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Determination of feeding rate ratio in coupled fed-batch

fermentation with pH feedback considering limited number of

switches

Chihua Chena, Juan Wang∗a, Feiyan Zhaoa and Jichao Wanga

aCollege of Science, China University of Petroleum, Qingdao 266580, Shandong, China

Abstract. This paper focuses on binary optimal control of fed-batch fermentation of

glycerol by Klebsiella pneumoniae with pH feedback considering limited number of switches.

To maximize the concentration of 1,3-propanediol at terminal time, we propose a binary op-

timal control problem subjected to time-coupled combinatorial constraint with the ratio of

feeding rate of glycerol to that of NaOH as control variables. Based on time-scaling trans-

formation and discretization, the binary optimal control problem is first transformed into a

mixed binary parameter optimization problem consisting not only continuous variables but

also binary variables, which is then divided into two subproblems via combinatorial integral

approximation decomposition. Finally, a novel fruit fly optimizer with modified sine cosine al-

gorithm and adaptive maximum dwell rounding are applied to solve the obtained subproblems

numerically. Numerical results show the rationality and feasibility of the proposed method.

Key Words. Binary control; Fed-batch fermentation; Combinatorial integral

approximation; Fruit fly optimization algorithm; Mixed binary optimization.

1 Introduction.

1,3-propanediol (1,3-PD), as an important chemical material, which has a wide range of

potential uses in manufacture of polymers, cosmetics, food and lubricants can be produced

by glycerol bioconversion by Klebsiella pneumoniae [1]. In this bioconversion process, fed-

batch culture technology is a widely researched technique that offers distinct advantages over

other modes of operation of bioreactors [2]. The fed-batch of bioconversion glycerol to 1,3-PD

begins with the cells being grown under the batch culture for some time, then fed process and

batch process are carried out alternately according to the given feeding sequence [3] or pH

feedback [4].

∗Corresponding author: wangj@upc.edu.cn.
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In recent decades, optimal control of glycerol bioconversion to 1,3-PD based on fed-batch

fermentation process has been a widely investigated problem. Ye et al. took the feeding

instants and the terminal time as decision variables to design an optimal control strategy [5].

Gong et al. proposed a switched system with variable switching instants to maximize the

concentration of 1,3-PD at terminal time [6]. However, the demand for glycerol is considered

as constant in these papers which is obviously unreasonable since the demand for glycerol

maybe vary at different fermentation stages. Taking this into account, Liu et al. proposed

an open-loop switching system in which the feed rate of glycerol was the control function

to maximize the concentration of 1,3-PD at terminal time [3]. Yuan et al. took the feeding

rates of glycerol and alkali as continuous control inputs to construct an optimal minimal

variation control problem[7]. Gao et al. proposed a nonlinear impulsive dynamical system

with continuous variable impulsive instants and volumes of feeding glycerol and alkali [8]. Niu

et al. proposed an optimal model with the feeding rates of glycerol and alkali, the switching

instants and the mode sequence as control variables to maximize the concentration of the

terminal time 1,3-PD [9]. However, such continuous control inputs are difficult to achieve in

practical problem. In the present work, we shall take the ratio of the feeding rate of glycerol

to that of NaOH as discrete control input which is then transformed into a binary control

input via outer convexification. A hybrid system with binary control input and pH feedback

is established on the basis of our previous work [10].

In practice, it is of great significance to reduce the cost of frequent switching in industry

since the frequent switching may bring great damage to the machine. Thus, some papers have

modelled and handled the constraint of switching cost through different methods. In [11], the

Euclidean distance between the decision variables of two solutions is defined as the switching

cost which is taken as one of the performance indicators to add to the dynamic optimization

problem. In [12, 13], a total variation term that measures the switching cost is added to the

objective function with a weighting factor. In this paper, for a given maximum number of

switches, the switching cost which is defined as the number of switches by total variation can

be added to the model in the form of inequality constraint. Then, a binary optimal control

problem with constrained total variation is proposed.

To find a solution to binary optimal control problem, in addition to some traditional

methods, such as dynamic programming [14, 15] and the methods based on global maximum

principle [16, 17], many other excellent methods have been proposed in recent years. Hahn et

al. proposed a trust-region steepest descent method to solve binary optimal control problems

by iteratively improving on existing solutions [18]. Wu et al. transformed the binary optimal

control problem into an equivalent two-level optimization problem involving a combination

of a standard optimal control problem and a discrete optimization problem which could be

solved by a developed discrete filled function method [19]. Sager et al. proposed a widely-

used method, i.e., relaxation first, then discrete and optimize, and finally find the approximate

integer solution by the rounding strategy [20]. However, due to the time-coupled combinatorial

2



constraint, the Sum-Up Rounding (SUR) heuristic which is a common strategy to get the

approximate integer solution will be not applicable. In this work, the combinatorial integral

approximation (CIA) decomposition proposed in [21] shall be used to solve the binary optimal

control problem.

This paper focuses on the optimal control of the ratio of feeding rate during fed-batch

culture with pH feedback through solving a binary optimal control problem with constrained

total variation. Using the time-scaling transformation and discretization technique, a mixed

binary optimization problem is obtained. By introducing the CIA decomposition, this problem

can be decomposed into a continuous nonlinear program which can be solved easily by the

proposed fruit fly optimizer with modified sine cosine algorithm (MSCA-FOA) and an mixed

binary linear program (MBLP). Then, base on the relaxed solution of continuous nonlinear

program, the MBLP can be solved by adaptive maximum dwell rounding proposed in [21].

Numerical results show the feasibility of optimal strategy and the validity and applicability

of the proposed numerical algorithm.

The main contributions of this paper are:

• We propose an optimal control problem considering the limited number of switches

which is expressed by the total variation in the inequality constraint.

• The optimal control problem is finally transformed into two tractable subproblems by

time-scaling transformation, discretization and CIA decomposition.

• A novel fruit fly optimizer with the modified sine cosine algorithm is proposed to balance

convergence speed and global convergence.

This paper is organized as follows. In Section 2, the mathematical model of the fed-

batch culture with pH feedback is introduced, and the binary optimal control problem with

constrained total variation is proposed based on this model. In Section 3, time-scaling trans-

formation, discretization and CIA decomposition are applied to convert the problem into two

subproblems. Section 4 devotes to solving two subproblems numerically using the MSCA-

FOA and AMDR, while Section 5 illustrates the numerical results. Conclusions are made in

Section 6.

2 Problem formulation

2.1 The nonlinear binary hybrid system

In this work, we consider a fed-batch conversion process of glycerol to 1,3-PD by Kleb-

siella pneumoniae based on our previous work [10], which proposed a nonlinear hybrid sys-

tem to formulate the coupled fed-batch culture with pH feedback. In this process, if the

pH drops below the lower critical concentration pH∗, the fed process is active, while the
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pH of the solution rises above upper critical concentration pH∗, the fed process stops and

batch process is active. Let T := [t0, tf ] be the entire fermentation time. Let X := R
7
+ and

Σ := {0, 1} be the continuous state space and the set of discrete states, respectively. Let

x(t) := (x1(t), · · · , x7(t))
⊤ ∈ X , t ∈ T be the continuous state vector, in which the compo-

nents represent the concentrations of biomass, glycerol, 1,3-PD at t in the reactor, the total

concentration of acetic acid at t, the concentration of ethanol at t in reactor, the concentration

of Na+ ions coming from the added NaOH and the volume of the solution at t, respectively;

σ(t) ∈ Σ, ∀t is the discrete state, i.e., 0 represents batch process and 1 represents fed process.

Let In be the set {1, 2, · · · , n} where n is a natural number.

According to the experimental process, we assume that

(H1) The concentrations of reactants are uniform in reactor, while time delay and nonuniform

space distribution are ignored.

(H2) The feeding media includes fixed concentrations of glycerol and alkali.

Under the assumptions (H1)-(H2), according to [10], the nonlinear hybrid system can be

described as




ẋ(t) = f
σ(t)(x(t), r(t)), x ∈ X\∆, t ∈ T ,

x(t+) = x(t−), σ(t+) = (σ(t−) + 1) mod 2, t ∈ Λ,

x(t0) = x
0, σ(t0) = 0,

(2.1)

where x0 denotes the initial state, ∆ denotes the set of all switching points, Λ denotes the

set of all switching instants, r(t) denotes the ratio of the feeding rate of glycerol to that of

NaOH which takes the given values r1, · · · , rnω . Let Ω := {r1, · · · , rnω}.

The right hand side of system (2.1) is of the form fσ(x, r) = (fσ1 (x, r), · · · , f
σ
7 (x, r))

⊤ with

the components defined as




fσ1 (x, r) = (µ− d)x1 −
(1 + r)v0σ

x7
x1,

fσ2 (x, r) = −q2x1 +
rv0σ

x7
(Cs0 − x2)−

v0σ

x7
x2,

fσ3 (x, r) = q3x1 −
(1 + r)v0σ

x7
x3,

fσ4 (x, r) = q4x1 −
(1 + r)v0σ

x7
x4,

fσ5 (x, r) = q5x1 −
(1 + r)v0σ

x7
x5,

fσ6 (x, r) = −
rv0σ

x7
x6 +

v0σ

x7
(̺− x6),

fσ7 (x, r) = (1 + r)v0σ,

(2.2)

where d denotes the specific decay rate of cells, given in [10], as listed in Table 1, v0 is the

feeding rate of NaOH(L/h), Cs0(mmol/L) and ̺(mmol/L) are the concentrations of glycerol
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and NaOH in feed medium, respectively; the specific growth rate of cells µ, specific consump-

tion rate of substrate q2 and specific formation rate of products qi, i=3,4,5, are expressed by

the following equations according to [4, 22].

µ =





µm
x2

x2 +Ks

5∏

i=1

(
1−

xi

x∗i

)
, if xi ∈ [0, x∗i ], i ∈ I5,

0, otherwise,

(2.3)

q2 = m2 +
µ

Y2
+∆q2

x2

x2 +K∗
2

, (2.4)

qi = mi + µYi +∆qi
x2

x2 +K∗
i

, i = 3, 4, 5. (2.5)

Here, mi, Yi, ∆qi and K∗
i , i=2, 3, 4, 5, are kinetic parameters. µm is the maximum specific

growth rate and Ks is a Monod saturation constant, with values given in [10], as listed in

Table 1. x∗i , i=1, 2, 3, 4, 5, are the critical concentrations of biomass, glycerol, 1,3-PD, acetic

acid and ethanol for cell growth, respectively, with values given in [23] ,as listed in Table 1.

Let x∗6 and x∗7 be the critical concentration of Na+ ions coming from the added NaOH and

critical volume of the solution, respectively, as listed in Table 1. Let Xad be the admissible

set of the continuous state x, defined by

Xad :=
{
x(·) | x(t) ∈

7∏

i=1

[0, x∗i ], ∀ t ∈ T
}
.

Table 1: The critical concentrations and the parameters in (2.2)-(2.5).

d µm Ks m2 m3 m4 m5

0.079567 0.69586 0.252 0.9831 −2.1234 −0.0011 −0.2368

Y2 Y3 Y4 Y5 ∆q2 ∆q3 ∆q4

0.017644 90.2345 18.0174 20.1092 13.0139 7.1623 0.110352

∆q5 K∗
2 K∗

3 K∗
4 K∗

5 x∗1 x∗2

0.0602197 195.592 220.7931 78.9423 92.3576 10 2039

x∗3 x∗4 x∗5 x∗6 x∗7

1300 1026 360.9 1026 10

Remark 1 In nature, system (2.1) is a bimodal system, i.e., the fed process is active when

σ = 1 and the batch process is active when σ = 0.

According to [4], since we only discuss the fermentation under acidic environment and the

added NaOH is the only basic source, we assume that

(H3) During the whole process of fed-batch culture, there exists a constant M > 0 such that

x4 − γx6 ≥ M , where γ > 0 is the ratio of acetic acid concentration to the total acid

byproducts concentrations.
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(H4) During the whole process of fed-batch culture, there exists a constant ǫ0 ≥ ǫ > 0 such

that x6 > ǫ0.

Then, according to [4] the output equation for the pH of the solution is be given as

y(x) := −lg(Ka)− lg
x4 − γx6

γx6
, (2.6)

where Ka denotes the averaged dissociation constant of acid byproducts, γ denotes the ratio

of acetic acid concentration to the total acid byproducts concentrations.

The following two inequalities must hold during the entire fermentation process to ensure

that the pH is restricted in its admissible range.

h0(x(t)) := pH∗ − y(x(t)) ≥ 0,

h1(x(t)) := y(x(t))− pH∗ ≥ 0,

}
t ∈ T . (2.7)

Then, the set of all switching points and the set of all switching instants can be defined as

∆ := {x ∈ X |h0(x) = 0 or h1(x) = 0} and Λ := {t ∈ T |x ∈ ∆}, respectively.

According to [24], we shall apply outer convexification to reformulate the non-convex

system by introducing a binary function ωi(·) for every element ri of Ω. Let

r(t) =

nω∑

i=1

ωi(t)ri, (2.8)

where

nω∑

i=1

ωi(t) = 1, ω(t) ∈ {0, 1}nω , ∀ t ∈ T . (2.9)

The discrete-valued control system (2.1) can be equivalently transformed into the following

binary control system.





ẋ(t) =
nω∑
i=1

f
σ(t)(x(t), ri)ωi(t), x ∈ X\∆, t ∈ T

x(t+) = x(t−), σ(t+) = (σ(t−) + 1) mod 2, t ∈ Λ,

x(t0) = x
0, σ(t0) = 0,

(2.10)

Based on the function fσ, σ ∈ Σ, defined in (2.2), it is similar to [4] that the following

property can be easily verified.

Property 1 Under the assumptions (H1)-(H4), for a fixed x0 ∈ X and a given ω(·) ∈

{0, 1}nω , the system (2.10) has a unique solution, denoted by x(·;ω).
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2.2 The nonlinear binary optimal control problem

This paper aims to maximize the concentration of 1,3-PD at terminal time of fermentation

under a limited number of switches, which means increasing the output while reducing the

switching cost. According to [21], the switching cost can be expressed as total variation as

follows

v(ω) := sup
P∈P




1

2

∑

i∈Inω

∑

j∈InP

|ωi(τj)− ωi(τj−1)|



 , (2.11)

where P = (τ0, · · · , τj−1, τj , · · · , τnP
) with τnP

= tf is a partition out of the set of all partitions

P of the interval T and nP denotes the partition specific number of time points.

Remark 2 ω(·) is a binary function that satisfies ωi ∈ {0, 1}, then the switching cost (2.11)

actually represents the total number of switches.

According to [21], in practice, the total number of switches should be limited so that the

inequality constraint so called time-coupled combinatorial constraint can be written as

v(ω) <= ρmax, (2.12)

where ρmax denotes maximum number of switches.

Meanwhile, we take the opposite number of the concentration of 1,3-PD at terminal time

as the objective function:

J(ω) = −x3(tf ;ω). (2.13)

Based on the above discussion, let Wad be the admissible set of binary control ω, defined

by

Wad :=
{
ω(·) | ω(t) satisfies (2.9) and (2.12), ∀ t ∈ T

}
,

Problem (P1) can be defined formally below.

Problem (P1). Given the hybrid system (2.10), choose a binary control ω(·) ∈ Wad such

that the function J(ω) is minimized subjected to state constraint x(·) ∈ Xad.

In Problem (P1), the continuous state inequality constraint x(·) ∈ Xad and the combi-

nation constraint of control ω(·) ∈ Wad, i.e., convex combination constraint (2.9) and time-

coupled combinatorial constraint (2.12), cannot be solved by the standard approaches to

solving optimal control problem. In the following sections, we shall discuss how to handle this

issue.

Remark 3 We define the switching sequence and switching instants as the order of the val-

ues of ω(·) along the time and the instants at which it switches from one value to another,

respectively. The switching sequence and switching instants of ω(·) are all decision variables

to be optimized.
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3 Problem transformation

Problem (P1) is a binary optimal control problem with point-to-point constraint on state

trajectory and combinatorial constraints on control input which can be solved effectively by

the combinatorial integral approximation (CIA) decomposition proposed in [21]. Time-scaling

transformation and discretization shall be utilized before CIA decomposition as described in

the following subsections.

3.1 Time-scaling transformation and Discretization

Divide the entire fermentation time interval T into np subintervals T j := [τj−1, τj) with

np + 1 partition points denoted by t0 = τ0 < τ1 < · · · < τnp = tf , where τi, i = 1, · · · , np−1

are the switching instants to be optimized.

A time-scaling transformation method [7, 25, 26] shall be applied to fix these switching

instants by introducing a transform which maps from τ ∈ [t0, tf ] into s ∈ [0, np] given by

dt(s)

ds
= h(s), t(0) = 0, (3.1)

where h(s) is given by

h(s) =

np∑

j=1

θjχ(j−1,j](s), (3.2)

with θj = τj − τj−1, and the characteristic function χS : R → {0, 1} defined by

χS(s) =




1, if s ∈ S,

0, otherwise.

Let θ be the vector whose components are θj , j ∈ Inp , and Θ be the set of all such θ which

satisfy θj ≥ 0 and
np∑
j=1

θj = tf − t0. It is easy to see that, for s ∈ (j − 1, j],

t(s) =

∫ s

0
h(ζ)dζ =

j−1∑

k=1

θk + θk(s− j + 1). (3.3)

Let Λ′ be the set of all switching instants controlled by pH feedback in the new horizon. Let
˙̃x(s) := x(t(s)) and ω̃(s) := ω(t(s)), in new time horizon, hybrid system (2.10) becomes





˙̃x(s) = h(s|θ)
nω∑
i=1

ω̃(s)f σ̃(s)(x̃(s), ri), s ∈ [0, np]\Λ
′

x̃(s+) = x̃(s−), σ̃(s+) = (σ̃(s−) + 1) mod 2, s ∈ Λ′,

x̃(0) = x
0, σ̃(0) = 0,

(3.4)
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where ω̃(s) also satisfies convex combination constraint

nω∑

i=1

ω̃i(s) = 1, ω̃(s) ∈ {0, 1}nω , s ∈ [0, np]. (3.5)

The total variation (2.11) becomes

ṽ(ω̃) :=
1

2

∑

i∈Inω

∑

j∈Inp

|ω̃i(j)− ω̃i(j − 1)|, (3.6)

and inequality constraint (2.12) can be expressed as

ṽ(ω̃) <= ρmax. (3.7)

Similarly, let W̃ad denote the admissible set of binary control ω̃, defined by

W̃ad :=
{
ω̃(·) | ω̃(s) satisfies (3.5) and (3.7), ∀ s ∈ [0, np]

}
,

By the above time-scaling transformation, Problem (P1) with free switching instants is

transformed into a new problem with fixed switching instants.

Problem (P2) Given hybrid system (3.4), choose a θ ∈ Θ and a binary control ω̃ ∈ W̃ad

such that the cost function

J̃(θ, ω̃) = −x̃3(np; θ, ω̃) (3.8)

is minimized subjected to state constraint x̃ ∈ Xad.

Based on the time grid adopted in time-scaling transformation, the binary control ω̃(s) is

now approximated in the form of a piecewise constant function

ω̃(s) ≈ ωp(s|η) =

np∑

j=1

ηjχT j (s), s ∈ [0, np], (3.9)

where ηj , j = 1, · · · , np are the decision variables, satisfying ηj ∈ {0, 1}nω and
nω∑
i

η
j
i = 1.

Define η :=
{
η11, · · · , η

1
nω
, · · · , η

np

1 , · · · , η
np
nω

}⊤
and let Ω′ be the set of all such η.

Now the total variation can be rewritten as

vp(η) :=
1

2

∑

i∈Inω

∑

i∈Inp

|ηji − η
j−1
i |, (3.10)

which satisfies

vp(η) <= ρmax. (3.11)

The objective function can be reformulated as

Jp(θ, η) = −xp3(np; θ, η). (3.12)
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Based on the above discretization, the approximate problem of Problem (P2) is given

below.

Problem (P3) min
θ,η

Jp(θ, η)

s.t.





ẋ
p(s) = h(s|θ)

nω∑
i=1

np∑
j=1

η
j
iχT j (s)fσ

p(s)(xp(s), ri), s ∈ [0, np]\Λ
′,

x
p(s+) = x

p(s−), σp(s+) = (σp(s−) + 1) mod 2, s ∈ Λ′,

x
p(0) = x

0, σp(0) = 0,

0 ≤ x
p
i (s) ≤ x∗i , i ∈ I7, s ∈ [0, np],

nω∑
i=1

η
j
i = 1, ηji ∈ {0, 1} , θj ≥ 0,

np∑
j=1

θj = tf − t0, i ∈ Inω , j ∈ Inp ,

vp(η) <= ρmax.

Finally, we can get a large-scale dynamic parameter optimization problem with (nω +

1)× np decision variables. Once we have obtained the approximate optimal solution (θ∗, η∗)

of Problem (P3), the switching sequence and switching instants in Problem (P1) can

be derived to determine the approximate optimal control strategy r∗(t). Considering the

difficulty of inequality constraint coupled with time in Problem (P3), we shall apply a

feasible decomposition technique to handle it.

3.2 Problem decomposition

According to the CIA decomposition proposed in [21], Problem (P3) can be decomposed

into two subproblems i.e., continuous nonlinear program and mixed binary linear program.

Based on the solution of the nonlinear continuous program subproblem, a mixed binary lin-

ear program subproblem will be solved to obtain the final approximate optimal solution of

Problem (P3).

The relaxation of ηj ∈ {0, 1}nω is given by η̄j ∈ [0, 1]nω . We now define the following three

sets:

Ω̄ ,

{
(θ, η̄) |

nω∑
i=1

η̄
j
i = 1, η̄ji ≥ 0,

np∑
j=1

θj = tf − t0, θj ≥ 0, i ∈ Inω , j ∈ Inp

}
,

X̄ , {x̄(·; θ, η̄) | x̄(·; θ, η̄) is a solution to the system proposed in Problem (P3) with

(θ, η̄) ∈ Ω̄
}
,

Ωad ,
{
(θ, η̄) ∈ Ω̄ | x̄(·; θ, η̄) ∈ X̄ and x̄(·; θ, η̄) ∈ Xad

}
.

Then Subproblem (A) can be expressed as follows:

Subproblem (A) min
θ,η̄

J̄(θ, η̄)

s.t. (θ, η̄) ∈ Ωad
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Note that the inequality constraint of switching cost is not considered in Subproblem

(A), which is the biggest difference from Problem (P3). Once we have obtained the solution

of Subproblem (A), we want to convert this solution to a new binary solution that satisfies

the inequality constraint through a certain technique, while the error between two solutions

need to be minimized. According to [21], based on the solution (θ∗, η̄∗) of Subproblem (A),

we shall convert the relaxed solution into the binary solution while considering the maximum

number of switches with a special rounding strategy by solving Subproblem (B), so called

the CIA problem. Subproblem (B) can be expressed as follows:

Subproblem (B) min
ρ,ψ,η

ψ

s.t.





ψ ≥ ±
∑
l∈Ij

(η̄∗li − ηli)∆l, i ∈ Inω , j ∈ Inp

ρmax ≥ 1
2

∑
i∈Inω

∑
j∈Inp

ρi,j ,

ρi,j ≥ ±(ηji − η
j−1
i ), i ∈ Inω , j ∈ Inp ,

nω∑
i=1

η
j
i = 1, ηji ∈ {0, 1}, i ∈ Inω , j ∈ Inp ,

where ∆l denotes the interval length of [τl−1, τl], ρi,j are auxiliary variables for introducing a

discretized version of the total variation constraint (3.10) and ψ is the approximation error.

According to [21], different from the general rounding problems, the rounding error does

not vanish in general with grid length going to zero, and we can easily get the following

property.

Property 2 Let 1 ≤ ρmax ≤ np − 2 and nω > 2. We obtain for the maximum optimal

objective value ψmax of Subproblem (B)(CIA):

ψmax ≥





(tf − t0)

ρmax + 2
, if ρmax ≤ nω − 2,

(tf − t0)

2ρmax + 4− nω
, else.

Property 2 shows the lower bound of the maximum integer approximation error which

indicates the importance of designing an appropriate algorithm for rounding. Subproblem

(A) is a large-scale parameter optimization problem which is devoted to obtaining the relaxed

solution without considering the inequality constraint of switching cost, while Subproblem

(B) focuses on obtaining an approximate integer solution that satisfies the switching cost

inequality constraint. In the next section, an efficient and feasible evolutionary algorithm will

be introduced to solve Subproblem (A), and a rounding strategy proposed in [21] shall be

used to minimize the integer approximation error in Subproblem (B) with an appropriate

integer solution.

11



4 Numerical method

In this section, we shall construct a new fruit fly algorithm (FOA) based on the modified

sine cosine algorithm (MSCA) proposed in [27], so called MSCA-FOA, to solve Subprob-

lem (A), and an adaptive maximum dwell rounding (AMDR) algorithm proposed in [21] is

introduced to solve Subproblem (B).

4.1 The proposed MSCA-FOA

FOA is a new method for finding global optimization based on the food hunting behavior

of fruit fly which is an insect that exists widely in temperate and tropical climate zones and is

superior to other species in osphresis and vision [28]. During hunting for food, fruit flies exploit

the sense of smell to come near to the food source, and exchange odor information with other

fruit flies. Then, fruit flies fly towards the fruit fly with the highest odor concentration using

its sensitive vision. After several rounds of searching, fruit flies will eventually determine

the specific location of the food source. Considering its briefness in calculation process,

simplicity in structure, and efficiency in performance, FOA has been applied to handle many

practical optimization problems [29, 30]. However, the original FOA usually converges to

local optimum, and especially, in the face of high-dimensional problems [31, 32].

To deal with this problem, the sine cosine strategy is combined into the FOA in [32].

The sine cosine algorithm (SCA) is an effective algorithm proposed by Mirjalili [33] in 2016

and has been widely applied to solve practical problems. It creates multiple initial random

candidate solutions and requires them to fluctuate outwards or towards the best solution using

a mathematical model based on sine and cosine functions.

Although the FOA combined with SCA possesses high performance, the search path of

the SCA is nonlinear due to the absolute value term and the trigonometric function term in

the position updating equations, which lead to the difficulty that can not limit the search

direction of the algorithm. In this paper, a modified SCA proposed in [27] which can improve

the efficiency and the accuracy of the search through introducing the linear search path

and empirical parameter shall be combined into the original FOA i.e., MSCA-FOA to solve

Subproblem (A).

In the proposed MSCA-FOA, the initial positions are generated by the original FOA. After

a round of search, the position and smell concentration of the obtained optimal individual will

be used as the initial information for the iterative search. In the iteration step, the formula

of position updating of the original SCA-FOA is given below according to [32].

ξi,j(k + 1) =




ξi,j(k) +R1 × sinR2 × |R3ξ

p
i,j(k)− ξi,j(k)|, R4 < 0.5,

ξi,j(k) +R1 × cosR2 × |R3ξ
p
i,j(k)− ξi,j(k)|, R4 ≥ 0.5,

ξ = X,Y, (4.1)

where ξi,j(k), ξ
p
i,j(k) denotes the position of the current solution and the historical best solution

12



in ith individual and jth dimension at kth iteration, respectively. Note that two independent

positions Xi,j(k) and Yi,j(k) shall be generated by (4.1) according to the principle of FOA.

In SCA-FOA proposed in [32], R2, R3 and R4 are uniformly distributed random numbers in

the range of [0, 2π], [0, 2] and [0, 1], respectively. R1 is defined by the following formula

R1 = a− k ×
a

kmax
, (4.2)

where a is constant, k is the number of current iterations, kmax is the maximum number of

iterations.

The main difference between our algorithm and SCA-FOA is the updata formula, including

the search path and empirical parameter. Using the update formula (4.1), the search path

will fluctuate outwards or towards the best solution, rather than go directly towards the best

solution, which may make the algorithm fall into the local optimal when solving large-scale

problem. The linear search path and empirical parameter are introduced to get rid of the

local optimum and improve the searching speed in [27]. Based on this idea, we formulate the

position updating in MSCA-FOA as

ξi,j(k + 1) =





R1
′ξi,j(k) + c1 × sinR2 × (ξpi,j(k)− ξi,j(k))

+ c2 × sinR2 × (ξei,j(k)− ξi,j(k)), R4 < 0.5,

R1
′ξi,j(k) + c1 × cosR2 × (ξpi,j(k)− ξi,j(k))

+ c2 × cosR2 × (ξei,j(k)− ξi,j(k)), R4 ≥ 0.5,

ξ = X,Y, (4.3)

where ξei,j(k) is the empirical parameter in ith individual and jth dimension at kth iteration.

Different from [27], in (4.3), ξei,j(k) is determined by group optimal solution of last iteration

instead of randomly selecting from all previous iterations, which can save a mass of storage

space. Note that although term ξei,j(k) can help algorithm get rid of the local optimum better,

the convergence speed may be reduced. In practice, to balance the globality and convergence

speed, we can randomly replace several dimensions of ξe with the corresponding dimensions

of historical best ξp. c1, c2 are constants which are determined based on specific problems.

R1
′ is convergence factor to balance prospection and development, defined as follows

R1
′ = Rmax − (Rmax −Rmin)

k

kmax
, (4.4)

where Rmax and Rmin are constants which can be adjusted according to specific problems.

After the position update, we will obtain two independent positions Xi(k) and Yi(k) of ith

individual at kth iteration and the smell concentration will be calculated as the fitness value,

and then the smell concentration judgment value of ith individual at kth iteration (Si(k)) is

calculated.

Si(k) =
1√

Xi(k)
2 + Yi(k)

2
. (4.5)

13



The smell concentration Smelli(k) of the individual position of the fruit fly can be found by

substituting Si(k) into smell concentration judgment function, i.e. the objective function J̄ .

Smelli(k) = J̄(Si(k)) = x̄(np;Si(k)). (4.6)

Note that the smaller the smell concentration, the better the individual. Based on the

smell concentration, the information used for iteration can be obtained. After a given round of

iterations, the algorithm will converge to the optimal solution, i.e. the individual with smallest

smell concentration. Algorithm 1 summaries the framework of the proposed MSCA-FOA.

4.2 AMDR

Suppose that we have obtained the solution of Subproblem (A) (θ∗, η̄∗), then we shall

apply AMDR algorithm given in [21] to get the solution η∗ of Subproblem (B). According

to [21], AMDR runs a maximum dwell rounding (MDR) algorithm iteratively which aims to

obtain a solution with the minimum number of switches under the condition of not exceed-

ing the maximum rounding error to get the integer solution. Similar to [21], more specific

procedures are divided as follows:

Step 1: Input relaxed control values η̄∗, optimum tolerance e > 0 and allowed number of

switches ρmax. Initialize the rounding threshold b = tf − t0, lower bound bl = 0 and upper

bound bu = tf − t0.

Step 2: Select a feasible control on the first time interval if bu − bl > e, otherwise go to

step 6. Run MDR if

(η̄∗1i0 − η1i0)∆1 ≥ −b, i0 ∈ Inω ,

and there is no other control i1 6= i0 that is

η̄∗1i1∆1 > b,

otherwise, update bl = b and b = bl + 0.5 · (bu − bl), then repeat step 2.

Step 3: Maximum Dwell Rounding. Initialize η = 0, η1i0 = 1 and i = i0. Set ηji = 1 on

other intervals if

j∑

l=1

(η̄∗li − ηli)∆l < −b,

or there is a control if 6= i that is

j∑

l=1

η̄∗lif∆l −

j−1∑

l=1

ηlif∆l ≤ b,
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Algorithm 1 Framework of MSCA-FOA. k is the generation number. J̄e and Se represent

the Smell concentration and the smell concentration judgment value of group optimal solution

of last iteration, respectively. J̄p and Sp represent the Smell concentration and the smell

concentration judgment value of historical best solution, respectively.

1: Set the total number of fruit flies in the swarm Nsize, the maximum number of iterations

kmax, the constants c1, c2, Rmax and Rmin. Set k = 1.

2: for i ≤ Nsize do

3: for j ≤ (nω + 1)× np do

4: Xaxis(1) = rand(−1, 1), Yaxis(1) = rand(−1, 1).

5: Xi,j(1) = Xaxis(1) + rand(−10, 10), Yi,j(1) = Yaxis(1) + rand(−10, 10).

6: j = j + 1.

7: end for

8: Calculate Si(1) and J̄(Si(1)) according to (4.5) and (4.6).

9: Sp = Se = Sm(1) = argmin
1≤i≤Nsize

J̄(Si(1)), X
p(1) = Xe(1) = Xm(1), Y

p(1) = Y e(1) =

Ym(1).

10: i = i+ 1.

11: end for

12: while k ≤ kmax do

13: /*the modified sine cosine strategy*/

14: for i ≤ Nsize do

15: Calcultate the convergence factor R1
′.

16: for j ≤ (nω + 1)× np do

17: Set the random numbers R2 and R4.

18: Update the individual information Xi,j(k) and Yi,j(k) using formula (4.1).

19: j = j + 1.

20: end for

21: Calculate Si(k + 1) and J̄(Si(k + 1)) according to (4.5) and (4.6).

22: i = i+ 1.

23: end for

24: Sm(k + 1) = argmin
1≤i≤Nsize

J̄(Si(k + 1)), Xe(k + 1) = Xm(k + 1), Y e(k + 1) = Ym(k + 1).

25: if J̄(Sm(k + 1)) ≤ J̄p then

26: J̄p = J̄(Sm(k+1)), Sp = Sm(k+1), Xp(k+1) = Xe(k+1), Y p(k+1) = Y e(k+1).

27: else

28: Xp(k + 1) = Xp(k), Y p(k + 1) = Y p(k).

29: end if

30: k := k + 1.

31: end while

32: Output
(
θ∗

η̄∗

)
= Sp.
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and i = argmin
k∈Inω

(
j∑
l=1

η̄∗li∆l −
j−1∑
l=1

ηli∆l). After MDR, we can get ηji on the whole interval,

denoted by ηMDR. Set η = ηMDR.

Step 4: If η satisfies (3.11) and
j∑
l=1

(η̄∗li − ηli)∆l < bu update ηAMDR = η, bu =
j∑
l=1

(η̄∗li −

ηli)∆l and b = bu − 0.5 · (bu − bl), then go to step 2.

Step 5: Get into the iterative optimization to duplicate steps 2-4. If bu− b1 ≤ e, then go

to step 6.

Step 6: Output η∗ = ηAMDR.

5 Numerical results

To obtain the numerical results, Subproblem (A) is solved by the proposed MSCA-

FOA, while Subproblem (B) is solved by AMDR proposed in [21]. Experimental data

and parameters in MSCA-FOA and AMDR are listed in Table 2. All the computations and

simulations are performed in Matlab R2020b under 6 cores R5 computational environment

with 3.30 GHz CPU.

Table 2: Experimental data and parameter values in MSCA-FOA and AMDR

Experimental data x
0 = (0.14, 430.4673913, 0, 0, 0, 0, 3)⊤, pH∗ = 6.48, pH∗ = 6.52,

t0 = 3 h, tf = 31 h, r1 = 0.3, r2 = 0.5, r3 = 0.8, r4 = 1.0,

r5 = 1.2, r6 = 1.5, r7 = 1.8, r8 = 2.1, r9 = 2.5,

v0 = 0.10, Cs0 = 12888, ̺ = 5000, d = 0.079567, γ = 0.338

MSCA-FOA c1 = 0.5, c2 = 0.5, Rmax = 0.8, Rmin = 0.3,

kmax = 30, Nsize = 180, (nω + 1)× np = 500

AMDR e = 0.001, ρmax = 35

Table 3: The approximate optimal switching sequence and optimal switching instants of r∗(t).

switching sequence: (r1, r2, r8, r1, r9, r3, r1, r2, r7, r1, r6, r7, r3, r5, r7, r9, r3, r8, r9, r1, r8,

r6, r3, r2, r8, r6, r3, r1, r9, r6, r7, r1, r6, r5, r6)
⊤.

switching instants: (3.0000, 7.6812, 7.7003, 8.0041, 8.7044, 8.8461, 9.3387, 9.4877, 9.5403,

9.5844, 9.8034, 9.8699, 9.9694, 10.3735, 10.5105, 10.6238, 10.9009, 11.4467, 11.5665,

13.2026, 13.4777, 13.5792, 15.2623, 16.7901, 21.6402, 23.5379, 24.1706, 24.2719, 24.5938,

24.6859, 24.7979, 26.0341, 26.2680, 26.9543, 27.2371, 27.9698)⊤.

By MSCA-FOA and AMDR, the approximate optimal solution (θ∗, η∗) of Problem (P3)

can be obtained, then the approximate optimal switching sequence and optimal switching

instants of r∗(t) can be constructed as listed in Table 3. We can see that the switching
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occurred only 35 times which can meet the total variation constraint while keeping the 1,3-

PD concentration at a high level.

With the progress of fermentation, it seems that high modes only appear in the metaphase

of fermentation, and medium modes always appear in the anaphase of fermentation. Especially

at the beginning of fermentation, the lowest mode lasted for quite a long time, about 5 hours.

We can give a reasonable explanation for this result from a biological point of view. In the

early stage of fermentation, the concentration of glycerol is still at a high level, and at this

time it is in the substrate inhibition stage, considering the needs of cell growth, the feeding

rate of glycerol should not be too high. As fermentation proceeds, the glycerol is continuously

consumed and the feeding rate of glycerol should be increased to provide sufficient reactant.

As fermentation proceeds further, the number of cells begins to decay and the amount of

glycerol consumed decreases. Therefore, the optimal control strategy will show the law as

shown in the result.

Fig. 1 and Fig. 2 shows the concentration of glycerol and 1,3-PD during the fed-batch

fermentation process under the optimal feeding strategy of glycerol, respectively. Compare

with the result 1025.3 mmol/L at terminal time 24.16 h in [3], it can be seen that the concen-

tration of 1,3-PD at terminal time is increased by 10.3% with the result 1131.1 mmol/L at

the same moment, which shows the rationality and feasibility of the obtained optimal strat-

egy to enhance the productivity of 1,3-PD. Fig. 3 shows that except at the beginning of the

fermentation, the pH is controlled within the acceptable region.

To further explore the influence of the given maximum number of switches on numerical

results, the approximate optimal strategy and the concentration of 1,3-PD under three dif-

ferent ρmax are drawn in Fig. 4. We can see that the concentration of 1,3-PD at terminal

time decreases gradually as ρmax increases, which indicates that the reduction of switching

cost is at the cost of reducing product concentration. Thus, in actual production, these two

indicators need to be considered comprehensively to get the maximum benefit.

To test the convergence of MSCA-FOA, the convergence speed of MSCA-FOA and SCA-

FOA are drawn in Fig. 5. We can see that MSCA-FOA converges around the 19th iteration,

while SCA-FOA converges around the 29th iteration with a nearly equal objective function

value. The stability (robustness to initial value) and accuracy of MSCA-FOA and SCA-FOA

are also compared under the same parameters. Besides, to gain empirical insight into the

influence of the swarm size on the performance of two algorithms, we set Nsize to four dif-

ferent values of 120, 150, 180, 210, respectively. Table 4 summarizes the mean values and

the standard deviations of the two algorithms with 10 independent runs under four different

Nsize. By comparing the mean values, it can be observed that MSCA-FOA can convergence

to a better objective function value. The standard deviation measures the stability of the

algorithm, which indicates that the convergence results of MSCA-FOA fluctuate less than

SCA-FOA in 10 independent runs. Another evaluation indicator running time is also given
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Figure 1: The curve of glycerol concentration with fermentation time under the approximate optimal
strategy r∗(t).
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Figure 2: The curve of 1,3-PD concentration with fermentation time under the approximate optimal
strategy r∗(t).
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Figure 3: Simulation of the pH during the whole process of fed-batch culture.

in Table 4, which shows that the running cost of two algorithms are approximately the same.

The comparison comes to the conclusion that the proposed MSCA-FOA has better perfor-

mance than SCA-FOA in terms of convergence speed, accuracy and stability, which verifies

the feasibility of the proposed MSCA-FOA in face of the large-scale parameter optimization

problem.

Table 4: The experimental results of MSCA-FOA and SCA-FOA.

Nsize Algorithm Mean SD Time (second)

120
SCA-FOA -1305.9 5.3277 2715.8645

MSCA-FOA -1320.4 0.4435 2704.1235

150
SCA-FOA -1311.4 3.0395 3366.9897

MSCA-FOA -1321.9 0.4726 3366.7073

180
SCA-FOA -1320.6 1.5127 4077.6961

MSCA-FOA -1321.8 0.6028 4121.1946

210
SCA-FOA -1321.2 0.8605 4771.5866

MSCA-FOA -1321.4 0.4272 4793.6620
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(a) ρmax = 20. (b) ρmax = 35.
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(c) ρmax = 50. (d) The concentration of 1,3-PD under different ρmax.

Figure 4: Numerical results under three different ρmax
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Figure 5: The convergence value of SCA-FOA and proposed MSCA-FOA.

6 Discussions and conclusions

In this paper, we considered limited number of switches to maximize the concentration

of 1,3-PD at terminal time via optimizing switching sequence and switching instants simul-

taneously under fed-batch conversion process coupled with pH feedback. To solve a binary

optimal control problem, a combinatorial integral approximation decomposition is introduced

to divide it into two subproblems which are a continuous nonlinear program and a mixed

binary linear program. We constructed a MSCA-FOA to solve the first subproblem, i.e. Sub-

problem (A). Compared with the original SCA-FOA, the proposed MSCA-FOA has higher

convergence speed and better convergence accuracy in solving Subproblem (A). Numerical

results indicate that the optimal strategy is feasible to improve the concentration of 1,3-PD

at terminal time within the given number of switches.

For future research, it will be of significant interest to research on the fed-batch fermenta-

tion process with glycerol and alkali added separately. Besides, a better way to handle with

state constraints will also be considered.
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