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Abstract

For a vehicle on an assigned path, we find the minimum-time speed law that satisfies kinematic

and dynamic constraints, related to maximum speed and maximum tangential and transversal

acceleration. We present a necessary and sufficient condition for the feasibility of the problem and

a simple operator, based on the solution of two ordinary differential equations, which computes

the optimal solution. Theoretically, we show that the problem feasible set, if not empty, is a lattice,

whose supremum element corresponds to the optimal solution.

Index terms— Optimal Control, Speed Planning, Minimum-Time Problems, Lattice Theory, Au-

tonomous Vehicles

1 Introduction

An important problem in motion planning is the computation of the minimum-time motion of a car-

like vehicle from a start configuration to a target one while avoiding collisions (obstacle avoidance)

and satisfying kinematic, dynamic and mechanical constraints (for instance, on velocities, accelera-

tions and maximal steering angle). This problem can be approached in two ways:

1. as a minimum-time trajectory planning where both the path to be followed by the vehicle and

the timing law on this path (i.e., the vehicle’s velocity) are simultaneously designed; or

2. as a (geometric) path planning followed by a minimum-time velocity planning on the planned

path (see for instance [8]).

In this paper, following the second paradigm, we assume that a path that joins the initial and

final configurations, compatible with the maximum curvature allowed for the car-like vehicle, is as-

signed and we aim at finding the time-optimal speed law that satisfies some kinematic and dynamic

constraints.

Previous works address the problem in time domain. For instance, [16] investigates necessary

optimality conditions that allows deriving a semi-analytical solution. Reference [7] assumes that

the vehicle moves along a specified clothoid and proposes a semi-analytical solution for the optimal

profile of the longitudinal acceleration. Some approaches propose special speed profiles that guarantee

the satisfaction of kinematic and dynamic constraints (see for instance [11, 15, 18, 3]). Other works
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(see, for instance, [2, 17, 14, 10, 12]) represent the speed law as a function v of the arc-length position

s and not as a function of time.

Here, we follow this second approach, that considerably simplifies the optimization problem. This

paper is a development of our previous works ([4, 5]), that consider the following problem

min
v∈W 1,∞([0,s f ])

s f
∫

0

v−1(s)ds (1a)

v−(s)≤ v(s)≤ v+(s), s ∈ [0,s f ], (1b)

α−(s)≤ 2v′(s)v(s) ≤ α+(s), s ∈ [0,s f ], (1c)

|k(s)|v(s)2 ≤ β (s), s ∈ [0,s f ], (1d)

Here, v−, v+, α−, α+ are assigned functions, with v−, v+ non-negative. The objective func-

tion (1a) is the total maneuver time and constraints (1b), (1c), (1d) limit velocity and the tangential

and normal components of acceleration.

Problem (1) belongs to a class of problems that includes optimal velocity planning for manipula-

tors and has the form

min
v∈W 1,∞([0,s f ])

s f
∫

0

v−1(s)ds

ai(s)v̇(s)v(s)+bi(s)v(s)
2 + ci(s)≤ 0, i = 1, . . . ,m ,

(2)

where m is the number of constraints and ai,bi,ci are assigned functions. It is clear that Problem (1)

is a special case of Problem (2), obtained for a specific choice of ai, bi, ci.

Our previous works [4, 5] present an algorithm, with linear-time computational complexity with

respect to the number of variables, that provides an optimal solution of (1) after spatial discretization.

Namely, the path is divided into n intervals of equal length and Problem (1) is approximated with a

finite dimensional one in which the derivative of v is substituted with a finite difference approximation.

In this paper, we compute directly the exact continuous-time solution of Problem (1) without

performing a finite-dimensional reduction. The main result of the paper is presented in Theorem 3.1.

It gives a sufficient and necessary condition for the feasibility of Problem (1) and presents its optimal

solution, which is computed as the pointwise minimum of the solutions of two ODEs.

The method we propose presents some resemblances with the method of “numerical integration”,

introduced for problems of class (2). For instance, [14] proposes a method, based on the identification

of “characteristic switching points” in which the maximum velocity is attained. This simplifies the

calculation of the optimal velocity profile. A related algorithm is presented in [9]. Recent paper [13]

presents various properties of numerical integration methods. Anyway, the method we propose is

simpler and more efficient since it leverages the special structure of Problem (1) with respect to the

more general problem (2).

Statement of contribution: With respect to existing literature, the new contributions of this work

are the following ones:

• It presents a necessary and sufficient condition for the feasibility of Problem (1) (see part i. of

Theorem 3.1).

• It proposes a simple operator, based on the solution of two ordinary differential equations, that

computes the optimal solution (see part ii. of Theorem 3.1).
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Note that these results correspond to the generalization to the continuous-time case of the results

presented in [5] for the spatially-discretized version of Problem (1). In fact, this paper shares some of

its fundamental ideas with [5]. Namely:

• The feasible set of Problem (1) has the algebraic structure of a lattice, if equipped with the

operations of pointwise minimum and maximum.

• The optimal solution of Problem (1) corresponds to the supremal element of this lattice.

• The optimal solution of Problem (1) is obtained with a projection operation and its optimality

is proven by the Knaster-Tarski Fixpoint Theorem.

Anyway, solving the problem in a function space requires various nontrivial technical extensions

to the proofs presented in [5].

Notation: Given an interval I = [a,b] and a measurable function f : I → R, let us recall that

‖ f‖∞ = inf{C ≥ 0 : | f (x)| ≤C for almost every x ∈ I} ,

L∞(I) = { f : I → R : ‖ f‖∞ < ∞} ,

and

W 1,∞(I) = { f ∈ L∞(I) : D f ∈ L∞(I)} ,

where D f denotes the weak derivative of f . Let f ,g : I → R, define f ∧g, f ∨g, as, respectively, the

pointwise minimum and maximum operations; moreover let us define the partial order ≤ as follows

f ≤ g ⇐⇒ ∀x ∈ I f (x) ≤ g(x).

We will write “almost everywhere” as “a. e.” and we will use symbol  at the end of a proof to state

that a contradiction has been reached.

Paper organization: Section 2 presents the addressed optimal control problem. Section 3 presents

the main result (Theorem 3.1) and Section 4 presents some examples. Finally, Section 5 presents the

proof of the main result.

2 Problem formulation

Let γ : [0,s f ]→ R2 be a C2 function such that ‖γ ′(λ )‖ = 1,∀λ ∈ [0,s f ]. The image set γ ([0,s f ]) rep-

resents the path followed by a vehicle, γ(0) the initial configuration and γ(s f ) the final one. We want

to compute the speed-law that minimizes the overall transfer time while satisfying some kinematic

and dynamic requirements. To this end, let λ : [0, t f ]→ [0,s f ] be a differentiable monotone increas-

ing function that represents the vehicle position as a function of time and let v : [0,s f ] → [0,+∞] be

such that, ∀t ∈ [0, t f ] , λ̇ (t) = v(λ (t)). In this way, v(s) is the vehicle velocity at position s. The posi-

tion of the vehicle as a function of time is given by x : [0, t f ] → R2, x(t) = γ(λ (t)), the velocity and

acceleration are given by

ẋ(t) = γ ′(λ (t))v(λ (t)),

ẍ(t) = aL(t)γ
′(λ (t))+aN(t)γ

′⊥(λ (t)),

where aL(t) = v′(λ (t))v(λ (t)) and aN(t)(t) = k(λ (t))v(λ (t))2 are, respectively, the longitudinal and

normal components of acceleration. Here k : [0,s f ] → R is the scalar curvature, defined as k(s) =
〈

γ ′′(s),γ ′(s)⊥
〉

.
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Start configuration

Final configuration

Figure 1: A path to follow for an autonomous car-like vehicle.

We require to travel the distance s f in minimum-time while satisfying constraints on the vehi-

cle velocity and on its longitudinal and normal acceleration. The minimum-time problem can be

approached by searching a velocity profile v which is the solution of Problem (1).

It is convenient to make the change of variables w = v2 (see also [17]), so that Problem (1) takes

on the form

min
w∈W 1,∞([0,s f ])

s f
∫

0

w(s)−
1
2 ds (3a)

µ−(s)< w(s)≤ µ+(s), s ∈ [0,s f ], (3b)

α−(s)≤ w′(s)≤ α+(s), s ∈ [0,s f ], (3c)

where

µ+(s) = v+(s)2 ∧
β (s)

k(s)
, µ−(s) = v−(s)2 (4)

represent the upper bound of w, (depending on the velocity bound v+ and the curvature k) and the

lower bound of w, respectively.

In this paper, we actually address the following problem, which is slightly more general than (3),

min
w∈W 1,∞([0,s f ])

Ψ(w) (5a)

µ−(s)< w(s)≤ µ+(s), s ∈ [0,s f ], (5b)

α−(s)≤ w′(s)≤ α+(s), s ∈ [0,s f ], (5c)

where Ψ : W 1,∞ ([0,s f ])→R is order reversing (i.e., x≥ y⇒Ψ(x)≤Ψ(y)) and µ−, µ+, α−, α+ ∈
L∞ ([0,s f ]) are assigned functions with µ−,α+ ≥ 0, α− ≤ 0. Note that the objective function (3a) is

order reversing, so that Problem (3) has the form (5). Consider the following:

Definition 2.1. Let Q be the subset of W 1,∞([0,s f , ]) such that µ ∈Q if sign(µ ′−α+) and sign(µ ′−α−)
are Riemann integrable (i.e., in view of the boundedness of the sign function, a. e. continuous), where

sign : R→{−1,0,1} is defined as

sign(x) =











1, if x > 0

0, if x = 0

−1, if x < 0.
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3 Main Results

Define the forward operator F : Q → W 1,∞ ([0,s f ]) such that F(µ) = φ , where φ is the solution of

the following differential equation











φ ′(x) = f (x,φ) =

{

α+(x)∧µ ′(x), if φ(x) ≥ µ(x)

α+(x), if φ(x) < µ(x)

φ(0) = µ(0) .

(6)

Note that the solution of (6) exists and is unique by Theorem 1 in Chapter 2, Section 10 of [1],

since function f is bounded on [0,s f ], the subset of [0,s f ]×R in which f is discontinuous has zero

measure and, ∀x ∈ [0,s f ], ∀u,y ∈ R,

(u− y)( f (x,u)− f (x,y)) ≤ 0.

Conversely, define the backward operator B : Q →W 1,∞ ([0,s f ]), such that B(µ) = φ , where φ is

the solution of











φ ′(x) =

{

α−(x)∨µ ′(x), if φ(x)≥ µ(x)

α−(x), if φ(x)< µ(x)

φ(s f ) = µ(s f ) ,

(7)

whose existence and uniqueness hold for the same reasons as (6).

Finally, define the meet operator M : Q →W 1,∞ ([0,s f ]) as

M(µ) = F(µ)∧B(µ). (8)

We claim that the meet operator M allows checking the feasibility of Problem (5) and that, in case

Problem (5) is feasible, function v∗ = M(µ+) represents its optimal solution.

Namely, the following is the main result of this paper.

Theorem 3.1. Let µ+ ∈ Q, then the following statements hold:

i. Problem (5) is feasible if and only if function w∗ = M(µ+) satisfies

w∗ ≥ µ− .

ii. If Problem (5) is feasible, then function w∗ = M(µ+) is its optimal solution.

Proofs of the results. Part i. follows from Proposition 5.11, part ii. follows from Proposition 5.12

(see Section 5).

4 Examples

As a first example consider the path shown in Figure 2, whose curvature is defined as

k(s) =































0, if s ∈ [0, l1)

kτ (s), if s ∈ [l1, l2]

1/R, if s ∈ (l2, l3)

kτ (s), if s ∈ [l3, l4]

0, if s ∈ (l4,s f ]

(9)
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Figure 2: On the left, the curvature function k in (9) of the curve discussed in the first example. On

the right, the black line represents the path, the red circle and the black cross represent the starting

point and, respectively, the end point.

where kτ(s) is the 6-th degree Hermite polynomial used to guarantee the following interpolation con-

ditions:

k(l1) = k(l4) = 0,

k(l2) = k(l3) = 1/R,

k′(li) = k′′(li) = 0, i = 1, . . . ,4.

In this example, the total length is s f = 200 and the minimum-time velocity planning problem is

addressed with [l1, l2, l3, l4] = [30, 40, 124.2478, 134.2478], R = 60. The velocity bounds v+ and v−

are set as follows: v+(0) = v−(0) = 0, v+(s f ) = v−(s f ) = 22, while, for each s ∈ (0,s f ), v−(s) = 0

and v+(s) = 36.1. The longitudinal acceleration limits are α− =−10.5 and α+ = 4, and the maximal

normal acceleration is β = 7.

The following results are obtained by numerically solving equations (6), (7) with a standart Runge-

Kutta 45 integration scheme. Figure 3 shows the upper-bound function µ+ obtained by (4) and the

corresponding functions F(u) and B(u) computed as the solution of equations (6) and (7), respectively.

Figure 4 shows the optimal solution w∗ obtained with (8). In this example, the vehicle starts with zero

velocity and accelerates to the upper bound. Then, it follows the velocity bound in order to respect

the maximum velocity constraint due to the lateral acceleration on the curve. After that, at the end of

the constant bound, the vehicle accelerates and reaches a second local maximum velocity after which

it decelerates quickly in order to reach the final velocity v+(s f ).
As a second example, consider the same path and constraints as in the first example, with different

initial and final conditions: v−(0) = v+(0) = 0 , v−(s f ) = v+(s f ) = 35. Figure 5 shows function w∗

obtained by (8). In this case, Problem (5) is unfeasible by Theorem 3.1, being w∗(s f ) < v−(s f )
2. In

fact, the allowed maximum longitudinal acceleration is not sufficient to reach the final condition on

velocity.

As a third example, consider a curve obtained by a quintic polynomial curve which interpolates

coordinates x = [0, 2, 2.60, 1.75, 3], y = [0, −0.5, 0, 2, 3] (see Figure 6). The velocity planning is

addressed with v+(0) = v−(0) = 0, v+(s f ) = v−(s f ) = 0 and with v−(s) = 0 and v+(s) = 1.3 for each

s ∈ (0,s f ). The longitudinal acceleration limits are α− = −0.1, α+ = 0.1, and the maximal normal

acceleration β = 0.05. The resulting optimal velocity profile is plotted in Figure 7.
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Figure 3: Example 1: The red line represents function µ+ defined in (4), the blue line represents F(u)
while the green line represents B(u).
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Figure 4: Example 1: The red line represents µ+ defined in (4), the black line represents the optimal

solution w∗ = M(u).

5 Proofs

Given the interval I = [0,s f ], let P = {u ∈ L∞(I) : 0 ≤ u(s) ≤ ‖µ+‖∞ for almost every s ∈ I}. Note

that 〈P;∨,∧〉 is a complete lattice. Hence, for each subset S ⊆ P, there exists a unique least upper

bound u ∈ P, such that, ∀v ∈ P

(∀w ∈ S w ≤ v) ⇐⇒ u ≤ v.

The least upper bound of S is denoted by
∨

S. Dually, it is possible to define the greatest lower bound

of S ⊆ P, denoted by
∧

S (see Definitions 2.1, 2.4 and Notation 2.3 on pages 33-34 of [6]).

0 50 100 150 200
0

500

1000

1500

s

w

Figure 5: Example 2. The green line represents the velocity function B(u)(s) while the black one

depicts function w∗ = M(u). The final velocity condition is not satisfied: w∗(s f ) 6= v2
f .
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Figure 6: A path obtained by quintic-splines interpolation. The black line represents the path while

the circle and the cross represent the start and the end point, respectively.
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Figure 7: The red line represents function µ+ defined in (4), the black line is the optimal velocity

profile w∗ = M(u).

Given function χ : R→ {0,1} defined as follows

χ(s) =

{

1, if s ≥ 0

0, otherwise,

let us define ∀x,y ∈ I, function A : I × I → R as

A(x,y) =

y
∫

x

{

α+(ξ )χ(y− x)+α−(ξ )χ(x− y)
}

dξ . (10)

Define, also, operators F̄, B̄,M̄ : P → P, such that, for µ ∈ P, F̄(µ) and B̄(µ) are given as follows







F̄(µ)(x) =
∧

y≤x

{µ(y)+A(y,x)}

F̄(µ)(0) = µ(0),







B̄(µ)(x) =
∧

y≥x

{µ(y)+A(y,x)}

B̄(µ)(s f ) = µ(s f ).

and M̄(µ) = F̄(µ)∧ B̄(µ). Observe that ∀x ∈ I,

M̄(µ)(x) =
∧

y≤x

{µ(y)+A(y,x)}∧
∧

y≥x

{µ(y)+A(y,x)} =
∧

y∈I

{µ(y)+A(y,x)}. (11)

8



As we will show in Proposition 5.9, the operators we just introduced are extensions of those defined,

respectively, in (6), (7) and (8).

We will refer to the following definitions.

Definition 5.1. An operator φ : P → P is meet preserving if, ∀u,v ∈ P,

φ(u∧ v) = φ(u)∧φ(v).

Definition 5.2. An operator φ : P → P is order preserving if, ∀u,v ∈ P,

u ≤ v ⇒ φ(u) ≤ φ(v).

Even though we will only use the fact that operators F̄, B̄ and M̄ are order preserving, for completeness

we state the following Proposition.

Proposition 5.3. Operators F̄, B̄ and M̄ are meet preserving and order preserving.

Proof. Let u,v ∈ P, w = u∧v. We want to show that F̄(w) = F̄(u)∧ F̄(v). By definition of F̄ we have

that F̄(w)(0) = F̄(u)(0)∧ F̄(v)(0) and ∀x ∈ I,

F̄(w)(x) =
∧

y≤x

{w(y)+A(y,x)} =
∧

y≤x

{(u∧ v)(y)+A(y,x)} =
∧

y≤x

{u(y)∧ v(y)+A(y,x)} =

=
∧

y≤x

{u(y)+A(y,x)}∧
∧

y≤x

{v(y)+A(y,x)} = F̄(u)(x)∧ F̄(v)(x).

The proof that B̄(u ∧ v) = B̄(u) ∧ B̄(v) is analogous. Finally, M̄(u ∧ v) = F̄(u ∧ v) ∧ B̄(u ∧ v) =
F̄(u)∧ F̄(v)∧ B̄(u)∧ B̄(v) = F̄(u)∧ B̄(u)∧ F̄(v)∧ B̄(v) = M̄(u)∧ M̄(v). Since maps F̄, B̄,M̄ are meet

preserving, they are also order preserving (see Proposition 2.19 on page 44 of [6]).

Proposition 5.4. Function A : I × I → R defined as in (10) is a hemi-metric, that is, it satisfies the

following properties:

i. ∀x,y ∈ I, A(x,y)≥ 0,

ii. ∀x ∈ I, A(x,x) = 0,

iii. ∀x,y,z ∈ I, A(x,z)≤ A(x,y)+A(y,z) (i.e., the triangular inequality holds).

Moreover, equality holds if x ≥ y ≥ z or x ≤ y ≤ z.

Proof. i. It holds, since α+ is non-negative and α− is non-positive over I.

ii. It holds trivially by definition of A.

iii. For y ≥ z ≥ x:

A(x,z) =

z
∫

x

{

α+(ξ )χ(z− x)+α−(ξ )χ(x− z)
}

dξ =

z
∫

x

α+(ξ )dξ ≤

≤

y
∫

x

α+(ξ )dξ ≤

y
∫

x

α+(ξ )dξ −

y
∫

z

α−(η)dη =

y
∫

x

α+(ξ )dξ +

z
∫

y

α−(η)dη =

=

y
∫

x

{

α+(ξ )χ(y− x)+α−(ξ )χ(x− y)
}

dξ +

z
∫

y

{

α+(η)χ(z− y)+α−(η)χ(y− z)
}

dη =

=A(x,y)+A(y,z).
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The same reasoning applies also to the case when z ≥ x ≥ y, x ≥ z ≥ y or y ≥ x ≥ z. Next, let us

show that equality holds for any x ≤ y ≤ z:

A(x,z) =

z
∫

x

{

α+(ξ )χ(z− x)+α−(ξ )χ(x− z)
}

dξ =

z
∫

x

α+(ξ )dξ =

y
∫

x

α+(ξ )dξ +

z
∫

y

α+(η)dη =

=

y
∫

x

{

α+(ξ )χ(y− x)+α−(ξ )χ(x− y)
}

dξ +

z
∫

y

{

α+(η)χ(z− y)+α−(η)χ(y− z)
}

dη =

=A(x,y)+A(y,z).

The proof that the equality holds also for any x ≥ y ≥ z is analogous.

Proposition 5.5. Function M̄ satisfies the following properties, ∀µ ∈ P,

i. M̄(µ)≤ µ ,

ii. M̄2(µ) = M̄(µ), where M̄2(µ) stands for M̄(M̄(µ)).

Proof. i. It is a consequence of the definition of M̄.

ii. Let us now show that F̄(M̄(µ)) = M̄(µ): the fact that F̄(M̄(µ)) ≤ M̄(µ) follows by the defini-

tion of F̄ whilst, to prove the opposite inequality, note that, by Proposition 5.4 and (11),

F̄(M̄(µ))(x) =
∧

y≤x

{M̄(µ)(y)+A(y,x)} =
∧

y≤x

{

∧

z∈I

{µ(z)+A(z,y)}+A(y,x)

}

≥

≥
∧

z∈I

{µ(z)+A(z,x)} = M̄(µ)(x).

In the same way it can be proved that B̄(M̄(µ)) = M̄(µ), from which it follows that M̄(M̄(µ)) =
M̄(µ).

Proposition 5.6.

M̄(µ+) =
∨
{

u ∈ P : u ≤ M̄(u),u ≤ µ+
}

Proof. Set U = {u ∈ P : u ≤ µ+}. Note that 〈U ;∨,∧〉 is a sublattice of 〈P;∨,∧〉, moreover, by i. of

Proposition 5.5, if u ∈ U , then M̄(u) ∈ U . Since M̄ is order preserving by Proposition 5.3, by the

Knaster-Tarski Fixpoint Theorem (Theorem 2.35 on page 50 in [6])

u∗ =
∨
{

u ∈ P : u ≤ M̄(u),u ≤ µ+
}

is such that u∗ is the greatest fixed point of M̄ such that u∗ ∈ U . Let u = M̄(µ+), by part ii. of

Proposition 5.5, we know that u is also a fixed point of M̄, thus, by definition of u∗, u∗ ≥ u. To prove

that u∗ = u, that is, to prove that u is also the greatest fixed point, it remains to show that u∗ ≤ u. To

this end, assume, by contradiction, that u∗ � u. Since u∗ = M̄(u∗), u = M̄(µ+) and the fact that M̄ is

order preserving, it follows that u∗ � µ+, which contradicts the definition of u∗  .

Remark 5.7. Given u,v ∈ P, if u � v, this does not imply that u ≥ v and u 6= v, as u and v may not be

comparable with respect to partial order ≤.
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Proposition 5.8. The following two statements are equivalent:

i. Set {u ∈ P : u = M̄(u), µ− ≤ u ≤ µ+} is not empty.

ii. M̄(µ+)≥ µ−.

Proof.

ii. ⇒ i.) It follows from the fact that u∗ = M̄(µ+) is such that M̄(u∗) = u∗ by part ii. of Proposition 5.5.

i. ⇒ ii.) By contradiction, assume that M̄(µ+) � µ−. Choose any w ∈ P such that w = M̄(w) and

w≤ µ+. By Proposition 5.6, M̄(w)≤ M̄(µ+), hence w≤ M̄(µ+), but M̄(µ+)� µ−, so w� µ−.

Thus, being w any fixed point of M̄ such that w ≤ µ+, set {u ∈ P : u = M̄(u), µ− ≤ u ≤ µ+} is

empty  .

Proposition 5.9. If µ ∈ Q, then F̄(µ), B̄(µ) ∈W 1,∞(I) satisfy a. e.











F̄(µ)′(x) =

{

α+(x)∧µ ′(x), if F̄(µ)(x) ≥ µ(x)

α+(x), if F̄(µ)(x) < µ(x)

F̄(µ)(0) = µ(0),

(12)

and










B̄(µ)′(x) =

{

α−(x)∨µ ′(x), if B̄(µ)(x) ≥ µ(x)

α−(x), if B̄(µ)(x) < µ(x)

B̄(µ)(s f ) = µ(s f ).

(13)

Proof. Let J = {x ∈ I : sign(µ ′−α+) is continuous at x}. Note that, since µ ∈ Q, J contains almost

all elements of I. Let x ∈ J, then

lim
h→0+

F̄(µ)(x+h)− F̄(µ)(x)

h
= lim

h→0+
h−1

[

∧

y≤x+h

{µ(y)+A(y,x+h)}− F̄(µ)(x)

]

=

= lim
h→0+

h−1

[(

∧

y≤x

{µ(y)+A(y,x+h)}− F̄(µ)(x)

)

∧

(

∧

x<y≤x+h

{µ(y)+A(y,x+h)}− F̄(µ)(x)

)]

(14)

Since A(y,x+h) = A(y,x)+A(x,x+h) by Proposition 5.4, the first parenthesis of (14) reduces to

∧

y≤x

{µ(y)+A(y,x+h)}− F̄(µ)(x) = F̄(µ)(x)+A(x,x+h)− F̄(µ)(x) = A(x,x+h).

Being sign(µ ′ − α+) continuous at x, it is possible to choose h > 0 sufficiently small such that

sign(µ ′−α+) is constant on interval [x,x+h]. Set J+ = {x ∈ J : µ ′(x)−α+(x)> 0} and J− = J \J+.

Then, the second parenthesis of (14) can be rewritten as

∧

x<y≤x+h

{µ(y)+A(y,x+h)}− F̄(µ)(x) =

{

µ(x+h)− F̄(µ)(x), if x ∈ J−

µ(x)+A(x,x+h)− F̄(µ)(x), if x ∈ J+,

since in the former case the minimum of µ(y)+A(y,x+h) over [x,x+h] is attained at x+h, whilst in

the latter is attained at x.
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Hence, we have that

lim
h→0+

F̄(µ)(x+h)− F̄(µ)(x)

h
=







lim
h→0+

h−1 [A(x,x+h)∧ (µ(x+h)− F̄(µ)(x))] , if x ∈ J−

lim
h→0+

h−1 [A(x,x+h)∧ (µ(x)+A(x,x+h)− F̄(µ)(x))] , if x ∈ J+

=







α+(x)∧ lim
h→0+

h−1 (µ(x+h)− F̄(µ)(x)) , if x ∈ J−

α+(x)∧ lim
h→0+

h−1 (µ(x)+A(x,x+h)− F̄(µ)(x)) , if x ∈ J+

=























α+(x)∧µ ′(x), if x ∈ J− and F̄(µ)(x) ≥ µ(x)

α+(x)∧+∞ = α+(x), if x ∈ J− and F̄(µ)(x) < µ(x)

α+(x) = α+(x)∧µ ′(x), if x ∈ J+ and F̄(µ)(x) ≥ µ(x)

α+(x)∧+∞ = α+(x), if x ∈ J+ and F̄(µ)(x) < µ(x)

=

{

α+(x)∧µ ′(x), if F̄(µ)(x) ≥ µ(x)

α+(x), if F̄(µ)(x) < µ(x).

Note that, by definition of F̄ , F̄(µ)(x) ≤ µ(x) must hold. In conclusion, we proved that F̄(u) ∈
W 1,∞(I) and satisfies (12).

Applying the same reasoning it can be proved that B̄(u) ∈W 1,∞(I) and satisfies (13).

Proposition 5.10. Assume that µ+ ∈ Q and let w ∈ P, then w is feasible for Problem (5) (i.e., it

satisfies constraints (5b) and (5c)), if and only if µ− ≤ w ≤ µ+ and M̄(w) = w.

Proof. ⇒) Assume that w is feasible for Problem (5), then w satisfies a. e. w′ ≤ α+. Thus, φ = w

is the solution of (6) for µ = w, which implies that F̄(w) = w. Analogously B̄(w) = w, so that

M̄(w) = w. Moreover, since w satisfies the bounds of Problem (5), it follows that µ− ≤ w ≤ µ+.

⇐) Condition (5b) holds by hypothesis. Since M̄(w) = w, then it must be F̄(w) = w. In fact, if

by contradiction F̄(w) < w, M̄(w) ≤ F̄(w) < w, which contradicts the assumption  . Then

F̄(w) = w, implies that, a. e., F̄(w)′ = w′ which by definition of F̄(w)′ in (6), implies that,

a. e., w′ ≤ α+. Analogously, it must be B̄(w) = w which implies that, a. e. w′ ≥ α− and

condition (5c) holds.

Proposition 5.11. Assume that µ+ ∈ Q. Then, Problem (5) is feasible if and only if M̄(µ+)≥ µ−.

Proof. ⇒) Let w be a feasible solution of Problem (5). Then, by Proposition 5.10, M̄(w) =w ≤ µ+.

Hence, being M̄ order preserving, M̄(µ+)≥ M̄(w)≥ µ−.

⇐) w = M̄(µ+) satisfies M̄(w) = w (by part ii. of Proposition 5.5) and µ+ ≤ w ≤ µ− (by hypothe-

sis). Hence, by Proposition 5.10, w is a feasible solution of Problem (5).

Proposition 5.12. If µ+ ∈ Q and Problem (5) is feasible, then w∗ = M̄(µ+) is its optimal solution.

Proof. By contradiction, assume that there exists a feasible w̃ such that Ψ(w̃) < Ψ(w∗). Since w̃ is

feasible, Proposition 5.10 implies that M̄(w̃) = w̃. Moreover, since Ψ is order reversing, w̃ � w∗. This

is not possible since w∗ =
∨

{w ∈ P : w ≤ M̄(w),w ≤ µ+} ≥ w̃, by Proposition 5.6  .
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