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A B S T R A C T

Designing distributed protocols is complex and requires actions at very different levels: from

the design of an interaction flow supporting the desired application-specific guarantees to

the selection of the most appropriate network-level protection mechanisms. To tame this

complexity, we propose AnBx, a formal protocol specification language based on the popular

Alice & Bob notation. AnBx offers channels as the main abstraction for communication, pro-

viding different authenticity and/or confidentiality guarantees for message transmission.

AnBx extends existing proposals in the literature with a novel notion of forwarding chan-

nels, enforcing specific security guarantees from the message originator to the final recipient

along a number of intermediate forwarding agents. We give a formal semantics of AnBx in

terms of a state transition system expressed in the AVISPA Intermediate Format. We devise

an ideal channel model and a possible cryptographic implementation, and we show that,

under mild restrictions, the two representations coincide, thus making AnBx amenable to

automated verification with different tools. We demonstrate the benefits of the declarative

specification style distinctive of AnBx by revisiting the design of two existing e-payment pro-

tocols: iKP and SET.
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1. Introduction

The Alice & Bob notation, also known as protocol narrations, is
a popular device which has been widely adopted in the lit-
erature as the basis of several security protocol specification
frameworks (Almousa et al., 2015; Chevalier and Rusinowitch,
2010; Denker et al., 2000; Jacquemard et al., 2000; Lowe, 1998;
Mödersheim, 2009). In such frameworks, the semantics of the
specification languages is defined by a translation into lower

level formats, amenable to model-checking and automated veri-
fication. Besides making verification possible, the translation
semantics provides for a clean separation between the ab-
stract specification of the protocol structure and the details of
its implementation, which may be generated directly from the
specification (Almousa et al., 2015; Carlsen, 1994; Jakobsson
et al., 1996; Millen and Muller, 2001; Modesti, 2014, 2016;
Quaresma and Probst, 2010). This separation has a beneficial
impact on both the specification and the implementation: on
the one hand, it helps focusing on application-level properties,
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staying away from unnecessary low-level details; on the other
hand, it contributes to strengthening the implementation and
to ensure the protocol end-to-end security, by delegating to the
compiler the selection of the most adequate core implemen-
tation components.

Channel abstractions make a further step in the same di-
rection: they help in designing distributed applications
irrespective of the cryptographic mechanisms needed to protect
communication, by interpreting channels as a secure commu-
nication medium with built-in protection against certain attacks
(e.g., on confidentiality).

How these properties are actually ensured represents a dif-
ferent design aspect, which might not be a concern of the
application designer at all, and may be left to the compiler.

1.1. Related work

Several papers in the literature have taken this approach, and
developed it along different directions. First, there are papers
that propose the definition and implementation of different
channel abstractions, based on cryptographic realizations and
interaction patterns. Abadi et al. (2000) propose a process cal-
culus with native constructs for authentication and discuss a
possible cryptographic implementation. Adao and Fournet (2006)
design a variant of the pi-calculus with secure communica-
tion and describe its computationally sound compilation into
a concrete implementation. Other authors explore the idea of
compiling secure protocols for distributed sessions from con-
venient ML abstractions based on session types, a powerful
formalism used to structure interaction and reason over com-
municating processes and their behaviour (Bhargavan et al.,
2009; Corin et al., 2007).

Another line of research, instead, is more focused on rea-
soning about channels and their ideal behaviour in an abstract
way. Dilloway and Lowe (2007) present a hierarchy of secure
channels and discuss their relative strengths. Bugliesi and
Focardi (2008) devise secure channel abstractions in a process
algebraic setting and reason about the relative power of a low-
level adversary. Armando et al. (2007) model different channel
types using set-rewriting and linear temporal logic. Kamil and
Lowe (2009, 2011) adapt the Strand Spaces model to deal with
secure channels, providing different security guarantees.

Mödersheim and Viganò (2009) consider both an abstract
characterization and a concrete realization of channels, showing
that both characterizations coincide; the paper defines also
the notion of channels as goals and proves a related
compositionality result. The same authors also formalize some
easy-to-check static conditions that support a large class of
channels and applications and that are sufficient for vertical
security protocol composition (Mödersheim and Viganò, 2014).
These works also demonstrated that Alice and Bob notation
is ideal for the combination with the channel notation, and
channel types were integrated both in the languages AnB
(Mödersheim, 2009) and SPS (Almousa et al., 2015). In these
papers, the focus is on giving a very general and concise se-
mantics to Alice and Bob notation, namely defining with a few
mathematically simple principles the semantics in presence
of an arbitrary algebraic theory. With respect to this seman-
tics, Almousa et al. (2015) prove the correctness of a translator
to formal models and implementations. Our paper is based on

this semantic machinery for the cryptographic handling of mes-
sages and defines a rich set of channels on top of this basis.

We should mention two more related works on channels.
Gibson-Robinson (2013) employs the notion of channel (and
their properties) for the analysis of multi-layer security pro-
tocols. Finally, Sprenger and Basin (2010, 2012) consider a
refinement approach where cryptographic protocols are
synthesised from high-level security goals; one of the steps of
the refinement process builds on the usage of channel
abstractions.

1.2. Contributions

In the present paper we develop channels one step further, gen-
eralizing them to capture the notion of forwarding channel, a
critical abstraction for designing and reasoning about complex
protocols involving three or more communicating parties. A
typical scenario for such protocols is represented by
e-commerce transactions, in which a customer requires a mer-
chant to certify that her payment has been cleared out, and
the merchant provides that evidence by forwarding to the cus-
tomer the notification she received from the credit card issuer.
Similarly, single sign-on protocols usually involve an
authenticity-preserving forwarding of access tokens from a
trusted third-party to different clients. This kind of interac-
tions may be modelled by session types, since they are typically
developed on top of very expressive calculi and languages, but
it is not accounted for in existing protocol narration frame-
works with channel abstractions. Including forwarding in these
frameworks is important, given their wide popularity and ease
of use.

We develop the novel concept of forwarding channel as part
of AnBx, a formal specification language that we introduce by
conservatively extending the semantics of the AnB language
(Mödersheim, 2009). AnBx includes modes for all kinds of
message forwarding, where all or some of the properties of the
original transmission are preserved upon relaying. In our char-
acterization, we provide both an abstract interpretation of
channels that captures their ideal behaviour and a crypto-
graphic implementation, and we prove a formal equivalence
between the two characterizations. Both interpretations are based
on a translation to the AVISPA Intermediate Format, hence AnBx
is directly available for automated verification with the differ-
ent tools that use this format, such as OFMC (Basin et al., 2005).

We demonstrate the practical effectiveness of our ap-
proach by an analysis and re-engineering of two real-life
e-payment protocols: iKP [Internet Keyed Payment (Bellare et al.,
1995, 2000)] and SET [Secure Electronic Transaction (Bella et al.,
2003, 2005, 2006)]. Although both protocols could be ex-
pressed in their full complexity in AnBx, we rely on the abstract
channels available in the language to factor out the crypto-
graphic aspects almost entirely.The resulting protocols are more
concise, easier to understand and, interestingly, more effi-
cient to verify than the original versions.

In addition, the AnBx formulations strengthen the original
specifications in that they enjoy stronger security goals and
properties. As a by-product of our comparative analysis, we also
find a (to the best of our knowledge) new flaw in the original
specification of iKP and propose an amended version that rec-
tifies the problem.
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Moreover, the Java implementation of the revised versions
of iKP and SET proved to behave well at run-time (Modesti, 2014,
2016), in some cases executing even faster than their original
counterparts. This demonstrates that the benefits of using a
language like AnBx are not only limited to the design and veri-
fication levels but they also impact the implementation and
deployment phases.

1.3. Outline of the paper

Section 2 introduces the basics of AnBx . Section 3 focuses on
the semantics of the language and presents our formal results.
Sections 4–6 discuss our case studies. Section 7 concludes the
presentation. The AnBx implementation, together with its ana-
lytical tool and the scripts employed in the case studies, is
available online.1

1.4. New contents

This paper integrates and extends the results reported in
Bugliesi and Modesti (2010) (first definition of AnBx), Mödersheim
(2009) (formal semantics of the AnB language) and Mödersheim
and Viganò (2009) (ideal behaviour and cryptographic imple-
mentation of secure channels). Section 3 is novel: in previous
work the semantics of AnBx was defined by a direct transla-
tion to AnB, based on a cryptographic implementation. Here
we recast our cryptographic implementation within the AVISPA
Intermediate Format (IF) and provide an alternative IF char-
acterization, based on the ideal channel behaviour. We then
prove that the cryptographic implementation conforms with
the ideal semantics. Besides representing a valuable theoreti-
cal contribution, the semantics correspondence has practical
value, as it makes both characterizations equally viable for au-
tomatic analysis within any verification framework supporting
IF. The SET case study in Section 6 is new.

2. AnBx protocol specifications

AnBx is a formal protocol specification language based on the
popular (informal) Alice & Bob notation. AnBx conservatively
extends the AnB specification language (Mödersheim, 2009) with
a richer notion of communication channel.

2.1. Protocol types and agent knowledge

Protocol narrations in AnBx are built around an underlying sig-
nature of typed identifiers that include protocol variables,
constants, and function symbols. Variables are noted with
upper-case initials and represent values that are determined
dynamically, at each protocol run. Constants, in turn, are noted
by lower-case identifiers and represent values and functions
that are invariant across different protocol executions. As an
example, consider the AnBx specification of the Diffie–Hellman
key exchange protocol in Fig. 1.Variables of type Agent are roles:
here we have the roles A and B, which get instantiated to ar-
bitrary concrete agents when executing the protocol. The

numbers g, X and Y, in turn, are the (constant) group genera-
tor and the (variable) random exponents of the Diffie–Hellman
key exchange.

For each role, the protocol specification describes the knowl-
edge that an agent playing that role needs to execute the
protocol: this indirectly specifies what the intruder will know
when playing one of the roles of the protocol. Only variables
of type Agent may be part of the initial knowledge. All other
variables represent values that are chosen randomly by the par-
ticipant who first uses them, e.g., in the example A chooses
X and B chooses Y.

2.2. Protocol actions

The core of an AnBx specification consists of the message ex-
changes between the participants in an ideal, unattacked run
of the protocol. Every action has either of the two forms below:

A B M A B M→ →, : , : ,@η ηor

noting standard and fresh exchanges, respectively. In both cases,
an agent playing role A communicates message M to the agent
playing role B, along a communication channel that conveys
the security guarantees specified by the exchange mode η. The
AnBx modes are triples:

Auth Verifiers Conf( ),

whose components may be set to an agent name (a list of
names for the Verifiers field), or unset, in which case they are
filled with the distinguished symbol “−”. When the Conf field
is set, the action represents a confidential exchange, which guar-
antees that only the agent named in the field has access to
the message. When the Auth field is set, the action identifies
an authentic exchange, which guarantees that the message
originates from the agent named in the field; the Verifiers field
must be set if and only if the Auth field is set, to include a non-
empty list of agents that are entitled to verify the authenticity
of the message. Authentic exchanges may further specify that
the message being exchanged is freshly communicated by the

agent referenced in the Auth field: the notation A B M→@ , :η1 http://www.dais.unive.it/~modesti/anbx/.

Fig. 1 – Diffie–Hellman specification in AnBx.
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serves that purpose. None of the modes conveys any guaran-
tee that the intended recipients will eventually receive the
message.

Although the intended purpose of the channel modes is to
hide low-level communication details, we remark that AnBx
conservatively extends the AnB notation, making it possible
to freely intermix abstract exchanges and cryptographic terms.
Note, in particular, that the first two actions in the Diffie–
Hellman specification in Fig. 1 employ the channel modes to
express the authentic exchange of the two “half keys”, whereas
the third describes the exchange of message Msg encrypted
under the new key.

The idea to structure protocol specifications around ab-
stract mechanisms for secure communications is certainly not
new, as we discussed in Section 1. Among the various ap-
proaches in the literature, the closest to ours is the “bullet”
notation supported by AnB• (Mödersheim and Viganò, 2009),
a specification language providing support for confidential and
authenticated channels. Every exchange mode available in AnB•
can be easily encoded in AnBx, as shown in Table 1; however,
AnBx provides additional expressiveness, as we discuss in the
next section.

2.3. Forwarding modes

In addition to the standard AnB• exchanges, the AnBx modes
allow additional generality. Specifically, AnBx provides primi-
tive support for message forwarding, a feature which is not
offered by existing proposals, but constitutes a recurrent com-
munication pattern in practical applications. We will provide
examples of concrete uses of forwarding in our case studies;
for the moment, we just illustrate the concept with some simple
examples.

The first example shows how authenticity can be pre-
served upon forwarding:

A B A B C M

B C A B C M

→ −( )
→ −( )

, , :

, , :

The first action denotes an authentic exchange that origi-
nates from A and is meant to be delivered to both B and C. Upon
receiving M, agent B forwards it to C in the second action, pre-
serving the authenticity guarantees by A. Notice that the mode
A B C, −( ) in the second exchange still mentions A as the

source of the communication, even though the message is sent
by B.This pattern cannot be encoded in the AnB• notation, since
authentic messages are always assumed to be originated by
the agent specified on the tail of the arrow.

Forwarding modes can be used also to implement a form
of “blind” delivery, arising when an agent relays messages that
are intended to remain confidential for a third party:

A B C M

B C C M

→ − −( )
→ − −( )

, :

, :

Here, A sends M to C confidentially, relying on B to deliver the
message. As in the previous case, this protocol cannot be ex-
pressed in the AnB• notation, in this case because secret
messages are always intended to be disclosed to the agent
specified on the head of the arrow.

Message forwarding is also available for fresh exchanges,
in various combinations. Assume message M is sent freshly
from A to B:

A B A B C M→ −( )@ , , :

Then both the following actions:

B C A B C M→ −( ), , :

and

B C A B C M→ −( )@ , , :

are legal. With the first action, M is forwarded to C without any
freshness guarantee, whereas the second action allows C to
verify the freshness of the transmission.

2.4. Protocol goals

AnBx protocol specifications are analysed and validated against
a set of security goals that specify the properties expected of
the protocol. Like its predecessors, AnBx supports three stan-
dard kinds of goals, which we briefly review below, referring
the reader to Mödersheim (2009) for full details.

• Weak Authentication goals have the form:

B A Mweakly authenticates on ,

and are defined in terms of non-injective agreement on the
runs of the protocol (Lowe, 1997);

• Authentication goals have the form:

B A Mauthenticates on ,

and are defined in terms of injective agreement on the runs
of the protocol, guaranteeing the freshness of the exchange;

• Secrecy goals have the form:

M A Aksecret between 1, , ,…

and are intended to specify which agents are entitled to learn
message M at the end of the protocol run.

3. AnBx semantics

Following previous proposals (Mödersheim, 2009; Mödersheim
and Viganò, 2009), we define the semantics of AnBx in terms

Table 1 – Encoding of AnB• in AnBx.

AnB• AnBx

PLAIN A→B A→B,(−|−|−)
AUTHENTIC A•→B A→B,(A|B|−)
CONFIDENTIAL A→•B A→B,(−|−|B)
SECURE A•→•B A→B,(A|B|B)
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of a translation to the AVISPA Intermediate Format (IF) (AVISPA,
2003). IF is a set-rewriting calculus in which the semantics of
a protocol is described in terms of a set of facts that encode
the knowledge of the honest agents and the intruder at the
different protocol steps, and a set of rewriting rules describ-
ing the state transitions of the participants and the intruder
during the protocol execution. The rewriting rules for honest
participants are generated from the AnBx protocol specifica-
tion, whereas the capabilities available to the intruder are
modelled by protocol-independent rules, i.e., the intruder is not
forced to follow the protocol specification.

We define the translation from AnBx to IF in several steps
(Fig. 2), conveniently exploiting the existing AnB2IF compiler
(Mödersheim, 2009) as a black box. Given an AnBx specifica-
tion, we translate it into a corresponding AnB specification, in
which the AnBx modes are expressed as message tags (Section
3.1). The resulting AnB specification is fed to the AnB2IF com-
piler, which extracts from the narration the actions associated
with the protocol agents, and renders them as IF rewriting rules
(Section 3.2). The resulting IF rules still include the tags from
the annotated AnB narration: a further transformation step
(Sections 3.3 and 3.4) completes the translation, exploiting the
tags to produce a cryptographic IF specification and an ideal IF
specification. We refer to these two constructions as the

Cryptographic Channel Model (CCM) and the Ideal Channel
Model (ICM) respectively. The two models are contrasted and
related in Section 3.5.

3.1. From AnBx to AnB

The first step of the translation transforms each action in the
AnBx narration into a corresponding AnB action bearing ad-
ditional annotations, which drive the later stages of the
translation.

The AnBx-to-AnB translation is conceptually simple, al-
though the presence of the fresh modes and their interaction
with the forward modes hide a few subtleties. Our character-
ization of freshness relies on a simple mechanism by which
the sender generates a fresh nonce and the recipient caches
every nonce it receives, telling fresh messages from replicas
by checking whether the received nonce is in the cache. In case
of forwarding of a fresh message, we reuse the same nonce
generated at the step which introduced the message being
forwarded.

In order to ensure that newly generated nonces are indeed
fresh, the AnBx-to-AnB translation keeps track in a store ξ of
all the protocol variables introduced to represent the differ-
ent nonces created along the protocol steps. Formally, the store

Fig. 2 – Translation from AnBx to IF/CCM and IF/ICM .
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is a partial function from triples of the form A V M, ,�( ) to nonce

variables N.The store ξ is used in the translation to AnB (Table 2),
as described below:

• At each fresh exchange which is not a forward, we first select
a nonce variable N that does not occur in the range of ξ and

then we let ξ A V M N, ,�( ) = , where A is the name of the

source agent, �V is the (non-empty) list of verifiers and M
is the message exchanged in the AnBx specification; this in-
formation enables the reuse of N in all the possible future
forwards of message M;

• At each authentic or secure forward action, we lookup the
domain of ξ in search of a triple matching the Auth and the
Verifiers components of the mode, as well as the message
being forwarded; if such a triple exists, the action is a forward
of a fresh exchange, and we include the corresponding nonce
from ξ among the components of the forwarded message,
irrespective of whether the forward is fresh or not (this
choice is technically convenient in the definition of the trans-
lation). If the triple does not belong to the domain of ξ, then
the source action must be non-fresh, thus no nonce is in-
cluded in the forward of the generated message.

• The translation is undefined when a fresh forward is per-
formed, but no matching triple is found in the domain
of ξ.

In a practical implementation, one would of course either
use timestamps or sequence numbers in order to limit the
amount of data that the receiver has to store. We remark,
however, that these realizations are essentially equivalent to
our formal model.2

A further subtlety in the translation arises from blind for-
wards, i.e., when the recipient A of a message M differs from
the final intended receiver B, and the message M should not
be exposed to A.To capture the desired effect, we wrap M inside
the constructor blindB to denote that it should be readable only
by B.

The translation clauses are listed in Table 2, where we do
not explicitly track the updating of ξ for the sake of readabil-
ity.The tags plain, ctag, atag and stag are just as in Mödersheim
and Viganò (2009): in addition, we include the new tags fatag
and fstag to account for freshly authenticated channels. All the
tags are public constants in the target AnB specification and
blindX is a function symbol available to every agent (includ-
ing the intruder) for any X. The specification is also extended
with private function symbols unblindX, parameterized over
the agents identity, which are used to extract the confiden-
tial messages.3

As a first, simple illustration, below we give the annotated
AnB narration that results from applying the translation to the
AnBx specification of the protocol in Fig. 1:

A B A B g X

B A B A g Y

A B Msg

→ ( )
→ ( )
→ { }

: , , , exp ,

: , , , exp ,

: , e

atag

atag

plain xxp exp , ,g Y X( )( )

As a further example, consider the following variant of the
blind forward protocol examined earlier on:

A B C Msg token

B C C Msg token

→ − −( )
→ − −( )

, : ,

, : ,

where we assume that the three agents use token as a known
tag marking their exchanges. The resulting AnB narration is
as follows:

A B Msg token

B C Msg token
C

C

→ ( )
→ ( )

: , ,

: , ,

ctag blind

ctag blind

3.1.1. Error conditions
If none of the clauses in Table 2 applies, the translation is un-
defined and an error is reported. Errors signal unexecutable
specifications, which expect the protocol participants to send
messages they are unable to compose, since they lack some

2 A further possible alternative is to use challenge–response pro-
tocols, but these generate additional network traffic, which in turn
would considerably complicate our exposition of the two channel
models and their relationship, as well as the practical model-
checking problems induced in our tool.

3 In our implementation we actually rely on the OFMC facility
for asymmetric cryptography, since the current implementation of
AnB2IF does not support user-defined algebraic theories. Namely,
we let blind bX XM M( ) { } ( )� where b(·) is a public function symbol and
inv b X( )( ) is known only to X.

Table 2 – Translation from AnBx to AnB.

A B M A B M

A B B M A B

→ − − −( ) = →

→ − −( ) = →

, : : ,

, : : ,

� �
�
��

	

�

ξ

ξ

plain

ctag blinnd

atag

ˆ

, ˆ : : , ˆ , , , ˆ ˆ

B M

A B A V M A B A V M N if A A and

( )

→ −( ) = → ≠��
��

	

�

�
ξ

ξ AA V M N

A B A V M otherwise

A B A V B M

, ,

: , ˆ , ,

, ˆ ˆ :

�

�

��
��

	

�

( ) =
= →

→ ( )
atag

ξ
== → ( ) ≠ ( ) =
= →

A B A V M N if A A and A V M N

A B

B: , ˆ , , , ˆ ˆ , ,

:

ˆstag blind

sta

� �ξ

gg blind

fa

, ˆ , ,

, ˆ : :

ˆ

@

B A V M otherwise

A B A V M A B

�

��
�
��

	


��

( )
→ −( ) = →

ξ
ttag, ˆ , , , ˆ

ˆ ˆ , ,

A V M N if A A with N chosen fresh in

or A A and A V M

�

�

= ( )

≠

ξ

ξ(( ) =
→ ( ) = → ( )

N

A B A V B M A B A V M NB
@

ˆ, ˆ ˆ : : , ˆ , , ,��
�
��

	


��

�
ξ

fstag blind iif A A with N chosen fresh in

or A A and A V M N

ˆ

ˆ ˆ , ,

= ( )

≠ ( ) =
ξ

ξ �
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of the required information bits. One such error condition arises
when an agent is expected to execute a fresh forward action
for a message it received without any freshness guarantee, as
in the following specification:

A B A B C M

B C A B C M

→ −( )

→ −( )

, , :

, , :@

Further cases of unexecutable specifications are identified
by a subsequent translation step, specifically during the AnB-
to-IF translation. Indeed, the blindX M( ) construction for
confidential messages has precisely the purpose to signal to
the AnB2IF compiler that message M can only be seen by X,
so that a protocol turns out to be unexecutable if such a blinded
message needs to be read by another agent. Consequently, a
sequence of AnBx actions like the one below is translated suc-
cessfully to AnB, but the AnB2IF compiler will reject it as non-
executable, since after the first exchange B has access to
blindC M( ) but not to M:

A B C M

B C M

→ − −( )
→ − − −( )

, :

, :

3.2. From AnB to IF

The AVISPA Intermediate Format (IF) (AVISPA, 2003) is a low-
level language for specifying transition systems using set
rewriting. We refer the reader to Mödersheim (2009) for full
details on the translation from AnB to IF; here, we just provide
an informal overview to make the paper self-contained.

An IF specification P I R G= ( ), , consists of an initial state I,
a set of transition rules R for the protocol participants and the
intruder, and a set of goals G that determine which states count
as attack states. Our notion of attack state coincides with the
one used in standard AnB (Mödersheim, 2008), defining viola-
tions to secrecy and authentication (in terms of injective or
non-injective agreement). A protocol is safe when no attack state
is reachable from the initial state using the transition rules.

An IF state is a set of ground facts, separated by dots (“.”),
which encode the knowledge of the different protocol agents.
We distinguish two kinds of facts: ik(m), which denotes that
the intruder knows the term m, and stateA A m mn, , ,1 …( ) , which
characterizes the local state of an honest agent during the pro-
tocol execution by the terms A, m1,. . .,mn. The constant A

identifies the role of the agent, and, by convention, the first
message A denotes the name of that agent.4 Our formaliza-
tion of the intruder also includes a further class of facts of the
form dishonest A( ) to identify the dishonest agents partici-
pating in the protocols. While many tools assume that there
is only a single dishonest agent i (the “intruder”), our model
supports any number of collaborating dishonest agents — one
may still think of one intruder who has compromised several
agents and can now use their identities.

We now discuss how the initial state is generated from an
AnB specification. Let n denote a bounded number of protocol

sessions and let σ1,. . .,σn be corresponding mappings from the
protocol roles R1,. . .,Rm to concrete agent names. Let Kj stand
for the initial knowledge of the role Rj, then the initial state is

state if i

ik dishonest i if i
Rj K R

K R
j i j i

j i j i

σ σ
σ σ
( ){ } ≠

( ) ( ){ } =
⎧
⎨
⎩ ,1≤≤ ≤ ≤ ≤i n j m,1

∪

where i is a reserved constant denoting the identity of the in-
truder. The initial state thus consists of the local states of the
honest agents and the initial knowledge of the intruder, which
is determined by the compromised agents; a dishonest i( ) fact
is introduced when at least one of the agents is compromised.

The transition rules of an IF specification are of the form
L Cond RX[ ]⇒ , where L and R are states, X is a set of fresh
variables (representing fresh values generated at run-time), and
Cond is a set of conditions, expressed as (in)equalities and
negated predicates. The semantics of an IF rule is defined by
the state transitions it enables: from a state S the rule enables
a transition to a state S′ iff there exists a substitution σ of the
variables of L and X such that Lσ ⊆ S, ′ = ( )∪S S L R\ σ σ , and
Xσ are fresh constants not occurring in S; moreover, the con-
ditions Condστ are true in S for every substitution τ of the
variables in Cond that do not occur in L. We assume the ik ⋅( )
and the dishonest ⋅( ) facts to be persistent, i.e., to be always
propagated to the right-hand side of any transition.

The semantics of AnB is just defined by the translation from
an AnB specification to IF . The main point of the translation
is to define the behaviour of the honest agents in terms of IF
transition rules, by identifying in particular what checks must
be performed on the messages they receive, and how they con-
struct the messages they send out.The behaviour of the intruder,
in contrast, is defined by protocol-independent rules model-
ling a Dolev–Yao attacker, as in Table 3.We assume the existence
of a set of function symbols with an associated arity, which
is partitioned into two sets of public and private symbols
respectively.

The first rule describes both asymmetric encryption and
signing, while the second one expresses that the payload of
a ciphertext can be retrieved if the corresponding decryption
key is known. We use inv ⋅( ) as a private function symbol, em-
ployed, e.g., to represent the secret component of a given key-
pair. The third rule allows the attacker to learn the payload of
any signed message he knows. Then, we have rules for tupling
and projecting tuple elements, as well as a rule for applying
public function symbols to known messages (while respect-
ing their arity). We treat constants, including agent identities,
as public functions with 0-arity. In this phase of the transla-
tion, all the messages exchanged by honest agents are always
assumed to be mediated by the intruder, i.e., every commu-
nication happens through ik(·) facts.

4 In contrast to the convention used in the AnBx specification,
IF makes a clear distinction between role names, noted by calli-
graphic letters such as A, and variables of type Agent.

Table 3 – Dolev–Yao intruder rules.

ik ik ik

ik ik inv ik

ik inv

M K M

M K M

M

K

K

K

( ) ( ) ⇒ { }( )
{ }( ) ( )( )⇒ ( )

{ }( )( )

.

.

⇒⇒ ( )
( ) ( ) ⇒ ( )
( ) ⇒ ( ) ( )

( )

ik

ik ik ik

ik ik ik

ik ik

M

M N M N

M N M N

M Mn

. ,

, .

. .1 
 (( ) ⇒ ( )( )ik f M Mn1, ,…

52 j o u rna l o f i n f o rma t i on s e cu r i t y and a p p l i c a t i on s 3 0 ( 2 0 1 6 ) 4 6 – 6 3



We illustrate the translation from AnB to IF with an example.
Specifically, we give the IF transition rules for roles A and B
from the AnB translation of the protocol in Fig. 1. The IF tran-
sition rules are in Fig. 3, where, for the sake of readability, we
do not explicitly represent the public tags in the state facts and
we turn the side-conditions of the rules into pattern matching.

Notice in the second clause that A accepts any value GY from
the network, not necessarily the result of a correct Diffie–
Hellman exponentiation, and applies it to encrypt the last
message of the protocol. Conversely, in the fourth clause, B
checks that the first encrypted message component is indeed
the identity of A, but it cannot check anything about Msg, since
it is freshly generated by another participant.

3.3. From IF to CCM

The Cryptographic Channel Model realizes the AnBx channel
modes by means of digital signatures and public-key encryp-
tions, represented in a simple symbolic model of cryptography.

3.3.1. Honest agents
The translation of the honest agents is based on the IF-to-
CCM mapping defined in Table 4. For rules generated by the
AnB2IF compiler, the corresponding CCM rule results from
applying the mapping IF–CCM in the table to the intruder
facts. In the CCM code, we additionally associate two
key-pairs pk inv pkA A( ) ( )( )( ), for encryption/decryption, and
sk inv skA A( ) ( )( )( ), for verification/signing with every agent

A acting as the target of a confidential exchange or as the source

of an authentic message. These keys are only used for encod-
ing channels and must not appear in the AnBx protocol
specification.

The message M occurring in all clauses in Table 4 may be
an arbitrary message.The last clause is the exception, as it only
applies to variables: this clause handles the case of agents that
are expected to execute blind forward actions for confiden-
tial or (fresh) secure messages. In the AnB2IF translation, such
agents receive the messages to be forwarded as terms of the
form (t,X) for some variable X, as they are going to accept any
message at such steps, without inspecting it: therefore, to obtain
the corresponding CCM code, we just remove the tag.

To illustrate this, consider again the annotated AnB blind-
forward example we examined in Section 3.1:

A B Msg token

B C Msg token
C

C

→ ( )
→ ( )

: , ,

: , ,

ctag blind

ctag blind

Although token is assumed to be known to all agents, the
forward action by B is performed irrespectively of the actual
content of the message it receives, since B is not able to perform
any check on a confidential message for C. This is shown by
the IF code produced by the translation of the exchange to the
CCM :

state

state ik

A

A

A B C token Msg

A B C token Msg Msg to

, , ,

, , , , . ,

( ) = [ ]⇒
( ) kken

B C A token X

B C A token X

C{ }( )
( ) ( )

⇒

( )pk

state ik

state
B

B

, , , .

, , , ,(( )
( ) { }( )

⇒
( )state ik

state
pkC

C

C A B token Msg token

C A B to
C, , , . ,

, , , kken Msg,( )

In the second transition rule, B accepts every message X pro-
vided by the intruder. (Recall that the ik(X) fact is not repeated
explicitly on the right-hand side of the arrow, since such facts
are persistent.) Conversely, in the third rule C can verify that
the second component of the encryption is indeed the ex-
pected token available in her knowledge.

An additional measure is needed for translating to the CCM
the transition rules expecting a fresh message on input. These
rules are easily identified in the annotated AnB code, as they
have an occurrence of fatag fstag in their incoming message.
For any such transition rule, let B be the receiver, and N the
nonce associated with the fresh message. Now, to implement

Fig. 3 – IF translation of the example of Fig. 1.

Table 4 – Translation from IF to CCM and ICM.

IF CCM ICM

ik plain, M( ) ik(M) ik(M)
ik ctag blind, B M( )( ) ik pkM B{ }( )( ) cnfCh B M;( )
ik atag, , ,A V M�( ) ik

inv sk
�V M

A
,{ }( )( )( )

athCh A V M; ;�( )
ik stag blind, , ,B A V M�( )( ) ik

inv sk pk

�V M
A B

,{ }{ }⎛
⎝

⎞
⎠( )( ) ( )

secCh A V B M; ; ;�( )
ik fatag, , , ,A V M N�( ) ik

inv sk
�V M N

A
, ,{ }( )( )( )

athCh A V M N; ; ,�( )
ik fstag blind, , , ,B A V M N�( )( ) ik

inv sk pk

�V M N
A B

, ,{ }{ }⎛
⎝

⎞
⎠( )( ) ( )

secCh A V B M N; ; ; ,�( )
ik(t,X) t ∈{ }ctag stag fstag, , , ik(X) ik(X)
X variable
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the nonce-checking mechanism of replay protection we dis-
cussed in Section 3.1, it is enough (i) to include the side
condition not seen B N,( )( ) in the transition rule, and (ii) to in-
troduce the fact seen B N,( ) to the right-hand side of the
same rule. For instance, for the sender of the message

A B A B Msg→ −( )@ , : , the CCM will comprise a transition rule

of the form:

… …= [ ]⇒ { }( )( )( )N B Msg N Aik inv pk, , .

with N fresh. Correspondingly, on the receiver side, the tran-
sition rule in the CCM will be structured as follows:

… . , , ,ik not seeninv pkB Msg N B NA{ }( ) ( )( )( )( )

⇒ ( )seen B N, .…

As a result, message M is received only if the nonce N was
never seen before by the receiver: if that is the case, and the
message is accepted, the receiver adds N to its cache of seen
nonces.

3.3.2. Intruder rules
The intruder rules of the CCM are just the Dolev–Yao in-
truder rules in Table 3, where we assume that the symbols ik(·)
and pk ⋅( ) introduced earlier on are public functions. Conse-
quently, every agent, including the intruder, can obtain the
public keys of every other agent as soon as its name is known
(this implies that the intruder knows all the public keys). Since
the function inv(·) providing the ability to construct signing and
decryption keys is private, each agent A knows only her own
private keys inv sk A( )( ) and inv pk A( )( ). Notice that private
keys of dishonest agents are available to the intruder, accord-
ing to the definition of the IF initial state in Section 3.2.

3.4. From IF to ICM

The Ideal Channel Model provides for a direct representation
of the communication modes in terms of corresponding IF state
facts that encode the types of channel involved in the ex-
changes. In particular, the ideal semantics draws on the
constructors athCh, cnfCh and secCh, around which we define
persistent state facts that track the protocol exchanges. Protocol-
independent rewriting rules, in turn, characterize the intended
behaviour of the ideal channels.

3.4.1. Honest agents
The translation of the honest agents is based on the IF-to-
ICM mapping defined in Table 4. For each rule generated by the
AnB2IF compiler, the corresponding ICM rule results from ap-
plying the mapping IF–ICM in the table. Similar to the CCM
translation, the last case in the table handles a blindly for-
warding agent who cannot check anything about the message
being forwarded.

For our blind forwarding example, the translation to the ICM
generates the following IF transition rules:

state

state cnfCh
A

A

A B C token Msg

A B C token Msg C M

, , ,

, , , , . ;
( ) = [ ]⇒
( ) ssg token

B C A token X

B C A token X

,

, , , .

, , , ,

( )
( ) ( )

⇒ ( )
state ik

state
B

B

sstate cnfCh

state
C

C

C A B token C Msg token

C A B token

, , , . ; ,

, , , ,
( ) ( )

⇒ MMsg( )

The only significant difference with respect to the CCM is
that the encrypted message for C is replaced by a cnfCh C;⋅( )
channel fact.

Two comments are in order for the ICM translation. First,
nonces are implicitly included in the payload of the message
when freshness is lost upon forwarding: this choice reflects
the corresponding behaviour in the CCM, where nonces cannot
be removed from digitally signed packets. Second, given that
the state channel facts employed in the ICM are persistent, we
need additional measures to protect against replicas in all tran-
sition rules expecting a fresh message on input. For that
purpose, we rely on the very same mechanism described earlier
for the cryptographic model, based on the seen ⋅ ⋅( ), facts to tell
replicas apart. Even though we could define additional non-
persistent channel facts to model fresh channels, this choice
simplifies the definition of the correspondence between the
two channel models and the related proof.

3.4.2. Intruder rules
The intruder rules constitute the key component of the ideal
semantics, as it is through these rules that we define the actual
interpretation of our channel facts. Specifically, in the ICM, the
Dolev–Yao intruder rules in Table 3 are extended with the rules
reported in Table 5.

An intruder can forge a message over an authentic channel
only if the associated sender identity is compromised, while
he can learn every message sent over an authentic channel.
Dually, an intruder can send over a confidential channel every
message he can compose, but he can learn a message sent over
a confidential channel only if the associated receiver identity
is compromised.

In addition, we give the intruder two more abilities for secure
channels, corresponding to those available in the CCM . Spe-
cifically, the last two transition rules in Table 5 provide the
intruder with the ability to secure an authentic channel, and
to drop confidentiality from secure channels shared with com-
promised agents.

The two transition rules reflect the corresponding in-
truder capabilities available in the CCM, where an intruder can
upgrade a message on a (fresh) authentic channel to one on
a (fresh) secure channel, by encrypting it, and dually access

Table 5 – Intruder rules for ICM.

ik dishonest athCh

athCh ik

i

� �

� �

V M A A V M

A V M V M

, . ; ;

; ; ,

( ) ( ) ⇒ ( )
( ) ⇒ ( )

kk ik cnfCh

cnfCh dishonest ik

athCh

B M B M

B M B M

A

( ) ( ) ⇒ ( )
( ) ( ) ⇒ ( )

. ;

; .

; �� �

�

V M B A V B M

A V B M B

; . ; ; ;

; ; ; .

( ) ( ) ⇒ ( )
( ) ( ) ⇒

ik secCh

secCh dishonest aathCh A V M; ;�( )
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the contents of a secure message directed to a compromised
receiver, by decrypting it.

3.5. Relating ICM and CCM

We complete our formalization of the AnBx semantics by
analysing the relationship between the ICM and the CCM char-
acterizations. In particular, we define and prove correct a
semantic equivalence between the two models. As a first step,
we define a correspondence relation ~ between ICM and CCM
states, that relates states that only differ in their encoding of
channels. Intuitively, two ~-correspondent states encode the
same local knowledge for each protocol agent and the in-
truder. To define this notion easily, we first introduce an erasure
operation used to remove the cryptographic keys introduced
in the CCM encoding.

Definition 1. (Erasure) Given a CCM state S, let |S| be the CCM state
obtained by removing the cryptographic keys introduced in the CCM
encoding, i.e., by deleting any element of the form pk(A), sk(A),
inv pk A( )( ) , inv sk A( )( ) from the agents’ knowledge (including
the intruder).

The formal definition of ~ is given below: it relies on the
simple mapping from ICM states to CCM states shown in Table 6.
Notice that message M may include a nonce in the case of chan-
nels providing freshness guarantees.

Definition 2. (Corresponding States) Let S1 be an ICM state and
S2 be a CCM state. We say that S1 and S2 are corresponding states
(noted S1 ~ S2) if and only if there exists a bijection from the facts in
S1 to the facts in |S2| that is the identity on all but the channel facts
and behaves on the channel facts according to the mapping in Table 6.

Based on this definition, we now turn to the problem of es-
tablishing a semantic equivalence between the ICM and the
CCM, proving a one-to-one correspondence between attack
states. Given an AnBx specification P, let CCM(P) and ICM(P) stand
for its translation to the CCM and to the ICM, respectively.

Theorem 1. Let P be an AnBx specification. For each state S1 reach-
able from ICM(P), there exists a state S2 reachable from CCM(P) such
that S1 ~ S2.

Proof. We proceed by induction on the number of steps per-
formed.The initial states are equivalent modulo ~ by definition
of our translation. Let us assume, by induction hypothesis, that
S1 ~ S2 for some reachable ICM state S1 and some reachable CCM
state S2. Let ′S1 be an ICM state reachable from S1 in one step:
we show that there exists a CCM state ′S2 such that ′S2 is reach-
able from S2 and ′ ′S S1 2∼ .

We proceed by a case analysis on the transition rule r applied
to rewrite S1 into ′S1 . The easiest case is when r is an intruder
rule, which does not involve any channel fact (e.g., a rule like
ik ik ikM K M K( ) ( )⇒ { }( ). ). In this case the very same rule can
be applied also in the CCM to obtain an equivalent state. A
similar reasoning applies for honest agents rules, given the defi-
nition of our translation. The most interesting possibility is
when r is an intruder rule involving channel facts.

We show the cases for authentic channels as representa-
tive of all other cases:

• Let r V M A A V M= ( ) ( )⇒ ( )ik dishonest athCh� �, . ; ; . Since S1 ~ S2,

the intruder knows �V and M also in S2. The CCM enco-
ding of the channel fact on the right side of the rule

is ik
inv sk

�V M
A

,{ }( )( )( )
. This term can be constructed by the

intruder in the CCM since dishonest A( ) implies that
inv sk A( )( ) is known to the intruder. Therefore, there is a
reachable state ′S2 such that ′ ′S S1 2∼ .

• Let r A V M V M= ( )⇒ ( )athCh ik; ; ,� � . Since S1 ~ S2, the intruder

knows in S2 the CCM encoding of the channel fact, i.e., we

have ik
inv sk

�V M S
A

,{ }( ) ∈( )( ) 2 . The intruder can thus learn M

and �V by verification of the signature, using sk(A). There-
fore, an ′S2 with ′ ′S S1 2∼ is reachable.

The proof for confidential and secure channels proceeds
along the same lines.

Theorem 1 ensures that, if we verify a protocol in the CCM,
then the protocol is also secure in the ICM . The opposite di-
rection, instead, does not hold in general, since there is an
unbounded number of reachable CCM states which do not have
any counterpart in the ICM, due to the presence of the cryp-
tographic keys for encoding channels. Still, for verification
purposes, we are interested in attack states, and we can in fact
prove a formal result about them. Carrying out such a proof
is challenging, since in principle the intruder can abuse channel
encodings inside CCM states for mounting attacks which would
not work in the ICM, where such cryptographic messages are
not present at all.

The insight is interpreting such abuses as a special case of
“type-flaw” attacks, as the intruder is actually fooling the honest
agents into improperly using cryptographic material related
to the channel encodings. Interestingly, it is well-known that
type-flaw attacks can be systematically prevented by good pro-
tocol design, when all message components are annotated with
sufficient information to enforce a unique interpretation
(Arapinis and Duflot, 2007; Heather et al., 2003). These “typing
results” do not keep the intruder from sending ill-typed mes-
sages (e.g., sending an encrypted message in place of a nonce);
rather, they ensure that every message (part) has a unique in-
terpretation. Then, it can be shown that if an attack exists, also
a well-typed attack exists — hence it never helps the in-
truder to use ill-typed messages. Considering only well-
typed attacks is a convenient proof strategy and it bears no
loss of generality for the class of typeable protocols.

3.5.1. Typeable protocols
We presuppose a finite set of basic type symbols B (like nonce,
agent, etc.). We define the set T of composed types as the least
set that contains B and that is closed under the following

Table 6 – Mapping the ICM to the CCM.

ICM CCM

cnfCh B M;( ) ik pkM B{ }( )( )

athCh A V M; ;�( ) ik inv sk{ , }�V M A( )( )( )
secCh A V B M; ; ;�( ) ik

inv sk pk

�V M
A B

,{ }{ }⎛
⎝

⎞
⎠( )( ) ( )
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property: if τ τ1, ,… n T∈ and f is a function symbol of arity n,
then also f Tnτ τ1, ,…( ) ∈ .

We note with Γ typing environments, binding constants and
variables of a protocol specification to types, so that Γ c B( ) ∈
for every constant c and Γ X T( ) ∈ for every variable X.We extend
Γ to a function on arbitrary terms as follows:

Γ Γ Γf t t f t tn n1 1, , , , .… …( )( ) = ( ) ( )( )

Definition 3. (Typeable Protocol) Consider a CCM protocol speci-
fication P with the standard operators for symmetric and asymmetric
encryption, and such that communication occurs only via ik(·) facts
(i.e., the transition rules of the protocol agents operate on disjoint facts
for disjoint agents).

Let the set MP(P) of message patterns of P be defined as the
set of all terms of the form ik(m) in the initial state and the
transition rules of the honest agents; we assume here that vari-
ables occurring in MP(P) are α-renamed in such a way that no
two distinct elements have a common variable (α-renaming
is assumed to be type consistent). Finally, let

SMP P s s t MP P s

k m t MP Pk

( ) = ∈ ( ) ∧ ∉{ }
∪ ( ) { } ∈ ( ){ }

�
�

V

inv ,

be the non-variable subterms of message patterns as well as
all decryption keys, again under α-renaming (� denotes the
subterm relation and V is the set of variables).

We say that the protocol P is typeable in a typing environ-
ment Γ if for all s t SMP P, ∈ ( ) one has Γ Γs t( ) = ( ) whenever s
and t have a unifier. We omit Γ when clear from the context.

Theorem 2. If there is an attack against a typeable protocol, then
there is a well-typed one, i.e., where every variable X is instanti-
ated with a term t such that Γ ΓX t( ) = ( ).

Proof. A simple adaptation of the proof in Mödersheim (2012).
See Appendix for details.

As usual, the notion of typing we adopt rules out as non-
typeable many specifications that are actually perfectly alright.
This happens when several messages have similar formats. In
this case, we cannot apply Theorem 2 regarding well-typed
attacks (and invoke the main theorem below). Fortunately, there
is a systematic way to make all protocols typeable, by adding
tags to tell different messages apart, a practice which is not
expensive in the implementation and does not destroy any
standard authentication and secrecy property.

We are finally ready to state and prove the result of interest
for our typed model. We conjecture that such result may hold
true also for arbitrary attacks on any given protocol, but we
do not see any viable proof strategy for this more general
setting.

Theorem 3. Let P be an AnBx specification and let us assume a well-
typed attack in CCM(P) that leads to the attack state S2. Then there
exists a reachable attack state S1 in ICM(P) such that S1 ~ S2.

Proof. First observe that an honest agent can only receive mes-
sages that are a well-typed instance of a message in MP(P) for

the CCM variant of P. We can thus restrict the intruder to gen-
erating only messages (and sub-messages thereof) that honest
agents can actually receive or that are the decryption key for
a message in his knowledge. These messages are all well-
typed instances of MP(P) or inv(·) thereof.

Further, observe that the key functions sk(·) and pk(·) may
occur only in the channel encodings in the CCM and not in the
AnBx protocol specification, hence none of the variables in P
has a type containing either of these constructors. It is thus
enough to assume the intruder only uses the channel keys for
composition of messages as it is intended by the protocol, e.g.,
we can exclude double encryption with the channel key pk(·),
since any other uses of these keys would lead to ill-typed
messages.

Now, we prove a stronger statement, namely that any well-
typed trace in CCM(P) has a corresponding trace in ICM(P) such
that every state in the first trace corresponds (in the sense
defined by ~) to some matching state in the second trace. We
proceed by induction on the length of the trace. If the trace is
empty, then the conclusion is immediate by definition of our
translation. Otherwise, assume the trace in CCM(P) includes a
transition from a state S2 to a state ′S2 . By inductive hypoth-
esis, there exists a reachable state S1 in ICM(P) such that S1 ~ S2.
We show that there exists an ICM state ′S1 such that ′S1 is reach-
able from S1 and ′ ′S S1 2∼ .

As the most interesting case, consider an asymmetric en-
cryption step of the intruder, encrypting a message M
with public key K. We thus have ik ikM K S( ) ( ){ } ⊆, 2, while
ik M SK{ }( ) ∈ ′2 . By the typing assumption, we have either of
the following cases:

• Neither M nor K contain pk(·) or sk(·) as subterms, i.e., they
are not related to channel facts. Then by definition of ~ we
have that ik ikM K S( ) ( ){ } ⊆, 1 and so the same step is pos-
sible in the ICM.

• K = pk(B) and M does not contain pk(·) or sk(·). Then by defi-
nition of ~ we have ik M S( ) ∈ 1 . The result here corresponds
to proving cnfCh B M S;( ) ∈ ′1, which can be generated by the
rule ik ik cnfChB M B M( ) ( )⇒ ( ). ; in the ICM.

• K = pk(B) and M V M
A

= { } ( )( )
� , 0 inv sk

, i.e. the intruder turns

an authentic message from A for verifiers �V into a
secure message for B. Since ik M S( ) ∈ 2, by definition

of ~ we have athCh A V M S; ;� 0 1( ) ∈ , and thus we can

reach the corresponding secCh A V B M S; ; ;�
0 1( ) ∈ ′ by the rule

athCh ik secChA V M B A V B M; ; . ; ; ;� �( ) ( )⇒ ( ) in the ICM.

All other encryption steps would produce messages that
cannot be received and we excluded these redundant steps
above.

The cases for signing, analysis, and the transitions of honest
agents similarly have a correspondence in the ICM.

Theorems 2 and 3 can be combined as follows. Given a pro-
tocol P, we verify that its CCM translation satisfies the
assumptions of the typing result (Theorem 2): note that the
conditions to check are purely syntactical and can be mecha-
nized. We then know that, if P has an attack, then it has a well-
typed one, so Theorem 3 implies that there is also an attack
on the ICM . Thus, if ICM(P) is secure, then so is CCM(P).
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Conceptually, the ICM is the preferential definition of our
channels, as it is independent of the specific implementation
details and it focuses solely on formalizing the behaviour of
channels. This abstract model is more suitable for protocol
design. Moreover, for tools like ProVerif (Blanchet, 2001) and
SATMC (Armando and Compagna, 2007), the ideal model is
easier for verification, since it is free of most of the typing prob-
lems such as those discussed above. On the other hand, the
CCM is more convenient in conjunction with other model-
checking tools like the ones of AVISPA (Basin et al., 2005), where
CCM specifications may be verified directly. Collectively, our
results have thus relevant practical consequences for auto-
mating security verification with several different tools.

4. Case study: e-payment protocols

We now demonstrate AnBx at work on the specification of a
wide and interesting class of protocols, namely e-payment
protocols.

4.1. Introducing the case studies

The first case study we propose is the iKP e-payment proto-
cols family, showing how AnBx lends itself to a robust and
modular design that captures the increasing level of security
enforced by the different protocols in the iKP family, depend-
ing on the number of principals possessing a certified signing
key. Interestingly, as a byproduct of our design and verification
efforts, we isolate a new flaw in the original iKP specification
and propose a fix.

The second case study illustrates a revised version of SET,
a protocol that for its complexity is considered a benchmark
for protocol analysis. Here, we shift our attention to some
known security flaws of the protocol and show that our AnBx
variant is immune to such defects. Notably, the case study
employs fresh forward modes to propose a simple solution to
a known issue related to payment authorization (Van, 2001).

In both case studies, our revised versions of the protocols
provide stronger security guarantees than the original proto-
cols. This was largely expected, since the AnBx channel
abstractions convey protection on all message components;
however, we believe that our exercise of revisiting existing pro-
tocols provides evidence about the value of employing adequate
channel abstractions for protocol design. In fact, our revised
protocols have a much simpler structure than their original
specification and, in principle, a robust implementation can
be automatically synthesized from their AnBx narration, yield-
ing stronger and more scalable security guarantees with limited
effort.

We postpone a detailed discussion on the verification setup
until Section 4.4, and turn now to the details of the e-payment
protocols specification in AnBx.

4.2. A basic e-payment scheme

We outline the bare-bone specification of an e-payment pro-
tocol, exposing the protocol structure and the message formats
common to both our case studies.

We presuppose three principals: a Customer C, a Mer-
chant M and an Acquirer A, i.e., a financial institution entitled
to process a payment. In our model, each principal starts with
an initial knowledge shared with other participants. Indeed,
since most e-payment protocols describe only the payment
transaction and do not consider any preliminary phase, we
assume that the Customer and the Merchant have already
agreed on the details of the transaction, including an order de-
scription (desc) and a price. We also assume that the Acquirer
shares with the Customer a customer’s account number (can)
comprising a credit card number and the related PIN.The initial
knowledge of the three parties can thus be summarized as
follows: C knows price, desc, can; M knows price, desc; and A knows
can.

The transaction can be decomposed into the following steps:

1. C → M: Initiate
2. C ← M: Invoice

(In steps 1 and 2 the Customer and the Merchant ex-
change all the information which is necessary to compose the
next payment messages).

3. C → M: Payment Request
4. M → A: Authorization Request

(In steps 3 and 4 the Customer sends a payment request
to the Merchant. The Merchant uses this information to
compose an authorization request for the Acquirer and tries
to collect the payment).

5. M ← A: Authorization Response
6. C ← M: Confirm

(In steps 5 and 6 the Acquirer processes the transaction in-
formation, and then relays the purchase data directly to the
issuing bank, which then authorizes the sale in accordance with
the Customer’s account. This interaction is not part of the nar-
ration. The Acquirer returns a response to the Merchant,
indicating success or failure of the transaction. The Mer-
chant then informs the Customer about the outcome).

Interestingly, steps 4 and 6 involve forwarding operations,
since the Customer never communicates directly with the
Acquirer, but some credit-card information from the Cus-
tomer must flow to the Acquirer through the Merchant to
compose a reasonable payment request, while the final re-
sponse from the Acquirer must flow to the Customer through
the Merchant to provide evidence of the transaction. Steps 4
and 6 cannot thus be expressed in existing protocol narra-
tion frameworks without sacrificing the adoption of their
channel abstractions: this prevents a clean, abstract specifi-
cation of protocols like iKP and SET.

In addition to some elements of the initial knowledge, other
information needs to be exchanged in the previous protocol
template. First, to make transactions univocally identifiable, the
Merchant generates a fresh transaction ID (tid) for each trans-
action. Second, the Merchant associates to the transaction also
a date or any appropriate timestamp. Both pieces of informa-
tion must be communicated to the other parties. The
transaction is then defined by a contract, which comprises most
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of the previous information. If Customer and Merchant reach
an agreement on it, and they can prove this to the Acquirer,
then the transaction can be completed successfully.The details
on the structure of the contract vary among different proto-
cols. At the end of the transaction, the authorization auth is
then returned by the Acquirer, and communicated to the two
other participants.

4.2.1. Message formats
Our protocol templates presuppose the exchange of three kinds
of messages: either simple names, m, or tuples of messages
�M( ) , or else message digests.

We represent digest creation simply as a term [M] by which
an agent may prove the knowledge of a message M without
leaking it to the recipient, e.g., via a hash function: this is mod-
elled through a non-invertible function symbol.We also consider
digests which are resistant to dictionary attacks, hence pre-
supposing an implementation based on a hashing scheme that
combines the message M with a key known by the principal
which must verify the digest. We note with [M:A] a digest of
a message M which is intended to be verified by A. The sym-
bolic implementation of this HMAC primitive is standard, and
full details can be found in the scripts employed for our case
studies.

4.3. Protocol goals

We provide a brief overview of our security properties of in-
terest for e-payment protocols. Further details about the
validated protocol goals are later reported for each case study.

A first goal we would like to meet for an e-payment system
is that all the principals agree on the contract they sign. In terms
of OFMC goals, this corresponds to requiring that each par-
ticipant can authenticate the other two parties on the contract.
Moreover, the Acquirer should be able to prove to the other two
parties that the payment has indeed been authorized and the
associated transaction performed: in OFMC this can be rep-
resented by requiring that M and C can authenticate A on the
authorization auth.

A stronger variant of the goals described above requires that,
after completion of a transaction, each participant is able to
provide a non-repudiable proof of the effective agreement by
the other two parties on the terms of the transaction. In prin-
ciple, each principal may wish to have sufficient proofs to
convince an external verifier that the transaction was actu-
ally carried out as she claims.The lack of some of these provable
authorizations does not necessarily make the protocol inse-
cure, but it makes disputes between the parties difficult to settle,
requiring to rely on evidence provided by other parties or to
collect off-line information.

Finally, we are also interested in some secrecy goals, like
verifying that the Customer’s credit card information can is kept
confidential and transmitted only to the Acquirer. In general,
we would like to keep the data exchanged by the principals
secret among the parties who strictly need to access them for
protocol functionality.

4.4. Experimental setup and performance

We verified the AnBx specifications of iKP and SET by compil-
ing them into their cryptographic implementation, using our

tool, and running OFMC (Basin et al., 2005) on the generated
CCM translation against the described security goals. We also
encoded and verified the original versions of iKP and SET, and
compared the results with those of the revised versions.

For all the tests we ran OFMC with one and two symbolic
sessions.This bounds how many protocol executions the honest
agents can engage in, while the intruder is left unbounded,
thanks to the symbolic lazy intruder technique in OFMC. In
the following we say that a goal is met only if it is satisfied in
all the considered settings. With two sessions we were unable
to complete the full verification due to search space explo-
sion. Therefore, we report (Tables 8 and 10) the performance
results for the highest depth of the search space we were able
to complete for all protocols within the limits of RAM available.5

Our experiments show that the revised versions of iKP, for
a given depth of search, can be verified much faster than the
original ones, while for SET the verification times for the origi-
nal and revised versions are similar.

Another aspect we consider is the execution speed of a full
run of the protocols. We built Java implementations of these
protocols automatically generating them with the AnBx com-
piler (Modesti, 2014, 2016). On both the original and revised
versions we used the same cryptographic primitives and
settings.6 The results of the original and revised versions are
usually similar, although the original 3KP and signed SET run
slightly faster. However, they are less secure than their revised
counterparts.

5. The iKP protocol family

The iKP protocol family was developed at IBM Research (Bellare
et al., 1995, 2000; O’Mahony et al., 2001) to support credit card-
based transactions between customers and merchants (under
the assumption that payment clearing and authorization may
be handled securely off-line). All protocols in the family are
based on public-key cryptography. The idea is that, depend-
ing on the number of parties that own certified public key-
pairs, we can achieve increasing levels of security, as reflected
by the name of the different protocols (1KP, 2KP, and 3KP).

5.1. Protocol narration

Despite the complexity of iKP, by abstracting from crypto-
graphic details, we can isolate a common communication
pattern underlying all the protocols of the family. Namely, a
common template can be specified as follows:

1. C M can A desc M→ [ ] [ ], : : , :η1

2. C M price tid date contract← [ ], : , , ,η2

3. C M price tid can can A contract→ [ ] [ ], : , , , : ,η3

5 Configuration — RAM: 8 Gb, CPU: Intel Core i7-4700HQ 2.40 GHz,
OS: Windows 8.1.

6 Configuration (JDK8u66) — Symmetric Encryption: AES-128,
Asymmetric Encryption: RSA-2048, Hashing: SHA-1, HMAC:
HmacSHA1.
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4. M→A (decomposed into two steps to specify different com-
munication modes)
(a) M A price tid can can A contracta→ [ ] [ ], : , , , : ,η4

(b) M A price tid date desc M contractb→ [ ] [ ], : , , , : ,η4

5. M A auth tid contract← [ ], : , ,η5

6. C M auth tid contract← [ ], : , ,η6

with contract price tid date can A desc M� , , , : , :[ ] [ ]( ).
By instantiating the exchange modes ηj in the previous

scheme, one may generate the AnBx variants of the different
protocols in the iKP family, achieving different security guar-
antees: this is exactly what we do in Table 7. Notice that all
the considered protocols rely on blind forwarding at step 4 to
communicate sensitive payment information from the Cus-
tomer to the Acquirer, without disclosing them to the Merchant.
Moreover, a forwarding operation is employed at step 6 to pre-
serve the authenticity of the response by the Acquirer.

5.2. Main results of iKP security verification

We verified the AnBx protocols described above and carried out
a corresponding analysis of the original specifications of
{1,2,3}KP, as amended in Ogata and Futatsugi (2003). Below we
refer to this amended version as the “original” iKP, to be

contrasted with the “revised” AnBx version in Table 7. In both
cases, we ran our tests assuming that the Acquirer is trusted,
i.e., encoded as a concrete agent a rather than as a role A; this
is often a reasonable assumption in e-payment applications.
As we mentioned earlier, the AnBx specifications are not just
more scalable and remarkably simpler, but they also provide
stronger security guarantees, which are detailed in Table 8 and
commented further below.

During the analysis of the original 2KP and 3KP we found
a (to the best of our knowledge) new flaw. It is related to the
authenticity of the Authorization response auth that is gen-
erated by the Acquirer and then sent to the other principals
at steps 5 and 6. In particular, the starred goals in Table 8 are
met only after changing the protocol by adding the identities
of Merchant and Customer inside the signature of the Acquirer
in the original specification. In 2KP, since the Customer is not
certified, this can be done with an ephemeral identity derived
from the credit card number.

It is worth noting that, after the completion of the revised
and the amended original 3KP, each party has evidence of trans-
action authorization by the other two parties, since the protocol
achieves all the authentication goals that can ideally be sat-
isfied, according to the number of certified principals. Moreover,
our revised 3KP, with respect to the original version, provides
the additional guarantee of preserving the secrecy of the au-
thorization response Auth.

In contrast, the original 3KP protocol, the strongest pro-
posed version, fails in two authentication goals: A can only
weakly authenticate M and C on [contract]. Luckily, if the trans-
action ID tid is unique, this is only a minor problem, since
[contract] should also be unique, i.e., two different contracts
cannot be confused.

6. SET purchase protocol

Secure Electronic Transaction (SET) is a family of protocols for se-
curing credit card transactions over insecure networks. This

Table 7 – Exchange modes for the revised iKP e-payment
protocol.

Mode/Step → 1KP 2KP 3KP

η1 C → M (−| − | −) (−| − | M) @(C | M | M)
η2 C ← M (−| − | −) @(M | C | –) @(M | C | C)
η3 C → M (−| − | A) (−| − | A) (C | A | A)
η4a M → A (−| − | A) (−| − | A) (C | A | A)
η4b M → A (−| − | A) @(M | A | A) @(M | A | A)
η5 M ← A @(A | C,M | −) @(A | C,M | M) @(A | C,M | M)
η6 C ← M (A | C,M | −) (A | C,M | –) (A | C,M | C)
certified

agents
A M,A C,M,A

Table 8 – Performance and security goals satisfied by Original and Revised iKP.

Goal 1KP 2KP 3KP

O R O R O R

can secret between C,A + + + + + +
A weakly authenticates C on can − − − − + +
desc secret between C,M + + + + + +
auth secret between C,M,A − − − − − +
price secret between C,M,A − − − − − −
M authenticates A on auth +a + +a + +a +
C authenticates A on auth + + + + + +
A authenticates C on [contract] − − − − w +
M authenticates C on [contract] − − − − + +
A authenticates M on [contract] − − + + w +
C authenticates M on [contract] − − + + + +
C authenticates A on [contract],auth + + + + + +
M authenticates A on [contract],auth +a + +a + +a +
verification time 9 h10 m 2 h08 m 12 h39 m 3 h57 m 59 h36 m 4 h02 m
execution time 1.17 s 1.16 s 1.23 s 1.22 s 1.16 s 1.28 s

a Goal satisfied only after fixing the definition of SigA (Bellare et al., 2000).
w = only weak authentication.
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standard was proposed by a consortium of credit card com-
panies and software corporations led by Visa and MasterCard
and involving companies like IBM, Microsoft, Netscape, RSA and
Verisign. In the present paper we consider the SET purchase
protocol as outlined in Bella et al. (2006). In the following we
distinguish a signed and an unsigned version of SET: in the former
all the parties possess certified key-pairs, while in the latter
the Customer does not.

6.1. Protocol narration

Given the complexity of SET, to ease the comparison with other
works on such protocol, in this presentation the information
exchanged by the principals is denoted with the names com-
monly used in SET specifications. We introduce some basic
concepts of the protocol by simply providing a mapping of the
exchanged data to the corresponding information in the bare-
bone specification presented in Section 4: this should clarify
the role of most of the elements. We can identify PurchAmt with
price, OrderDesc with desc, pan with can and AuthCode with auth.
The initial knowledge of the three parties can then be sum-
marized as follows: C knows PurchAmt, OrderDesc and pan; M
knows PurchAmt and OrderDesc; A knows pan.

During the protocol run, the principals generate some
identifiers: LIDM is a local transaction identifier that the
Customer sends to the Merchant, while the Merchant
generates another session identifier XID; we denote the
pair (LIDM,XID) with TID. Finally, we complete our abstraction
by stipulating OIdata OrderDesc= and PIdata pan= ; we let
HOD OIdata M PIdata A= [ ] [ ]( ): , : . The latter contains the evi-
dence (digest) of the credit card that the Customer intends to
use, and the evidence of the order description that will later
be forwarded to the Acquirer. In our model HOD plays the role
of the dual signature, a cryptographic mechanism central to SET,
which is employed to let the Merchant and the Acquirer agree
on the transaction without giving any of them full view of the
details. Namely, as we said, the Merchant does not need the
customer’s credit card number to process an order, but he only
needs to know that the payment has been approved by the
Acquirer. Conversely, the Acquirer does not need to be aware
of the details of the order, but he just needs evidence that a
particular payment must be processed.

Although many papers on SET (Bella et al., 2006; Brlek et al.,
2006; Van, 2001) focus their attention on the signed version of
the protocol, again we note that both versions expose a common
pattern which allows for an easy specification in AnBx . The
narration depicting the common structure of the protocols is
reported below:

1. C → M,η1: LIDM
2. M → C,η2: XID
3. C → M (decomposed in two steps to specify different com-

munication modes)
(a) C M a→ ,η3 : TID,HOD
(b) C M b→ ,η3 :
TID,PurchAmt,HOD,PIdata

4. M → A (decomposed in two steps to specify different com-
munication modes)
(a) M A a→ ,η4 :
TID,PurchAmt,HOD,PIdata

(b) M A b→ ,η4 : TID,PurchAmt,HOD
5. A → M,η5: TID,HOD,AuthCode
6. M → C,η6: TID,HOD,AuthCode

Table 9 shows the communication modes we specify to in-
stantiate the previous protocol template to our revised variants
of the unsigned and signed versions of SET.

6.2. Main results of SET security verification

We verified the AnBx specifications of the SET purchase pro-
tocol and carried out a corresponding analysis of the original
specifications, as reported in Bella et al. (2006). In general, our
versions of the protocols satisfy stronger security guarantees
than the original ones (Bella et al., 2006), as reported in Table 10.
It is worth noting, in particular, that our revised versions do
not suffer from two known flaws affecting the original SET
specification.

The first flaw (Bella et al., 2006) involves the fifth step of
the protocol, where it is not possible to univocally link the iden-
tity of the Acquirer and the Merchant with the on-going
transaction and the authorization code. Namely, the original
message should be amended to include the identity of the mer-
chant M, otherwise the goal “C authenticates M on AuthCode”
cannot be satisfied. In our revised version the exchange at step
5 is automatically compiled into a message including the iden-
tity of both the Merchant and the Customer, so the problem
is solved.

The same implementation also prevents the second flaw,
presented in Brlek et al. (2006). In that thesis paper the speci-
fication of the protocol is more detailed than in Bella et al. (2006),
as it introduces an additional field AuthRRTags, which in-
cludes the identity of the Merchant. We tested with OFMC the
version of SET presented in Brlek et al. (2006) and verified the
presence of the flaw, namely an attack against the purchase
phase, which exploits a lack of verification in the payment au-
thorization process. It may allow a dishonest Customer to cheat
on an honest Merchant when collaborating with another dis-
honest Merchant. The attack is based on the fact that neither
LIDM nor XID can be considered unique, so they cannot be used
to identify a specific Merchant.Therefore the customer can start
a parallel purchase with an accomplice, playing the role of
another merchant, and make the Acquirer authorize the
payment in favor of the accomplice. Here, again the goal “C au-
thenticates M on AuthCode” fails.

During our analysis we also verified that both the original
specifications (Bella et al., 2006; Brlek et al., 2006) fail to verify

Table 9 – Exchange modes for the revised SET
e-payment protocol.

Mode/Step → Unsigned SET Signed SET

η1 C→M (−| − |M) @(C|M|M)
η2 C←M @(M|C|−) @(M|C|C)
η3a C→M (−| − |M) @(C|M|M)
η3b C→M (−| − |A) (C|A|A)
η4a M→A (−| − |A) (C|A|A)
η4b M→A @(M|A|A) @(M|A|A)
η5 M←A @ ,A C M M( ) @ ,A C M M( )
η6 C←M @ ,A C M −( ) @ ,A C M C( )
certified agents M,A C,M,A
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the goals “C authenticates A on AuthCode” and “C authenti-
cates M on contract AuthCode, ”. To overcome this problem the
protocol must be fixed in the sixth (and final) step, as already
outlined in Van (2001). This issue also leads us to more inter-
esting considerations on how to prove the authorization of the
transaction.

6.2.1. Proving authorization of the transaction
The previous problem arises from the fact that the Customer
does not have any evidence of the origin of AuthCode by the
Acquirer and she instead has to rely only on information pro-
vided by the Merchant. For example, giving to the Customer
a proof that the Acquirer authorized the payment requires sub-
stantial modification of the sixth step of the protocol. In fact,
instead of letting the Merchant sign a message for the Cus-
tomer, we exploit the AnBx forward mode to bring to the
Customer the authorization of the payment signed directly by
the Acquirer. It is worth noticing that, employing a fresh forward
mode in the sixth step, we can achieve the desired strong au-
thenticity goal on the pair, even though the transaction identifier
is not unique.

We can then confirm the results outlined in Van (2001),
showing that, while iKP meets all the non-repudiation goals,
the original specification of SET does not. It is important to
notice that, to achieve non-repudiation, each participant must
have sufficient proofs to convince an external verifier that the
transaction was actually carried out as she claims. A way to
obtain this is to assume that the authentication is obtained
by means of digital signatures computed with keys which are
valid within a Public Key Infrastructure and are issued by a
trusted third party (Certification Authority). Although this limits
the way authentic channels in AnBx could be implemented,
in practice it does not represent a significant restriction, since
in the considered protocols digital signatures are the stan-
dard means meant to achieve authentication.

7. Conclusions

We presented AnBx, the currently most expressive Alice & Bob-
style language. The distinguishing key-feature of the language
is a small, yet powerful, extension of the popular channel ab-
straction to support message forwarding, which is critical for
designing and reasoning about complex protocols involving
three or more parties. We analysed the formal details related
to the definition of the language, and we proved a semantic
equivalence between the ideal behaviour of our channels and
a simple cryptographic implementation.

Considering alternative implementations of our channel ab-
stractions (i.e., different CCMs) is certainly possible and worth
exploring in the future, but it would require us to adapt the
proof of our equivalence results. For instance, it seems that
using a challenge–response mechanism rather than se-
quence numbers to achieve freshness would make the
equivalence proof quite harder.

We have demonstrated the usefulness of the language in
two case studies from the e-payment area, namely iKP and SET,
and we argue that the abstraction from low-level security
mechanisms turns out to be helpful for protocol designers. Our
compiler from AnBx to IF is available online7 along with the
related documentation and the source code of our case studies.
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Table 10 – Performance and security goals satisfied by original and revised SET purchase protocol.
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O R O R
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Appendix. Proof of Theorem 2

The idea behind the proof is to abuse a popular verification
technique as a proof argument, namely the symbolic
constraint-based approach that we call “the lazy intruder” (Basin
et al., 2005; Millen and Shmatikov, 2001; Mödersheim, 2012;
Rusinowitch and Turuani, 2003). The intuition behind the lazy
intruder is as follows. Every trace can be seen as an instance
of a symbolic trace, i.e., a sequence of transition rule applica-
tions where we delay the unification of left-hand side ik(m) facts
and leave variables in there uninstantiated. Instead, we keep
a constraint M m� , where M is the set of messages the in-
truder knows at that state. Such a constraint expresses that
the intruder must be able to generate the message m from
knowledge M. Thus, these constraints before reduction contain
only messages m, or instances thereof, for which ik(m) occurs
in the IF specification of the protocol P (in the transition rules
of the honest agents). It can be shown that, if there is an attack
trace, then there is a corresponding symbolic trace with sat-
isfiable intruder constraints, hence in the proof we can focus
without loss of generality on such symbolic traces.

The lazy intruder technique is based on a calculus of con-
straint reduction rules for checking their satisfiability (and, if
satisfiable, determine a solution). There are three constraint
reduction rules: GENERATE (to compose new messages from public
function symbols), ANALYZE (to obtain all subterms of known mes-
sages by decryption and projection) and UNIFY, which states that
a possible solution to the constraint M t� exists if there is a
s M∈ , both s and t are not variables, s and t have the most
general unifier σ, and all other constraints are satisfiable under
σ. The formal constraint reduction rules are reported below,
where we let ϕ range over M t� constraints or conjunctions
thereof. For the ANALYZE rule we give only the example of asym-
metric decryption, other rules are similar.
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We can finally prove the theorem.

Restatement of Theorem 2. If there is an attack against a type-
able protocol, then there is a well-typed one, i.e., where every variable
X is instantiated with a term t such that Γ ΓX t( ) = ( ).

Proof. Consider an arbitrary attack trace and consider its
corresponding symbolic trace. By the completeness of the
constraint reduction, we know that the constraint reduction
will find a solution (i.e., a substitution solving all constraints).
We show that any such solution is well-typed. Hence, the
existence of an attack implies the existence of a well-typed
one.

Technically, we actually need to prove a stronger result by
induction over the entire constraint reduction: we prove that
every message occurring in the constraints, and any arbi-
trary subterm of it, is either a variable or an instance of a
message in SMP(P), and that all variables are only instanti-
ated in a well-typed way.

Let us first consider a protocol P such that no element of
MP(P) is a variable, i.e., P does not involve any step where a “bare
value” is transmitted, but all messages are composed terms
or constants. In this case, MP P SMP P( ) ⊆ ( ), i.e., the union of the
initial intruder knowledge and the messages exchanged in P
is included in SMP(P). The Generate and Analyze cases are
straightforward to handle, since, in particular, such rules do
not instantiate any variable. In the Unify case, both s and t must
be well-typed instances of elements of SMP by induction hy-
pothesis, since they are not variables. Given that s and t have
a unifier, the typeability assumption implies Γ Γs t( ) = ( ), hence
also all corresponding subterms of s and t must have the same
type by definition of Γ, and the substitution σ is hence
well-typed.

Finally, we extend the proof to any protocol P we excluded
above, i.e., such that there exists a variable in MP(P). Let P′ be
a modification of P where every “bare variable” X is replaced
by the composed term (t, X) for some fresh tag t that is known
to the intruder. Assume now that P has an attack, then also P′

has an attack, since the previous wrapping does not enforce
any protection. By construction P′ satisfies the hypotheses of
the previous point, hence for any attack on P′ there is a well-
typed attack on P′, but it is immediate that such well-typed
attack works also on P when removing the tag t.
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