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Finite sample performance of linear least squares
estimation

Michael Krikheli1,2 and Amir Leshem1,2

Abstract—Linear Least Squares is a very well known technique
for parameter estimation, which is used even when sub-optimal,
because of its very low computational requirements and the
fact that exact knowledge of the noise statistics is not required.
Surprisingly, bounding the probability of large errors with finitely
many samples has been left open, especially when dealing with
correlated noise with unknown covariance. In this paper we
analyze the finite sample performance of the linear least squares
estimator. Using these bounds we obtain accurate bounds on the
tail of the estimator’s distribution. We show the fast exponential
convergence of the number of samples required to ensure a
given accuracy with high probability. We analyze a sub-Gaussian
setting with a fixed or random design matrix of the linear
least squares problem. We also extend the results to the case
of a martingale difference noise sequence. Our analysis method
is simple and uses simple L∞ type bounds on the estimation
error. We also provide probabilistic finite sample bounds on the
estimation error L2 norm. The tightness of the bounds is tested
through simulation. We demonstrate that our results are tighter
than previously proposed bounds for L∞ norm of the error.
The proposed bounds make it possible to predict the number of
samples required for least squares estimation even when the least
squares is sub-optimal and is used for computational simplicity.

Index Terms—Estimation; linear least squares; non Gaussian;
concentration bounds; finite sample; large deviations; confidence
bounds; martingale difference sequence

I. INTRODUCTION

A. Related Work

Linear least squares estimation has numerous applications
in many fields. For instance, it was used in soft-decision
image interpolation applications in [3]. The interpolation
for each image block was based on linear least squares
estimation. An extension to the method was proposed in
[4] where weighted linear least squares was used instead of
regular least squares. The weights were distributed according
to the geometric properties of the pixels of interest and
the residuals. Another field that uses linear least squares is
source localization using signal strength, as in [5]. In that
paper, weighted linear least squares was used to find the
distance of the received signals given the strength of the
signals received in the sensors and the sensors’ locations. An
improved algorithm was proposed using constraints on the two
estimated variables. Weighted least squares estimators were
also used in the field of diffusion MRI parameters estimation
[6]. It was shown that the weighted linear least squares
approach has significant advantages because of its simplicity
and good results. A standard analysis of estimation problems

1The authors are with the Faculty of Engineering, Bar-Ilan University,
52900, Ramat-Gan. Corresponding author email: michael.krih@gmail.com.

2 This work was supported by ISF grant 1644/18. Part of this work has
been presented in [1] and [2].

calculates the Cramer-Rao bound (CRB) and implements the
asymptotic normality of the estimator. This type of analysis is
asymptotic by nature. For some applications, see for instance
[7] the direction of arrival problems were analyzed in terms
of the CRB. In [8] the ML estimator and MUSIC algorithms
were studied and the CRB was calculated.
The noise model differs in many applications of least squares
and other optimization methods. Rather than the Gaussian
model, a Gaussian mixture is used in many applications.
For instance, in [9] a Gaussian mixture model of time-
varying autoregressive process was assumed and analyzed.
The Gaussian mixture model was used to model noise in
underwater communication systems in [10]. Wiener filters in
Guassian mixture signal estimation were analyzed in [11].
In [12] a likelihood based algorithm for Gaussian mixture
noise was devised and analyzed in the terms of the CRLB. In
[13] a robust detection technique using Maximum-Likelihood
estimation was proposed for an impulsive noise modelled as
a Gaussian mixture.
In this work we consider sub-Gaussian noise, which is quite
a general and an interesting noise framework. The Gaussian
mixture model for instance is sub-Gaussian and our results
are valid for this model. In the case of Gaussian noise, least
squares coincides with the maximum likelihood estimator.
Still in many cases of interest least squares estimation is
used in non-Gaussian noise as well as for computational
simplicity. Specifically the sub-Gaussian noise model is of
special interest in many applications, for example [14]–[17].
The least squares problem has been extensively explored for
many years both for linear and non-linear regression. The
strong consistency of the linear least squares was proved in
[18]. Asymptotic bounds for fixed size confidence bounds
were stated for example in [19]. Non-linear least squares
problems have been thoroughly studied as well. The result
in [20] shows the exponential rate of convergence for the
Gaussian and sub-Gaussian case of non-linear least squares
problems when the parameter space is R. The authors derived
the exponential rate of convergence without calculating the
specific number of samples needed. In [21] the authors
showed the rate of convergence for non-linear least squares
estimates with dependent errors. Asymptotic performance for
the non-linear least squares was analyzed in [22]. There,
the necessary and sufficient conditions for strong and weak
consistency were given and the asymptotic normality was
shown. Large deviation results for non-linear least squares
estimations were given in [23] and [24]. Ridge regularized
least squares models were studied in [25] by means of the
optimal convergence rate.
One approach to performance analysis of the least squares
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estimator is the use of asymptotic normality. However, this
is insufficient for large deviations since by the Berry-Esseen
theorem [26]–[28] the normal approximation error is
O
(

1√
N

)
. Other approaches were suggested in a Bayesian

setting in [29].

In the past few years, the finite sample behavior of least
squares problems has been studied in [30]–[34]. Some of
these results also analyze ridge regularized least squares
models. The sample complexity of linear regressors was
analyzed in [35]. In recent years there have been significant
advances in understanding the statistical performance of
regularized LS and other sparsity regularized techniques
[36]–[38]. Non asymptotic performance of generalized linear
model is given in [39].
In many cases of interest the noise model used is not i.i.d
but instead a martingale difference sequence model. This
noise model is quite general and is used in various fields. For
example the first order ARCH models introduced in [40] are
popular in economic theory. Moreover, [41] analyzed similar
least squares models with applications in control theory.
An important case of a martingale difference noise which
is highly relevant in signal processing and communication
applications is a bounded or Gaussian signal passing through
an FIR channel. Non i.i.d noise models appear naturally in
many signal processing applications, for example [53]–[55].
The asymptotic properties of these models have been analyzed
in various papers; for example [42]–[44]. The results show
the strong consistency of the least squares estimator under
martingale difference noise and for autoregressive models.
The least squares efficiency in an autoregressive noise model
was studied in [45]. However, finite sample results were not
presented.

B. Contribution

In this paper we provide a finite sample analysis of linear
least squares problems. The results significantly extend the
results of [30]–[33] in several ways. First we provide L∞
non-parametric bounds on the distribution of the error in linear
least squares (i.e. we only assume bounds on the moment
generating function of the noise rather than knowing the noise
distribution). We then provide new bounds on the number of
samples required for a given performance level and a given
outage probability. Then we extend the results for the very
general model of sub-Gaussian martingale difference sequence
(MDS) noise. For the bounded MDS noise case we provide
tighter results. This allows us to compute the performance of
linear least squares under very general conditions. Since the
linear least squares solution is computationally simple it is
used in practice even when it is sub-optimal. The analysis of
this paper allows the designer to understand the loss due to
the computational complexity reduction without the need for
massive simulations. The fact that we only need knowledge of
a sub-Gaussianity parameter of the noise allows us to use these
bounds when the noise distribution is unknown. Our previous
conference paper [1] was limited to the L∞ case and i.i.d

noise. As explained above, the current results are much more
general.

II. PROBLEM FORMULATION

Consider a linear model with additive noise

x = Aθ0 + v (1)

where x ∈ RN×1 is our output, A ∈ RN×p is a known
matrix with bounded random elements, θ0 ∈ Rp is the
estimated parameter and v ∈ RN×1 is a noise vector with
independent and sub-Gaussian elements1. N indicates the
number of samples used in the model.
Many real world noise models are sub-Gaussian; for instance,
Gaussian, finite Gaussian mixture, all kinds of bounded vari-
ables, and any combination of the above. Many real-world
models assume this kind of noise model.
The linear least squares cost function is defined as:

JN0 (θ,x) = (x−Aθ)
T

(x−Aθ) . (2)

Given N samples the least squares solution is given by

θ̂N0 =
(
ATA

)−1
ATx =

(
1

N

N∑
n=1

ana
T
n

)−1
1

N

N∑
n=1

aTnxn

(3)
where aTn , n = 1 . . . N are the rows of A and xn, n =
1 . . . N are the data samples. θ̂N0 is the value that minimizes
the cost function JN0 . If the expected value of the noise is 0
then the estimator is unbiased, i.e. the expected value of the
estimator is the true parameter.
We want to study the tail distribution of

∥∥∥θ̂N0 − θ0∥∥∥∞ or more
specifically to obtain bounds of the form

P
(∥∥∥θ̂N0 − θ0∥∥∥∞ > r

)
< ε (4)

as a function of N . Furthermore, given r, ε we want to
calculate the number of samples needed N (r, ε) to achieve
the above inequality. We analyze the case where A is random
with bounded elements. We also state theorems for the simpler
case when A is fixed.
Throughout this paper we use the following mathematical
notations:

Definition II.1.

1) Let x be a random variable defined on the probability
space (Ω, F, P ) and denote E (x) the expectation of x.

2) The logarithmic moment generating function of a random
variable x is:
Λx (s) := logE[esx].

3) Let B ∈ Rp×p be a square matrix; we define the
operators λmax (B) and λmin (B) to give the maximal
and minimal eigenvalues of B respectively.

4) Let C be a matrix. The spectral norm for matrices is
given by
‖C‖ .=

√
λmax (CTC).

1For simplicity we only consider the real case. The complex case is similar
with minor modifications.
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5) A random variable v with E (v) = 0 is called sub-
Gaussian if its moment generating function exists and
E (exp (sv)) ≤ exp

(
s2R2

2

)
[46], [47]. The minimal R

that satisfies this inequality is called the sub-Gaussian
parameter of the random variable v and we say that v is
sub-Gaussian with parameter R.

6) A random variable v with E (v) = 0 is called sub-
exponential if its moment generating function exists and
∀ |s| ≤ c

λ , E (exp (sv)) ≤ exp
(
Cs2λ2

)
where c, C are

absolute constants [46], [47].
7) We denote λ̃ (A)

.
= λmax

((
1
NA

TA
)−1)

Remark II.2. Since the sub-Gaussian property is crucial to our
analysis we cite for completeness some well known properties
of sub-Gaussian variables. See [46] for a more detailed
analysis
• Let x1, . . . xn be sub-Gaussian random variables with

parameter R then
n∑
i=1

xi is also sub-Gaussian.

• Let x be a sub-Gaussian random variable and a > 0 then,
ax is also sub-Gaussian.

• Let x1, . . . xn be sub-Gaussian random variables with
parameter R then for every a

.
= (a1, . . . , an)

P

(
n∑
i=1

aixi > t

)
≤ exp

(
− t2

2R2‖a‖2

)
.

• Let x be a random variable. x is a sub-Gaussian random
variable if and only if x2 − E

(
x2
)

is a sub-exponential
random variable.

Remark II.3. Using definition 5, it is easy to see that a centered
Gaussian random variable is also a sub-Gaussian random vari-
able. Assume that x ∼ N

(
0, σ2

)
, then the moment generating

function of x is M(s) = E (exp (sx)) = exp
(
s2σ2

2

)
. There-

fore, by definition 5 x is also sub-Gaussian with parameter
σ.

III. MAIN RESULT

In this section we formulate and prove the main result of
this paper.
This section starts with a statement of the assumptions used
throughout the paper. We then state the main theorem and
discuss it. We further explain the outline of the proof for of
the main theorem and then provide a detailed proof.
We start by making the following assumptions on our model:
We assume that the noise is zero mean and that N > p.
A1: P (|ani| ≤ α) = 1 ∀n = 1 . . . N ∀i = 1 . . . p
A2: ∀N > 0 there exists M ∈ Rp×p such that M =

1
NE

(
ATA

)
. We denote σmax

.
= λmax (M) and σmin =

λmin (M).
A3: ∀1 ≤ n ≤ N , vn are statistically independent from each

other and from A.
A4: ∀1 ≤ n ≤ N , vn are sub-Gaussian random variables with

parameter R (see definition 5).
The facts that the noise is zero mean and that N > p ensure
that the design is correct and that the least squares solution
can be achieved. Assumptions A1 and A2 are mild and
achievable by normalizing each row of the design matrix

with the proper scaling of the sub-Gaussian parameter.
Assumption A3 is an i.i.d. setup assumption and assumption
A4 is the sub-Gaussian noise assumption. Note that the set of
assumptions is valid for any type of zero mean sub-Gaussian
noise model which is a very wide family of distributions. In
case where the noise does not have a zero mean and the mean
is known, subtracting the mean from the model equation (1)
will make the results valid in this case as well.

The main theorem provides bounds on the distance between
the finite sample least squares estimator and the real parameter.
The theorem provides the number of samples required so that
the distance between the estimator and the real parameter will
be at most r with probability 1− ε.

Theorem III.1. (Main Theorem)
Let x be defined as in (1) and assume assumptions A1-A4. Let
θ̂N0 be the least squares estimator defined in (3) and let θ0
be the true parameter. Furthermore, let ε > 0 and r > 0 be
given, then ∀N > N (r, ε)

P
(∥∥∥θ̂N0 − θ0∥∥∥∞ > r

)
< ε, (5)

Where

N (r, ε) = max {N1 (r) , N2 (r, ε) , N3 (r, ε) , Nrand (ε)}
(6)

and

N1 (r) =
4α2R2

σ2
minr

2
, (7)

N2 (r, ε) = inf
0<s< 1

2α2R2

{
1

σ2
minr

2s
(8β (s)

+2σminr

√
2s log

3p

ε

)}
, (8)

N3 (r, ε) ≤ inf
0<s< 1

α2R2


√√√√ log 3p

ε
σ2
minr

2s

8 − γ (s)

 , (9)

Nrand (ε) =
4

3

(6σmax + σmin)
(
pα2 + σmax

)
σ2
min

log

(
3p

ε

)
,

(10)

β (s)
.
= α2R2p+

α4R4s2

1− 2R2s
, (11)

γ (s)
.
=
α4R4s2

2
+

α8R8s4

4 (1− s2α4R4)
. (12)

A. Discussion

The importance of this result is that it gives an easily
calculated bound on the number of samples needed for linear
least squares problems. It shows a sharp convergence in
probability as a function of N , and shows that the number
of samples required to achieve an error less than r with
probability 1− ε is O

(
1
r2 log 1

ε

)
and provides exact constants
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which allow easy computation of the bounds and not just the
finite sample decay rate.
The results in this work are given with an L∞ norm. The
L∞ results can give confidence bounds for every coordinate
of the parameter vector θ0. Results for other norms can be
achieved as well using relationships between norms.

B. Proof Outline

In this subsection we present the outline of the proof for
the main theorem. The proof is divided into two main parts.
The first part of the proof provides bounds on the differences
between the estimated parameter and the true parameter at
each coordinate. It uses the sub-Gaussian assumption to pro-
vide bounds that are easy to calculate. The second part of the
proof exploit the union bound to provide bounds on the L∞
norm of the error vector. Together the two parts finish the
proof. We now discuss the main stages of the proof.
We are interested in studying the term

P
(∥∥∥θ̂N0 − θ0∥∥∥∞ > r

)
. (13)

We start by showing that this is equivalent to analyzing the
term

P
(∥∥∥(ATA

)−1
ATv

∥∥∥
∞
> r
)
. (14)

In order to study the infinity norm we analyze each of the
elements of the error vector separately. We later use the union
bound on the probability of error in each element. For each
1 ≤ i ≤ p we study the term

P

(∣∣∣∣∣
(

1

N
ATA

)−1
1

N

N∑
n=1

anivn

∣∣∣∣∣ > r

)
. (15)

We continue by showing that this is bounded by

P

∣∣∣∣∣ 1

N

N∑
n=1

anivn

∣∣∣∣∣ > r

λmax

((
1
NA

TA
)−1)

 . (16)

In order to analyze this term we start with showing that if
N > Nrand (ε) the probability of the event

Erand
.
=

{
A : λ̃ (A) >

2

σmin

}
(17)

is less than ε
3 . In other words Erand is defined as the event

that the minimal eigenvalue of the sample covariance or the
maximum eigenvalue of the inverse of the sample covariance
is greater than 2

σmin
. We show that the probability of this event

is less than ε
3 for large enough N . i.e., ∀N > Nrand (ε)

P (x ∈ Erand) ≤
ε

3
. (18)

Assuming that A /∈ Erand we use a Chernoff type bound
to bound the number of samples needed to ensure that∣∣∣∣∣ 1N

N∑
n=1

anivn

∣∣∣∣∣ is small. The bound N > N1 (r) ensures

that the Chernoff bound converges. The terms N2 (r, ε) and
N3 (r, ε) ensure that for each element 1 ≤ i ≤ p the

probability that

∣∣∣∣∣ 1N
N∑
n=1

anivn

∣∣∣∣∣ is larger than rσmin
2 is bounded

by ε
3p . We use N2 (r, ε) to bound the probability of the event

E2 (i)
.
=

{
x :

1

N2

N∑
n=1

a2niv
2
n >

σ2
minr

2

8

}
(19)

given that A /∈ Erand. We use N3 (r, ε) to bound the
probability of the event

E3 (i)
.
=

x :
1

N2

N∑
n=1

N∑
l=1,l 6=n

anialivnvl >
σ2
minr

2

8

 (20)

given that x /∈ Erand. In order to achieve these bounds we
use the sub-Gaussian noise assumption to bound the moment
generating functions of some of the terms. This technique
enables us to achieve bounds that are easy to calculate.
The next part of the proof uses the union bound on the
elements of the error vector. Using the bounds so far, we
can use the union bound to bound the probability that any
of the elements of the error vector is too large. By doing so,
we achieve a bound on the probability of three events, where
each event has a probability bounded by ε

3 . The events are
defined as Erand as defined in (17) and E2 and E3 where

E2 ∩ ECrand
.
=

{x : ∃1 ≤ i ≤ p such that x ∈ E2 (i) ∧ x /∈ Erand} (21)

and

E3 ∩ ECrand
.
=

{x : ∃1 ≤ i ≤ p such that x ∈ E3 (i) ∧ x /∈ Erand} . (22)

We show that ∀N > N (r, ε), P (x ∈ E3 ∧ x /∈ Erand) ≤ ε
3

,P (x ∈ E2 ∧ x /∈ Erand) ≤ ε
3 and P (x ∈ Erand) ≤ ε

3 . We
prove that if none of these events occurs, the performance of
the least squares estimator is as required. In order to finish
the proof we need to bound the probability that any of these
events will occur. We use the union bound again to achieve
that ∀N > N (r, ε)

P (Erand ∪ E2 ∪ E3) ≤
P (Erand) + P

(
E2 ∩ ECrand

)
+ P

(
E3 ∩ ECrand

)
≤

ε

3
+
ε

3
+
ε

3
= ε

i.e., the probability that (14) is violated is less than the sum of
the probabilities of the events E2∩ECrand, E3∩ECrand, Erand.
The next sections provide the details of the proof and some
extensions.

C. Proof of the main theorem

In this subsection we prove the main theorem of this paper.
The result is for a general noise model. We start the proof by
stating two auxiliary lemmas. The proofs of these lemmas are
given in the appendix.
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Lemma III.2. Let x be defined as in (1). Assume A1-A3 hold.
Furthermore, let θ̂N0 be defined in (3) and let r > 0 be given,
then

P
(∣∣∣(θ̂N0 − θ0)

i

∣∣∣ > r
)

≤ P

(∣∣∣∣∣ 1N
N∑
n=1

anivn

∣∣∣∣∣ > r
λ̃(A)

)
(23)

Proof. The proof of this lemma is given in appendix A.

Lemma III.3. Under assumptions A1,A2 and ∀N ≥
Nrand (ε′)

P

(
λ̃ (A) ≥ 2

σmin

)
≤ ε′, (24)

where

Nrand (ε′) =
4

3

(6σmax + σmin)
(
pα2 + σmax

)
σ2
min

log
( p
ε′

)
.

(25)

Proof. The proof for this lemma is given in appendix B.

We are now ready to prove the main theorem.

Proof. We want to study the term

P
(∣∣∣(θ̂N0 − θ0)

i

∣∣∣ > r
)
. (26)

Using lemma III.2 it suffices to bound the term

P

(∣∣∣∣∣ 1

N

N∑
n=1

anivn

∣∣∣∣∣ > r

λ̃ (A)

)
. (27)

Substituting we obtain

P
(∣∣∣(θ̂N0 − θ0)

i
> r
∣∣∣)

≤ P

(∣∣∣∣∣ 1N
N∑
n=1

anivn

∣∣∣∣∣ > r
λ̃(A)

)

≤ P

( 1
N

N∑
n=1

anivn

)2

> r2

λ̃2(A)

 .

(28)

The next stages of the proof use a union bound type
argument. We first exclude a set of possible values
of A; Erand =

{
x : λ̃ (A) ≥ 2

σmin

}
. We show that

∀N ≥ Nrand (ε), P (x ∈ Erand) ≤ ε
3 . Then, we

will show that if N > max {N1 (r) , N2 (r, ε)} and

given the set E2 (i) =

{
x : 1

N2

N∑
n=1

a2niv
2
n >

σ2
minr

2

8

}
,

P (x ∈ E2 (i) ∧ x /∈ Erand) ≤ ε
3p . We next show

that ∀N > max {N1 (r) , N3 (r, ε)} and given the set

E3 (i) =

x : 1
N2

N∑
n=1

N∑
l=1,l 6=n

anialivnvl >
σ2
minr

2

8

,

P (x ∈ E3 (i) ∧ x /∈ Erand) ≤ ε
3p . The next step is to use

union bound over the elements of the error vector and use
union bound on all the errors once more.

We start by using lemma III.3 with the parameter ε′ =
ε
3 to ensure that ∀N > Nrand (ε), P (x ∈ Erand) =

P
(
λ̃ (A) ≥ 2

σmin

)
≤ ε

3 . Therefore, for every N > Nrand (ε)

with probability 1− ε
3 , x /∈ Erand and as a result

P
(∣∣∣(θ̂N0 − θ0)

i
> r
∣∣∣)

≤ P

( 1

N

N∑
n=1

anivn

)2

>
σ2
minr

2

4

 . (29)

From now on we assume that x /∈ Erand.
We want to use the Chernoff bound [48] to bound the

probability (26). In order to use the Chernoff bound we need

E

( 1

N

N∑
n=1

anivn

)2
 <

σ2
minr

2

4
. (30)

Developing the term

(
1
N

N∑
n=1

anivn

)2

yields

(
1
N

N∑
n=1

anivn

)2

=

1
N2

N∑
n=1

a2niv
2
n + 1

N2

N∑
n=1

N∑
l=1,l 6=n

anivnalivl.

(31)

Calculating the expectation term for this gives

E

( 1
N

N∑
n=1

anivn

)2
 = 1

N2

N∑
n=1

E
(
a2niv

2
n

)
≤

1
N2

N∑
n=1

E
(
α2v2n

)
=
α2

N
E
(
v2
)
,

(32)

where the first inequality follows from the fact that the noise
is zero mean and that by the choice of ani, |ani| ≤ α. Using
this, we can write the inequality (30) as

σ2
minr

2

4
>
α2

N
E
(
v2
)
. (33)

Solving this gives the condition on N

N >
4α2E

(
v2
)

σ2
minr

2
(34)

Using the fact that v is sub-Gaussian and the properties of
sub-Gaussian variables we know that:

E
(
v2
)
≤ R2. (35)

Substituting into the previous equation we obtain

N >
4α2R2

σ2
minr

2

.
= N1 (r) . (36)

We now turn to evaluate the two terms of equation (31) using
Chernoff-like bounds.
We denote by E2 (i) the set

E2 (i) =

{
x :

1

N2

N∑
n=1

a2niv
2
n >

σ2
minr

2

8

}
. (37)
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We study P (x ∈ E2 (i) ∧ x /∈ Erand).

P (x ∈ E2 (i) ∧ x /∈ Erand)

= P

(
1
N2

N∑
n=1

a2niv
2
n >

σ2
minr

2

8

)

≤ exp
(
−σ

2
minr

2N2s
8

)
E

(
exp

(
s

N∑
n=1

a2niv
2
n

))

≤ exp
(
−σ

2
minr

2N2s
8

)
E

(
exp

(
s

N∑
n=1

α2v2n

))
= exp

(
−σ

2
minr

2N2s
8

)
E
(
exp

(
sα2v2

))N
.

(38)

The second inequality follows from the fact that |ani| ≤ α.

By the monotonicity of the log function, this is equivalent
to

log

(
P

(
1
N2

N∑
n=1

a2niv
2
n >

σ2
minr

2

8

))
≤

−σ
2
minr

2N2s
8 +N logE

(
exp

(
sα2v2

))
.

(39)

To ensure that ∀ε > 0

P

(
1

N2

N∑
n=1

a2niv
2
n >

σ2
minr

2

8

)
<

ε

3p
, (40)

It is sufficient to solve the inequality

logP

(
1

N2

N∑
n=1

a2niv
2
n >

σ2
minr

2

8

)
< log

ε

3p
. (41)

Evaluating this yields a quadratic inequality

−σ
2
minr

2sN2

8
+N logE

(
exp

(
sα2v2

))
< log

ε

3p
. (42)

Solving for N gives the inequality

N >
4

σ2
minr

2s

(
logE

(
exp

(
sα2v2

))
+√

log2E (exp (sα2v2)) +
r2s

2
log

3p

ε

)
≤

1

σ2
minr

2s

(
8 logE

(
exp

(
sα2v2

))
+2σminr

√
2s log

3p

ε

)
. (43)

We now use the sub-Gaussian assumption to bound the term
E
(
exp

(
sα2v2

))
. In order to achieve this we use remark 2.3

in [49] to achieve

E
(
esα

2v2
)
≤ exp

(
α2R2s+

α4R4s2

1− 2α2R2s

)
= exp (β (s)) .

(44)
This is true ∀0 < s < 1

2α2R2 .
Substituting this bound into the previous equation and taking
the infimum over s gives the bound on N

N > inf
0<s< 1

2α2R2

{
1

σ2
minr

2s
(8β (s)

+2σminr

√
2s log

3p

ε

)}
.
= N2 (r, ε) . (45)

Therefore, as required choosing N > N2 (r, ε) ensures that
∀1 ≤ i ≤ p

P (x ∈ E2 (i) ∧ x /∈ Erand) ≤
ε

3p
. (46)

We now turn to evaluating the second term of (31)
We define

E3 (i) =

x :
1

N2

N∑
n=1

N∑
l=1,l 6=n

anialivnvl >
σ2
minr

2

8

 .

(47)

P (x ∈ E3 (i) ∧ x /∈ Erand)
≤ exp

(
−N

2σ2
minr

2s
8

)
×

E

exp

s N∑
n=1

N∑
l=1,l 6=n

α2vnvl


= exp

(
−N

2σ2
minr

2s
8

)
×

N∏
n=1

N∏
l=1,l 6=n

E
(
exp

(
sα2vnvl

))
= exp

(
−N

2σ2
minr

2s
8

)
×

E
(
exp

(
sα2v1v2

))N(N−1)
,

(48)

where v1 and v2 are two i.i.d random variables distributed
according to the law of v. By the monotonicity of the log
function we achieve

logP (x ∈ E3 (i) ∧ x /∈ Erand) <

− σ2
minr

2s

8
N2 +N (N − 1) Λv1v2

(
sα2
)
. (49)

We are interested in solving the equation

logP (x ∈ E3 (i) ∧ x /∈ Erand) < log
ε

3p
. (50)

Assigning the inequality derived in (48) we obtain the
quadratic inequality

−σ
2
minr

2s

8
N2 +N (N − 1) Λv1v2

(
sα2
)
< log

ε

3p
. (51)

Solving this inequality yields

N >
−Λv1v2

(
sα2
)

2
(
σ2
minr

2s

8 − Λv1v2
(sα2)

)+

√
Λv1v2 (sα2)

2
+ 4

(
σ2
minr

2s

8 − Λv1v2 (sα2)
)

log 3p
ε

2
(
σ2
minr

2s

8 − Λv1v2 (sα2)
)

≤

√√√√ log 3p
ε(

σ2
minr

2s

8 − Λv1v2 (sα2)
) . (52)

We now use smoothing and the fact that v1 and v2 are sub-
Gaussian random variables with parameter R. Using bounds
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on sub-Gaussian variables again [49] we achieve the following
bound

Λv1v2
(
sα2
)
≤ logE

(
exp

(
sα2v1v2

))
=

logEv2Ev1|v2

(
esα

2v1v2
)
≤ logEv2

(
exp

(
s2α4v22R

2

2

))
≤ log exp

(
α4R4s2

2
+

α8R8s4

4 (1− α4s2R4)

)
=
α4R4s2

2
+

α8R8s4

4 (1− α4s2R4)

.
= γ (s) . (53)

This is true ∀0 < s < 1
α2R2 .

Substituting (53) into (52) and taking infimum over the valid
values of s we obtain the bound

N ≤ inf
0<s< 1

α2R2


√√√√ log 3p

ε
σ2
minr

2s

8 − γ (s)

 .
= N3 (r, ε) . (54)

Choosing N > N3 (r, ε) will ensure
P (x ∈ E3 (i) ∧ x /∈ Erand) ≤ ε

3p ∀1 ≤ i ≤ p.
Define

E2 ∩ ECrand
.
=

{x : ∃1 ≤ i ≤ p such that x ∈ E2 (i) ∧ x /∈ Erand} .

and

E3 ∩ ECrand
.
=

{x : ∃1 ≤ i ≤ p such that x ∈ E3 (i) ∧ x /∈ Erand} .

where E2 (i) and E3 (i) are defined in
(37) and (47) respectively. Choosing N >
max {Nrand (ε) , N1 (r) , N2 (r, ε) , N3 (r, ε)} .

= N (r, ε),
we obtain that ∀1 ≤ i ≤ p,

P (x ∈ E2 (i) ∧ x /∈ Erand) ≤
ε

3p

and
P (x ∈ E3 (i) ∧ x /∈ Erand) ≤

ε

3p
.

Using the union bound over the p elements of the θ we obtain
that

P (x ∈ E2 ∧ x /∈ Erand) ≤
p∑
i=1

P (x ∈ E2 (i) ∧ x /∈ Erand) ≤
ε

3

and

P (x ∈ E3 ∧ x /∈ Erand) ≤
p∑
i=1

P (x ∈ E3 (i) ∧ x /∈ Erand) ≤
ε

3
.

We now use the union bound again to obtain that

P (Erand ∪ E2 ∪ E3) ≤
P (Erand) + P

(
E2 ∩ ECrand

)
+ P

(
E3 ∩ ECrand

)
≤

ε

3
+
ε

3
+
ε

3
= ε.

We thus show that ∀N > N (r, ε) the probability that there is
no 1 ≤ i ≤ p such that

P
(∣∣∣(θ̂N0 − θ0)

i

∣∣∣ > r
)
> ε (55)

and therefore,

P
(∥∥∥(θ̂N0 − θ0)∥∥∥∞ > r

)
≤ ε. (56)

This completes the proof of the main theorem.

Remark III.4. Whereas the main theorem bounds are given for
L∞ norm this does not limit the scope of the theorem. Bounds
for other norms can be given using the relationships between
norms. For instance, bounding the L2 norm gives

P
(∥∥∥θ̂N0 − θ0∥∥∥

2
> r
)
≤ P

(∥∥∥θ̂N0 − θ0∥∥∥∞ >
r
√
p

)
(57)

Assigning r′ = r√
p to the main theorem provides a bound for

L2 norm. Similarly, other norms can be considered as well.

D. Tighter bounds that involve optimization

In the proof of theorem III.1 we used a few constants that
can be optimized for better performance although calculating
the bounds is harder.
We define a parameter 0 < τ < 1. In order to find N such
that

P

 1

N2

N∑
n=1

a2niv
2
n +

1

N2

N∑
n=1

N∑
l=1,l 6=n

anivnalivl >
σ2
minr

2

4

 ,

(58)
we split the equation into two using τ for parametrization; i.e.
we find N such that

P

(
1

N2

N∑
n=1

a2niv
2
n > τ

σ2
minr

2

4

)
(59)

and

P

 1

N2

N∑
n=1

N∑
l=1,l 6=n

anivnalivl > (1− τ)
σ2
minr

2

4

 . (60)

Using the same methods as in the proof of the main theorem
we get

N2 (r, ε, τ) = inf
0<s< 1

2α2R2

{
1

τσ2
minr

2s
(4β (s)

+σminr

√
2s log

2

ε

)}
, (61)

and

N3 (r, ε, τ) = inf
0<s< 1

α2R2


√√√√ log 2

ε
(1−τ)σ2

minr
2s

4 − γ (s)

 , (62)
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where β (s) and γ (s) are defined in (11) and (12) respec-
tively. N1 (r, ε) , Nrand (ε) are left unchanged and defined in
(7), (10) respectively. Using these values we have

N =

min
0<τ<1

max {N1 (r, ε) , N2 (r, ε, τ) , N3 (r, ε, τ) , Nrand (ε)} .
(63)

The proof of the theorem remains the same.

E. Bounds on ε (r,N)

The bounds given in this paper are bounds on the number
of required samples as a function of ε and r. Another useful
question is the following: given r and N what is the probability
that the distance between the estimator and the real parameter
is at most r? In other words, we want to find an expression
for ε as a function of N and r. We discuss these expressions
for the sub-Gaussian linear model below.

Lemma III.5. Let N and r be given such that

N >
4α2R2

σ2
minr

2
, (64)

then
P
(∥∥∥θ̂N0 − θ0∥∥∥∞ > r

)
< ε, (65)

where
ε = max {ε2, ε3, εrand} (66)

and

ε2 (r,N) ≤

inf
0<s< 1

2α2R2

{
3p exp

(
−
(
σ2
minr

2sN − 8β (s)
)2

8sσ2
minr

2

)}
, (67)

where β (s) is defined in (11).

ε3 (r,N) ≤

inf
0<s< 1

α2R2

{
3p exp

(
−N2

(
σ2
minr

2s

8
− γ (s)

))}
, (68)

where γ (s) is defined in (12).

εrand = 3p exp

(
−3

4

Nσ2
min

(6σmax + σmin) (pα2 + σmax)

)
.

(69)

Proof. The proof is a straightforward calculation given the
bounds on N1, N2, N3 and Nrand in (7), (8) and (9) (10)
respectively.

F. Least squares for the bounded noise case

In some cases of interest the noise sequence is bounded
almost surely; see for example [50]–[52]. In these cases we
can obtain simpler and tighter bounds to analyze the least
squares method. The proof of the following is similar to the
proof of theorem III.1 and is deferred to appendix C.

Theorem III.6. Let x be defined as in (1). Moreover, assume
assumptions A1-A3 and assume moreover that

A4: E
(
v2n
)

= R ∀n.
A5: P (vn ≤ b) = 1 ∀n.
Then, there exists N (r, ε) such that ∀ε, r > 0 and N >
N (r, ε)

P
(∥∥∥θ̂N0 − θ0∥∥∥∞ > r

)
≤ ε (70)

where N (r, ε) = max {Nrand (ε) , N1 (r, ε)} and

Nrand (ε) =
4

3

(6σmax + σmin)
(
pα2 + σmax

)
σ2
min

log

(
3p

ε

)
,

(71)

N1 (r, ε) =
2α2b2

r2σ2
min

log

(
3p

ε

)
. (72)

Proof. The proof is given in Appendix C.

IV. MARTINGALE DIFFERENCE NOISE SEQUENCES

In many cases of interest the noise is correlated and the
analysis above is not accurate. For example in [40], [53]–[55].
In this section we examine the least squares problem under
the assumption that the noise is a sub-Gaussian martingale
difference sequence; i.e., we change assumptions A4 and A3
to the following assumptions:
A6: E (vn|Fn−1) = 0. Where Fn−1 is a filtration, vn are

independent of A.
A7: P (|vn| ≤ b) = 1.
A8: The martingale difference sequence is R sub-Gaussian.

i.e. E (esvn |Fn−1) ≤ e s
2R2

2 .
We now state the theorems for the martingale difference noise
sequence version

Theorem IV.1. (sub-Gaussian martingale differences)
Let x be defined as in (1) and assume assumptions A1,A2
and assumptions A6,A8. Let ε > 0 and r > 0 be given and
θ̂N0 and θ0 be defined as previously, then ∀N > N (r, ε)

P
(∥∥∥θ̂N0 − θ0∥∥∥∞ > r

)
< ε (73)

where

N (r, ε) = max {N1 (r, ε) , Nrand (ε)} , (74)

N1 (r, ε) =
8α2R2

r2σ2
min

log
2p

ε
(75)

and

Nrand (ε) =
4

3

(6σmax + σmin)
(
pα2 + σmax

)
σ2
min

log
2p

ε
. (76)

Proof. The first part of the proof remains the same as in
the bounded martingale differences case; i.e., for every N >
Nrand (r, ε) and given the definition of Erand in (17)

P (x ∈ Erand) = P

(
λ̃ (A) ≥ 2

σmin

)
≤ ε

2
. (77)
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We now want to find N1 (r, ε) such that ∀N > N1 (r, ε)

P (x ∈ E2 (i) ∧ x ∈ Erand) =

P

(
1

N

N∑
n=1

anivn >
rσmin

2

)
≤ ε

2p
(78)

where E2 (i) is defined in (37). We cannot use Azuma’s
inequality since unlike to the previous theorem the martin-
gale difference sequence is no longer bounded. However, we
can prove a concentration result for sub-Gaussian martingale
difference sequence using similar methods to [56]. We start by

bounding E

(
exp

(
s

N∑
n=1

anivn

))
and then we use Markov’s

inequality.

E

(
exp

(
s

N∑
n=1

anivn

))

≤ E

(
exp

(
s

N∑
n=1

αvn

))

= E

(
exp

(
sα

N−1∑
n=1

vn

))
E (exp (sαvN ) |FN−1)

≤ E

(
exp

(
sα

N−1∑
n=1

vn

))
exp

(
s2α2R2

2

)
.

(79)
The first inequality follows from assumption A1 and the fact
that the exponent is a monotonically increasing function. The
second inequality follows from assumption A8. Iterating this
procedure yields

E

(
exp

(
s

N∑
n=1

anivn

))
≤ exp

(
Ns2α2R2

2

)
. (80)

Looking now at the original equation we have

P (x ∈ E2 (i) ∧ x /∈ Erand)

= P

(
N∑
n=1

anivn >
Nrσmin

2

)

= P

(
exp

(
s

N∑
n=1

anivn

)
> exp

(
sNrσmin2

))

≤ E

(
exp

(
s

N∑
n=1

anivn

))
exp

(
−sNrσmin2

)
≤ exp

(
Ns2α2R2

2

)
exp

(
−sNrσmin2

)
= exp

(
N
2

(
s2α2R2 − srσmin

))

(81)

The first inequality follows from Markov’s inequality. The
second inequality follows from equation (80). The inequality
is true ∀s > 0. Optimizing over s yields s = rσmin

2α2R2 . Assigning
to the last equation we obtain

P

(
N∑
n=1

anivn >
Nrσmin

2

)
< exp

(
−Nr

2σ2
min

8α2R2

)
. (82)

Choosing N > 8α2R2

r2σ2
min

log 2p
ε ensures that

P (x ∈ E2 (i) ∧ x /∈ Erand) =

P

(
1

N

N∑
n=1

anivn >
rσmin

2

)
<

ε

2p
. (83)

Using the same union bound strategy as in the previous
theorem finishes the proof.

Theorem IV.2. (bounded martingale differences)
Let x be defined as in (1) and assume assumptions A1,A2
and assumptions A6,A7. Let ε > 0 and r > 0 be given and
θ̂N0 and θ0 be defined as previously, then ∀N > N (r, ε)

P
(∥∥∥θ̂N0 − θ0∥∥∥∞ > r

)
< ε (84)

where

N (r, ε) = max

{
8α2b2

r2σ2
min

log
2p

ε
,

4

3

(6σmax + σmin)
(
pα2 + σmax

)
σ2
min

log
2p

ε

}
. (85)

Proof. This proof is similar to the bounded noise case with
the change for martingale difference noise.

Remark IV.3. While the theorems in this paper deal with the
case that the design matrix A is random, they can easily be ap-
plied to the case that A is known. In this case the eigenvalues
of 1

NA
TA can be calculated and therefore, there is no need of

using lemma III.3. If we denote σmin
.
= λmin

(
1
NA

TA
)

then,
we need to remove Nrand from the calculation of N (r, ε),
also α = max

ij
aij is easily calculated. The rest of the proof

remains the same. We show this with the example of sub-
Gaussian martingale difference sequence model with fixed
design matrix. As we said the same technique can be applied
to all theorems.

Theorem IV.4. (sub-Gaussian martingale differences with
fixed design matrix)
Let x be defined as in (1) and assume assumptions A6,A8.
Moreover, assume that A is known, σmin = λmin

(
1
NA

TA
)

and α = max
i,j

aij . Let ε > 0 and r > 0 be given and θ̂N0 and

θ0 be defined as previously, then ∀N > N (r, ε)

P
(∥∥∥θ̂N0 − θ0∥∥∥∞ > r

)
< ε (86)

where

N (r, ε) =
8α2R2

r2σ2
min

log
2p

ε
(87)

V. SIMULATION RESULTS

In this section we describe simulation results that
demonstrate the bounds. Our model matrix in the first two
simulations was a random matrix with bounded elements and
variance 1 in each dimension. We tested the bound for two
interesting sub-Gaussian noise settings. The first was uniform
plus Gaussian noise. The second setting was a Gaussian
mixture with two Gaussians, one with high variance and
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Fig. 1. Simulation results, main theorem bounds and Hsu et al. bounds for
Gaussian mixture noise with R = 0.1, r = 0.01, σmin = σmax = 1 and
p = 8.

Fig. 2. Simulation results and theoretical bounds for uniform noise with
ε = 0.01, R = 1, σmin = 0.2, σmax = 1 and p = 2. The graph is for N
as a function of r.

Fig. 3. Simulation results, theorem IV.1 bounds and theorem III.1 with
ε = 0.05, R = 10, σmin = 1, σmax = 1 and p = 4. The graph is for N
as a function of r.

Fig. 4. Simulation results and theoretical bounds for multiple condition
numbers and ε = 0.05, R = 10, σmax = 1 and p = 4. The graphs are
for N as a function of r.

Fig. 5. Simulation results and martingale difference theorem bounds for
channel estimation problem with fixed design matrix and i.i.d noise with
ε = 0.01, R = 0.1 and p = 8. The graph is for N as a function of
r.

Fig. 6. Simulation results and martingale difference theorem bounds for
channel estimation problem with fixed design matrix and i.i.d noise with
r = 0.01, R = 0.1 and p = 8. The graph is for ε as a function of N .
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small probability (0.1) and the other with low variance and
high probability (0.9). The simulations were conducted using
50,000 samples for each value of N . The simulation results
shown in Fig 1. indicate that the overall performance of the
bound is similar to the performance in the simulations. We
also compared our bounds to the bounds generated in [31].
We clearly see that the bounds in the main theorem in this
paper are tighter. Fig. 2. shows the behavior of our bounds as
a function of r. We set ε = 0.01 and calculated the required
number of samples to achieve a deviation r. The bounds and
the simulation results exhibit similar properties. Fig. 3 depicts
the performance of the main theorem bound compared to the
martingale difference bound. The figure shows that although
the bounds are close to one another, the main theorem bound
is tighter. This is due to the finer analysis of the model in the
main theorem proof as well as the fact that the model used is
better. Fig 4. depicts the bounds and the simulation results for
different condition numbers. We see that the bound performs
better when the condition number is small. These results
suggest that future work can reduce the bound on the number
of required samples by a factor of the condition number.

We now provide a simulation of a problem of high im-
portance in signal processing, i.e., channel estimation in the
presence of interfering signal. To that end, we utilize the
case where the design matrix is known, and generated by
the training signal. Assume that a training sequence of length
N , s0, ...sN−1 is transmitted through an unknown channel.
The noise plus interference is modelled as an R sub-Gaussian
martingale difference composed of another transmitter in the
area as well as receiver noise. As we now show the external
interference which is a bounded communication signal passing
through a linear time invariant channel is indeed a martingale
difference sequence. The fixed design matrix is given by

A =



s0 0 0 . . . 0
s1 s0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sp−1 sp−2 sp−3 . . . s0
sp sp−1 sp−2 . . . s1
sp+1 sp sp−1 . . . s2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sN−1 sN−2 sN−3 . . . sN−p


(88)

where s0, . . . sN−1 are random BPSK signals chosen in ad-
vance. θ are the channel parameters we wish to estimate using
least squares these parameters. The mathematical setting is
given by

xn =

p∑
t=1

sn−tθt + vn (89)

where we define

si
.
= 0 ∀i < 0. (90)

This equation can be written as

x = Aθ + v (91)

where A is defined in (88). The noise vector
v
.
= (v0, . . . , vN−1)

T can be modelled as:

vn =

k∑
i=0

hijn−i + wn (92)

where jn is i.i.d zero mean bounded signal for example a
BPSK signal. This can happen for example when estimating
the channel in a CDMA sequence, when the interference is
composed of another CDMA signal. 2 We denote by η the
bound for jn, i.e. P (jn ≤ η) = 1. We also assume that hi is
an unknown system. We now prove that the noise sequence is
a zero mean martingale difference and that it is sub-Gaussian
and thus admits assumptions A6 and A8. If so, we can use
theorem IV.4 to calculate the number of samples required to
achieve a certain finite sample performance for this interesting
model.

E (vn|Fn−1)

= E

(
k∑
i=0

hijn−i + wn|Fn−1

)

= E

(
k∑
i=0

hijn−i|Fn−1

)
+ E (wn|Fn−1)

= E

(
k∑
i=0

hijn−i|Fn−1

)
= 0.

(93)

The second equality follows from the independence of the
random variables wn, jn and hn. The next equality follows
from the fact that wn is zero mean. The last equality follows
from the fact that E (jn) = 0. We now prove that vn is sub-
Gaussian. We use the assumption that jn ≤ η and that hn and
wn are sub-Gaussian with parameter R1 and R2 respectively.
Using these facts with the property that jkhn is sub-Gaussian
because they are independent and jn ≤ η and the fact that
linear combinations of sub-Gaussian random variables is sub-
Gaussian [46], [47] we can conclude that vn is sub-Gaussian
and satisfies assumption A8. We proved that this example
satisfies all the assumptions of theorem IV.4 and therefore we
can use the theorem to bound the number of samples needed
to achieve a predefined performance.
We demonstrate these results by calculating the bounds for
specific parameters and running simulations. We conducted
two experiments. The first aims to study the number of
required samples as a function of r and the second aims to
study the number of required samples as a function of ε. The
parameters of the simulations are p = 8, R = 0.1. In the first
experiment ε = 0.01 and in the second experiment r = 0.01.
In the task at hand we wish to calculate the number of samples
required to ensure that the estimated channel parameters are
close to the real parameters with high probability.
Fig. 5 and Fig. 6 clearly demonstrate that the bounds are
valid and close to the number of required samples. This
example shows again the ability of this work to analyze
performance of important communications problems such as
channel estimation.

2Similar analysis is relevant for high range resolution (HRR) estimation of
target parameters in the presence of temporally correlated jammer. See [53]
for example.
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VI. CONCLUDING REMARKS

This paper examined the finite sample performance of the
L∞ error of the linear least squares estimator. We showed
very fast convergence of the number of samples required
as a function of the probability of the L∞ error. We ana-
lyzed performance in both the fixed design matrix case and
in the random design matrix case. We showed that in the
random design matrix case the number of samples required
to achieve a maximal deviation r with probability 1 − ε
is N ∼ O

(
1
r2 log 1

ε

)
and we provided simply computable

bounds in terms of r and ε. We demonstrated in simulations
that the new bound is tighter than previous bounds in the
case of i.i.d noise. Moreover, we extended the theorem to
the interesting case where the noise is a bounded martingale
difference sequence. This is the first finite sample analysis
result for least squares under this noise model, which is highly
relevant in practical applications. We also analyzed the fixed
design matrix setting. In this setting A is not random but
known in advance. We showed how we can apply our theorems
to this setting as well. We also point out that a special and
interesting case for the random design matrix that is supported
by our setting is when the columns are independent and
E
(
a2i
)

= σi and E (aiaj) = 0 for j 6= i. This will result
in M = diag {σ1, . . . , σp}. Our results are valid in this case
as well.
A few research problems related to this paper remain open.
The first is the generalization to regularized linear least squares
and the second is tightening the bounds. We also believe that
the sub-Gaussian parameter can be replaced by bounds on
a few moments of the distribution and can relax the bounds.
Another interesting research direction is tightening the bounds,
through better estimates on the tail of the distribution of
eigenvalues of random matrices. These important problems are
left for further study.

VII. APPENDIX A

In this section we prove lemma III.2.

Proof. For the least squares problem we have

JN0 (θ,x) = (x−Aθ)
T

(x−Aθ) . (94)

The minimum of this function is

θ̂N0 =

(
1

N

(
N∑
n=1

ana
T
n

))−1
1

N

N∑
n=1

aTnxn. (95)

Denoting C .
= 1

N

(
ATA

)
= 1

N

(
N∑
n=1

ana
T
n

)
we obtain

∣∣∣(θ̂N0 − θ0)
i

∣∣∣ =

(
C−1 1

N

N∑
n=1

aTnvn

)
i

≤ λ̃ (A) 1
N

N∑
n=1

anivn

(96)

The last inequality is true as C is Hermitian.
Therefore,

P
((
θ̂N0 − θ0

)
i
> r
)

≤ P

(∣∣∣∣∣λ̃ (A) 1
N

N∑
n=1

anivn

∣∣∣∣∣ > r

)

≤ P

(∣∣∣∣∣ 1N
N∑
n=1

anivn

∣∣∣∣∣ > r
λ̃(A)

)
.

(97)

VIII. APPENDIX B

In this section we prove lemma III.3.

Proof. We want to bound the term

P
(
λmax

((
1
NA

TA
)−1) ≥ 2

σmin

)
= P

(
1

λmin( 1
NATA)

≥ 2
σmin

)
= P

(
λmin

(
1
NA

TA
)
≤ σmin

2

)
.

(98)

Recall that M = E
(

1
NA

TA
)
. We have

P
(
λmin

1
NA

TA ≤ σmin
2

)
= P

(
−λmax

(
− 1
NA

TA
)
≤ σmin

2

)
= P

(
λmax

(
− 1
NA

TA
)
≥ −σmin2

)
= P

(
λmax

(
− 1
NA

TA
)

+ λmin (M) ≥ σmin − σmin
2

)
= P

(
λmax

(
− 1
NA

TA+ λmin (M)
)
≥ σmin

2

)
≤ P

(
λmax

(
M − 1

NA
TA
)
≥ σmin

2

)
= P

(
λmax

(
N∑
n=1

1

N

(
M − anaTn

))
≥ σmin

2

)
,

(99)
where the last inequality follows from Weyl’s inequality

[57]. Since E
(

1
N

(
ana

T
n −M

))
= 0 and since M is positive

definite we have σmin
2 ≥ 0 we can employ Bernstein’s

inequality for matrices [58]. In order to use Bernstein’s
inequality we need to calculate the terms λmax (Bn) and∥∥∥∥∥E
(

N∑
n=1

B2
n

)∥∥∥∥∥ where Bn
.
= 1

N

(
M − anaTn

)
. We follow

the guidelines in [46], [47] to do so.

‖Bn‖ ≤ 1
N

(∥∥anaTn∥∥+ σmax
)

≤ 1
N

(
‖an‖22 + σmax

)
≤ 1

N

(
α2p+ σmax

)
= α2p+σmax

N .

(100)

We now compute
∥∥E (B2

n

)∥∥.

B2
n =

1

N2

((
ana

T
n

)2 − 2ana
T
nM +M2

)
. (101)

Since E
(
ana

T
n

)
= M we get

E
(
B2
n

)
=

1

N2

(
E
(
ana

T
n

)2 −M2
)
. (102)

Calculating the norm of the first term gives∥∥∥E (anaTn)2∥∥∥ = ‖an‖22
∥∥E (anaTn)∥∥

≤ pα2
∥∥E (anaTn)∥∥ = pα2σmax.

(103)
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Therefore, ∥∥E (B2
n

)∥∥ ≤ pα2σmax + σ2
max

N2
. (104)

Using this we obtain∥∥∥∥∥
N∑
n=1

E
(
B2
n

)∥∥∥∥∥ ≤ pα2σmax + σ2
max

N
. (105)

Now we can use the matrix Bernstein inequality [58] to
obtain

P

(
λmax

(
N∑
n=1

(
−anaTn +M

))
≥ σmin

2

)
≤ p exp

(
−

σ2min
8

pα2σmax+σ2max
N + pα2+σmax

3N

σmin
2

)
≤ p exp

(
− 3

4
Nσ2

min

(6σmax+σmin)(pα2+σmax)

)
.

(106)

Choosing

N ≥ 4

3

(6σmax + σmin)
(
pα2 + σmax

)
σ2
min

log
( p
ε′

)
.
= Nrand (ε′)

(107)
finishes the proof.

IX. APPENDIX C

Proof. In this section we prove theorem III.6. In order to prove
the result we examine each coordinate separately once more.
In order to bound the term

P
(∣∣∣θ̂N0 − θ0∣∣∣

i
> r
)

(108)

we use lemma III.2 and analyze the term

P

(∣∣∣∣∣ 1

N

N∑
n=1

anivn

∣∣∣∣∣ > r

λ̃ (A)

)
. (109)

We start by defining the set of events

Erand
.
=

{
x : λ̃ (A) ≥ 2

σmin

}
. (110)

We want to study the number of samples required to achieve
that P (x ∈ Erand) ≤ ε

3 . In order to do so we use lemma III.3
with parameter ε′ = ε

3 to find that ∀N > Nrand (ε)

P (x ∈ Erand) = P

(
λ̃ (A) ≥ 2

σmin

)
≤ ε

3
. (111)

We now assume that x /∈ Erand. The next part of the proof
is to study the probability that given 1 ≤ i ≤ p, x belongs to
the set

E2 (i) =

{
x :

∣∣∣∣∣ 1

N

N∑
n=1

anivn

∣∣∣∣∣ > rσmin
2

}
. (112)

Since P (|ani| ≤ α) = 1 ∀n, i by assumption A1 and
P (|vn| ≤ b) = 1 ∀n by assumption A5, we have

P (|anivn| ≤ αb) = 1. Now we can use Hoeffding’s inequality
[48] to bound the large deviation probability.

P (x ∈ E2 (i) ∧ x /∈ Erand)

= P

(∣∣∣∣∣ 1N
N∑
n=1

anivn

∣∣∣∣∣ > rσmin
2

)
=

= P

(∣∣∣∣∣
N∑
n=1

anivn

∣∣∣∣∣ > Nrσmin
2

)
≤ 2 exp

(
− 2N2r2σ2

min

4Nα2b2

)
= 2 exp

(
−Nr

2σ2
min

2α2b2

)
(113)

Choosing N > 2α2b2

r2σ2
min

log
(
3p
ε

)
= N1 (r, ε) ensures that ∀1 ≤

i ≤ p

P (x ∈ E2 (i) ∧ x /∈ Erand) =

P

(∣∣∣∣∣ 1

N

N∑
n=1

anivn

∣∣∣∣∣ > rσmin
2

)
≤ 2ε

3p
. (114)

Next, we use the union bound to bound the probability that x
is in any of the sets E2 (i). Define

E2 ∩ ECrand
.
=

{x : ∃1 ≤ i ≤ p such that x ∈ E2 (i) ∧ x /∈ Erand} . (115)

Using the union bound over the elements of the error vector
we obtain

P
(
x ∈ E2 ∩ ECrand

)
≤

p∑
i=1

P (x ∈ E2 (i) ∧ x /∈ Erand) ≤
2ε

3
. (116)

Using the union bound once more we achieve ∀N > N (r, ε)

P
(
x ∈

(
E2 ∩ ECrand

)
∪ Erand

)
≤

P
(
x ∈ E2 ∩ ECrand

)
+ P (x ∈ ∪Erand) ≤

2ε

3
+
ε

3
= ε.

(117)

This ensures that ∀N > B (r, ε)

P
(∥∥∥θ̂N0 − θ0∥∥∥∞ > r

)
≤ ε (118)

and finishes the proof.
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