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Abstract. Control-flow attacks, usually achieved by exploiting a buibverflow
vulnerability, have been a serious threat to system sgdaritover fifteen years.
Researchers have answered the threat with various mitiga&tthniques, but nev-
ertheless, new exploits that successfully bypass thebadtmies still appear on
aregular basis.

In this paper, we propose ROPocop, a novel approach fortilegeand prevent-
ing the execution of injected code and for mitigating codese attacks such as
return-oriented programming (RoP). ROPocop uses dynaimérypinstrumenta-
tion, requiring neither access to source code nor debugaignb changes to the
operating system. It mitigates attacks by both monitorfrggrogram counter at
potentially dangerous points and by detecting suspicioogrpm flows.

We have implemented ROPocop for Windows x86 using PIN, amymprogram
instrumentation framework from Intel. Benchmarks using 8PEC CPU2006
suite show an average overhead of 2.4x, which is comparabgntilar ap-
proaches, which give weaker guarantees. Real-world agjgits show only an
initially noticeable input lag and no stutter. In our evadlaa our tool successfully
detected all 11 of the latest real-world code-reuse exqlwiith no false alarms.
Therefore, despite the overhead, it is a viable, temporaltien to secure criti-
cal systems against exploits if a vendor patch is not yetablai

1 Introduction

Attacks that aim at manipulating a program'’s control flovteafthrough a buffer over-
flow vulnerability, are still one of the biggest threats tétaare written in unsafe lan-
guages like C or C++[4]. If successfully exploited, contflolv attacks can allow an
adversary to execute arbitrary code. In the early 2000satipg-system developers
started adding mitigation techniques into their softwdi@this day, new techniques
are added on a regular basis, however, while they make sfotesd reliable ex-
ploitation much more difficult, they can be bypassed. Castédse, e.g., pwn2owri [14]
continuously show that current mitigation techniques asgifficient when it comes to
protecting applications, and that more comprehensive ogisthre required. Currently,
the most widely used attack technique, and an essentiabpuairtually every exploit,
is RoP [23], where instead of injecting new code an attaclksrgs together short code
fragments, which already exist in memory. Recently prodas#utions against such
attacks mostly built on CF[[22, 27, 28], seemed effectivé, iave been shown to be
bypassable 9, 13]. Sectidh 2 elaborates on these issuessiih d

To battle current exploitation mechanisms we propose ROP,o& novel tool that
mitigates control-flow attacks for x86 Windows binariesngstwo novel techniques,
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AntiCRA and DEP+. AntiCRA greatly reduces the risk of susfekscode-reuse at-
tacks by detecting an unusually high rate of successivednotibranches during the
execution of unusually short basic blocks. As differentgsaons can exhibit very dif-
ferent behaviour in regards to that aspect, using the sarashld for every program
is suboptimal. Therefore, ROPocop comes with a learninganatiich runs ahead of
time and determines appropriate thresholds, which can bpted by the user. How-
ever, we do also provide default thresholds which work veeyl w practice and for a
large selection of programs, as our evaluation shows.

Our second contribution, DEP+, implements a variant of a-executable stack
through dynamic binary instrumentation. DEP+ assumes ahiatode has to reside
within an image. This is very similar to DEPI[2], however, DEBannot be disabled
through API calls, thereby eliminating a large class of ekplthat are based on such
calls. DEP+ enforces all memory to be non-executable, éXoepghe parts to which
images are loaded. To this end, DEP+ monitors the loadinguat@hding of images,
checking after each indirect branch whether the programmtesyoints outside the
known images.

We have implemented ROPocop for Windows x86 using PIN [18kely-available
dynamic program instrumentation framework from Intel. RO6p requires no access
to source code or root privileges, nor debug symbols or obsitgthe operating sys-
tem. Measurements using the artificial SPEC CPU2006 suits ah average overhead
of 2.4x. More importantly, experiments on real-world apgations show only an ini-
tially noticeable input lag (caused by the initial dynanmistrumentation) and no stutter.
Our evaluation using 11 of the latest code-reuse exploitg/stithat our tool success-
fully prevents all code-injection attacks and code-reutscks from succeeding, even
a highly sophisticated attack that relies solely on codeea¢li7]. Our envisioned usage
of ROPocop is to use it as a last line of defense against dafitlm of critical systems,
e.g., when a severe vulnerability has been discovered bpatoh is available.

To summarize, this work makes the following original camtitions:

— AntiCRA, a tunable heuristic detection of code-reuseekttdike RoP and JoP,

— DEP+, a comparatively fast and robust implementation ofraexecutable stack,

— ROPocop, a dynamic instrumentation tool based on PIN whiteais various

kinds of control-flow attacks using the above techniqued, an

— an empirical evaluation showing that ROPocop’s mitigaapproach is highly ef-

fective and shows tolerable runtime overheads.

We make ROPocop available online as open source, along ithreexperimental
datahttps://sites.google.com/site/ropocopresearch/

2 Current Situation

Exploiting vulnerabilities with the goal to manipulate theogram flow was relatively
trivial on Windows until the early 2000s, when Microsoft laegadapting mitigation
techniques. In the simplest cases, an attack widely knowtadssmashing [21] could
be used. Such an attack would leverage unbounded functiodls astrcpy, to write
beyond the allocated memory of a buffer. Attackers could therwrite the function’s
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stored return address on the stack with an address thasgoiitjected code, which
the program will execute after the next return.

To defend against such code injection attacks, MicrosofiémentedData Execu-
tion Prevention (DEP) [19], which makes use of a processor’s NX (no executelDEP
marks pages which contain data as non-executable, caubmglaare-level exception
if execution from within such a page is attempted. This sssitgly prevents attacks
that attempt to execute injected code.

Nevertheless, attackers can bypass DEP in various wayseaépt, the most widely
used technique is called return-oriented programming [@4jen utilizing RoP, an at-
tacker does not inject any code but instead uses existing fragments gadgets),
which all end with a return instruction. In other words, gt of injecting code, the at-
tacker injects the addresses of the gadgets he wants totex@wux86, return works by
popping an address off the stack into the register EIP andjtheping to that address,
even if the stack is marked as non-executable. By craftingckdilled with a sequence
of gadget addresses, the attacker can execute sequena@getsy with the return in-
struction at the end of each gadget transferring the prodi@mto the next gadget.
Jump-oriented programming (JoP)([3, 6, 20] is based on tme $msic concept as RoP,
but usesjmp instructions to transfer control flow to the next gadget.He following,
we refer to both RoP and JoP attacksede-reuse attacks.

The success of code-reuse attacks depends on the avajlabiliseful gadgets on
the target platform and the complexity of the code the attaalants to run. In practice,
however, most systems are vulnerable to such code-reuskatt-urthermore, RoP
attacks are relatively complex to stage, which is why mastcés of this kind do not
resort to pure RoP, but rather implement a two-staged apprdée first stage uses
RoP to call a Windows API function likéirtualProtect (see below) which marks
a certain memory region as executable, effectively bypgd3EP. This is followed by
the second stage, running code previously injected intonieanory region, which can
then be executed as normal. Code-reuse attacks work seifghe memory layout of
an application is highly deterministic because an attackerhard-code the addresses
of gadgets directly into the exploit. To mitigate this, Misoft introduced randomness
in the form of ASLR [15]. ASLR randomizes the order in whichages are loaded into
the virtual address space and adds pseudo-random offdbtsitdbase addresses. This
makes it very difficult for an attacker to predict the memagdtions of the required
gadgets on the target system.

2.1 DEP Weaknesses

Whether or not a program is protected by DEP depends on th@itmnsetting the
NX_COMPAT flag in the header of the program’s main executable. This flag be left
unset due to a number of reasons, including unsafe compafautts and program in-
compatibility. Thus, the opt-in nature of DEP may rendebgsefits void. Furthermore,
DEP is either on or off for the whole program, meaning thakitig any one library
with DEP disabled, be it statically or dynamically, will cDEP to be disabled for
the entire process. If it is enabled, an attacker can onhasyf through previously dis-
cussed code-reuse attacks. Such attacks succeed witlesutiening code from non-
executable pages, which is why DEP cannot protect agaiest.tfihe previously men-



tioned two-staged attack, however, is worth explaining orerdetail, since it allows in-
jected code to be run, effectively bypassing DEP. Suchldtaork because Windows
exposes certain functions to change the permissions of@(gagVirtualProtect)
or allocate new pages with specific permissions (eigtualAlloc), which are passed
as parameters. These APIs exist because some programatgesrmte at runtime and
therefore require memory that is both writeable and exétaiteSuch program be-
haviour is strongly discouraged by Microsoft, though, arahgnproducers of software
have adapted their programs to be compatible with DEP.

2.2 ASLR Weaknesses

Like DEP, ASLR is not necessarily enabled, depending on #gD¥NAMIC_BASE.
However, unlike DEP, it can be localized to specific modukgs) the operating system
being able to handle processes composed of a mixture of ASid®led and disabled
images, which simply means that some images will get rebasddothers will not.
Apart from legacy libraries which were compiled before AS&Rsted, a library might
not support ASLR because parts of a program use hard-codgul guldresses within
that library. Bypassing ASLR appears to be difficult in piget with no currently-
known generic attack. The work by Shacham etlall [25] reliedte force, which
only works if the vulnerable application does not crash wés@access violation occurs.
Partial overwrites [11] overwrite only the last two bytes of an address on thekstBe-
cause only the first two bytes get randomized, this attaclk do¢ require knowledge
of the randomness introduced by ASLR. This gives an atteeckange of at most 4096
bytes of instructions. Durden presents information leaks way of gathering informa-
tion about the memory layout of an ASLR-protected applarafiL1]. Hund et al.[[16]
propose a timing-based side channel attack that can breaklispace ASLR within
minutes, given that an attacker knows the hardware of tlaelst system. However,
most current exploits do not have to use such techniquesinatehd can rely on the
presence of some non-ASLR images on the target platfornh fBueges, however, are
still very common on current systems, which is why many &tastill succeed.

2.3 Attacker Model

We assume a relatively strong attacker, who is able to byp&$s ASLR, and other
mitigation techniques which are currently part of Windowhis is, for a determined
attacker, a realistic assumption. We even go one step fuattteallow for pure RoP and
JoP attacks, which do not have to callrtualProtect or VirtualAlloc but instead

call the malicious code directly. Such pure code-reuseletare still rarely found in

the wild, but we expect them to increase due to the work tHagiisg done on detecting
two-staged attacks. One known example is a pure RoP atta8koloe Reader [17].

3 AntiCRA

When designing AntiCRA, we analyzed RoP and JoP exploitstaenl underlying
principles. We found that the exploits share propertiectviaire unusual and typically



not present in a normal program’s execution. Based on thiesereations, we built a
heuristic which monitors the following two properties:

Indirect Branches Code-reuse attacks consist of gadgets which all end in an ind
rect branch. We analyzed benchmarks as well as real-wogdcagions like Adobe
Reader, VLC, Microsoft Office, Open Office (in total 34 progig the complete list is
available on the project’s website) and found that a veri higmber of consecutive in-
direct branches is rather unusual. The highest number aesutent indirect branches
we found during our experiments was 47 (in Microsoft Word)t bnly 8 of the 34
programs execute 15 or more subsequent indirect branches.

Average Length of Basic Blocks To reduce side-effects on other registers, the stack,
or flags, exploit developers try to use gadgets that are a$ ab@ossible. Therefore,
at least for contemporary approaches, gadgets can be eoedidasic blocks with very
few instructions. As with indirect branches, we analyzeagpam behaviour of legiti-
mate programs and found that the average number of inginsobiver a sliding window
of 10 basic blocks did not drop below 2.33. We also found agrédting correlation be-
tween this and the previous property: the more consecutiliesict branches, the longer
the corresponding basic blocks. We make use of this knowl@dthe next paragraph,
when we try to find default parameters which work for a wideddetpplications.

As previously mentioned, since programs can exhibit vaygimaracteristics regard-
ing these two properties, ROPocop first runs in learning maties requires nothing
from the user but simply using the program she wants to prateasual, while in the
background, ROPocop observes the program flow and detesrapyopriate thresh-
olds for these two properties. This, of course, leads onlimied coverage, however
for our approach high coverage is not required. Exploitingufier overflow requires
some sort of input, generally provided by the attacker agdtat has to be opened by
the victim and is then processed by the vulnerable progrdms;Ta user working with
the program covers the important cases which lead to eapilmit. For our sample set
we chose applications, which are commonly used in corp@adkepersonal environ-
ments. As expressed earlier, we recommend setting indivitivesholds for different
programs, but at the same time we were wondering whethepdtssible to provide de-
fault values which cover as many programs as possible. Aftatyzing our test set of
benign applications, by running the learning mode and uiagprograms in our sam-
ple set (e.g., opening various media files using VLC, openaripus PDF files with
Adobe Reader, working with Microsoft Word, etc.) we set tbkkofwving thresholds: 35
subsequent indirect branches and an average basic blogthleh2.25 or lower; as
described earlier, we found a correlation that larger nusybesubsequent basic blocks
also means longer basic blocks. Therefore we added andifeshbld; 36 till 50 sub-
sequent indirect branches and an average basic block lehdtlor lower. AntiCRA
signals an exploitation attempt if one of the two bounds @dated or if, at any point,
more than 50 subsequentindirect branches are executeld dvinsample set of benign
applications may not be large enough to make a claim, thaethsuggested thresholds
hold for all programs, they do hold for all programs in our, setiich includes some
of the most exploited applications. Therefore, they sesraraexcellent starting point



for fine-tuning, should it be required. Since we included ynprograms that are of-
ten found and exploited in business environments (e.g.dWexcel, Adobe Reader),
ROPocop can be deployed immediately without the need tadine-thresholds.

To increase performance and make the algorithm less prdaéstopositives, calcu-
lating averages starts only after we have collected 15 Hasik lengths, i.e., the first
computed average is available only after 15 subsequemeittdiranches. This prevents
false alarms based on short sequences of short basic biduiise sample size is other-
wise not significant enough. Figurk 1 (in Secfidn 5) shows thaxwo thresholds form
a (shaded) area in a two-dimensional plain. If an executidis into the shaded area
then AntiCRA will signal it as malicious. The figure also suamizes the results of our
empirical evaluation, and will be explained in more detatiél.

3.1 Impact on Current and Future Exploits

For a code-reuse attack to circumvent AntiCRA, it must netmere than 34 / 49 con-
secutive indirect branches. If this is possible at all dejsem the availability of gadgets,
which varies between programs based on what libraries adetband whether or not
ASLR is being employed. Furthermore, the average numbaersbitictions in the gad-
gets used must never fall below 2.25 / 3.5. Combined, theggations make it very
difficult for an attacker to create a pure RoP or JoP paylodthckers could attempt
to raise the average number of instructions per gadget leyting longer gadgets. But
longer gadgets usually have unwanted side-effects, likeipo#ating other registers
that hold important data, or the stack, or modifying flagstirermore, since the total
number of gadgets is limited to 34 / 49, inserting long gaslg@tose side effects are
irrelevant just for the sake of increasing the average wsgstecious slots for useful
gadgets. To bypass AntiCRA, an attacker would have to tryiagett direct branches,
but, due to limited availability and side-effects, this is/thing but trivial. In particu-
lar, we know of no gadget compiler that would support diraeinghes at this point.
Depending on the program it might still be possible, but, @vipusly mentioned, our
goal is to break current exploits and make the developmeméwfcode-reuse exploits
significantly more difficult, which AntiCRA certainly achies. Long NOP gadgets, as
proposed by Davi et al. [9], could potentially be used tdfiaitilly increase the average
basic block length, however, it takes five gadgets to restarestack and registers to
their original form. Therefore, precious space has to beedand such an attempt will
most likely exceed any sensible threshold. Furthermoereatithors state that finding
such a gadget was "a non-trivial task that required paimstgdnalyses and a stroke of
luck”, so for some programs this technique might not be fssit all.

3.2 Limitations

Due to its heuristic nature, false positives as well as falksgatives are possible. As
we show in this work, however, in practice the heuristic seeffective enough to go
without any false decisions, at least in our benchmark sethErmore, under circum-
stances very favorable to an attacker it might be possibtedate a two-staged exploit
that disables DEP using fewer than 15 gadgets and then ruegugar payload. This



would not be detected by AntiCRA and motivates the need bk non-executable
data sections, which we enforce using DEP+ (Secfion 4).

4 DEP+

DEP+ is based on the same concept as DEP, i.e., the premisgathashould not be
executable. DEP+ thus monitors the loading and unloadinignafjes and creates a
virtual memory map based on this information. All virtual mery space where no
image is mapped is considered to hold potentially malicidats,, since Windows can
allocate stacks or heaps in these areas. To enforce thatstinedtion register EIP never
points outside an image DEP+ checks the register valueesdtdr indirect branch, i.e.,
after each return, indirect call, and indirect jump. Opmbte DEP, DEP+ cannot be
disabled through API calls such @$rtualProtect.

4.1 Implementation Details

PIN’s IMG_AddInstrumentFunction as well asIMG_AddUnloadFunction are used
to monitor the loading and unloading of images. When an inalgmded, DEP+ stores
its start and end address in an array of structs; if the sarageéris unloaded at runtime,
it is removed from the array. The data structure results iirtaal-memory map that
distinguishes only between images and non-images, i.de and data regions. DEP+
treats the latter as space for potentially malicious da¢ach does not allow EIP to
pointinto it. To do so, DEP+ checks if the last instructioradfasic block is an indirect
branch, and, if so, it checks if the target address of thedbrgoints inside any of the
data regions.

Some programs load 30 or more libraries, which means thaiegees can have an
equally high number of code regions. As we found, checkinthea those regions
after each indirect branch can incur a significant perforregrenalty. To increase per-
formance, we thus make use of the fact that Windows’ memomyagement is rela-
tively deterministic. Images, in general, tend to be loaatadkry high addresses, around
0x60000000 and higher, while stacks and heaps are at low addressesaruhes are
allocated towards increasingly higher addresses. Depgrahi the memory usage of a
process, it is generally valid to assume that stacks andsireafmle below most images.

DEP+ makes use of this knowledge by not checking all regidmsnachecking EIP
after an indirect branch. DEP+ monitors a program’s memaage to dynamically
increase or decrease the number of regions that need to dreitek account. We im-
plement this by probing memory usage every 10th time a fandfiat allocates or
de-allocates memory is called and multiply the reportedjeday 1.3 to have a large
enough safety margin. This is, of course, a heuristic, whiatles security for perfor-
mance, but as our evaluation in Secfidn 5 shows, the hauistps DEP+ to bring the
checks down to a minimum while still recognizing all testéheks. Furthermore, our
experiments using benchmarks and real-world programsdtasen that memory allo-
cations are done in many small steps, hence probing memagetas short intervals
and adding a safety margin of 30% has never failed to coyreletect the necessary
number of regions which have to be checked. For the heutdstail and be exploitable



it would take a memory allocation of about 30% of the curreatory usage, a vulner-
able function which uses this memory and an instruction twhétlirects program flow
into this memory before our algorithm checks memory usagéna&ince an attacker
has no influence on any of these preconditions, we accepiskéehat our heuristic
might fail under rare conditions. Reliably exploiting sucincumstances in a multi-
threaded program would be even more difficult, due to thejhlyi non-deterministic
nature.

4.2 Comparison to DEP

The original shortcomings of DEP are that it may not be erhbteall, or that it can
be bypassed by both pure code-reuse attacks and by codeatasks that invoke
VirtualProtect etc. to disable DEP. DEP+ improves over DEP in that it prevtre
execution of injected code by enforcing non-executabla degionseven for processes
that run with regular DEP disabled. In particular, DEP+ aarioypassed by calls to
VirtualProtect and its siblings, as such calls have no effect on DEP+. A aimil
result could be achieved by hooking said functions and simpk executing them.
However, userland hooks can be bypassed easily [5] and Ikewoks require admin-
istrator privileges, hence make deploying our solutioneremplicated. Furthermore,
as Sectiofnl5 shows, the overhead introduced by DEP+ is iitgglig

4.3 Limitations

Processes which rely on the ability to execute code fromdeitmages, e.g., processes
which generate code at runtime or incorporate self-moudifydode, are not compati-
ble with DEP+. Such a process is not compatible with DEP eitln@ess it uses the
VirtualProtect API etc. to disable DEP for memory regions with generatececod
Since it is difficult to detect whether a call to the APl usyabused to bypass DEP by
an attacker is legitimate, i.e., originating from the piagritself, we decided against
supporting such calls. This results in a strong increasedurity, at the drawback of
slightly reduced compatibility with mostly older software

Like DEP, DEP+ cannot detect and thus not prevent the egpioit of the vulnerabil-
ity itself, e.g., the overwriting of data on the stack due touéfer overflow. Therefore,
non-control data attack§1[7] or information leakages aile mtssible. Furthermore,
DEP+ does not preveptire code-reuse attacks, motivating the need for AntiCRA (Sec-

tion[3).

5 Evaluation

Our implementation is highly modular, so that one may deploCRA or DEP+ inde-
pendently as well as in combination. Running both of thenméwer, strongly increases
security, in a similar fashion as running with DEP and ASLR.
In this chapter we evaluate AntiCRA and DEP+ by addressiadatowing research
questions:
— RQ1: How effectively does AntiCRA detect pure code-reusdqeals?



— RQ2: How effectively does AntiCRA detect two-staged RoPlpags?
— RQ3: How effectively does DEP+ detect code-injection &it&c
— RQ4: What is the performance overhead of AntiCRA and DEP+?

5.1 Evaluation of AntiCRA (RQ1/RQ2)

For evaluating RQ1 we looked at pure code-reuse attacksgVvewat this point such
payloads are only rarely found in the wild and are mostly ugsealcademia as proof
of concept. The only real-world pure code-reuse exploit aenfl is a RoP exploit for
Adobe Reader. Since neither the exploit’s source code,morfacted file are publicly
available, our conclusion is based on an analysis by Li arat [8Z]. Analyzing the
exploit's source code reveals that the addessacc1049 is repeated 9,344 times; the
instruction at that address is a simplet. This equals to over 9,000 indirect branches
in a row, which would, of course, be detected by AntiCRA.

The likely reason for why pure RoP and JoP payloads still dedwe rare in practice
is that two-staged payloads (which aim to disable DEP thindRglP/JoP) are simpler to
construct and are sufficient in many cases. Such payloadsecamtigated by DEP+,
but nevertheless we were interested in evaluating RQ2 tbavhat extent AntiCRA
alone, without DEP+, can be used to mitigate such attackseds w

We analyzed 11 real-world exploits in total. To operate onminiased test set, we an-
alyzed the 10 most recent exploits framatp: //www. toexploit . com/ which claim
to bypass ASLR and also added the previously mentioned poieeRploit. Figuréll
shows the results of our analysis, i.e., the number of casedndirect branches and
the average basic block length for each exploit and alsefpitimate programs. As the
numbers indicate, legitimate programs rarely have more fifaconsecutive indirect
branches and their average basic block length is higherttterof exploits. This con-
firms that our generalized threshholds, which work for a wideety of programs, are
well-suited to detect attacks.

AntiCRA detects 10 out of the 11 exploits in our sample sefivim cases this is due
to the number of indirect branches in a row. Three exploisdmtected because they
use very short gadgets, which mostly only execute one ictitru and then transfer
program execution to the next gadget. Two exploits triggehbmechanisms, since
they use more than 35 indirect branches in a row and also hery gadgets.

One exploit cannot be detected by AntiCRA. This is becausedqtires only 13
gadgets to prepare the stack for calling-tualProtect. This is not enough to trigger
the indirect-branch check. The average length of the bdsikb is 2.2, which would
trigger an alarm. However, as explained in Sedfibn 3, we tiigger inspections after
a total of 15 indirect branches in a row.

Itis important to point out that the two-staged exploit AZRA misses is detected by
DEP+. AntiCRA is primarily designed to catch pure RoP andditécks, not necessar-
ily the two-staged attacks like the ones examined in theuatimin. It is also important
to keep in mind that the thresholds can and should be adjfistezhch program and
that this section evaluates how well our generalized thulesthold. Despite this, it still
detects 10 out of 11 exploits. Because of these results arahailysis of the pure RoP
exploit for Adobe Reader, we are very confident that explehgh rely solely on RoP
or JoP can be detected by AntiCRA.
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Fig. 1. Analysis of the number of indirect branches in a row and theeki average basic block
length of our test set

5.2 Evaluation of DEP+ (RQ3)

To test DEP+, we wrote a small vulnerable application, whislkes an unbounded
strcpy and was compiled with th®X_COMPAT,and a simple exploit. Since all code
injection attacks store the injected code inside a buffacktby definition, cannot be
in an image, the program that contains the vulnerabilityfibtile consequence. The
only differences between our vulnerable application andad application are miti-
gation technigues which might be in place, but which ardewant to us, since we
assume an attacker is able to bypass them, and how prograrsfteamsferred to the
injected code, which is irrelevant for our evaluation aslwgitimately, all code injec-
tion attacks end up calling their injected code, and thisherne DEP+ detects them.
Therefore, evaluating DEP+ with this self-written progrposes no real threat to the
validity of this experiment. As expected, DEP+ correctlyai¢s that the target address
of theret instruction at the end of our vulnerable function is not inimage, before
the instruction is actually executed. Therefore, it camteate the program and miti-
gate an attack, which would have led to arbitrary code exacuhs for the real world
exploits, DEP+ detects each one except for the pure RoPiekmid\dobe Reader, as
all the others eventually do execute code from memory oeisidnages.

5.3 Performance (RQ4)

We evaluated the performance of ROPocop using the C and Cnashbwarks in the
SPEC CPU2006 benchmark suite. Note that those are reallstwase benchmarks
that exercise the dynamic analysis heavily. Any interaativnetwork-based application
would show a significantly lower overhead. We measured fifferdint runtimes for
each benchmark:



— The native runtime, i.e., without PIN.
— The runtime with PIN attached, but without instrumentatitmnget the basic over-
head PIN introduces.

— The runtime with AntiCRA.

— The runtime with DEP+.

— The runtime with AntiCRA and DEP+.
Benchmarks were run on Windows 7 SP1 with an Intel Core 2 Du)TZlocked at
2.53 GHz and 4 GB RAM using the reference workload.

Figure2 summarizes the results of our performance bendtsrfaunning a program
under PIN but without any instrumentation introduces arraye overheadof 1.36x,
i.e., programs take, on average, 36% more time to finishjmgrigppm 1.002x (470.lbm)
to 2.24x (464.h264ref). Programs protected by AntiCRA mmaverage, with a total
overhead 2.2x. With DEP+ enabled as well, ROPocop intraslaoeaverage overhead
of 2.39x%, which is comparable to similar tools such as RO&aidér [10], which gives
weaker guarantees. Compared to CFl approachés [22,27(8pEbp has a consider-
ably higher overhead, however, it monitors a process throutits whole lifetime and
not just at potentially dangerous points. Thus, it can aeitge more accurate if a RoP
attack is being carried out.
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Fig. 2. Performance of ROPocop

While overheads in the order of two-fold might sound unataiele, those overheads
should really only be expected in worst-case situationasTWwhile performance bench-
marks such as SPEC CPU2006 are advantageous in producinduepble results, the
results that they do produce do not reflect reality very mighat ultimately counts
is the performance on real-world applications. Their pen@ance can, however, often
hardly be measured systematically, which is why we only regoalitative results on
some of the applications in our sample set. As a general editsen we can say that in

1 Average overheads were computed using the geometric méuct ¥8 considered best prac-
tice for reporting normalized values such as percentagesashead([12]



all cases the GUI had some slight input kagl second when opening a menu for the
first time, however, afterwards they opened in an instahe. tfansfers with Filezilla
were no slower than without our tool. VLC plays h.264 encoHi&dvideos without
any jitter. Adobe Reader renders pages without any notiedafy. Typing in Microsoft
Word has no input lag. We want to emphasize that ROPocop imtestded to be used
with all applications at all times. Instead, our recommehaigage is to enable it only for
either very critical systems, or for an application whicls kavulnerability that's being
actively exploited and no vendor patch has been releasedgdéer such circumstances
the overhead is, in our opinion, acceptable.

6 Related Work

TRUSS [26] andROPdefender[10] store copies of return addresses using a runtime
shadow stack. When a function is called, a copy of the pusktedrr address is stored
on the shadow stack. Upon returning from a procedure, theratdress on the stack is
compared to the one on the shadow stack. TRUSS is implemasiegl DynamoRIO,
ROPdefender using PIN. DynamoRIO is a runtime instrumantabol which works
similarly to PIN. TRUSS and ROPdefender rely on an attackenariting the return
address on the stack, which is not strictly required. Tleggfthey can miss some
classes of attacks like JoP. Furthermore, they assume uhatién calls are always
made througltall and exited viaret. ROPdefender can handle exceptions, but nei-
ther can handle hand-crafted assembly code, which doesegessarily follow these
conventions. The overhead of both tools is similar to ours.

kBouncer [22] makes use of the last branch record (LBR) feature somdenmo
CPUs have. kBouncer assumes that at some point shellcodie inaske a system call.
When this occurs, the LBR repository is checked for disttecproperties of ROP-
like behaviour, e.g. consecutive indirect jumps and shasdidblocks. The tool has
an average overhead of only 1%, however, the implementédiowindows 7 is not
fully functional, since Windows 7 does not allow to intertsgstem calls which is a
requirement of kBouncer. Furthermore, it cannot be deglayesystems whose CPU
doesn’t have LBR.

ROPecker[8] also uses the LBR feature of some modern CPUs. Like ROPdco
checks for consecutive short indirect branches and raiseke# when a certain thresh-
old is undercut. To increase performance the detectionistevuis only invoked if the
branch target is outside the so-called “sliding window” @dection of pages, usually
2 or 4, i.e. 8 or 16 kB). Due to these two circumstances, RO&eleis a very low
overhead of only 2.6% for the SPEC CPU2006 benchmark stideels, however, miss
ROP gadgets which are within the sliding window and requar€U which supports
the LBR feature.

Control Flow Integrity [1] uses static analysis of a binary to create a control-flow
graph and rewrites the binary to enforce it does not deviate fthe pre-computed
paths. The implementation is based on Vulcan, a commergigrdic instrumentation
tool for x86 binaries. The average overhead is about 16%.

CCFIR [27] enforces control-flow integrity by ensuring that taigef indirect jumps
are legal. Valid targets are identified ahead of time by c#iyi analysing a given bi-



nary. For their analysis to work properly they require thealoy to use ASLR and DEP.
CCFIR has a runtime overhead of about 4%.

Goktas et al.[[13] have recently shown, that the above imeetl CFl approaches
can be bypassed. The inherent problems of these approactied there are too few
checks, allowing attackers to access too many gadgets. dredyrther limited by the
number of slots in the LBR, which is at most 16. To improve theusity of approaches
which attempt to detect RoP exploits by measuring similapprties as we do, they
suggest making the thresholds dynamic.

7 Conclusion

In this work we have presented ROPocop, a novel tool for theraated dynamic recog-
nition of buffer-overflow attacks. ROPocop is designed tmgmize different classes of
code-reuse attacks based on two novel techniques AntiCRIADEP+. AntiCRA is

a configurable heuristic based on the number of indirectdiras executed in a row
as well as on the average basic block length of executed todewr experiments us-
ing default thresholds which work for a variety of programatiCRA detects 10 out
of 11 of the latest real-world code-reuse exploits and yigld false alarms on SPEC
CPU2006 and all tested real-world applications, a total ®fpBograms. DEP+ exe-
cutes a non-executable stack through binary instrumemntaind can thus be used to
detect exploits based on two-staged payloads that use areade attack to disable
DEP using the Windows API. DEP+ successfully detects all-staged payloads we
examined, again with no false alarms. By combining bothneghes, ROPocop thus
successfully detects all tested exploits, without falseniveys, showing an average per-
formance overhead of 2.4x for SPEC CPU2006 and real-wondicgtions showing
only an initially noticeable input lag and no stutter. ROBpcuns in user mode, requir-
ing no access to source code, nor debug symbols or chandesdpérating system. It
supports multi-threaded applications. Due to its heuristiture, ROPocop cannot give
an absolute security guarantee. However, the parameéshethristic is based on should
make it very hard to circumvent the approach in practice. &9B is thus raising the
bar significantly, without any added cost compared to previelated approaches.
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