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Abstract

Federated cloud systems increase the reliability and reduce the cost of com-
putational support to an organization. However, the resulting combination
of secure private clouds and less secure public clouds impacts on the over-
all security of the system as applications need to be located within different
clouds. In this paper, the entities of a federated cloud system as well as the
clouds are assigned security levels of a given security lattice. Then a dynamic
flow sensitive security model for a federated cloud system is introduced within
which the Bell-LaPadula rules and cloud security rule can be captured. The
rest of the paper demonstrates how Petri nets and the associated verifica-
tion techniques could be used to analyze the security of information flow in
federated cloud systems.
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1. Introduction

The extent and importance of cloud computing is rapidly increasing due
to the ever increasing demand for internet services and communications.
Instead of building individual information technology infrastructure to host
databases or software, a third party can host them in its large server clouds.
However, large organizations may wish to keep sensitive information on their
more restricted servers rather than in the public cloud. This has led to the
introduction of federated cloud computing (FCC) in which both public and
private cloud computing resources are used, see Watson (2012).

A federated cloud is the deployment and management of multiple cloud
computing services with the aim of matching business needs. Data, ser-
vices, and software are required to be allocated in different clouds for both
security and business concerns. Although federated cloud systems (FCSs)
can increase the reliability and reduce the cost of computational support to
an organization, the large number of services and data on a cloud system
creates security risks due to the dynamic movement of the entities between
the clouds. As a result, it is necessary to develop tractable formal models
faithfully capturing information flow security within FCSs.

In this paper, we introduce a formal model of dynamic information flow
in an FCS, where services and data can migrate and change their security
status dynamically. We then explain how Petri nets (more precisely, coloured
Petri nets (CPNs)) could be used to analyse the correctness of such system.
We also show how one could use the notion of diagnosability investigated in
Germanos et al. (2014, 2015) in order to detect malicious events violating
the proposed security policy in FCSs. We also evaluate experimentally the
efficiency of the proposed setup using model checking of Clarke et al. (1999).

The paper is organized as follows. Section 3 provides the basic notions
about security policies. In Section 4, a model for secure information flow
analysis in FCSs is presented. The basic definitions relating to Petri nets
are given in Section 5. Section 6 outlines how Petri nets could be used to
support property verification in FCSs. Section 7 describes the diagnosis of
behavioural properties, and Section 8 presents experimental results obtained
for the proposed approach. Section 9 concludes the paper.
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2. Related Work

There exist different methods for addressing workflow1 security; for exam-
ple, the flow-sensitive analysis of programs in Smith (2001) and Russo et al.
(2009). Using Petri nets to model workflows, Knorr (2000, 2001) applied
the Bell-LaPadula model to workflow security. In particular, Knorr (2000)
considered the read and write security policies. In Knorr (2001), the deploy-
ment of blocks within a workflow across a set of computational resources was
not considered. In addition, the paper considered the clearance level but not
location level in its embodiment of Bell-LaPadula model.

Watson (2012) proposed to partition workflows over a set of available
clouds in such a way that security requirements are met. The approach is
based on a multi-level security model that extends Bell-LaPadula to encom-
pass cloud computing. Watson (2012) also indicated that workflow transfor-
mations are needed when data are communicated between clouds. However,
in this study, the concurrency of the events or the execution of tasks in
the system, the dynamic movement of the services, and the changes of the
clearance level were not considered. Zeng et al. (2014b,a) introduced a flow
sensitive security model to capture information flow in FCSs systems, which
can be captured by CPNs. However, the clouds and services were assumed
to be fixed, and the dynamic movement of services was not considered. Zeng
and Koutny (2014) proposed a formal model for data resources in a dynamic
environment focused on the location of different classes of data resources and
users. However, the Bell-LaPadula rules and server-side components were not
considered.

As far as we aware, there is limited work related to formal verification of
security in cloud computing systems. As an example, Gouglidis and Mavridis
(2013) proposed a methodology for the development and verification of access
control systems in cloud computing. The authors verify the access control
systems against organizational security requirements using techniques that
are based on simple transition systems. As another example, Benzadri et al.
(2014) employed Bigraphical Reaction Systems to formally specify cloud ser-
vices and customers as well as their interaction schemes. However, they did
not consider security policies.

1Information flow refers to paths followed by data from their original positions to
the end users in computational processes. Workflows are used to specify the forma-
tion/implementation of such processes.
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3. Security Policies in Cloud Computing Systems

In this section, we recall some basic concepts concerning security policies
in cloud computing systems.

3.1. Information Lattices

Throughout the paper, we will assume that the basis of a federated cloud
is a set P of single deployment clouds. Moreover, S will denote subjects
(e.g., services, programs and processes), and O will denote objects (e.g.,
data resources and messages). Subjects and objects will jointly be referred
to as entities, and their set will be denoted by E.

We will assign a security level to any entity, which will in practice be
related to the degree of security of its contents, as well as to any cloud which
will be related to the maximal security level of the entities it can contain.

A lattice for security concerns, Lsec = (Lsec,≤sec) consists of a set Lsec

and a partial order relation ≤sec such that, for all l, l′ ∈ Lsec, there exists a
least upper bound l t l′ ∈ Lsec, and a greatest lower bound l u l′ ∈ Lsec. The
lattice is complete if each subset L of Lsec has both a least upper bound

∐
L

and a greatest lower bound
∏
L, see Denning and Dorothy (1976), Denning

and Dorothy (1982), and Landauer and Redmond (1993). Following Lan-
dauer and Redmond (1993), we will assume that the security lattice Lsec is
complete.

3.2. Security Requirements: Bell-LaPadula

We adopt the Bell-LaPadula multi-level control model of Bell and La-
padula (1973), with services modelled as the subjects S, and data as the
objects O, Knorr (2001). Such a security model consists of the following
components:

- A set of possible access rights R. The commonly used access rights are
read (=r) and write (=w). In addition to reading and writing, there
can be other access rights, e.g., data items that can be executed and/or
updated. In order to simplify the presentation, the access rights used
in this paper are read and write, R = {r, w}.

- A complete lattice for security concerns, Lsec = (Lsec,≤sec) .

- An access control matrix: B : S ×O → 2R. The access control matrix
issues the subjects rights to access objects. For example, if a service s1
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reads a data item d0, then there will be the following entry in the access
control matrix: (s1, d0) 7→ {r, . . . }. Similarly, if a service s3 writes a
data item d2, then there will be the following entry in the matrix:
(s3, d2) 7→ {w, . . . }. Note that the empty set is a valid function value,
e.g., (s9, d7) 7→ ∅ means that the subject s9 has no access rights to the
data item d7.

- A clearance map: c : S → Lsec. This represents the maximum security
level at which each subject (i.e., service) can operate.

- A security level map: ` : E → Lsec. This represents the security level
of each subject and object.

The Bell-LaPadula model states that a system is secure with respect to
the above model if the following conditions are satisfied for all subjects s ∈ S
and objects o ∈ O:

clearance: `(s) ≤sec c(s) (1)

no-read-up: r ∈ B(s, o)⇒ c(s) ≥sec `(o) (2)

no-write-down: w ∈ B(s, o)⇒ `(o) ≥sec `(s) (3)

For workflows, the implications of these conditions are that a subject: (i)
can only operate at a security level that is less than or equal to its clearance;
(ii) cannot read data that is at a higher security level than its own clearance;
and (iii) cannot write data residing at a lower security level.

In the standard Bell-LaPadula model recalled above, it is implicitly as-
sumed that the security levels of entities are fixed. However, in a typical FCS
security scenario, the system moves through a set of states where these can
change. We will deal with such a dynamic scenario in the rest of this paper.

As a first step, we extend the Bell-LaPadula model by assigning security
levels also to clouds:

- ` : E ∪ P → Lsec

Moreover, a new mapping loc is used to return the location of each entity:

- loc : E → P

Then add an additional rule that an entity can only be deployed in a cloud
with a security level that is greater than or equal to that of the entity. That
is, for each entity e: an entity e is located in cloud p, then we must have

`(loc(e)) ≥sec `(e) (4)
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4. System Model

We now introduce a formal model for capturing the dynamic behaviour
of federated cloud computing systems. Such a model can then be analyzed
to verify that the system satisfies the requirements of a given set of Bell-
LaPadula rules, as well as the cloud security rule for confidentiality consid-
erations and any user-specified policies.

The proposed model uses tuples to represent entities located in the clouds.
Each such tuple comprises information about the nature of the entity (ser-
vice or data), the security information (the security and clearance levels),
and the location information (the hosting cloud). Since there can be dupli-
cates of both services and data within a given cloud, the state of the system
is a multiset of entities, allowing for an arbitrary multiplicity of any ser-
vice or object. The transformations of the system are then defined through
the simultaneous execution of individual actions, each action being executed
instantaneously and possibly many times.

It is assumed that the system is based on a fixed set of clouds with fixed
security levels (issues involved in the modelling of dynamic changes of the
set of clouds as well as their security levels are discussed in Remark 4.1). It
is, however, possible to model the dynamic changes of the security levels of
subjects and objects as well as their creation and destruction.

To aid the understanding of the system model, it is introduced in three
stages. First, we specify the overall structure in Definition 1. Then, in
Definition 2, we introduce rules which explain the dynamic transformation
between the system states. Finally, in Sections 4.1, 4.2, and 4.3, we specify
the exact format of the three kinds of actions supported by the model.

Definition 1 (Dfssm structure). A dynamic flow-sensitive security model
for federated clouds is a septuple:

DFSSM = (P, S,O,Lsec, `,A, stinit) , (5)

where: P is a finite nonempty set of clouds; S is a finite nonempty set
of subjects/services; O is a finite nonempty set of objects/data; Lsec is a
complete security lattice; ` : P → Lsec is a mapping assigning security levels
to the clouds; A = Aac]Adf ]Acf is a finite set of actions, each action being
a pair φ = (φin, φout) consisting of two finite multisets over the set of tuples

M = (S × Lsec × Lsec × P ) ∪ (O × Lsec × P ) ;
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and stinit is an initial state defined as a finite multiset over M. In general,
a state of DFSSM is a finite multiset over M, and x ∈ M is present in a
state st if st(x) > 0.

A tuple (s, l, c, p) ∈M, denoted by (s, l, c)@p, represents a service s with
the security level l and the clearance level c (c ≥sec l) residing on cloud p.
Similarly, a tuple (o, l, p) ∈ M, denoted by (o, l)@p, represents a data item
o with the security level l residing on cloud p.

An entity can have several different copies, and each of these copies can
have a different security level and may reside in a different cloud. As already
mentioned, we allow multiple copies of a single entity to be present in a
cloud. Hence a state is a multiset st overM rather than a subset ofM. For
example, st8(s6, 1, 2, p4) = 4 means that in the state st8 there are four copies
of service s6 with security level 1 and clearance level 2 residing on cloud p4.

Now we define how the system can proceed from one state to another
state by executing a multiset of actions. It is assumed that the executed
(instances of) actions cannot share input entities. For example, if there is
one copy of an entity present, then at most one action which has this entity
in its input can be executed. This results in conflicts between actions which
could potentially be executed, and contributes to nondeterminism in system
execution. The formal semantics, and then property verification, take into
account all possible ways in which such conflicts could be resolved.

Below (−) and (+) are respectively the multiset subtraction and addition
operations.

Definition 2 (Dfssm semantics). A multiset Φ = {φ1, . . . , φn} of actions
over A, where φi = (φin

i , φ
out
i ) for i = 1, . . . , n, is enabled at state st if

Φin = φin
1 + . . .+ φin

n ≤ st .

Then Φ can then be executed leading to a state st′ given by:

st′ = st− Φin + Φout = st− Φin + φout
1 + . . .+ φout

n .

We denote this by st
Φ−→ st′.

With such a definition we can state precisely what are the states which
can be reached from the initial one.

Definition 3 (Dfssm reachable states). The reachable states of DFSSM
in Definition 1 is the minimal set of states RS containing stinit such that if

st ∈ RS and st
Φ−→ st′, for some multiset of actions Φ, then st′ ∈ RS.
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Dfssm is intended to model a federated cloud system that is divided into
three sub-models: the access control sub-system, the data flow sub-system,
and the control flow sub-system. To reflect this division, we will now describe
the format of action sets employed by these three sub-models: Aac (for access
control), Adf (for data flow), and Acf (for control flow).

4.1. Access Control Sub-system
To simplify the presentation, we will assume that a subject can only

access a single object at a time. Then, in the access control sub-system, each
φ = (φin , φout) ∈ Aac is such that:

φin = {(s, l, c)@p, (o, l′)@p} or φin = {(s, l, c)@p}
φout = {(s′, l, c)@p, (o′, l′′)@p} or φout = {(s′, l, c)@p}

where p ∈ P , s, s′ ∈ S, o, o′ ∈ O, and l, l′, l′′, c ∈ Lsec. Moreover, as we need
to formally capture the security policy of the cloud system, the set of actions
Aac is composed of two subsets: the read actions A(r)

ac , and write actions
A(w)

ac .
The basic form of a read action is:

φin = {(s, l, c)@p, (o, l′)@p} and φout = {(s′, l, c)@p, (o, l′)@p}
where

c ≥sec l
′ & `(p) ≥sec c u l′ (6)

according to the Bell-LaPadula rules (1,2) and the cloud security rule (4).
Moreover, to represent destruction of objects, we allow destructive read ac-
tions of the form:

φin = {(s, l, c)@p, (o, l′)@p} and φout = {(s′, l, c)@p}
where, as before, c ≥sec l

′ and `(p) ≥sec c u l′.
The basic form of a write action is:

φin = {(s, l, c)@p, (o, l′)@p} and φout = {(s′, l, c)@p, (o′, l′′)@p}
where

l′′ ≥sec l & `(p) ≥sec c u l′ u l′′ (7)

according to the Bell-LaPadula rules (1,3) and the cloud security rule (4).
Moreover, to represent the creation of objects, we allow creation actions of
the form:

φin = {(s, l, c)@p} and φout = {(s′, l, c)@p, (o′, l′)@p}
where, as before, l′ ≥sec l and `(p) ≥sec c u l′.
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4.2. Data Flow Sub-system

Objects can migrate between different clouds. Each action φ = (φin , φout) ∈
Adf is such that:

φin = {(o, l)@p} and φout = {(o′, l′)@p′} , (8)

where p, p′ ∈ P , o, o′ ∈ O, and l, l′ ∈ Lsec.

4.3. Control Flow Sub-system

Similarly, services can also migrate between different clouds. The last
type of actions concerns the migration of the subjects in different locations.
Each action φ = (φin , φout) ∈ Acf is such that:

φin = {(s, l, c)@p} and φout = {(s′, l′, c′)@p′} , (9)

where p, p′ ∈ P , s, s′ ∈ S, and l, l′, c, c′ ∈ Lsec.
Note also that in practice the actions in A can be specified in a more

convenient way; for example, by using guards and parameters. This is illus-
trated in the Petri net representation discussed later in this paper, where net
transitions use guards and arcs use parameters (variables).

Remark 4.1. The system model introduced above has been kept deliberately
simple, or low-level. This should allow one to define on top of it a variety
of user-friendly, and thus more practical, notations for system specification
and property verification. We will demonstrate in the rest of this paper how
this can be achieved.

Despite its relative simplicity, the model is very expressive and yet tractable.
Basically, it is equivalent to the model of Place/Transition nets (PTNs) in-
troduced in Section 5 which is a class of Petri nets where state reachability
is decidable (it is generally accepted that PTNs are a fundamental class of
concurrent system models where reachability is decidable).

One could then ask what would happen if we increased the modelling power
of the basic system model. A possible extension could allow, for example, to
check for the absence of certain kinds of services and/or data. This would
lead, in terms of Petri nets, to the introduction of inhibitor arcs and a loss of
the decidability of state reachability as PTNs extended by inhibitor arcs are
Turing powerful. The same would be the case if the execution model assumed
that at each step a maximal multiset of action was executed. Finally, we
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conjecture that allowing dynamic creation and deletion of clouds as well as
changing of their security levels would also lead to a Turing powerful model.

Therefore, as one of our aims is to keep the system model tractable, we
believe that the formalisation presented above strikes a right balance between
being useful for practical applications and amenable to automated verification.

4.4. System Security

We now can capture a key property of information flow across different
clouds.

Definition 4. Let DFSSM be as in (5). A state st of DFSSM is secure if
`(p) ≥sec l and `(p) ≥sec c, for all entities (o, l)@p and (s, l, c)@p present in
st. Moreover, DFSSM is secure if all its reachable states are secure.

That is, a state is secure if all copies of entities present reside in clouds
without causing security violation. One can then state a general security
policy guaranteeing the security of the system model. Such a policy is for-
mulated by placing a suitable condition on the actions of the model.

Theorem 4.1. Let DFSSM be as in (5) and the following hold:

- l′ ≤sec `(p
′), for every action φ ∈ Adf as in (8), and

- l′ ≤sec c
′ ≤sec `(p

′), for every action φ ∈ Acf as in (9).

Then DFSSM is secure provided that stinit is secure.

The above result can only be applied in specific cases, e.g., when the sys-
tem applies very strict security policies to the migration of data and services.
In general, we need to verify that a given system specification yields a secure
system, e.g., by applying a suitable model checking technique.

4.5. Well-formedness

In addition to verifying the security property of Definition 4, there are
other desirable functional properties which one would normally need to ver-
ify using, e.g., model checking tools. The following are examples of such
properties formulated for DFSSM in (5):

- DFSSM is live, if for every reachable state st′ and every action φ, there
is a state st′′ reachable from st′ at which φ can be executed.
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- DFSSM is bounded, if there is n ≥ 1 such that the size of each reachable
state is less than n.

- DFSSM is well-formed, if there is a state st such that DFSSM is both
live and bounded after replacing stinit by st.

5. Petri Nets

Petri nets are a graphical modelling tool for a formal description of sys-
tems whose dynamics are characterized by concurrency, synchronization, mu-
tual exclusion and conflict. In this section, we briefly recall three classes of
Petri nets used in our discussion (see Reisig (1985) and Jensen (2009) for
more details).

5.1. Place/Transition Nets

A Place/Transition net (PTN) N consists of two disjoint finite sets of
nodes, Pl and Tr, respectively called places and transitions, a mapping W :
(Pl × Tr) ∪ (Tr × Pl) → N specifying the weights of arcs that connect the
nodes, and the initial marking (state) M0 : Pl → N . In general, any finite
multiset of places is a marking (or state) of N .

Intuitively, places carry (black) tokens which represent the current dis-
tribution of resources in a system modelled by the net. In other words, the
current state of the modelled system is given by the number of tokens in each
place.

Transitions are the active components of the net. An input arc of a
transition tr starts at a place pl and ends at tr provided that n = W (pl, tr) >
0. In such a case, n is the arc’s weight signifying that an execution of tr
requires n tokens in pl which are consumed as a result. Similarly, an output
arc from tr to pl exists provided that m = W (tr, pl) > 0, and an execution
of tr inserts m tokens into pl.

A transition tr is allowed to be executed (or fired) at a marking M if
M(pl) ≥ W (pl, tr), for all places pl. Its firing produces a new marking M ′

such that M ′(pl) = M(pl)−W (pl, tr)+W (tr, pl), for all places pl. In general,
one can fire a finite multiset of transitions U = {tr1, . . . , trk} provided that
M(pl) ≥ W (pl, tr1) + · · ·+W (pl, trk), for all places pl (that is, input tokens
cannot be shared), and its firing results in a marking M ′ such that M ′(pl) =
M(pl) − W (pl, tr1) − · · · − W (pl, trk) + W (tr1, pl) + · · · + W (trk, pl), for
all places pl. One can then consider finite and infinite execution sequences
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starting from the initial marking, and introduce the notion of a reachable
marking.

Petri nets, in particular PTNs, have been widely used for structural mod-
elling of workflows and have been applied in a wide range of qualitative and
quantitative analyzes (see, for example, van der Aalst (1996, 1997, 1998)).
A Petri net representing a workflow has, in particular, the following charac-
teristics:

- Workflow activities are represented by net transitions, and executing
an activity corresponds to the firing of a transition.

- Net markings represent the states of the corresponding workflow. Each
token represents a control flow point of one of the concurrent processes
described by the workflow, or an existing data resource.

5.2. Coloured Petri Nets

PTNs are a low-level model, and in practical applications, it is conve-
nient to use more compact (but behaviourally equivalent) high-level Petri
net models. An example of such a compact model are coloured Petri nets
(CPNs), where the tokens are tuples of values, the arcs are used as selectors
allowing one to specify the format of input and output tokens, and transi-
tions have associated guards which allow one to easily express, e.g., various
security policies.

Let Tok be a finite set of elements (or colours) and VAR be a disjoint
finite set of variable names. In a CPN:

- Each place has a type, which is a subset of Tok indicating the colour
of tokens this place can contain. A marking is obtained by placing in
each place a multiset of tokens belonging to the type of the place.

- Each arc is labelled with a multiset of variables from VAR.

- Each transition has a guard, which is a Boolean expression over Tok ∪
VAR. For a transition t, VAR(t) denotes the set of variables appearing
in its guard and labelling its input and output arcs.

The enabling and firing rules of coloured Petri Nets are as follows: when
tokens flow along the incoming arcs of a transition t, they become bound to
variables labelling those arcs, forming a binding mapping σ : VAR(t)→ Tok.
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If this mapping can be extended to a total mapping σ′ in such a way that the
guard of t evaluates to true and the values of the variables on the outgoing
arcs are consistent with the types of the places these arcs point to, then t is
enabled and σ′ is an enabling binding of t. An enabled transition can fire,
consuming the tokens from its pre-set and producing tokens in places in its
post-set, in accordance with the values of the variables on the appropriate
arcs given by σ′. One can then define an enabling condition and firing rule
for a multiset of transitions with enabling bindings similarly as it was done
for PTNs, and introduce notions like marking reachability by generalizing
those defined for PTNs.

5.3. Labelled Petri Nets

The class we need allows one to describe properties related to observability
of executed transitions.

A labelled Petri net (LPN) is a triple N =(N, X, lab) such that N is an
unlabelled net; X is a finite set of labels; and lab : Tr → X∪{ε} is a labelling
function, and ε is the empty word. The labelling function associates to each
transition tr a label lab(tr) indicating how tr is observed by an external
environment. In particular, lab(tr) = ε means that tr is invisible, or internal
to the computing system represented by N .

6. Dynamic Flow-sensitive Security Model in CPNs

We will now outline how CPNs could be used to represent (and then
used to verify) a given Dfssm. To facilitate the discussion, following the
definitions in Section 4, the net modelling Dfssm is decomposed into three
parts: the access control sub-net, data flow sub-net, and control flow sub-net.

6.1. Access Control Sub-net

Fig. 1 shows the structure of the access control sub-net, representing the
interactions of the subjects and objects residing on the same cloud. Data
destruction and creation can be represented by simplified versions of the
read and write transitions (one only needs to delete the arrows from read to
the lower place, and from the lower place to write). In this diagram, tokens
represent entities; places represent different clouds; and transitions capture
the activities and security rules (see Section 4.1). s, l, etc., are parameters
(variables), and f, f ′, g, h are application specific partial functions used to
capture ongoing computations and the resulting changes to data values and
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Figure 1: Basic structure of the access control sub-net. It shows one subject and one object,
both residing on the same cloud, p2. Note that s, l, etc., are parameters (variables), and
f, f ′, g, h are partial functions. Note that places are represented by circles, transitions
by boxes, and a double-headed arc represents two arcs with the same label pointing in
opposite directions.
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services. Since f, f ′ are partial functions, they can be used to filter out pairs
(s, o) for which there is no read and/or write access. Moreover, s′ = f(s, o)
checks whether a service can read data or not, and l′′ = h(s, o, l′, l′′) specifies
that after a service writes data, the security level of the data will be changed
from l′ to l′′, and o′ = g(s, o) specifies how the new data value is calculated.

6.2. Data Flow and Control Flow Sub-nets

We will now use an example to illustrate the definition of a dynamic flow-
sensitive security model, and the way it can be represented using coloured
Petri nets.

We consider two public clouds, p0 and p1, and one private cloud, p2. The
security levels of clouds, services, and data are listed in Table 1. As services
and data can be deployed on different clouds, Table 2 shows all the valid
mappings of entities to clouds. We can observe, e.g., that both s0 and s1

can be deployed on p0, p1, and p2. However, the data item d0 can only be
deployed on cloud p2.

Table 1: Security level of clouds, services and data in the Dfssm.

Services Security level Clearance level
s0 0 1
s1 0 0

Data Security level
d0 1
d1 0
d2 0

Clouds Security level
p0 0
p1 0
p2 1

We assume that in the initial state of the system there is one data item,
d0, and two services, s0 and s1, all residing on cloud p2. Moreover, in this
example we assume that the functions f, f ′, g, h do not change the values
associated with the entities except that g(s0, d0) = d1, h(s0, d0, 0, 1) = 0 and
g(s1, d1) = d2. That is, service s0 can re-write the data item d0 into d1 and
reduce its security level to 0, whereas service s1 can re-write d1 into d2.

The structure and dynamics of the system are represented by the coloured
Petri net in Fig. 2. Note that here and later, the access control sub-net (on
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Table 2: Valid mappings of entities to clouds

Entities Cloud p0 Cloud p1 Cloud p2

s0 • • •
s1 • • •
d0 •
d1 • • •
d2 • • •

Figure 2: A Petri net model of a system consisting of clouds p0, p1 and p2, as well as two
services, s0 and s1, and one data item, d0, all residing on cloud p2.
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the right) is represented schematically (see Fig. 1 for its internal details).
Note that places are labelled with the names of the corresponding clouds,
and a dashed line joins two duplicate depictions of the same place.

The two services s0 and s1 are represented by two tokens in place labelled
as p2 in control flow, one token being (s0, 0, 1)@p2 and the other (s1, 0, 0)@p2.
The leftmost sub-net (control flow sub-net) shows how the services can mi-
grate between different clouds. Note that the security policy for service mi-
gration is represented by the guards of the form l ≤sec c ≤sec `(p1) associated
with the transitions in the control flow sub-net (see Section 4.4).

The data resources are represented by a single token, (d0, 1)@p2, inside
another place labelled p2 (belonging to the data flow sub-net). It follows from
the security levels of the data resources and clouds that such a resource can
never enter p0 or p1. Note also that the security policy for data migration
is represented by the guards of the form l ≤sec `(p0) associated with the
transitions in the data flow sub-net (see Section 4.4).

Figure 3: A reachable state of the system with s0, s1, and d1 residing on cloud p2.
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Figure 4: A reachable state of the system with s1 and d1 residing on cloud p0; and s0
residing on cloud p2.

Figure 5: A reachable state of the system with s1 and d2 residing on cloud p0; and s0
residing on cloud p2.
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Figure 6: A reachable state of the system with s1 residing on cloud p0; d2 residing on
cloud p1; and s0 residing on cloud p2.

We can then illustrate the dynamic behaviour of the system modelled by
CPN using a series of diagrams depicting four reachable states: (i) Fig. 3:
after service s0 re-wrote d0 to d1 on cloud p2; (ii) Fig. 4: after service s1

and data d1 migrated from cloud p2 to cloud p0; (iii) Fig. 5: after service s1

re-wrote d1 to d2 on cloud p0; and (iv) Fig. 6: after data d2 migrated to cloud
p1.

In general, a CPN model like that outlined above can be translated into
a behaviourally equivalent model as in (5) (essentially, each transition tr
is replaced by a set of actions obtained from the enabling bindings of tr).
Similarly, each system model as in (5) can be translated into behaviourally
equivalent CPN. It is then possible to apply model chacking tools developed
for CPNs to reason about security aspects in FCSs. In this paper, we do not
follow this fairly standard path of development, and in the last part we in-
troduce concepts and analytical techniques which can be applied to diagnose
the presence of faults in FCSs which impact of the security properties. To

19



the best of our knowledge, this is the first study of this kind.

7. Diagnosis and WF-diagnosability

In this section, we outline the diagnosis and weakly fair diagnosability
property. This formal verification technique will be used in Section 8.

Diagnosis is the procedure of discovering abnormal behaviours of a sys-
tem, and diagnosability is an associated property of, e.g., a Petri net stating
that in any possible execution sequence (called below executions) an occur-
rence of a fault can eventually be diagnosed. Sampath et al. (1995) proposed
a method for diagnosability based on the construction of a diagnoser automa-
ton that allows one to estimate states of the system by observing executions.
Subsequent improvements were introduced in Jiang et al. (2001) and Schu-
mann and Pencolé (2007), where the basic idea was to build a verifier by
constructing the product of the system with itself through synchronisation
on observable transitions. If the system is given as an LPN, then the verifier
can be constructed directly (see Madalinski and Khomenko (2010)), and the
problem reduces to model checking of a fixed property expressed in LTL-X
(see Pnueli (1977) and Lamport (1983)). Subsequently, Haar et al. (2003)
proposed the weak diagnosis which is in fact more powerful than the stan-
dard diagnosis as in Benveniste et al. (2003). Based on the weak diagnosis,
the weakly fair diagnosability verification property was proposed in Agarwal
et al. (2012) and then improved in Germanos et al. (2014).

7.1. Petri Nets and Diagnosability

The system under consideration is modelled by an LPN N . Transitions
are partitioned into observable and invisible, i.e., the labelling function lab
maps transitions to Obs∪{ε}, where Obs is an alphabet of observable actions
and ε /∈ Obs is the empty word representing invisible action. This labelling
function lab can be applied to finite and infinite executions, projecting them
onto words in Obs∗ or Obsω. We assume that the N is free from deadlocks
and divergencies, i.e., every execution can be extended to an infinite one, and
every infinite execution has infinitely many observable transitions. Some
of the invisible transitions are designated as faults. An example in Fig. 7
has observable transitions t3, t4, and t5 with lab(t3) = a, lab(t4) = b and
lab(t5) = tick (the other transitions are unobservable, i.e., invisible). Note
that we represent faults by black boxes, and the observable transitions are
shaded.
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Figure 7: An undiagnosable LPN which would be diagnosable without t5. Making t3 WF
makes the LPN diagnosable.

7.1.1. Standard diagnosability

Given a finite execution ψ ofN , the observer sees lab(ψ) ∈ Obs∗, and only
on this basis needs to conclude whether some fault transition tr has occurred
in ψ. In a diagnosable system, once a fault has occurred, the observer is able
to eventually detect this fact. That is, provided that the suffix of ψ after the
first occurrence of a fault is sufficiently long, the observer should be able to
conclude that each execution ρ with lab(ρ) = lab(ψ) involves a fault which
has either already occurred or will definitely occur in future.

Definition 5 (Diagnosability). N is diagnosable if for all infinite executions
ψ and ρ such that lab(ψ) = lab(ρ), ψ contains a fault iff ρ contains a fault.

For example, the LPN in Fig. 7 is not diagnosable. Indeed, one can only
conclude that fault has occurred after observing a. However, the infinite
execution t2t

ω
5 contains a fault but never fires t3. If t5 is removed, the LPN

becomes diagnosable.

7.2. Weak Fairness

The example of Fig. 7 exhibits a pathological property of the standard
notion of diagnosability: a diagnosable system ceases to be such simply be-
cause of some unrelated concurrent activity. In practice, it is often reasonable
to assume that the system cannot perpetually ignore an enabled transition.
Then LPN Fig. 7 becomes diagnosable, by disallowing the infinite execution
t2t

ω
5 .
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One can capture this idea using weak fairness (see Vogler (1995)). First,
the designer specifies transitions which cannot be postponed indefinitely, des-
ignating them as weakly fair (WF). An infinite execution ψ is then weakly
fair (WF) if, for each WF transition tr, if tr is enabled after some prefix
of ψ then the rest of ψ contains at least one transition in confl(tr), where
confl(tr) is the set of all transitions tr′ 6= tr sharing an input place with
tr, see Fig. 8. Moreover, all finite executions are regarded as WF. One than
takes the WF executions as a refined semantics of the net, i.e., other execu-
tions are considered impossible. Coming back to the example in Fig. 7, if
t3 is WF then the execution t2t

ω
5 is not WF and thus disallowed, and so the

LPN becomes diagnosable.

Figure 8: (i) The execution (t1t2t3)ω is WF as no enabled transition is continually ignored
by it. (ii) The execution (t1t2)ω is not WF as t3 is enabled but all the transitions in
confl(t3) = {t3} are continually ignored. (iii) The execution (t1t3)ω is WF: even though
t2 is continually ignored, t1 ∈ confl(t2) = {t1, t2} is fired.

Definition 6 (WF-diagnosability). N is WF-diagnosable if each infinite WF
execution ψ containing a fault has a finite prefix ψ̂ such that every infinite
WF execution ρ with lab(ψ̂) < lab(ρ) contains a fault.

The way of constructing a verifier corresponding to WF-diagnosability
was described in Germanos et al. (2014). Using it, we can check the satis-
faction of an LTL-X formula that captures the WF-diagnosability property.

8. Experimental Results

We now present experimental results relating to the diagnosis of potential
actions of malicious insider in a cloud computing systems.

We use three scalable benchmarks based on the model shown in Fig. 2.
To keep the model simple, we do not consider how the interaction between
entities (tokens in the PN model) inside clouds are related to the security
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rules (1), (2), and (3). Instead, we evaluate the cloud security rule (4) which
states that an entity must be deployed on a cloud with a security level that
is greater than or equal to that of the entity. In other words, an entity can
move to another cloud according to its security permission. We then assume
that a malicious insider can move some entities to unauthorised clouds. This
should, clearly, be detected and addressed by the cloud management system.

For the verification task, we used the Maria toolset (see Mäkelä (2005)).
Its on-the-fly model checker verifies properties expressed in temporal logic by
computing the product of a property automaton and the reachability graph
of an LPN interpreted as automaton. Benchmark representations in Maria
input language are available from the authors upon request.

DfssmCloud (n#S, n#D). Fig. 9 shows an LPN modelling the system
comprising three clouds, p0, p1 and p2. Cloud p2 contains n services (indicated
by (n#S)) and n data items (indicated by (n#D)). These entities can be
distributed to clouds p0 and p1, according to some predefined security policy
respecting Dfssm, via transitions t1 and t3, respectively. Also, services and
data can flow from cloud p2 to cloud p1 directly via transition t2. It should
be noted that both services and data can flow from cloud p2 to clouds p0

and p1, and, similarly, from cloud p0 to cloud p1. However, from cloud p1 to
cloud p0 only data can flow. Thus, eventually, cloud p2 will become empty,
as only data can move from cloud p1 to cloud p0 and vice versa, and services
will stay in cloud p1 unable to be transferred to other clouds (p2 and/or p0).
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Figure 9: The DfssmCloud benchmark, which corresponds to the net in Fig. 2. The nets
of Control Flow and Data flow are merged into a single net.

DfssmCloudIns (n#S, n#D). Fig. 10 shows the previous system with
a malicious insider represented by a black transition t5. The actions of the
insider are invisible and they can move services and data from cloud p2 to
p3. If this happens, then no entities will be moved from cloud p2 to cloud
p1 via cloud p0, or directly to cloud p1 via transition t2. Although cloud p3

can send entities to cloud p1, the type of entities it can send is restricted
to services. Thus, if an attack occurs, no data can be sent to cloud p0 as
it was expected, and it will finally remain empty. Moreover, even if the
services can be transferred to cloud p1 from cloud p3, it is not guaranteed
that they have not been modified by the malicious insider, making the entities
untrustworthy.

NoDfssmCloudIns (n#S, n#D). Fig. 11 is similar to Fig. 10 except
that it does not model a Dfssm cloud system because we removed the secu-
rity policy. In the right-hand side of this figure we can see the corresponding
verifier. Its purpose is to check whether the WF-diagnosability property
holds, i.e., that a malicious event can be eventually detected.
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Figure 10: The DfssmCloudIns benchmark. The black transition indicates malicious
behaviour in the system.

Initially, we verify that the security rule (4) holds in Fig. 9. The specific
property for this case is captured by the LTL-X formula φ1 = �♦ p0, i.e.,
data will always be sent to cloud p0. This is achieved by assigning security
guards in the transitions which allow specific entities to move to each cloud.

The next case is to verify that the action of the malicious insider (see
Fig. 10) can be detected due to the introduced dynamic flow-sensitive security
policy. Here, we check again whether p0 will eventually contain some data
using the same LTL-X formula as previously. In this case, the formula is
violated as it is possible for cloud p1 to contain only services and cloud p3 to
contain only data.

In the last case, we remove the security policy turning the system into a
standard cloud system with a malicious insider. In such a case, we are able
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to detect the malicious action by applying diagnosis. To this end, we build a
corresponding verifier (Fig. 11), as explained in Germanos et al. (2014), and
check whether the WF-diagnosability property holds. It should be noted that
in this model the transitions do not have guards to ensure that the security
policy holds. Checking the WF-diagnosability property, the detection of a
malicious insider becomes more ‘expensive’ in verification time. That is,
each time the size of the model is increased, the state space of the verifier is
increased significantly. We are therefore assured that a malicious action can
be detected. In our case, we verify the following WF-diagnosability property

φdiag = � p2 ∨ ♦¬ stub monitor

This property states that our cloud computing system is diagnosable, mean-
ing that a malicious action can be detected, if p2 is always marked or eventu-
ally the place stub monitor is empty. This is necessary because if the faulty
transition t′5 fires, the WF stub transition will be enabled, and after firing
the place stub monitor will become empty indicating the occurrence of a
malicious action. Similarly, if transition t5 fires then the place p2 becomes
empty indicating the malicious action. Thus, a counterexample is an infinite
WF execution containing a malicious action but no stubs.

26



Figure 11: The NoDfssmCloudInsbenchmark (left) and the corresponding verifier
(right). The black transition indicates malicious behaviour.

The experimental results are summarised in Tables 3, 4, and 5, where
the meaning of the columns is as follows (from left to right): the name of
a benchmark, the verification time, and the number of states. The time is
measured in seconds. All experiments were conducted on a PC with 64-bit
Windows 7 operating system, an Intel Core i7 2.8 GHz Processor with 8 cores
and 4GB RAM (no parallelisation was used for the results in this table). The
Maria tool has confirmed that the verification property of each benchmark
holds.
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Benchmarks Vrf Time Number of states
DfssmCloud (1#S, 1#D) 0.047 9
DfssmCloud (2#S, 2#D) 0.046 31
DfssmCloud (3#S, 3#D) 0.062 65
DfssmCloud (4#S, 4#D) 0.062 111
DfssmCloud (5#S, 5#D) 0.077 169

Table 3: Experimental results for DfssmCloud benchmark.

Benchmarks Vrf Time Number of states
DfssmCloudIns (1#S, 1#D) 0.12 15
DfssmCloudIns (2#S, 2#D) 0.20 78
DfssmCloudIns (3#S, 3#D) 0.31 263
DfssmCloudIns (4#S, 4#D) 0.46 681
DfssmCloudIns (5#S, 5#D) 0.71 1479

Table 4: Experimental results for DfssmCloudIns benchmark.

Benchmarks Vrf Time Number of states
NoDfssmCloudIns (1#S, 1#D) 0.11 315
NoDfssmCloudIns (2#S, 2#D) 1 2772
NoDfssmCloudIns (3#S, 3#D) 6 13500
NoDfssmCloudIns (4#S, 4#D) 39 47025
NoDfssmCloudIns (5#S, 5#D) 79 131859

Table 5: Experimental results for NoDfssmCloudIns benchmark.
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Figure 12: Verification time increases dramatically when the number of services and data
in NoDfssmCloudIns becomes larger. The verification times of DfssmCloud and Df-
ssmCloudIns are almost the same.

Figure 13: The state space increases dramatically when the number of services and data
in NoDfssmCloudIns becomes larger. The state space of DfssmCloud and Dfssm-
CloudIns are almost the same.

Fig. 12 and Fig. 13 compare verification times and state space for the
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benchmarks. We can observe that in a standard cloud system the verification
of diagnosability increases significantly with the size of the system.

9. Conclusions

In this paper, we presented a dynamic flow-sensitive security model which
can be used to analyze the information flow in FCSs. The entities present
in the cloud system can be assigned different security levels belonging to
a given security lattice. Moreover, each cloud is assigned a security level
which captures the confidentiality level of the cloud. It is also possible to
specify in a formal way different security policies for the movement of entities
between different clouds. The resulting formal model can then be represented
by a suitable CPN, and its dynamic behaviour analyzed using the existing
verification methods and tools developed for Petri nets. We also discussed
how diagnosability under weak fairness could be used to detect malicious
intruders within an FCS.
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