23 33 22

33

,

,

C A C A C A h C A C A C A h

Q C B C B C B

Q C A C A C A

C A C A C A h C A C A C A h

Q C A C A C A h C A C A C A h

Q

     

  

  

     

     

    21 12 22 22 23 32 13 21 13 22 23 23 33 23

34 21 1 22 2 23 3

,C A C A C A h C A C A C A h

Q C B C B C B

    

  

 (32) 

with  
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   

 

 

 

   

1
1 1 1 1

11 12 13 23 22 12 11 13 23 21

1
1 1 1

12 12 13 23 22 12

1
1 1 1 1

13 12 13 23 22 12 13 23

1
1 1 1 1

14 12 13 23 22 12 13 23 1

1
1 1 1 1

21 23 22 12 13 23 21 22 12 11

22

h I C C C C C C C C C

h I C C C C C

h I C C C C C C C

h I C C C C C C C D

h I C C C C C C C C C

h


   


  


   


   


   

   

 

  

  

   

 

 

 

1
1 1 1 1

23 22 12 13 23 22 12

1
1 1 1

23 23 22 12 13 23

1
1 1 1

24 23 22 12 13 23 1

I C C C C C C C

h I C C C C C

h I C C C C C D


   


  


  

  

 

  

  (33) 

The main results relating to sensor attack reconstruction in systems with  

,k p p m   sensors protected from the attacks are presented in the following 

Theorem. 

Theorem 2: Consider system in (31)-(33), and assume that assumption A7 holds. The 

proposed SMO is given by 

1 11 1 12 1 13 2

1 21 1 22 1 23 2 1

2 31 1 32 1 33 2 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

x Q x Q y Q y

y Q x Q y Q y

y Q x Q y Q y





  

   

   

    (34) 

where 1
k   and 2

p k   are sliding mode injection terms that are defined as 

 

 

1

1

2

2

1 1 11

2 2 12

y

y

y

y

e
L

e

e
L

e

 

 

 

 

     (35) 

with 1 2 11 12, , , 0L L    and  

1 1 21 1 1 1 2 2
ˆ ˆ ˆ, ,x y ye x x e y y e y y         (36) 

then the sensor cyber-attack is exactly estimated as 

 

   

1
11 1 12 2

1

1
1 1

2 21 11 12 22 2 21 11 1

ˆˆ
ˆ

ˆ

eq

eq eq

H H dd
d

d H H H H H H



 




 

    
    
        

 (37) 



14 
 

in the sliding mode rt t   where rt t  is sliding mode reaching time, and 

1 2
ˆ ˆ,k p kd d   , where the matrix  

 

 

1

21 11 14 24

1

31 11 14 34 1

p p
Q sI Q Q Q

Q sI Q Q Q D sI







  
 
    

 is 

partitioned as  

 

 

 

1

21 11 14 24 11 12

1
21 2231 11 14 34 1

Q sI Q Q Q H H

H HQ sI Q Q Q D sI





    
    
      

   (38) 

while the matrices 11
k kH  ,

( )
12 ,k p kH    

( )
21

p k kH   , 
( ) ( )

22
p k p kH    . 

The proof of the Theorem 2 is presented in Appendix. 

Remark 5: The injection terms 1 2,   in (35) can be also designed in the dual layer 

adaptive form as shown in section IV. Note that the problem of estimating 1 2,eq eq   

used in (37) is discussed in Remark 2. 

Remark 6: Estimating the attack vector 
1

2

d
d

d

 
  
 

 in (37) requires inversion of the 

matrices (that represent the dynamic filters) of smaller dimensions rather than in (15) 

due the fact that k p  sensors are protected from the cyber-attacks. 

 

4.3 All sensors p m  can be attacked.  

Since p m , the system (5) can be partitioned using a nonsingular 

transformation 
m mM   

y My       (39) 

that is selected so that 

 1 p m m

m m

M D
D

 



 
  
  

0
     (40) 

Using (40), system (5) is reduced to 

1 1

2 2

x Ax Bd

y C x

y C x Dd

 



 

     (41) 
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where 1
p my   and 2

my   are parts of y  as 
1

2

y
y

y

 
  
 

, and 

1 2,p m mC C   are partitions of 1C M C . 

Remark 7. In (41) the virtual measurements 1 2,y y  are available, and 1y  can be 

interpreted as a virtual sensor measurement protected from cyber-attacks. 

After further state vector partitioning, system (41) may be presented in a (29) 

format. Then the algorithms presented in Sub-section 4.2 can be employed for 

reconstructing the cyber-attack ( )d t  in system (5) in the case p m . 

 

5. Case study: Sensor attacks On-line Reconstruction in Electrical Power Network 

5.1. Mathematical model of electrical power network 

The descriptor (Differential Algebraic Equations (DAE)) swing mathematical 

model is used to describe the electromechanical behavior of an electric power 

network [28, 29].  

The linearized DAE swing mathematical model for an electrical power network 

stabilized by a linear output feedback controller is given by [29]: 

, ,

, ,

0 00 0 0 0

0 0 ( )

0 0 0 0

( )

g g g g g l

l g l l
B

xA

II

M L E L B d t P

B PL L

y Cx Dd t

 
 

   

 

 

 

                                                  

 

  (42) 

where 
T

T T Tx    
 

 is the vector of states of the system, 

, ,a a b     are vectors of the phase angles of the source measured in rad, 

generator speed deviations from synchronous measured in rad s , and of bus angles 

measured in rad respectively. The index a  is the number of generators, and b  is the 

number of buses in the electrical system. The vector 
py   is the measurement 

vector, the vector md   is the sensor attack vector, and 
(2 ) ,a b m p mB D     

are the attack distribution matrices; ,P P   are known inputs, corresponding to 

mechanical torque and power demand. The matrices , a a
g gE M   are diagonal 
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matrices whose nonzero entries consist of the damping coefficients and the normalized 

inertias of the generators respectively. Finally, the matrices , , , ,, , ,g g g l l g l lL L L L   
 form 

the following symmetric susceptance matrix 

, ,

, ,

g g g l

l g l l

L L
L

L L

 


 

 
 
  

     (43) 

that is the Laplacian associated with the susceptance-weighted graph. 

Assumption (A8) The matrix ,l lL  is nonsingular (such an assumption usually holds 

in practical electric power systems). 

Note that the terms that appear in the electric power network model (42) 

0 0

( )B d t P

B P

 

 

   
   


   
      

     (44) 

are due to the output feedback control that processes the output ( )y Cx Dd t   

corrupted by the cyber-attack signal ( )d t . 

5.2. Transformation of DAE (42) to ODE 

 Assuming (A8) holds, the variable   can be expressed as 

   
1

, ,l l l gR R P B d 
  



        (45) 

Substituting (45) into (42) we obtain 

 

( , ) 0 0
( )

( , )

( )

d t
P B

y C Dd t



  

  

  





       
         
      

 
  

 

    (46) 

where 

 

   

1
1 1

, , , ,

1 1
1 1

, , , ,

0
( , )

( , )

,

p p

g g g g l l l l g g g

g g l l l g g l l l

I

M R R R R M E

P M P R R P B M B R R B


   



   
     

   

   




 

 
 

 
                

   

   
      

   

 (47) 

and 

 
0

,
0

C D
C D

C D

 

 

   
    
   
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5.3. System (46), (47) Parameterization 

The electrical power system considered in this paper is a classical nine-bus 

configuration adopted from [29]. It consists of 3 generators  1 2 3, ,g g g  and 6 load 

buses  1 6,...,b b  as presented in Fig. 3 [29]. 

 

Fig. 3. The Western Electricity Coordinating Council power system [29] 

Consider that the measurements of the system (46) are 3 , i.e. 

3 30,C D C D I             (48) 

and 

3 6 3, 0B I B          (49) 

Therefore, system (46) is rewritten for this parameterized case as 

 
, ,

, ,

0 00 0 0 0

0 0 ( )

0 0 0 00

( )

g g g g g l

l g l l

II

M R E R I d t P

PR R

y d t

 


 


 

 





         
         

            
                    

 

  (50) 

where   3
1 2 3

T
     ,   3

1 2 3

T
     , 6  , 

  3
1 2 3

T
y y y y  , and   3

1 2 3

T
d d d d   is the sensor cyber-attack 

signal. Matrices gM  and gE  are the diagonal matrices of the generator inertial and 

damping coefficients 

0.125 0 0 0.125 0 0

0 0.034 0 , 0 0.068 0

0 0 0.016 0 0 0.048

g gM E

   
   

 
   
      

  (51) 
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The Laplacian matrix associated with the susceptibility-weighted graph is the 

symmetric susceptibility matrix 9 9L   given by  

0.058 0 0 0.058 0 0 0 0 0

0 0.063 0 0 0.063 0 0 0 0

0 0 0.059 0 0 0.059 0 0 0

0.058 0 0 0.235 0 0 0.085 0.092 0

0 0.063 0 0 0.296 0 0.161 0 0.072

0 0 0.059 0 0 0.330 0 0.170 0.

0 0 0 0.085 0.161 0 0.246 0

0 0 0 0.092 0 0.170 0 0.262

0 0 0 0 0.072 0.101 0 0

L







  

   

  

 

 

 

101

0

0

0.173

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (52) 

The system (50) is reduced to 

1( , ) ( )

( )

gP M d t

y d t

 

 

   





 


  
  


    (53) 

and can be presented in a numerical format 

11

22

33

11

22

33

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0.3145 0.1187 0.1158 1 0 0 1.0559

0.4363 0.8474 0.4111 0 2 0 14.5564

0.9046 0.8736 1.7782 0 0 3 19.













    
    
    
    

     
      

     
    

           

1 1 1

2 2 2

3 3 3

0 0 0

0 0 0

0 0 0
( )

8 0 0

0 29.4118 0

8079 0 0 62.5

d t

y d

y d

y d







   
   
   
   

   
   
   
   
      

     
     

      
          

(54) 

In order to apply the sensor attack reconstruction algorithms proposed in sub-sections 

4.1 the system (53) is presented in a form of (9) as 

1
1 2 2

( )

( ) ( ) ( )g

y d t

y y d t P M d t d t   



    

  


     

  (55) 

where ( , )    is presented in a linearized form as 

1 2 2( , ) ( )y d t                (56) 

5.4.  The observer design: all sensors may be under attack ( 3p m  ) 
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Note that in this case, no sensors have been protected, and all sensors might be 

attacked, therefore the number of sensors under attack could be zero, one, two, or 

three. It is not known ahead of time if any particular sensor is attacked. 

The observer for system (50) is designed in the format of (11)  

1 2

ˆ ˆ

ˆˆ ˆ

y

y y P  



   

 


   

     (57) 

where   is the injection term designed in a format of (14).  

Finally, in accordance with (15), the sensor cyber-attack is exactly reconstructed  

1
11

2
ˆ

g eqd M sI
s





 


 

    
 

    (58) 

Remark 8: The matrix 
1 3 31

2 3 3gM sI
s





  



 
    

 
 is invertible. 

Note that the problem of estimating eq  used in (58) is discussed in Remarks 2 

and 3. 

5.5.  The SMO design: the first sensor is protected ( 1k  ) 

Consider the case when the first sensor, is protected from the attack, in other words 

2 3( ) 0
T

Dd t d d          (59) 

and the output/sensed equations in (54) become 

1 1 1

2 2 2

3 3 3

0 0 0

0 1 0

0 0 1

y d

y d

y d







       
       

 
       
              

     (60) 

To apply the sensor attack reconstruction algorithms proposed in the sub-section 4.2 

the system (54) with one protected sensor/measurement is presented in a form of (55) 

as 

1

2 2

3 3

1
1

1 2 2 2

3 3

( ) ( )g

y

y d

y d

y

y y d P M d t d t

y d

  



   

 
 

 
 
  

 
 

     
 
  

   (61) 

And the state/cyber-attack observer is designed  
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1 2

ˆ ˆ

ˆˆ ˆ

y

y y P  



   



   

     (62) 

where   is the injection term.  

Finally, the attack signals 2 3,d d  are exactly estimated 

 
1

12 1
2 2 2

3

ˆ

ˆ g eq

d
M sI

sd





 






   
       

    

   (63) 

where, in accordance with (37) 

 

1 2

1 2

3

0.8474 0.4111 2 0
,

0.8736 1.7782 0 3

29.4118 0
,

0 62.5

eq

g eq
eq

M

  








    
     

    

  
     

    

   (64) 

Remark 9: The matrix  
1 2 21

2 2 2gM sI
s





 

 


 
     

 
is invertible. 

Apparently, the invertibility condition presented here is easier to verify than the one 

in the Remark 7 due to the reduced order of the matrix to be inverted.  

Note that the problem of estimating 2 3,eq eq   used in (63) and (64) is discussed 

in Remarks 1 and 2. 

5.6.  Cleaning up the measurements corrupted by the sensor cyber-attacks 

As soon as the sensor attacks are exactly reconstructed in (58) or (63), the 

measurement vector ( )y d t   is to be “cleaned up” from the attack signal as

ˆ( )cy y d t  . The “cleaned” system (53) becomes  

 

 

1 ˆ( , ) ( ) ( )

ˆ( ) ( )

c c

c c c g

c c

P M d t d t

y d t d t

 

 

   









   


   


   (65) 

where , ,c c cy   are the states of the system and the output of the system after 

“cleaning” the measurements respectively. Note that the system (65) converges to  

( , )

c c

c c c

c c

P

y

 

 

   



 


 
 


      (66) 
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as soon as ˆ( ) ( )d t d t . 

5.7. Simulation Results 

Simulation set-up: The simulation results have been obtained via MATLAB. 

Three simulation experiments have been performed using the Electrical Power 

Network model in (50).  

Experiment 1 No sensor attacks are assumed, i. e. ( ) 0d t  . 

Experiment 2 It is assumed that the attacker has access to the actual measurement 

vector  1 2 3, ,
TTy    , then the cyber-attack named stealth attack [14] that 

completely corrupts the measurement vector is generated as 

1 1

2 2

3 3

2sin( )

cos(0.5 )

sin( )

d t

d t

d t







  

  

  

      (67) 

Experiment 3 The sensor stealth attacks are reconstructed on-line and the 

measurements are “cleaned up.”  

The results of the simulations are presented in Figs. 4-14. In this case study, the 

attack observations are done by both the fixed-gain sliding mode observer and the 

adaptive sliding mode observer presented in Section 4.  

Experiments 1: The plot presented in Fig. 4 demonstrates the stabilization of 

the outputs (generator speed deviations from synchronous measured in rad s ) at zero 

as expected.  

Experiments 2: Figure 5 demonstrates the dynamics of the measured outputs 

while the sensors are under stealth attacks (67). The effects of the stealth attack are 

observed. 

Experiment3: Figure 6 shows the compensated outputs, when the attacks are 

reconstructed and cleaned from measurements. The cleaned output dynamics 

practically coincide with the outputs of the systems without attack after a short 

transient. In Figs. 7-9, the outputs of system in the three scenario which are without 

attack, corrupted by attack, and compensated after being attacked are compared. 
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Fig. 4. Outputs of the system (50) without attacks 

It is shown in Figs. 10-12 that sensor attacks 1 2 3, ,d d d  are accurately estimated by 

1 2 3
ˆ ˆ ˆ, ,d d d . The attack observation is done by both the sliding mode observer and the 

adaptive sliding mode observer presented in Section 4. Figs. 13, 14 show the sliding 

mode injection terms used in both observers. The output stabilization plots under both 

observers look the same. However, the main advantage of the adaptive sliding mode 

observer is in self-tuning. 
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Fig. 5. Outputs of the system (50) under attack 

 

Fig. 6. Compensated outputs of the system (50) as obtained in (65) after the corrupted 

measurements are cleaned 
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Fig. 7. Comparing 1y  without attack, corrupted 1y , and compensated 1y after being attacked 

 

Fig. 8. Comparing 2y  without attack, corrupted 2y , and compensated 2y  after being attacked 

 



25 
 

 

Fig. 9. Comparing 2y  without attack, corrupted 2y , and compensated 2y after being attacked 

 

 

Fig. 10. Comparing sensor attacks 1d  and it's reconstruction 1d̂  
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Fig. 11. Comparing sensor attacks 2d  and it's reconstruction 2d̂  

 

 

Fig. 12. Comparing sensor attacks 3d  and it's reconstruction 3d̂  
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Fig. 13. Sliding mode injection terms 1 2 3, ,    

 

Fig. 14. Adaptive sliding mode injection terms 1 2 3, ,    

6. Conclusion 

In this work, linear (linearized) cyber-physical systems under output feedback 

control, whose sensors are experiencing faults or are under cyber-attack, are 

investigated. Specifically, the sensor attacks are reconstructed on-line. Two different 

conditions are considered. Firstly, all of the sensors are prone to get attacked. 
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Secondly, some of sensors are protected from attacks. Finite time convergent sliding 

mode observers, including observers with gain adaptation, are proposed for on-line 

reconstruction of the sensor attacks. The dynamic filters that address the attack 

propagation dynamics are proposed and employed for the attack reconstruction for the 

first time. As soon as the attacks are reconstructed, the corrupted measurements are 

cleaned from attacks, and the feedback control that uses the cleaned 

measurements/outputs provides the cyber-physical system performance close to the 

one without attack. Simulation results of a real electrical power network with sensors 

under stealth attack show the effectiveness of the proposed approach. 

 

Appendix 

 

Proof of Theorem 1: The observation error dynamics are obtained as  

1 1

1

21 22 23

11 12 13

x x y

y x y

e G e G e G d

e G e G e G d Dd 

  

    
   (A.1) 

For the second equation of (A.1) consider a following Lyapunov function candidate 

21 1

2 2

T
y y yV e e e       (A.2) 

Denoting  

111 12 13x yG e G e G d Dd         (A.3) 

and, taking into account the assumption (A4), the derivative of the Lyapunov function 

candidate (A.2) is estimated   

 

 

     

  

111 12 13

3 3

1/ 2
3 2

T T
y y y x y

yT T T
y y y y

y

y y

V e e e G e G e G d Dd

e
e e L e L e

e

e L e V



     

   

      

 
        
 
 

     

  (A.4) 

Therefore, 0ye   in finite time at least locally. The estimation error dynamics (A.1) 

in the sliding mode 0ye   (that is achieved in finite time rt t  due to (A.4)) are 

obtained  

1 1

1

21 23

11 13

x x

x eq

e G e G d

G e G d Dd 

 

  
    (A.5) 
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Transforming (A.5) by taking Laplace transform and solving for d , we obtain 

the estimate d̂  given by (15) The theorem is proven. 

Proof of Proposition 1: Consider the ye  dynamics from second equation of (A.1) 

)A.6(   
111 12 13y x ye G e G e G d Dd      

with bounded perturbation term  

)A.7(   
111 12 13 3x yG e G e G d Dd L    

e need to prove that the adaptive injection Firstly, w .3Lat least locally with unknown 

in finite time. The proof of the finite time  0ye ) drives 27(-)22in ( term 

follows the one ) 27(-)22in ( by the adaptive injection term  0ye convergence 

in finite time yields  0ye 186]. Convergence -, pp. 18527ion 2 in [of the Proposit

is reconstructed as in (15) with the adaptive  ( )d t) and then (15). Therefore, A.5( 

.. The proposition is proveneqor  eqnjection term i 

Proof of Theorem 2: Taking into account (31), (34), and (36), the estimation error 

dynamics are derived as  

1 1 1 2

1 1 1 2

2 1 1 2

11 12 13 14

21 22 23 24 1

31 32 33 34 1 2

x x y y

y x y y

y x y y

e Q e Q e Q e Q d

e Q e Q e Q e Q d

e Q e Q e Q e Q d D d





   

    

     

   (A.8) 

Introduce a Lyapunov function candidate 

1 1 1

2

1

1 1

2 2

T
y y yV e e e        (A.9) 

that is applied to the second equation in (A.8) in order to prove the convergence 

1
0ye   in finite time. 

The derivative of the Lyapunov function (A.9) can be computed as 

 
1 1 1 1 1 21 21 22 23 24 1

T T
y y y x y yV e e e Q e Q e Q e Q d         (A.10) 

Denoting 

1 1 21 21 22 23 24x y yQ e Q e Q e Q d        (A.11) 

and assuming 1 11L   at least locally, where 11 0L   is known, we obtain 
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     

  

1

1 1 1 1

1

1 1

1 1 1 1 1 11 1 1 11

1/2
1 1 11 1 12

yT T T
y y y y

y

y y

e
V e e L e L e

e

e L e V

     

   

 
         
 
 

     

 (A.12) 

Therefore, 
1

0ye   in finite-time 
1

0rt   at least locally.  

Next, introduce a Lyapunov function candidate 

2 2 2

2

2

1 1

2 2

T
y y yV e e e      (A.13) 

that is applied to the third equation in (A.8) in order to prove the convergence 

2
0ye   in finite time. Denoting  

1 1 22 31 32 33 34 1x y yQ e Q e Q e Q d D d         (A.14) 

and assuming 2 12L   at least locally it is easy to show that 
2

0ye   in finite time 

2
0rt   at least locally by means of the unit vector injection term 2  in (35). The 

proof is similar to the one that proves 
1

0ye   in finite-time by means of the unit-

vector injection term 1  in (35). 

Then, the estimation error dynamics (A.8) in the sliding mode 
1 2

0y ye e   (that 

is achieved in finite time  
1 2

max , 0r r rt t t   at least locally) are reduced to   

1 1

1

1

11 14

21 24 1

31 34 1 2

0

0

x x

x eq

x eq

e Q e Q d

Q e Q d

Q e Q d D d





 

  

   

     (A.15) 

where 1eq  and 2eq  are the equivalent injection signals. 

Transforming (A.15) using Laplace, and excluding 
1xe , we obtain  

 

 

1

21 11 14 24 1

1

31 11 14 34 1 2

eq

eq

Q sI Q Q Q d

Q sI Q Q Q D s d









   
  

    
  

   (A.16) 

Finally, after algebraic transformations, the attack 
1

2

d
d

d

 
  
 

, 1 2,k p kd d    

that satisfies (A.16) is estimated by 
1

2

ˆ
ˆ

ˆ

d
d

d

 
  
  

 as in (37). Theorem 2 is proven. 
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