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Abstract

We derive algorithms for efficient secure numerical and logical operations in the
semi-honest model ensuring statistical or perfect security for secure multi-party
computation (MPC). To derive our algorithms for trigonometric functions, we
use basic mathematical laws in combination with properties of the additive en-
cryption scheme, ie. linear secret sharing, in a novel way for the JOS scheme [23].
For division and logarithm, we use a new approach to compute a Taylor series
at a fixed point for all numbers. Our empirical evaluation yields speed-ups for
local computation of more than a factor of 100 for some operations compared
to the state-of-the-art.

Keywords: big data, secure numerical computations, secure comparisons,
client-server computation, secure cloud computing, secure multi-party
computation, privacy preserving data mining

1. Introduction

Consider the following tasks: i) Identify people on a picture without look-
ing at it; ii) Outsource computations giving away encrypted data but keeping
keys private. Both tasks come with the challenge that there is no access to
the non-encrypted data. It seems impossible to work on encrypted data only.
Surprisingly, computing on encrypted data is indeed doable. A rather mature
technique is secure multi-party computation (MPC) relying on non-collusion of
a network of parties. To this date, MPC suffers heavily from its performance
overhead. Whereas a lot of emphasis has been put on optimizing the computa-
tion of Boolean circuits, only limited effort has been made to secure numerical
operations efficiently. For example, prior work did not deal with trigonometric
functions such as sine or cosine needed in many applications, such as signal
processing in an industrial context. In fact, aside from basic operations (such as
addition and multiplication) no complex mathematical operation can be carried
out efficiently and accurately. Prior work uses either (slow) iterative schemes or
approximations of the function to compute. We address this gap using a recent
scheme called JOS [23] that explicitly separates between keys and encrypted val-
ues. It supports various variants of linear secret sharing, eg. additive blinding
with and without modulo as well as using XOR. The distinction between keys
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and encrypted values together with the simple encryption schemes lend itself
well to make use of basic mathematical equations that relate the ciphertext, the
plaintext and the key. In essence, to compute some functions we can use the
same implementation (plus a few additional operations) used for plaintexts on
the ciphertexts or keys as we show for trigonometric functions. This makes it
possible to benefit from the long history of optimizations of implementations
and algorithms for non-encrypted data. For illustration, our empirical evalua-
tion yields that the amount of local computation per party to compute a sine
function is only about a factor 2 more than for computation on non-encrypted
data. At times, we also employ the idea of using multiple encryptions of the
same plaintext to derive a system of equations to leverage operations on non-
encrypted data. This helps to deal with a reduced key space caused by the
inability to evaluate certain functions designed for non-encrypted data on arbi-
trary keys. Additionally, we discuss a method for computing Taylor series based
on scaling the secret value. The scaling makes it possible to develop the series
at a fixed number (for the entire value range of a secret). This approach yields
fast conversion for a broad range of functions as we demonstrate for division
and logarithm.
For logical operations, the key ingredient is an efficient comparison protocol for
equality (with zero) and for checking if a value is less than zero. This is done
by using algorithms for conversions between encryption schemes and using large
Fan-In gates. Our ideas might prove valuable in other settings or using other
schemes aside from JOS well.

1.1. Contributions

� Presenting the first algorithms for efficient computation of trigonometric
functions, ie. sine, cosine and tangent. They provide statistical security
using only five rounds, local computation proportional to computation
without encryption and communication of O(k) bits where k is the security
parameter. They improve on series-based techniques [14] by more than a
factor of 10 in local computation and communication.

� Stating an algorithm for calculating Taylor series efficiently for a wide
range of functions, demonstrated for division and logarithm. More con-
cretely, we improve the round complexity of the state-of-the-art [1, 7] for
division and logarithm for computation on 32-bit floats and 64-bit double
values by more than 10 rounds.

� Presenting an algorithm for division of a confidential number by a public
divisor requiring only one round without the need to perform comparisons,
which take significantly more than one round [6, 27].

� Introducing a number of efficient operations using the JOS scheme [23]
for comparison(equality, less than), conversion between different forms of
encryptions and large fan-in gates that achieve comparable or better per-
formance to prior work using different schemes. They require a constant
number or almost constant rounds, ie. O(log∗ l) and O(logb l), where l is
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the number of bits of the encrypted value and b a parameter. In terms of
local computation our equality protocol is more than a factor 100 faster
than the state-of-the-art.

1.2. Outline

After some preliminaries (Section 1.3) focusing on summarizing the JOS
scheme and presenting some notation and conventions, we introduce algorithms
for three areas: conversions between encryption schemes (Section 2), logical
operations (Section 3) and numerical operations (Section 4). There are some
interdependencies between algorithms from different sections, eg. some conver-
sion algorithms between encryption schemes are used by some algorithms for
logical operations. Finally, we give a short empirical evaluation (Section 5) and
we discuss related work (Section 6).

1.3. Preliminaries and Notation

We briefly recapitulate notation and concepts from the JOS scheme [23]. For
a secret value a ∈ [0, 2l − 1] with l bits and a key K with b ≥ l bits we consider
three kinds of linear encryptions:

� ENCK(a) = a+K : (Purely) additive encryption

� ENCK(a) = (a+K) mod 2l: Additive (modulo) encryption

� ENCK(a) = a⊕K: XOR encryption

Given an encryption ENCK(a) we denote the effective maximum number of bits
by the key or the encrypted value by lE . For ENCK(a) := (a + K) mod 2l,
we have lE = l. For additive encryption of a key K ∈ [0, 2b − 1] with b bits, we
have lE = b + 1 for a + K ≥ 2b and lE = b, otherwise. Denote by subscript i
the ith bit of a number in little Endian notation, eg. for a = 10: a0 = 0 and
a1 = 1. In particular, Ei, ai and Ki denote the ith bit of ENCK(a), a and K.
The JOS scheme [23] uses three parties, namely: a key holder (KH), an en-
crypted value holder (EVH) and a helper (HE). The KH holds keys only (most
of the time), the EVH keeps encrypted values (most of the time) and the helper
can have either of them, but it is not allowed to have an encrypted value and
the matching key. For additive encryption a+K, we define the carry bit ci to
be the “carry over” bit that is added to ai+1 aside from ki+1 during encryption.
Thus, by definition c0 := 0 and for i > 0 we have ci := 1 iff ci−1 + ai + ki > 1,
otherwise ci := 0. Frequently, we encode ‘TRUE’ as one and ‘FALSE’ as zero.
Our algorithms process as inputs encrypted values from the EVH and keys from
the KH. They ensure the encrypted value of the result is held by the EVH and
its key by the KH. For inputs and outputs we write an encrypted value and
key as pair (ENCK(a),K). Thus, we write for a function f operating on an
encryption of value a returning an encrypted value rE and key rK the following
(rE, rK) := f(ENCK(a),K). In particular, we use the multiplication protocol
MUL [23] and the protocol for bitwise AND, ie. AND. Both typically take
two confidential numbers as input. For AND we sometimes use larger Fan-Ins
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as described in [23]. We also assume a protocol for computing the power ai for
a non-confidential integer i > 0, ie. power POW ((ENCK(a),K), i). It can be
implemented using the multiplication protocol MUL using O(log i) multiplica-
tions. To reduce the number of bits needed we also use scaled power compu-
tation SCALEDPOW ((ENCK(a),K), i, s), ie. for a non-confidential scaling
factor s we compute ai/si−1. We enumerate keys either by using primes, eg.
K ′,K ′′,K ′′′ or using numbers K0,K1,K2. The terms E′, E′′ and E′′′ denote
that an encrypted value with K ′, K ′′ and, respectively, K ′′′.

2. Conversions between Encryptions

We show how to convert between all three encryption schemes, ie. XOR,
additive with and without modulo.

2.1. Additive ↔ XOR Encryption

Algorithm AddToXOR computes an XOR encryption of a secret from an
additive encryption(with or without modulo). It uses the carry bits algorithm
in Section 3.51 and it exploits the definition of the carry bit ci to get XOR
encryptions of the bits.

Algorithm 1 AddToXOR(encrypted value ENCK(a), key K)

1: (ENCK′′i
(ci),K

′′
i ) := CarryBits(ENCK(a),K) with i ∈ [0, l − 1]

2: K′i := Ki ⊕K′′i {by KH}
3: ENCK′i

(ai) := ei ⊕ ENCK′′i
(ci) {by EVH}

4: return (ENCK′i
(ai),K

′
i)

Theorem 1. Algorithm 1 converts correctly and securely from additive to XOR
encryption.

Proof. For bit ei of ENCK(a) = a + K (with or without mod 2l) we have
using the definition of the carry bit:

ei = (ai + ki + ci) mod 2 = ai ⊕ ki ⊕ ci (1)

This can also easily be verified by listing all 8 options for each bit ai, ki and ci
∈ {0, 1}. In Algorithm AddToXOR we compute e′i := ei⊕e′′i . We show that this
definition ofo e′i is equivalent to claimed return value, ie. an XOR encryption

1Due to the dependencies among algorithms, it is not possible to avoid referencing later
sections of the paper without removing a consequent structuring of the paper into three main
sections (encryption conversions, logical and numerical operations).
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of ai with key k′i, ie. ai ⊕ k′i with k′i := ki ⊕ k′′i . We have:

ai ⊕ k′i
= ai ⊕ ki ⊕ k′′i ⊕ 0 (by definition of k′i and since x⊕ 0 = x)

= ai ⊕ ki ⊕ k′′i ⊕ (ci ⊕ ci) (since x⊕ x =)

= (ai ⊕ ki ⊕ ci)⊕ k′′i ⊕ ci (due to commutativity of ⊕)

= ((ai + ki + ci) mod 2)⊕ e′′i (by definition of e′′i and Equation 1)

= ei ⊕ e′′i (by Theorem 8)

=: e′i

Security follows from the security of Algorithm CarryBits (Theorem 8) and
the fact that Algorithm AddToXOR does not cause any sharing of information
between the KH, EVH and HE.

Algorithm XORtoADD performing the opposite conversion is more involved.
Both the KH and the helper make decisions depending on a key bit of the
additive encryption. The helper assists in computing the encrypted bits of the
result. It needs input that depends on the encrypted values as well as keys. Since
it is not possible that the helper obtains a matching key and for an encrypted
value, the EVH ‘double’ encrypts bits before sending them to the helper. The
keys used for doubling encryption are not given to the HE but only to the
KH. Since we compute each bit of the additively encrypted bits separately, we
must combine them into one encrypted value. Clearly, for arithmetic rings this
requires that all of them stem from the same arithmetic ring, eg. to add numbers
a+K mod 2l and b+K ′ mod 2l

′
, we should have that l = l′. Otherwise it is

not clear, which modulo to take (e.g. mod 2l or mod 2l
′
) for the added keys

K+K ′ and the added encrypted values. We address this problem by encrypting
bit i using a key with 2l−i bits, and scaling by 2i transforming all bits to the
same arithmetic ring ( mod 2l) before computing their sum.

The helper uses the following observations: If the key bit Ki is zero then
the plaintext equals the ciphertext, ie. ei = ai. If the key bit is one then
ai = ¬ei = 1−ei. The key step is the last equation: We can express the Boolean
negation operation in terms of an arithmetic operation. This is important,
since the helper cannot directly compute 1− ei because it obtains ei additively
encrypted, ie. ENCK′′i (ei). However, it can compute ENCK′′i −1(1 − ei) =

1 − ENCK′′i (ei) + 2l−i (mod 2l−i). Since the KH also knows Ki, it knows

how bit i got encrypted, ie. whether to use K ′′−1i or K ′′i . Note, that the helper
cannot disclose any information to the EVH that depends on the key. Thus, it
must encrypt its findings (using a key K ′′′i ) before returning results to the EVH.

Theorem 2. Algorithm 2 converts correctly and securely from XOR encryption
to additive encryption.

Proof. Security follows since none of the three parties exchange an encrypted
value or a key that allows any of them to decrypt a value: The EVH gets
ENCKf(i)(ai) with Kf(i) := K ′′i + K ′′′i (mod 2l−i) but it does not get
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Algorithm 2 XORToAdd(encrypted value ENCK(a), key K)

1: Choose keys K′′i ∈ [0, 2l−i] {by EVH}
2: ENCK′′i

(ENCKi(ai)) = (ai ⊕Ki) + K′′i (mod 2l−i) {by EVH}
3: EVH sends K′′i to KH and ENCK′′i

(ENCKi(ai)) to HE
4: KH sends K to HE
5: Choose keys K′′′i ∈ [0, 2l−i] {by HE}
6: If Ki = 0: ENCKf(i)(ai) := ENCK′′′i +K′′i

(ENCKi(ai)) =

ENCK′′i
(ENCKi(ai)) + K′′′i (mod 2l−i) {by HE}

7: If Ki = 1: ENCKf(i)(ai) := −ENCK′′i
(ENCKi(ai)) + K′′′i (mod 2l−i) {by HE}

8: HE sends ENCKf(i)(ai) to EVH and K′′′i to KH
9: If Ki = 0: Kf(i) := K′′i + K′′′i (mod 2l−i){by KH}

10: If Ki = 1: Kf(i) := −K′′−1
i − 1 + K′′′i (mod 2l−i){by KH}

11: Kf := (
∑

i∈[0,l−1] 2i ·Kf(i)) (mod 2l) {by KH}
12: ENCKf (a) := (

∑
i∈[0,l−1] 2i · ENCKf(i)(a)) (mod 2l) {by EVH}

13: return (ENCKf (a),Kf)

K ′′′i . The KH does not obtain any encrypted value at all. The HE obtains
ENCK′′i (ENCKi

(ai)) but not K ′′i .
For correctness we show that efi = ai + kfi mod 2 for a bit i using a case
distinction for bit Ki. We have by definition that Kf(i) := K ′′i + K ′′′i and
ENCK′′i (ENCKi(ai)) = (ai ⊕Ki) +K ′′i (mod 2l−i).
Assume Ki = 0:
Then ENCKi

(ai) = ai ⊕ 0 = ai
This implies ENCK′′i (ENCKi

(ai)) = ENCK′′i (ai). Therefore:

ai +Kf(i) (mod 2l−i)

= ai +K ′′i +K ′′′i (mod 2l−i) (by Line 6 in XORToADD and using ENCKi(ai) = ai )

= (ENCK′′i (ai)) +K ′′′i (mod 2l−i) (by definition of additive encryption)

= ENCK′′′i
(ENCK′′i (ENCKi(ai))) (by definition of additive encryption)

:= ENCKf(i)(ai)

Assume Ki = 1:
Then ENCKi

(ai) = ai ⊕ 1 = 1 − ai and K ′′i
−1

:= 2l−i − K ′′i . We
shall use that −2l−i + K ′′i (mod 2l−i) is congruent to K ′′i (mod 2l−i), ie.
−2l−i +K ′′i (mod 2l−i) = K ′′i (mod 2l−i). Using this:

ai +Kf(i) (mod 2l−i)

= ai −K ′′i − 1 +K ′′′i (mod 2l−i) (by Line 10 in XORToADD)

= −(1− ai +K ′′i ) +K ′′′i (mod 2l−i) (rearranging)

= −(1⊕ ai +K ′′i ) +K ′′′i (mod 2l−i) (Since 1− ai = 1⊕ a)

= −(ENCKi
(ai) +K ′′i ) +K ′′′i (mod 2l−i)

=: ENCKf(i)(ai)
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2.2. Purely Additive ↔ Additive Modulo Encryption

Taking the modulo 2l of the ciphertext and key yields the modulo encryption
using a purely additive encryption, ie. the EVH computes ENCK′(a) = (a +
K) mod 2l and the KH computes K ′ = K mod 2l as shown in Algorithm
AddToAddMod.

Algorithm 3 AddToAddMod(encrypted value ENCK(a), key K)

1: return (ENCK(a) mod 2l,K mod 2l)

For the opposite conversion we present two variants: The first one is very
fast, but it puts constraints on the minimum key size. The second method is
slower. It requires conversion to XOR encryption but comes with no restriction
on the used keysize for encryption.

2.2.1. Fast Conversion

The key idea is to encrypt the additive modulo encrypted number with a
key using less bits in an additive manner. This requires that the encrypted
secret is (significantly) smaller than the used key size to ensure sufficient
statistical security.

We convert an additively encryption ENCK(a) (using modulo) with K of
l bits to an additive encryption without modulo ENCK′(a) with a key K ′ of
l′ = l−3 bits. This allows simple conversion by subtracting a partially encrypted
key K, ie. it leaks information about the highest order bits of K. Therefore, to
ensure (statistical) security of a one would choose l significantly larger than the
number of bits of a. We assume that a has less than l − 3 bits.

Algorithm 4 AddModToAddFast(encrypted value ENCK(a), key K)

1: Choose key K′ ∈ [0, 2l′ ] with l′ = l − 3 {by KH}
2: ENC−K′(K) := K −K′ {by KH}
3: KH sends ENC−K′(K) to EVH
4: ENCK′(a) := (ENCK(a)− ENC−K′(K)) mod 2l { by EVH}
5: return (ENCK′(a),K′)

Theorem 3. Algorithm 4 converts correctly and securely from additive modulo
encryption to additive encryption.

Proof. Security follows since none of the three parties exchange an encrypted
value or a key that allows any of them to decrypt a value.
For correctness we consider two cases depending on the impact of the modulo
for the ENCK(a) (mod2l). We also assume that a ≥ 0:
i) a+K < 2l:
ENCK(a) − ENC−K′(K) (mod 2l) = a + K − K + K ′ (mod 2l) = a + K ′.
Here we have that a+K ′ < 2l since the length of K ′ is l′ = l− 3 bits and that
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length of a is at most l − 3.
ii) a+K ≥ 2l:
This implies that ENCK(a) = a + K − 2l. Therefore, ENCK(a) −
ENC−K′(K) = (a+K− 2l−K+K ′) = (a+K ′− 2l) (mod 2l) = a+K ′. The
last equation is due to congruence in modular arithmetic.

2.2.2. Slow Conversion

The key point is to take care of the carry bit that might have been chopped
off by the modulo. This is done by prepending it (additively encrypted)
to the additive modulo encryption. We compute the carry bit le := cl =
LessZero(ENCK(a),K). to In Algorithm AddModToAddSlow an additively
encryption ENCK(a) (using modulo) is converted to an additive encryption
without modulo ENCK′(a) with a key K ′ of b > l bits.

Algorithm 5 AddModToAddSlow(encrypted value ENCK(a), key K)

1: (ENCK′′′(le),K
′′′) := LessZero(ENCK(a),K) {Compute carry bit cl = le}

2: (ENCK′′(le),K
′′) := XORToAdd(ENCK′′′(le),K

′′′) {Encrypt just additive, no
modulo in XORToAdd}

3: ENCKf (a) := ENCK′′(le)·2l+ENCK(a) {by EVH, prepend additive encryption
of le}

4: Kf := K′′ · 2l + K {by KH, prepend key K′′}
5: return (ENCKf (a),Kf)

Theorem 4. Algorithm 5 converts correctly and securely from XOR encryption
to additive encryption.

Proof. Security follows since none of the three parties exchange an encrypted
value or a key that allows any of them to decrypt a value.
Assume a + K ≥ 2l implying the carry bit cl = 1: Adding ENCK(a) +
ENCK′′(le) · 2l = (a+K)(mod2l) + 2l +K ′′ = a+K +K ′′ = ENCKf (a).
Assume a + K < 2l then cl = 0: Adding ENCK(a) + ENCK′′(le) · 2l =
(a+K)(mod2l) +K ′′ = a+K +K ′′ = ENCKf (a).

3. Logical Operations

We begin by stating an algorithm for the Hamming distance (Section 3.1).
The Hamming distance is helpful for computing large fan-in gates (Section 3.2).
The comparison of a number with zero (Section 3.3) is an application of large
fan-in gates, whereas less than zero relies on using algorithm AddToXOR (Sec-
tion 3.4). Comparing a number to zero is a necessary sub-procedure in our
algorithm for computing carry bits given the sum of two numbers and one sum-
mand (Section 3.5).
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3.1. Hamming Distance and 0-Test

For several logical operations we use the Hamming distance of an encrypted
value and its key. The idea is that the Hamming distance is zero if and only if the
confidential value is zero, ie. a = 0 ⇔ ENCK(a) = K (for all our encryptions
schemes). In general, the Hamming distance gives the number of distinct bits for
two numbers x, y of l bits. It is defined as H(x, y) :=

∑
i∈[0,l−1] xi + yi − 2xiyi.

We have that a = 0⇔ H(ENCK(a),K) = 0, where ENCK(a) can be an arbi-
trary encryption scheme. The computation of H(x, y) is straightforward, thus
no pseudocode is given for algorithm HAM(x, y) that computes H(x, y), ie. it
returns the additively encrypted result (ENCK(H(x, y),K). In the computa-
tion of xi · yi we treat the encrypted values xi = ei and keys yi = ki as secrets.
Thus we must encrypt them beforehand. Algorithm HAM(x, y) can be imple-
mented in 3 rounds, ie. one for key dissemination, since we ‘double’ encrypt all
encrypted values and also encrypt key bits and 2 rounds to conduct the mul-
tiplication xi · yi. An alternative implementation requiring less communication
but 5 rounds, replaces the multiplication with an AND and uses conversation
from XORtoADD. The number of bits (assuming preshared keys) are given by
one AND for each of the l bits, yielding a total of 5l and 2l bits to compute
XORtoADD.

3.2. Large Fan-In Gates

We present three methods, one based on Hamming distances, one based on
recursive computation using a procedure for fan-in gates of some fixed width
and one that combines ideas of both. For Boolean Circuits, the AND of any
number w of terms, ie. ∧i∈[0,w−1]ai can be computed in O(log∗ l) rounds using
the Hamming Distance. The idea is that we sum up all w negated bits ai.
The AND of all of them is true, if all ai’s are one, ie. the sum of negated
bits is zero. Since we want just a single bit, we have to repeatedly apply the
Hamming Distance. Assume we start with encrypted value 1000 and key 10.
Then HAM(1000, 10) returns an encrypted value of 2 to the EVH and the key
to KH, since the two numbers differ in two bits, ie. the second and fourth.
Say, the EVH gets 11 and the KH 1. Computing HAM(11, 1) yields just a
single encrypted bit. This idea is realized in Algorithm FanInHamming. It
is important to convert from additive to XOR encryption, since otherwise the
number of bits that differ for the encryption and the key is not necessarily
decreasing due to carry bits.

Theorem 5. Algorithm 6 runs correctly and securely.

Proof. Security follows from security of AddToXOR (Theorem 1), since none of
the three parties exchange an encrypted value or a key that allows any of them
to decrypt a value.
For correctness observe that the hamming distance of a number with l bits is a
number of log l bits. By definition of the log∗ function (see Definition 2 in [25]).
After at most log∗ l iterations, we are left with just a single bit.
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Algorithm 6 FanInHamming(encrypted values ENCKi(ai), keys Ki with i ∈
[0, w − 1])

1: E¬ := ¬ENCK(a) {by EVH, bitwise negation}
2: (ENCK0(H(0)),K

0) := AddToXOR(HAM(E¬,K),K′) {Result of Hamming dis-
tance converted to XOR encryption}

3: For i = 1 to dlog∗(lE + 1)e do
4: (ENCKi(H(i),K

i) := AddToXOR(HAM(ENCKi−1(H(i−1)),K
i−1),K′i−1)

{number of bits of Ki and encryption is reduced logarithmically}
5: return (¬ENC

Kdlog∗ lEe(H(dlog∗ lEe)), K
dlog∗ lEe)) {EVH negates its value}

To compute ANDed terms with many variables, JOS allows to trade round
complexity and message size. More precisely, fan-in gates of size base can be
computed with messages of size 2base in two rounds. Thus, we partition the
expression of lE bits into lE/base terms of size base. This is followed by a
recursive computation and the AND of all partial results as shown in Algorithm
FanInBase. For notational convenience assume lE is a power of base, ie. lE :=
basej for some integer j ≥ 0. The total number of rounds is then 2 logbase lE .

Algorithm 7 FanInBase(encrypted values ENCK(a), keys K)

1: while lE > 1 do
2: ∀i ∈ [0, lE/base − 1] in parallel: (E′i,K

′
i) :=

AND(∀j∈[i·base,(i+1)·base−1](Ej ,Kj))
3: E := E′ {by EVH, new bit length lE of E is only a fraction 1/base of E′}
4: end while

5: return E,K

An even faster algorithm FanInBoth could be achieved when combining ideas
from both algorithms. FanInHamming requires 5 · log∗ n rounds with messages
of size l (with l being the keysize), whereas FanInBase requires 2 logbase l rounds
with messages of size up to base · 2base. The exponential growth of the message
size makes FanInBase only practical for small values of base. To combine both
algorithms we first compute the Hamming Distance recursively for i < log∗ n
recursions, yielding a number of length log(i) l bits (with log(i) l being the i times
iterated logarithm) and then run algorithm FanInBase. The total runtime is

given by 5 ·i+2 logbase log(i) l. This allows to trade between communication and
round complexity. In practice, the optimal choice of parameters i, base depend
on network parameters such as bandwidth and latency and the hardware of the
machines involved.

3.3. Equality to Zero

Given confidential value a XOR encrypted we compute whether a equals

zero, ie. a
?
= 0, such that the EVH holds the encryption ENCKeq (a

?
= 0) and

the KH the key Keq.
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Algorithm 8 FanInBoth(encrypted values ENCK(a), keys K)

1: E¬ := ¬ENCK(a) {by EVH, bitwise negation}
2: (ENCK′(H

′),K′) := HAM(E¬,K) {Hamming distance using negated bits}
3: lEH = number of bits to store Hamming distance, ie. b(log lE)c+ 1
4: (E′′,K′′) := AND(∀i∈[0,lEH−1](ENCK′(H

′)i,K
′
i))

5: return (E′′,K′′)

Protocol EqualZeroFan uses the fact that the secret a is equal to 0, if all
its bits ai equal 0. Thus, a is zero, if the AND of all negated bits is one, ie.

a
?
= 0 ⇐⇒ ∧i∈[0,w−1](¬ai).

Algorithm 9 EqualZeroFan(encrypted value ENCK(a), key K)

1: base := 6 {arbitrary value}
2: E¬ := ¬ENCK(a) {by EVH, bitwise negation}
3: return FanInHamming(E¬,K) (or other algorithm, such as FanInBoth)

3.4. Less Zero Comparison

For a secret a encrypted additively with key K, ie. ENCK(a) = a + K

(potentially, mod 2l) we compute whether a is less than zero, ie. a
?
< 0.

We assume that a is given in two’s complement. Our algorithm compares the
key and the encrypted value and returns the (encrypted) key bit of the most
significant bit where the encryption and the key differ. If there is no different bit
(a = 0) then we return (encrypted) 0. Our (Monte Carlo) algorithm LessZero
returns a result with a probability that can be made arbitrary large, if keys are
chosen uniformly at random. Alternatively, one might avoid using keys which
have higher order bits all equal to one. Then algorithm LessZero always returns
the correct result, but it only ensures statistical security.

The computation of the comparison protocol LessZero proceeds recursively:
If the first half of all bits differs from 0 then ignore the second half of bits and
return the MSB of the first half. Otherwise ignore the first half and return the
MSB of the second half.

We define the minimal number of bits to encode |a| as na :=
blog(max(|a|, 1))c+ 1 with na ∈ [1, l − 1]. Let ns := l − na ≥ 1 be the number
of bits to represent the sign. In standard two’s complement ns is at least one.
However, by restricting the maximum allowed size of |a| or increasing the num-
ber of bits l, ns can be made arbitrarily large. We assume ns > 1.

Theorem 6. For a single run of algorithm LessZero holds perr ≤ 1/2ns .

Proof. We discuss three cases: a > 0, a = 0 and a < 0. We assume a is
represented in two’s complement. If a equals zero then the computation is
correct, since it returns simply the result of algorithm EqualZero. Recall that
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Algorithm 10 LessZero(encrypted value ENCK(a) with l > 1 bits, key K)

1: l := number of bits of the encrypted value
2: if l > 1 then
3: El := ENCK(a)/2l/2;Kl := K/2l/2 {by EVH/KH, left half of all bits}
4: Er := ENCK(a) mod 2l/2;Kr := K′ mod 2l/2 {by EVH/KH,right half of all

bits, locally}
5: (ENCK′(b),K

′) := EqualZero(El,Kl)
6: neb := 1− ENCK′(b) {by EVH}
7: nk := 2l −K′ {by KH}
8: {Compute: b · LessZero(El,Kl) + (1− b) · LessZero(Er,Kr)}
9: (ENCK1(lle0),K1) := LessZero(El,Kl)

10: (ENCK2(rle0),K2) := LessZero(Er,Kr)
11: (ENCK3(rble0),K3) := MUL((ENCK′(b),K

′), (ENCK1(lle0),K1))
12: (ENCK4(rbre0),K4) := MUL((neb, nk), (ENCK1(rle0),K1))
13: return (ENCK3(rble0) + ENCK4(rbre0),K4),K3 + K4)
14: else
15: ENCK′(b),K

′) := EqualZero(ENCK(a),K)
16: ENCK′(¬b),K′) := ¬ENCK′(¬b),K′) {by EVH}
17: ENCK′′(bk),K′′) := MUL((ENCK′(b),K

′), (0,K))
18: return (ENCK′′(bk),K′′)

19: end if

the ciphertext is the addition of the key and the plaintext and that a carry bit
i is one if the sum of bit i of a secret, the previous carry i − 1 and the key
bit i is at least two. For a positive number a > 0 for the MSB the key bit is
zero. This holds if there are no carry bits being one, since in this case all bits
differing in the key and ciphertext are due to some bits of a being one and the
corresponding key being zero. Assume there is a carry bit being one. Since in
two’s complement all leading bits (bits in front of the na bits of a) are zero, a
carry bit due to some ai +Ki > 1 (for i < na) propagates from bit to bit until
it reaches a key bit j > i with Kj + aj + cj = 0. Consider the propagation from
the largest i∗ < na such that ai∗ + Ki∗ > 1. It yields the bit j∗ with Kj∗ = 0
and aj∗ = 0 being the MSB, if there exists a j such that Kj = 0. If there is
no such j for an i∗ < na, the sign bit is not computed correctly. Thus, it is
sufficient if one of the key bits Kj with j ∈ [na, l − 1] is zero. The probability
that none of the key bits is zero is 1/2l−na ≤ 1/2ns .
Consider a negative number a < 0 in two’s complement. In case a key bit i ≥ na
is one (or the carry bit cna is one), the propagation of the resulting carry bit ck
with k > na does not stop before j∗ = l, since all bits aj are 1 for j ≥ i ≥ na.
Thus, for cna

= 0 for the MSB at position i ≥ na holds Ki + ai = 2, ie. the
key bit is 1. For cna

= 1 we have that ana−1 = 0 since a is negative and in two
complement, this implies Kna−1 + ana−1 + cna−1 = Kna−1 + cna−1 = 2, ie. the
key bit is 1. Thus, the computation is correct if either cna = 1 or there exists a
key bit Kj equal to one for j ∈ [na, l− 1]. The probability that none of the key
bits is one is 1/2l−na ≤ 1/2ns .
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When using a single sign bit, ie. ns = 1, the error probability is one half
according to Theorem 6. This is no better than guessing. This implies one
must use more than one sign bit. The error probability can be made arbitrarily
small storing more sign bits. Alternatively, (or additionally) we can execute
Algorithm LessZero several times, ie. ne times, using different encryptions of the

same plaintext. The final result for a
?
< 0 is the value returned by the majority

of executions of algorithm LessZero as shown in algorithm MultiLessZero. To
compute the majority we also use procedure LessZero (but) using a large(r)
number of sign bits.

Algorithm 11 MultiLessZero(encrypted value ENCK(a), key K)

1: Choose ne keys Ki uniformly at random {by KH}
2: KH sends (K−1 + Ki) to EVH
3: ENCKi(a) := ENCK(a) + (K−1 + Ki) {by EVH}
4: In parallel: (Ei′ ,Ki′) := LessZero(ENCKi(a),Ki)

5: {Compute ne/2−∑
LessZero(ENCKi′ (a),Ki′)}

6: Es := ne/2−∑
i∈[0,ne−1] E

i′ {by EVH, with a key of length 1 + blognec+ nb}
7: Ks := −∑

i∈[0,nE−1] K
i′ {by KH, with a key of length 1 + blognec+ nb}

8: return LessZero(Es,Ks)

Theorem 7. Algorithm MultiLessZero returns the correct result with probability
at least 1− 2e−ne(2

ns−1−1)/6 for ns ≥ 2.

Proof. Using Theorem 6 it holds for the error probability for one execution
of algorithm LessZero: perr ≤ 1/2ns . When doing ne executions we expect
µ = ne/2

ns errors. Let X ∈ {0, ne} be the number of errors. Since we return the
majority of results of algorithm LessZero, the computed result by MultiLessZero
is correct as long as X < ne/2. We use a Chernoff bound p(X ≥ (1 + ρ)µ) ≤
e−ρ

2µ/3. We have µ · (1 + ρ) = ne/2 for ρ = ne/(2 · µ) − 1 = 2ns−1 − 1.

Thus, p(X ≥ (1 + ρ)µ) ≤ e−(2ns−1−1)2µ/3 ≤ e−ne(2
ns−1−1)/6. For computing the

majority using LessZero we use n′s := nb. Thus, the error probability for this

execution of LessZero is given by 1/2nb . We use nb = dlog(e−ne(2
ns−1−1)/6)e

bits to get an error bound of algorithm MultiLessZero of 2e−ne(2
ns−1−1)/6.

3.5. Carry Bits

We compute the carry bits ci that stem from encryption, ie. addition of a
and K. Since a is secret we can only use the sum, ie. the encryption, and the
key to calculate the carry bits. We propose two methods to compute a carry
bit: One is based on using a Boolean expression for each carry bit, which yields
rather long expressions. The second technique uses comparisons, ie. less than
zero.
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3.5.1. Boolean Expression based

Carry bits can be computed using Boolean expressions, ie. c0 := (¬k0)∧ e0,
ci := (ki ∧ ei ∧ (¬ci−1))∨ (ci−1 ∧ (¬ki)∧ (¬ei))∨ (ci−1 ∧ ki ∧ ei). The recursive
definition can be expanded by substitution into a single expression for each carry
bit ci depending only on bits of the key and the encrypted value. All carry bits
can then be computed in parallel. The length of the longest expression for a
carry bit, ie. for clE is of order lE .

3.5.2. Comparison based

The idea is to compare parts of the encrypted value and the key for each
bit. We use (and prove) that ci = 1 ⇐⇒ ENCK(a) mod 2i < K mod 2i

and ci = 0 otherwise. In Algorithm CarryBits the modulo of the ciphertext and
key can be computed without communication. However, for the comparison,
ie. ENCK(a) mod 2i − K mod 2i < 0, we must encrypt K mod 2i using a
key K ′i. The EVH computes E′i := (ENCK(a) mod 2i(−K mod 2i + K ′i))
mod 2i. Finally, we do the comparison of the modulo values yielding the carry
bits.

Algorithm 12 CarryBits(encrypted values ENCKi(ai), keys Ki)

1: Compute in parallel for all i ∈ [0, l − 1]:
2: (ENCK′′i

(ci),K
′′
i ) := LessZero(ENCK(a) mod 2i,K mod 2i)

3: return for i ∈ [0, l − 1]: (ENCK′′i
(ci),K

′′
i )

Theorem 8. For each carry bit ci Algorithm CarryBits returns the correct
result with probability at least that of LessZero.

Proof. We have ci = 1 ⇐⇒ ENCK(a) mod 2i < K mod 2i and ci = 0
otherwise. To see this, assume that ci = 0, ie. there is no carry over when
adding the last i bits of the key and the plaintext. Mathematically speaking,
ENCK(a) mod 2i = (a mod 2i)+(K mod 2i). Since a mod 2i ≥ 0 it follows
that ENCK(a) mod 2i ≥ K mod 2i. Assume ci = 1, then we must account
for the carry bit by adding it, ie. ENCK(a) mod 2i + 2i = (a mod 2i) + (K
mod 2i). Since 2i > a mod 2i, we have ENCK(a) mod 2i < K mod 2i.
Security and probability of correctness follow from protocol LessZero.

4. Numerical Operations

Before diving into numerical operations we discuss a supporting algorithm,
ie. in Section 4.1 we show how to obtain the index of the most significant
bit(MSB) of a number. This algorithm is used for computing the division and
logarithm of a confidential number using a Taylor series (Section 4.2). Section
4.3 states procedures for dividing and multiplying an encrypted value by a non-
confidential value. Section 4.4 discusses trigonometric functions, ie. how to
calculate the sine, cosine and tangent function.

14



4.1. Index of MSB

The index of the most significant bit (MSB) of a positive number a encrypted
additively (potentially, mod 2l) is calculated investigating bit by bit. We begin
from the highest order bit and move towards the lowest order bit. For each bit
i of a we check if it is set, ie. ai = 1. This is done by subtracting 2i from
the plaintext for all i (using two’s complement) and checking if the result of
the subtraction is less than zero. We assume that a < 2l−3 so that we can
conduct the subtraction and get a result in two’s complement, ie. the top most
bit(s) can be used as sign bits. The comparison yields a sequence of l bits
lel−1|lel−2|...|lel−0 of the form 11...100...0, such that all bits lei are 1 for i with
2i > a and 0 otherwise. We can compute the sum s of all bits lei. Thus, the
index of the MSB is then l−3−s. Sometimes, we are interested in computing the
power of the index 2l−3−s which is computed by XORing one bit with the next,
ie. posi := lei ⊕ lei+1, yielding a number 00...0100...0 through concatenation,
ie. 2l−s := posl|posl−1|...|pos0. Depending on the application, we might only
compute the MSB and not 2MSB .

Algorithm 13 IndexMSB(encrypted value ENCK(a), key K)

1: Compute in parallel for all i ∈ [0, l − 3]:
2: (elei, klei) := LessZero(ENCK(a− 2i) mod 2l,Kli)
3: eMSB := l − 3−∑

i∈[0,l−3] elei {by EVH}
4: kMSB := 2l−3 − (

∑
i∈[0,l−3] klei mod 2l) {by KH}

5: eposi := elei ⊕ elei+1 {by EVH, i ∈ [0, l − 3] and elel := 0}
6: kposi := klei ⊕ klei+1 {by KH,i ∈ [0, l − 3] and klel := 0}
7: ePow2MSB := eposl−2|eposl−3|...|epos0 {by EVH, concatenation of bits giving

2msb}
8: kPow2MSB := kposl−2|kposl−3|...|kpos0 {by KH, concatenation of bits giving

2msb}
9: return (eMSB, kMSB) and (ePow2MSB, kPow2MSB)) {Pow2MSB encrypted

using XOR}

Theorem 9. Algorithm IndexMSB returns the correct result with probability at
least pl, where p is the success probability of LessZero for one call.

Proof. We have that a− 2i < 0 for all indexes i that are larger than the index
of the MSB i∗ and a − 2i ≥ 0 otherwise. Let the indicator Ii = 1 ⇐⇒
a − 2i < 0 and otherwise 0. Therefore we have that l − 2 −∑

i∈[0,l−3] Ii =

l − 2 −∑
i∈[0,i∗−1] 0 −∑

i∈[i∗,l−3] 1 = l − 3 − (l − 3 − i∗) = i∗. We also have
that Ii ⊕ Ii+1 = 1 only for i = i∗ − 1. Security and probability of correctness
follow from protocol LessZero and the fact that we need a correct result for all
l bits.

4.2. Taylor Series: Division and Logarithm

We present a technique to compute the Taylor series of any function
f on a secret value a. The Taylor series corresponds to a function that
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approximates function f . For a Taylor series we require a value aT for which
we ‘develop’ the series. The error of the series depends on the properties of
f and typically the difference a − aT between the point used for developing
the series and the point a for which we wish to compute (an approximation
of) f . Our technique is efficient as long as the Taylor series converges fast
given that the secret a and point for developing aT differ by less than 50%, ie.
|(a − aT )/aT | < 0.5 and the function f can be expressed using a scaled value
a′ = a · s, ie. f(a) = f(a′ · 1/s) = g(f(a′), f(1/s)) for a function g like addition
or multiplication. For instance, for division we have 1/a = 1/a′ · s and, thus, g
is the multiplication function.
The technique relies on scaling the secret, which allows to use the same point
for developing the series for any secret. More precisely, we scale the secret a
such that any scaled value lies within a fixed interval, where the lower and
upper bound differs only by a factor of 2. We keep the scaling factor secret.
This allows to choose the arithmetic mean (or any other value) out of this
fixed interval as a point aT for developing any Taylor series (for any function
f). Thus, this fixed value aT reveals nothing about the secret a and does not
have to be kept secret. In turn, this significantly simplifies computation, since
large portions of the series can be computed on non-encrypted data, as we
demonstrate in detail for division and logarithm.

For division we compute the inverse 1/a of a confidential value a ∈ [1, 2l −
1]. This allows to compute any division of type b/a with both values being
confidential by simply multiplying b and 1/a.
Assume we are given a secret a ∈ [1, 2l−1] and a scaled value a′ = a ·s of a such
that a′ ∈ [2l−1, 2l− 1] for some constant l. We develop the Taylor series around
a fixed point aT lying in the middle of the interval, ie. aT := 2l−1 + 2l−2. The
Taylor series for 1/a′ around aT is given by f(a′) := 1/aT − 1

2·a2T
· (a′ − aT ) +

1
6·a3T
· (a′ − aT )2 − . . . =

∑∞
i=0 di · (a′ − aT )i with constants di := (−1)n

(i+1)!ai+1
T

. If

we cut the series after nt terms, we can compute an upper bound on the error
term ent , using |(a′ − aT )| ≤ 2l−2:

|ent
| ≤ max

z∈[2l−1,2l−1]

1

(nt + 2)!znt+1
· (a′ − aT )nt+1

≤ 2(l−2)·(nt+1)

(nt + 2)! · 2(l−1)·(nt+1)

=
1

(nt + 2)!2nt+1

To get 21-bit IEEE float precision we need nt = 7. To get 52-bit double
precision we need nt = 13.

The Taylor series of log(a′) around aT is given by f(a′) :=
log(aT )+ 1

aT
· (a′−aT )+ 1

2·a2T
· (a′−aT )2 + . . . = log(aT )+

∑∞
i=1 di−1 · (a′−aT )i.
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Let us discuss the computation of the Taylor series in more detail. We start
by scaling the confidential value a with value s = l − 1 − blog(a)c such that
a′ = a · s ∈ [2l−1, 2l − 1] always has l bits. The scaling factor s is computed
in three steps starting from getting the most significant bit Pow2msb, which
is encrypted using XOR of the key. For instance, for a secret 1011 with l = 6,
we obtain (encrypted) Pow2msb = 01000. The second step reverses this bit
pattern to get RevPow = 00010 by simple reordering of the bits. Finally, we
change the encryption of RevPow from XOR to additive. A key step is to
compute the powers of (a′ − aT )i for i ∈ [2, nT ]. The first power is simply
obtained by computing a′ − aT . The other powers can be computed using log l
multiplications, ie. we iteratively square the value t := (a′ − aT ) to get t2, t4,
t8 and multiply the newly obtained squared term with all prior multiplication
results. For instance, in the first round of multiplication we get t2, in the second
t2 · t = t3, (t2)2 = t4, in the third t4 · t = t5, t4 · t2 = t6, t4 · t3 = t7 and (t4)2 = t8.
We might also use larger Fan-in Gates to compute all terms up to tnt using a
constant number of rounds.

4.3. Multiplication and Division by a Non-confidential Value

The product of confidential value a by the non-confidential value c, ie. a · c,
can be computed without communication, if the EVH multiplies the encrypted
value of a and the KH computes the product of the key and c.
Division a/c for two values a, c, where c is non-confidential and a is additively
encrypted (without modulo) can be done in two rounds.
For ENCK(a)/c and K/c, it might not hold that DECK/c(ENCK(a)/c) =
b(a+K)/cc − bK/cc. The computation is off by one if and only if rem(K, c) +
rem(a, c) ≥ c.
We obtain the division however with arbitrary precision using scaling as follows.
The EVH calculates b(2k · ENCK(a))/cc for an integer k > log c. The KH
computes K ′ = b(2k · K)/cc. It also chooses a random K ′′ and it computes
K ′′−K ′ and transmits this to the EVH. In turn, the EVH calculates ENCK′′(2

k·
a/c) = b2k · ENCK(a)/cc + (K ′′ −K ′). Finally, it shifts ENCK′′(2

k · a/c) by
k digits to get ENCK′′/2k(a/c). This can be done by discarding the last k bits.

The KH computes the final key Kf = K ′′/2k by discarding the last k bits of
K ′′.

Theorem 10. For 2k−1 ≥ c the computation is correct.

Remark: At the expense of a longer proof one can also show that 2k ≥ c
suffices.

Proof. Without scaling, the result is wrong if rem(K, c) + rem(a, c) ≥ c. With
scaling the result is wrong if and only if (rem(2kK, c) + rem(2ka, c))/2k ≥ 1.
Since 2k−1 > c and rem(x, c) < c (for any value s) the sum of remainders
rem(2kK, c) + rem(2ka, c) is at most (c− 1) + (c−1). Thus, the result is wrong
if 2(c − 1)/2k ≥ 1 ⇐⇒ c − 1 ≥ 2k−1. However, by assumption 2k−1 ≥ c and
thus, the result is correct.
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Algorithm 14 DivisionAndLog(encrypted value ENCK(a), key K)

1: Assume |a| < 2l/2

2: s := {scaling factor of a for fixed point number, eg. for 00101.010 it is 23}
3: sc0 := 1, sci := 2l/2·(i−1) {scaling vector for numerical purposes}
4: aT := 2l/2−1 + 2l/2−2,di := sci

(i+1)!ai+1
T

, nt := 7 {Terms in Taylor series}
5: (emsb, kmsb), (ePow2msb, kPow2msb) := IndexMSB(ENCK(a)/,K)
{encrypted with XOR, should be within [0, l/2− 1]}

6: i ∈ [0, l/2− 1] : eRevPowi := ePow2msbl/2−i; kRevPowi := kPow2msbl/2−i {by
EVH/KH, Reverse bit order of Pow2MSB}

7: i ∈ [l/2, l − 1] : eRevPowi := 0; kRevPowi := 0 {by EVH/KH, discard l/2 bits}
8: (ENCK′(RevPow),K′) := XORToAdd(eRevPow, kRevPow) {Additive encryp-

tion from XOR, K′ has l bits }
9: (ENCK′′(a

′) := MUL((ENCK(a),K), (ENCK′(RevPow),K′)) {Scaling of a K′′

has l bits}
10: et(1) := ENCK′′(a

′)− aT {by EVH}
11: kt(1) := K′′ {by KH}
12: (et(i), kt(i)) := SCALEDPOW ((et(1), kt(1)), i, 2l/2) {scaled powers}
13: eInv(a′) :=

∑nt
i=0 di · et(i) {by EVH}

14: kInv(a′) :=
∑nt

i=0 di · kt(i) {by KH}
15: {Division: Multiply 1/a′ = 1/a ·RevPow with 2l/2/RevPow s.t. get 2l/2/a}
16: (ENCK′′′(Pow),K′′′) := XORToAdd(ePow2msb, kPow2msb) {Additive encryp-

tion from XOR }
17: (ENCK4(2l/2/a) := MUL((eInv(a′), kInv(a′)), (ENCK′′′(Pow),K′′′)) {Scaling

of a}
18: eInv(a) := ENCK′′(2

l/2/a)/2l/2 {by EVH}
19: kInv(a) := K4/2l/2 {by KH}
20: {Log}
21: elog(a′) := log(aT ) +

∑nt
i=0 di−1 · et(i) {by EVH}

22: klog(a′) := log(aT ) +
∑nt

i=0 di−1 · kt(i) {by KH}
23: {To get log(a) subtract log(RevPow) from log(a′) = log(a) + log(RevPow)}
24: elog(a) := elog(a′)− emsb {by EVH}
25: klog(a) := klog(a′)− kmsb {by KH}
26: return (eInv(a)),kInv(a)) and (elog(a),klog(a)))
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Algorithm 15 NonConfDivisionAdditiveEnc(encrypted value ENCK(a), key
K,constant c)

1: {Constant c is a fixed point number with scaling factor s = 2k for some k}
2: divs := k + s {Scaling for division, 2s is precision (scaling factor) of a}
3: ENCK(a/c) := (ENCK(a) · 2divs)/c · 2−k {by EVH, ·2−k means shifting to the

right if k > 0, otherwise to the left}
4: K′ := (K · 2divs)/c · 2−k {by KH}
5: return (ENCK(a/c),K′) and (elog(a),klog(a)))

4.4. Trigonometric functions

We compute three trigonometric functions, namely sine, cosine and tangent,
given an additive encrypted value a, ie. ENCK(a) := a+K (without modulo).
We discuss two methods. The second method illustrated for the tangent has
the disadvantage that it needs special care to avoid divisions by 0 (or ∞). It
illustrates the general principle of using a set of linear equations to evaluate
complex function of a confidential value.

sin(a) + sin(K) = 2 · sin(
a+K

2
) cos(

a−K
2

)

cos(a) + cos(K) = 2 · cos(
a+K

2
) cos(

a−K
2

)

We describe only sin (cos is analogous). The KH can compute sin(K).
The EVH computes t0 := 2 · sin(a+K2 ). To get the remaining term, the
KH computes K ′′ := −2K + K ′, where K ′ is a randomly chosen key.
It sends K ′′ to the EVH and K ′ to the helper. The EVH computes
ENC−K+K′(a) = (a + K) + K ′′ = a − K + K ′ and sends this to the helper.
The helper computes a −K and t1 := cos(a−K2 ). Then we multiply (securely)
t0 and t1 and subtract sin(K). Note, that the above formulas do not require
integers. Generally, secret a will not be an integer, but rather a fixed point
number (and so will be the key and encrypted value). Algorithm 16 describes
an approach that used fixed point integers.

For the second method, we use two encryptions of a with keys K and K ′.
We only discuss the tangent function. Note, that one could also compute the
tangent using tan(x) = sin(x)/ cos(x):

tan(a+K) =
tan(a) + tan(K)

1− tan(a) · tan(K)
⇐⇒

tan(a+K) · (1− tan(a) · tan(K)))

= tan(a) + tan(K) (2)

tan(a+K ′) · (1− tan(a) · tan(K ′)))

= tan(a) + tan(K ′) (3)
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Algorithm 16 Sine(encrypted values ENCKi(ai), keys Ki with i ∈ [0, w − 1])

1: c := 8; s := 2c {c is number of bits after the comma for a fixed point integer}
2: sk := s · sin(K/s) {by KH}
3: Choose K′ randomly {by KH}
4: K′′ := −2 ·K + K′ {by KH}
5: KH sends K′′ to EVH and K′ to HE
6: t0 := s · 2 · sin(a+K

2·s ) {by EVH}
7: ENC−K+K′(a) = (a + K) + K′′ = a−K + K′ {by EVH}
8: EVH sends ENC−K+K′(a) to HE
9: ENC−K(a) := ENC−K+K′(a)−K′ = a−K {by HE}

10: t1 := s · cos(a−K
2·s ) {by HE}

11: Choose K′′ randomly {by HE}
12: ENCK′′(t1) := (t1 + K′′) mod 2l+c {by HE}
13: HE send ENCK′′(s · t1) to EVH and K′′ to KH
14: Choose K′′ randomly {by EVH}
15: ENCK′′′(t0) := (t0 + K′′′) mod 2l+c {by EVH}
16: EVH send K′′′ to KH
17: (eak, kak) := MUL((ENCK′′′(t0),K′′′), (ENCK′′(t1),K′′))
18: ekf := eak/s {by EVH}
19: kf := kak/s + sin(K) · s {by KH}
20: return (ekf, kf)

Subtracting Equation (3) from (2) gives:

tan(a+K) · (1− tan(a) · tan(K)))

− tan(a+K ′) · (1− tan(a) · tan(K ′)))

= tan(K)− tan(K ′)

tan(a) · (tan(a + K′) tan(K′)− tan(a + K) tan(K))

= tan(K)− tan(K ′) + tan(a+K ′)− tan(a+K)

tan(a) =

tan(K)− tan(K ′) + tan(a+K ′)− tan(a+K)

tan(a+K ′) tan(K ′)− tan(a+K) tan(K)
(4)

In Equation (4) all terms tan(·) of the denominator detan := tan(K)−tan(K ′)+
tan(a + K ′) − tan(a + K) can be computed by the KH and EVH locally and
then aggregated securely. The enumerator notan := tan(a + K ′) tan(K ′) −
tan(a + K) tan(K) can also be computed securely. For performance reasons,
the division detan/notan could be carried out using the helper and revealing
notan to it, though this might pose security risks: The helper could compute
1/notan using the decrypted value notan and then we can compute the product
detan · 1/notan on encrypted values.
To avoid division by zero (or by values close to zero) or division by infinity (or
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close to infinity2) we require the following conditions for some constants k,c2
and c3:

| tan(K)| ≥ k · c2 ∧ | tan(K ′)| ≥ k · c2
| tan(K)− tan(K ′)| ≥ k · c2

| tan(a+K ′)| > 1/k ∧ | tan(a+K)| > 1/k (5)

| tan(K)| < c3 ∧ | tan(K ′)| < c3

| tan(a+K)| < c3 ∧ | tan(a+K ′)| < c3

The first inequalities (including inequality (5)) avoid division by small values.
The last two avoid dealing with very large values in the nominator or denom-
inator. Let us discuss the impact of these inequalities on the range of suitable
keys. For the derivative of tan(x) holds d tan(x)/dx = 1/ cos(x)2 ≥ 1. Thus,
| tan(x)| ≥ |x|. Since tan(x) is periodic with period π, let us focus on the range
x ∈ [−π/2, π/2]. This yields for the first two inequalities that each eliminates
all keys K with |K| > k · c2. The third means also that we eliminate another
range of width k ·c2. Continuing in this manner and assuming that all ranges for
keys that must be excluded are disjoint, the range of non-useful keys becomes
3k · c2 + 2/k + 4 · c3 out of a range [−π/2, π/2] of width π of possible keys.
Setting k = 1/

√
c2 and c2 = 0.0001 and c3 < 1e19 the probability to choose

two suitable keys K,K ′, when choosing them randomly is still 0.999. When
using np pairs of keys K,K ′ the probability that all key pairs are non-suitable
becomes 0.001np . To ensure that the above conditions on the tangent of keys
and ciphertext are fulfilled the KH could repeatedly select keys and the EVH
could tell the KH to reencrypt values until all conditions are fulfilled. However,
biasing the choice of keys might lead to an insecure scheme.
Thus, our approach is to compute the tangent multiple times using different key
pairs, but substitute dummy values for tan(·) in case a party detects a viola-
tion upon the conditions. We select the results of all computations of tan(a)
that did not violate any condition and return their average. More precisely,
we let the KH choose a fixed number np of pairs of keys Pi = (Ki,K ′i). The
KH sets the bit SK(i) equal 1 for all pairs Pi for which the conditions on
the keys are satisfied. Analogously, the EVH checks the conditions for tan on
the encrypted values and sets bits SE(i) analogously to SK(i). Let detan(i)
and notan(i) be the denominator and nominator in Equation (4) using the ith

pair. For every i with SK(i) = 1 the KH uses 1 rather than tan(Ki) and
2 rather than tan(K ′i). For every i with SE(i) = 1 the EVH uses 3 rather
than tan(a + Ki) and 7 rather than tan(a + K ′i). This yields a sequence
ti := notan(i)/detan(i), where some ti might correspond to tan(a) and others
might not do so due to a violation of the constraints (5). We compute the sum of
all results weighted by the product of 1−SK(i) and 1−SE(i), which essentially
sets invalid results ti to 0 and take the average of the weighted terms. We com-
pute (

∑
i notan(i)/detan(i)·(1−SE(i))·(1−SK(i)))/(

∑
i(1−SE(i))·(1−SK(i))).

2Note, tan(x) = ∞ for x = (i+ 1/2)π and integer i
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5. Empirical Evaluation

We evaluated the overhead for equality and the sine function of 32bit
unsigned integers compared to the state of the art in C++. We ran our
experiments on an Intel Core i5. We compare in terms of computation and
communication. For the result of sine we used a fixed point number with 24
bits precision.3 Note, that to obtain a result of this precision requires higher
precision for the computation on encrypted values. For a key K having b bits,
a secret a having l bits we must compute (the sine) using b + 1 rather than l
bits. To compute the sine function, we used a key of size 50 bits. We used 53
bits precision for the sine of the keys and encrypted value.4

Operation NoEncyrption [17] with GRR(online) EqualZeroFan(This Paper)

Equal to 0 0.0046[ys/op] 254.44[ys/op/party] 0.8955[ys/op/party]
Sine 0.0515 - 0.0718

Table 1: Comparison of local computation using slowest party.

[17] with GRR(total) EqualZeroFan (This Paper)
Equal to 0 ≥ 10000 (≥ 6) [total bits (rounds)] ¡500 (25)[total bits (rounds)]

Series expansion[14] Sine (This Paper)
Sine > 4500 (5) [total bits (rounds)] ≤ <400 (5) [total bits (rounds)]

Table 2: Comparison of total communication of all parties together (in bits) and rounds.

For equality we implemented the algorithm EqualZeroFan and the algorithm
in [17] using Gennaro-Rabin-Rabin (GRR) [13, 19] relying on Shamir’s Secret
Sharing for secure additions/multiplications. [17] relies on an expensive pre-
processing phase for each comparison. We implemented GRR with improve-
ments [19] using the NTL library5. For GRR we used a 33 bit prime.

Computational performance is shown in Table 1, where we computed the
average time per operation per party in microseconds using 10 million opera-
tions. We used the slowest party for each scheme (for GRR all parties perform
the same computations). For computing equality to 0, we outperform GRR
by about a factor of 300, while lagging behind non-encrypted computation by
about a factor of 200. For computing the sine, we only lag behind non-encrypted
computation by a factor of 1.4.

The amount of communication is given in Table 2. For comparison to zero we
rely on pre-shared keys between each pair of parties, eg. by exchanging a single
key and then using this key as input for a pseudo random number generator
for all of the 10 Mio. operations. For [17] using GRR each party sends two
messages with 66 bits each per multiplication for the online phase. Thus, for

3This corresponds to IEEE single-precision floats.
4This corresponds to IEEE double-precision floating point.
5http://www.shoup.net/ntl/
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three parties one multiplication needs 6 · 66 > 400 bits. The preprocessing
phase per operation of [17] (See Section 3.1) is very expensive. More precisely
we need a (shared) random value R, its inverse R−1 and other powers Ri with
i ≤ l = 32, ie. the number of bits of the compared number. This computation
requires at least l = 32 multiplications yielding a total of more than 10000 bits.
Only some of these multiplications can be computed in parallel, eg. we need
to compute x2,x4,x8,x16 and x32 sequentially, requiring 5 multiplications. In
the online phase we need another multiplication. In contrast, JOS needs 160
bits per multiplication in total. Our algorithm EqualZeroFan calls algorithm
FanInHam 1 + log∗ 32 = 5 times. The first call needs 7l bits, ie. due to the
Hamming distance yielding less than 250 bits. The others need 7 log l, 7 log log l
etc. bits giving a total of less than 500 bits. One call to FanInHam needs at
most 5 rounds, yielding a total of 25 rounds.

For sine we focused on fixed-point integer computation. We compared
against [7] to compute individual terms of the standard series expansion. The

series is given by sin(x) =
∑9
k=0(−1)k ·x2k+1/(2k+1)! which still yields smaller

precision than our scheme using IEEE 64-bit double values with 52 bits preci-
sion. We assumed that x19 is computed in five consecutive multiplications, ie.
i) x2 = x · x, ii) x4 = x2 · x2 (and x3), iii) x8, iv) x16 and v) x19 = x16 · x3. An
additional round is needed to compute the product of each term. The number
of bits for a single multiplication are at least 300 for any known scheme existing
prior to JOS, see evaluation in [23]. Thus, to compute 10 terms and the powers
requires at least 15 ·300 bits and 5 rounds. In contrast, we only need to compute
one multiplication and a few scaling operations and adjustments of keys (See
Algorithm Sine). Overall this amounts to less than 400 bits.

6. Related Work

Recently, many systems have been made for general secure multi-party com-
putation, eg. [11, 21, 16, 2] based on various schemes such as [28, 3, 13, 5]. We
build upon a recent efficient scheme (JOS) [23] using at least three parties to
enable complex numerical (and logical) operations. It is discussed in depth in
Section 1.3. There is a significant body of literature using classical works such
as the GRR scheme [13] using Shamir’s Secret sharing or the BGW scheme [4]
for (complex) numerical computations, eg. [6, 1]. Other work [9, 20, 17, 1]
is based on a library of primitive operations such as addition and multiplica-
tion (and, thus, potentially also GRR or BGW) to construct more complex
operations. This kind of ‘BlackBox’ model has also been captured and formal-
ized in [10]. Homomorphic encryption has also been employed for multi-party
computations focusing on numerical or logical operations, eg. [12, 27]. More
specifically, [10, 12] adopt threshold homomorphic encryption.

Many schemes for logical and arithmetic functions, eg. [17, 9, 20] require
protocols to compute (fast) unbounded fan-in AND gates. It is possible in
(expected) constant number of rounds for arithmetic gates in [3] using Shamir’s
Secret Sharing. A number ai held by party i as ENC(ai) = Ri · ai ·R−1i−1 with
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Ri being random matrices. We do not use ideas from [3]. Our approach to
compute large fan-in AND gates is computationally more efficient than [3], but
might require more communication.

Operations on fixed-point numbers such as scaling, comparison, multiplica-
tion and division are discussed in [7]. For division, [7] requires 2Θ+17+3 log(l)
bits for a number of l bits and a parameter Θ giving the number of iterations,
ie. the precision of the result. For a floating point number with 23 bit precision,
ie. an IEEE 32 bit floating point number, this results in at least 38 rounds and
for 52 bits at least 44 rounds. For division, [7] builds upon the Goldschmidt
approximation. In contrast, we apply a Taylor series. Our complexity is
O(log(l ·nT )), where nT is the number of terms used in the Taylor series. For a
23 bit numbers we require at most 20 rounds, for double precision with 52 bits
at most 30 rounds.

The first work to compute equality, comparison and discrete exponentia-
tions in constant rounds was [9]. It relies on bit decompositions using O(l log l)
multiplications, ie. obtaining a separate encrypted value for each bit of a se-
cret as well as [3] to compute unbounded fan-in multiplication gates. Follow up
work [20] improves on [9] by using bitwise shared secrets. The line of work [20, 9]
is further enhanced by [17, 26]. Two (named) non-colluding parties and Paillier
encryption are used in [26] for some operations. The state-of-the-art is [17]
which leverages ideas from [26]. For equality [17] computes the Hamming Dis-
tance and compares it to zero using an l degree polynomial with l being the
number of bits of a number. For “greater than” the idea is to check if the
l/2 most significant bits are equal, and only if they differ check the l/2 least
significant bits. This idea has been shown to work well. It has been used also
in [12, 20]. The two party case for integer comparison is elaborated in [12]. Our
work does not contain polynomials but one of our protocols also uses the idea
of computing the Hamming Distance for large fan-in gates, which helps in com-
puting equality to zero. One difference is that we change encryptions (between
XOR and additive).

Floating point operations such as addition, multiplication, division, square
root, logarithm and exponentiation are given in [1]. The logarithm is computed
using the relation log(a) = 2 log e · arctan(a−1a+1 ) and a Taylor series approxima-
tion of arctan. The division is carried out using [7]. In contrast we compute the
division using a Taylor series of 1/a using a fixed approximation point for all
values a and scaling of the divisor a. Though [1] argues against using a Taylor
series (directly on log), we show that for the JOS scheme in combination with
our technique this does not seem to hold. More precisely, we fix the evaluation
point of the series. In fact, our complexity for logarithm equals the complexity
for division. Since we use less rounds than [7] for division and [1] uses [7] for
division in the computation of the logarithm, we are also faster than [1] (by
more than 10 rounds). The square root [1] is computed iteratively using the
Babylonian formula for O(log l) rounds. Division of floating point numbers is
also based on [7]. Exponentiation is performed by doing a bitwise decomposi-
tion. Most ideas from [1] would be applicable for JOS. Very recently [14] most
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likely parallel to our work6 published a work on integer and floating-point arith-
metic. They discuss sine using a series approximation, power computation (in
logarithmic number of rounds in the power) as well as logarithm using a fixed
point polynomial. The usage of a fixed point polynomial is similar to us, since
computation is also done with values in [0, 1]. [14] does not provide a bound
on the precision of the approximation (as we do) but (also) provides a great
level of detail to understand the protocol. Other work as focused on particular
problems, eg. computation of the area of a triangle [18], graphs [15].

Some work compared quantitatively secure multi-party computation with
respect to the function being a boolean circuit and the function being an arith-
metic circuit over a large field [8]. This is also interesting in our context, since
we show how to convert between bitwise XOR encryption (for Boolean circuits)
and arithmetic encryption in a ring for the JOS scheme. Thus, one could use
the JOS scheme with other schemes (compared in [8]) and pick the best algo-
rithm for an operation. It has also been investigated whether one can disclose
encrypted variables based on their values to speed up computation [24]. Such a
scheme benefits from fast comparisons as well as fast operations involving only
one encrypted term, which we provide in this work.

Division using homomorphic encryption (Paillier) is done in [27] as well as
additive blinding assuming that the divisor is public. [27] performs approximate
divisions, comparisons and min/max computations. In particular, they also use
the fact that for a public divisor d we have (a+K)/d equals either a/d+k/d or
a/d+k/d+1. However, [27] (and also prior work [6]) uses a comparison protocol
to determine which of the two cases holds, which we do not require. In turn, we
use scaling, ie. multiplication of a public number. This needs less rounds (and
local computation) than comparison. The work of [6] also investigated upon
primitives for MPC for integers with focus on comparison and truncation.

7. Conclusions

This work has given new approaches to compute complex functions with little
computational overhead. Additionally, we have also presented several efficient
protocols for logical operations. We believe that this work together with the
JOS scheme paves the road to make secure multi-party computation practical
in a number of (industrial) applications.
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