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Abstract

The capacity for data mining algorithms to learn rules from data is influenced by, inter-alia, the random nature of
training and test data as well as by the diversity of domain partitioning models. Isolating normal from malicious data
traffic across networks is one regular task that is naturally affected by that randomness and diversity. We propose a
robust algorithm Sample-Measure-Assess (SMA) that detects intrusion based on rules learnt from multiple samples.
We adapt data obtained from a set of simulations, capturing data attributes identifiable by number of bytes, destina-
tion and source of packets, protocol and nature of data flows (normal and abnormal) as well IP addresses. A fixed
sample of 82,332 observations on 27 variables was drawn from a superset of 2.54 million observations on 49 variables
and multiple samples were then repeatedly extracted from the former and used to train and test multiple versions of
classifiers, via the algorithm. With two class labels–binary and multi-class, the dataset presents a classic example
of masked and spurious groupings, making an ideal case for concept learning. The algorithm learns a model for the
underlying distributions of the samples and it provides mechanics for model assessment. The settings account for
our method’s novelty–i.e., ability to learn concept rules from highly masked to highly spurious cases while observing
model robustness. A comparative analysis of Random Forests and individually grown trees show that we can circum-
vent the former’s dependence on multicollinearity of the trees and their individual strength in the forest by proceeding
from dimensional reduction to classification using individual trees. Given data of similar structure, the algorithm can
order the models in terms of optimality which, means our work can contribute towards understanding the concept of
normal and malicious flows across tools. The algorithm yields results that are less sensitive to violated distributional
assumptions and, hence, it yields robust parameters and provides a generalisation that can be monitored and adapted
to specific low levels of variability. We discuss its potential for deployment with other classifiers and potential for
extension into other applications, simply by adapting the objectives to specific conditions.

Key Words: Bagging, Bootstrapping, Classification, Cross-Validation, Cyber-Security, Data Mining, Decision Trees,
Intrusion Detection, Over-fitting, Random Forests, Robustness, Supervised Modelling, Unsupervised Modelling

1 Introduction

Modern communication networks are characterised by large volumes of data–highly dynamical, volatile and variable
which, inevitably, complicates systems security. Successfully isolating normal from malicious traffic across networks
is an integral function of predictive modelling, a fundamental objective of which is to attain accurate and reliable
results. Striking a balance between the two attributes remains an interesting subject of research. While using the Max-
imum Likelihood Estimators (MLEs) to obtain distributional parameters from well-behaved data may be straightfor-
ward, problems arise when underlying distributional assumptions are violated. Under such circumstances the general
practice is to deploy algorithms that learn rules from training data and apply them to new data. One common approach
is to deploy robust methods–a general description of a set of statistical tools that are less sensitive to violation of
distributional assumptions as described in Kent and Tyler [1], Mwitondi [2] and Mwitondi et al. [3]. The methods
work well for mixtures of two normal distributions with different standard deviations; under this setting, parametric
methods like the t-test work poorly in separating the two densities. Various data mining methods for learning rules
from data have been developed in recent years, examples include Wu and Banzhaf [4], Sommer and Paxson [5] and
Mitchell and Chen [6]. The overall performance of many of these methods is constrained by variability in the data
and model parameters, with performance used in its model fitting context to refer to metrics relating to accuracy and
optimality, whereas domain partitioning refers to a decomposition of multiple training and test samples to be processed
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1. INTRODUCTION

by several classifiers. We propose a novel method based on a robust algorithm–Sample-Measure-Assess (SMA) that
detects intrusion based on rules learnt from multiple samples. The approach considers the nature of data generation
and domain partitioning as the converging point between data randomness and domain-knowledge.

1.1 Motivation, Problem Definition and Objectives

Learning rules from data relies heavily on prior knowledge, both in the form of historical data and expert knowledge,
making attribute matching and adding features (see Section 2.1) a crucial part of the process. Such a process is suscep-
tible to variability, its accuracy and reliability both depend on the multiplicity of data sharing and model evaluation, an
area our paper seeks to contribute to. We set off from the overall Bayesian approach to classification, as discussed in
Dunsmore [7], to set the scene for using prior knowledge to generate posterior information (Section 2.2.2). Thus, we
define the problem as: Using testbed configuration generated data to model variations due to data randomness.
To address the foregoing problem, we set the following objectives.

1. To train and test classifiers that conform to data variability.

2. To carry out predictive modelling of intrusion using the UNSW-NB15 and ACCS [8] dataset.

3. To carry out a performance comparative analysis of the classifiers.

4. To highlight the potential role of interdisciplinarity in intrusion detection.

The foregoing objectives are fairly standard and, conventionally, they have been pursued based on pre-defined on-
tologies with inherently highly dynamic parameters. Such an approach tends to randomise, not only the training and
testing datasets, but also, as reported in Mwitondi and Said [9], the predictive power of classifiers. Standard solutions,
in many applications, focus on competing models, voting and cross-validation–implying that results are conditional
on the classifiers’ internal mechanics. For instance, the Random Forests (Breiman [10]) error rate, typically, depends
both on the multicollinearity of the trees and the strength of individual trees in the forest. In this case, subjecting the
data to dimensional reduction potentially reduces both multicollinearity and tree strength, making the data dimension
a crucial adjustable parameter. This paper exploits the well-documented natural, sequential relationship between un-
supervised and supervised modelling as described in Chapmann [11] and Ashfaq et al. [12]. Reducing unsupervised
to supervised learning is a standard practice, but as exhibited by Garg and Kalai [13], there is a need for a paradigm
for mitigating subjectivity in unsupervised decision-making via leveraging prior knowledge. Their meta-clustering
approach chooses the unsupervised algorithm with lowest empirical error on training set and, although they apply the
method on high-dimensional data, limiting the applications to two clusters has a potentially masking effect. A more
informative approach would be to explore as many natural groupings as possible, from the smallest to the largest num-
ber of clusters (Section 2). This step can then be followed by supervised modelling, allocating new cases to established
classes. As well as data sources, another source of the randomness in Table 1 are model settings and these are the
issues SMA seeks to address. As explained below, our approach provides a non-standard sequence of these methods.

1.2 Main Contribution

While the two foregoing sequence of activities may sound standard, they are based on novel mechanics. More specifi-
cally, the papers novelty is embedded in Sections 2.2.1 and 2.2.3. In particular, Algorithm 1 explores as many naturally
emerging groupings as possible and the results are used as inputs in training learning models. The activities between
the two sections provide a generalisation that can be monitored and adapted to specific low levels of variability, as
shown in lines 19 and 20 of the algorithm. These outcomes are less sensitive to violated assumptions for data drawn
from various sources with disparate distributions, and as such they yield robust parameters, as described in Kent and
Tyler [1]. This generalisation is particularly emphasised by the first objective, while the remaining three objectives
not only provide an application basis for an authoritative dataset in intrusion detection, but they also provide scope for
adapting the method to other applications by simply replacing objective 2.

The use of binary and multi-class labels, present a classic example of tackling masked and spurious clusters. The
former arises when the model fails to isolate distinctive clusters in such as way that potentially heterogeneous clusters
overlap while the latter is when the model adapts itself so well to the data, that even random variations are incorporated
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into cluster formation. Both cases, also known as under-fitting and over-fitting respectively, are undesirable and, the
two class labels help in determining optimality. That is, combining the power of automated learning techniques
(via objectives 1, 2 and 3) and existing domain knowledge (via objectives 2, 3 and 4) to uncover networks intrusion
empowers the method to learn concept rules from highly masked to highly spurious cases while observing model
robustness. No existing work provides such a robust generalisations on variations due to data randomness, a well-
documented challenge in data science as reported Bridges et al. [14], Mwitondi et al. [3] and Mwitondi and Said [9].
Finally, from an intrusion detection perspective, normal and malicious flows do not fit in any current concept definition
across tools. This work is expected to enhance that understanding from a modelling point of view, as described below.

2 Methods

This section sets the scene for achieving the objectives in Section 1. We use testbed configuration generated data from
UNSW-NB15 and ACCS [8] to explore variations for the purpose of addressing randomness in allocation rules in
intrusion detection. The dataset, fully described in Section 2.1, consists of 82,332 observations on 27 variables, drawn
from a large set of 2.54 million observations on 49 variables with binary and multi-class labels. Extracted samples
are used to train and test multiple versions of classifiers, proceeding from dimensional reduction to classification via a
specially-designed algorithm. The data and implementation strategy are described below.

2.1 Data Sources

Data were obtained from thousands of raw network packets of the UNSW-NB 15 created by the IXIA PerfectStorm
tool in the Cyber Range Lab of the Australian Centre for Cyber Security (ACCS). The data generation process was
accomplished using twelve algorithms as described in UNSW-NB15 and ACCS [8] and in Moustafa and Slay [15, 16].
The process ran through a testbed configuration generating over 2.54 million records of normal and malicious flows
through the IXIA traffic generator involving three servers–two normal and one malicious, passing the flow through
a firewall configured to pass both types of traffic onto the Internet and a tcpdump. The latter, a packet analyzer al-
lowing visibility of TCP/IP and other transmitted packets being transmitted or received over the testbed configuration,
allows the process to visually validate the packets from IXIA. The process is followed by feature creation, graphically
illustrated on the left hand side in Figure 1, matching attributes via a database and adding features before generating
CSV files. The datasets are avaliable at UNSW-NB15 and ACCS [8] stored in multiple files. For computational and
comparative convenience, we adopt only part of the data, with attributes shown in the right hand side panel of Figure
1, and denoted by

X = [xi,j ] ; i = 1, 2, 3, ..., n− 1, n and j = 1, 2, 3, ..., p− 1, p (1)

where n = 82, 332 is the number of observations and p = 27 is the number of variables. This setting does not
invalidate our modelling strategy as described below. Given n � p and the paper’s motivation, the data size is good
enough for domain-partitioning based on multiple sampling, training and testing, so we repeatedly sample from it.
Our strategy is to randomly select m random observations from n, keeping p unchanged. We denote each sample by

[xν,τ ] ; ν = 1, 2, 3, ...,m− 1,m < n and τ = p (or p∗ ≤ p) (2)

where ν and τ are the equivalents of i and j in Equation 1 and, as we shall see in Section 2.2.3, while for individual trees
τ = p is given by design, it is a randomly sampled quantity, τ = p∗ ≤ p, for random forests. Our strategy, detailed
below, is to repeatedly sample xν,τ from X over different combinations of ν and τ, for performance parameters.
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Figure 1: Data generation process and CSV file output (left) and generated data attributes (right)

We work on a labelled data scenario, both binary and multi-class, as graphically illustrated in Figure 2. The binary
case distinguishes the highest frequency bar as normal data flows versus the remaining nine attributes categorised as
malicious while the multi-class splits the malicious into nine different levels. The scenario provides a classic example
of masked and spurious groupings, hence rendering itself readily for concept learning as outlined in Section 2.2.

Figure 2: Binary variable normal flows are represented by the highest bar while the remaining nine are attacks

The data flow types are graphically illustrated in Figure 2. Normal attacks, represented by the blue bar, comprise of
44.94% of the total flow and of the remaining 55.06% categorised as attacks, Generic make 41.63%, Exploits make
24.56% and Fuzzers 13.37%. Other attack types, DoS, Reconnaissance, Analysis, Backdoor, Shellcode and Worms
make 9.02%, 7.71%, 1.49%, 1.29%, 0.83% and 0.1% respectively. They represent different types of attacks, for
example, Fuzzers will attempt to suspend a program or network by feeding it the randomly generated data, whereas
Analysis consists of different attacks of port scan, spam and html files penetrations. A full description of these data
attributes is provided in Moustafa and Slay [15]. Our modelling strategy is outlined in the following exposition.

2.2 Modelling Strategy

Our modelling approach is to train, test and assess multiple models on data sampled from Equation 1, using multi-
ple versions of domain-partitioning algorithms. The process, via Algorithm 1, is designed to attain consistency in
uncovering intrusion types’ partitioning rules and their dynamics. Thus, our goal is two-fold–to identify cyber-attack
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predictors through unsupervised modelling and extending their potential into predicting likelihoods of future attacks.
As noted above, the two class label scenarios–binary and multi-class, present a classic example of masked and spurious
groupings, making an ideal case for concept learning. The main idea is to combine the power of automated learning
techniques and existing domain knowledge to uncover networks intrusion patterns–an idea that derives naturally from
the overall objective of data mining–extraction knowledge from data. The settings account for the method’s novelty,
i.e., ability to learn concept rules from highly masked to highly spurious cases while observing model robustness.

2.2.1 Unsupervised Modelling

Two natural challenges to dealing with data of this magnitude is that variables may be highly correlated and sampling
from the data typically yields high variability. One standard approach to addressing these issues is through dimensional
reduction–i.e., reducing the number of variables by combining them. Two popular approaches to dimensional reduc-
tion are data clustering, as described in Maechler et al. [17], in many variants, and Principal Component Analysis, as
described in Kambhatla and Leen [18]. As we shall be extracting multiple samples, we are concerned about several
data-dependent variations across samples–among them, the proportion of explained variance due to dimensional re-
duction. This variation is captured by the eigenvalues for each component and it can be visualised via scree plots which
provide an indication as to how many components to retain. Figure 3 provides simple illustrations of data–dependent
variations. The panels on the left and right hand side are based on samples of size 20 and 1500 respectively, drawn
from the subset in Equation 1. The former suggests that we retain just over 10 components, while the latter suggests
just over 20 components. The corresponding bi-plots show the influence of the variables in constructing the compo-
nents–the first two components account for 73.86% of the variation in data for the smaller sample and 40.1% for the
larger sample. Implementation through Algorithm 1 records loadings and the eigenvalues for each retained compo-
nent, from each sample. The process is repeated many times, paying particular attention to variations in the samples.
Over repeated runs, consistency of each variable’s contribution to component formation will be observed and stored
to determine the final structure which we can then compare to the two known class labels.

2.2.2 A Bayesian Approach to Supervised Modelling

This sub-section presents the Bayesian framework to illustrate its role in classification as originally discussed in Dun-
smore [7]. We do not specifically seek to apply the method for intrusion detection as in Sharma and Mukherjee [19],
but rather as a tool for using existing prior knowledge to learn about the data behaviour and generate new posterior
information, as implied in steps 15 to 17 of Algorithm 1. That is, train a classifier on part of [xi,j ] , test it on [xl 6=i,j ]
and, given an unlabelled sample [xν,τ ] not used in the training, we allocate each flow in the sample, into one of the
known classes. The problem is that of predicting class k given m observations in sample [xν,τ ] as follows

p (k|x) =
p (x|k) p (k)

p (x)
∝ πk.mfk.m (x)∑k

j=1 πk.mfk.m (x)
(3)

where conditional probability p (k|x) represents the posterior information generated from existing prior knowledge of
class membership–i.e., p(k) ∝ πk.m and p(x|k) ∝ fk.m (x) is the data distribution in the kth class as observed from
the mth sample –i.e., the probability of observing x given that we are in the kth class of sample m. Assuming a correct
classification incurs no loss, then given data [xν,τ ] and classes {k1, k2} a prediction rule is defined as

p (x|k1)

p (x|k2)
>
Ck2,k1p (k2)

Ck1,k2p (k1)
=⇒ P (k1|x) >

Ck2,k1
Ck1,k2 + Ck2,k1

(4)

where p(k1) and p(k2) are class priors and Ck2,k1/k1,k2 represent the cost of incorrectly allocating an observation to a
class, which also implies that the probability of class given data is greater than the corresponding loss i.e., C2,1

C1,2+C2,1
.

The cost function was introduced via the Bayesian framework in order to highlight the importance of updating prior
with posterior information. It can be shown that the Bayesian decision rule for minimum risk is the weighted sum

Ψ = Ck1,k2p (k1)ω1 + Ck2,k1p (k2)ω2 (5)
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Figure 3: Eigenvalues and standard deviation patterns for sample sizes 20 (left) and 1500 (right)

where ω1 and ω2 are the probabilities of misclassifying observations from k1 and k2 respectively. The decision rule is

Ψ =
1

n

n∑
i=1

L (ŷi, yi) where L (ŷi, yi) =

{
0, if ŷi = yi

1, otherwise
(6)

This framework epitomises the general concept of learning rules from data as applied by a wide range of classifiers,
an interesting area of research in Machine Learning (ML) and all Data Science related areas. In their literature survey
of various ML methods in cyber security applications, Buczak and Guven [20] focus on the variety and complexity
of the methods and note that it is impossible to make one recommendation for each method, based on the type of
attack the system is supposed to detect. They identify several criteria for consideration, including predictive accuracy,
model complexity and timeliness, and conclude that more work needs to be done in search of effective methods for
cyber applications. Classifiers like decision trees, neural networks and Support Vector Machines (SVM) can always be
driven to high training accuracy by tuning appropriate parameters, yielding unreliable models. According to Mwitondi
and Said [9], striking a balance between model accuracy and reliability is a major challenge in data mining, i.e., the
challenge to avoid over-fitting. Bridges et al. [14] consider thresholding of multiple heterogeneous streaming anomaly
detectors and they go on to define anomalies as events with low p-values. Their algorithm relies heavily on the
distributional assumption that the data are sampled from a known distribution. However, Mwitondi et al. [3] show that
even with a reasonable consideration of probability distribution of the data and the bounding likelihood of an anomaly,
challenges relating to data and model randomness remain. Here it suffices to first recognise that the parameters used
in the fitting and, hence, computation of Ψ in Equation 6 are data-dependent. Mwitondi and Said [9] show that the
empirical rule is fully associated with randomness due to the allocation region and that the allocation rule is trained,
validated and tested on random data. This randomness, exhibited in Table 1, implies that our posterior knowledge is
random, and therefore susceptible to variability. This paper seeks to contribute towards addressing this issue.
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ALLOCATION RULE ERRORS DUE TO DATA RANDOMNESS
Population Training Cross-Validation Testing

ΨPOP ΨTRAIN ΨXVALID ΨTEST

Table 1: Data-dependent allocation errors impinging on model fitting and on the computation of Ψ

Notice that Ψ in Equation 6 is a function of the loss function, priors and errors. Any domain partitioning algorithm
using rules learnt from data is susceptible to allocation rule errors in Table 1. Our work, through Algorithm 1, heavily
depends on managing the variability in Table 1. Its main idea is to combine existing domain knowledge and automated
learning techniques for intrusion detection. Thus, decisions on key parameters such as assessing the misclassification
costs would have to be made based on domain knowledge–i.e., with full involvement of system administrators, say.

2.2.3 Implementation Mechanics

This section outlines the implementation mechanics for training, validation and assessing Decision Trees and Random
Forests. With two different class labels describing the nature of the data flow, each of the data points in the sampled
data in Equation 2 is forced into only one of the classes. In other words, the entire sample xν,τ consists of two
structures, which makes it susceptible to obscured classes. Our analyses are based on individually grown Decision
Trees (DT) and Random Forests, both due to Breiman et al. [21][10]. With individual trees, unlike Random Forests,
the number of variables, τ , is not altered to enable identification of the importance of predictor variables which also
minimises the influence of multicollinearity and strength of individual trees. To minimise Ψ, we propose an algorithm
that repeatedly samples from the sub-space in Equation 1 and applies multiple Decision Tree models for both training
and testing. If the data attributes are used one at a time to split the data into normal and malicious flows by only
considering the number of observations at node N∗ then, given the attribute x.τ and the threshold, the rule is

{
k1 = {η ∈ N∗ : x.τ ≤ w
k2 = {η ∈ N∗ : x.τ > w

(7)

The observations in each of the two sets lie on either side of the hyper-plane x.τ = w chosen in such a way that a
given measure of impurity is minimised. While training and testing this rule on random datasets are the main causes
of the variations in Table 1, other variations in decision tree model results derive from setting model parameters.

On the other hand, Random Forests are constructed from the training samples drawn from Equation 1 with replace-
ment and with the number of variables also sampled from p. The procedure involves no pruning and so the error
rate depends both on the multicollinearity of the trees as well as on the strength of individual trees in the forest. Di-
mensional reduction (i.e., reducing the number of predictor variables) reduces both multicollinearity and tree strength
which makes τ a crucial adjustable parameter. We circumvent this complex scenario by applying random forests with
unaltered p and generating multiple versions of DT models to capture the consistency of predictor variables across the
repeated runs as outlined in the algorithm below. This approach derives from bagging Breiman [22] but rather than just
dividing [xi,j ] into fixed training and test sets, multiple bootstrap training and testing samples are repeatedly drawn
from it with a fixed p. The two models are repeatedly trained and tested on these multiple samples, recording the key
performance parameters, accuracy and reliability. Model optimisation and selection are finally done by harmonising
data variability through cross-validation. The algorithm learns a model F (φ) = (P )︸︷︷︸

x,y∼D

[φ (x) 6= y] , where D is the

underlying distribution, and it provides the mechanics for assessing the models. Particularly when class labels are
known, its outputs provide great insights into the overall behaviour of the data particularly how the attributes relate to
the target variable as illustrated in the following sections.
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3. IMPLEMENTATION, RESULTS AND DISCUSSIONS

Algorithm 1 SMA-Sample, Measure, Assess

1: procedure SMA
2: Set X = [xi,j ] : Accessible Data Source
3: Learn F (φ) = (P )︸︷︷︸

x,y∼D

[φ (x) 6= y] based on a chosen learning model

4: Set the number of iterations to a large number K
5: Initialise: Θtr := Θtr(.) : Training Parameters
6: Initialise: Θts := Θts(.) : Testing Parameters
7: Initialise: Πcp := Πcp(.) : Comparative Parameters
8: Initialise: s as a percentage of [xν,τ ] , say 1%
9: str : Training Sample [xν,τ ]← [xi,j ] extracted from X = [xi,j ]

10: sts : Test Sample [xν,τ ]← [xl 6=i,j ] extracted from X = [xi,j ]
11: for i := 1→ K do: Set K large and iterate in search of optimal values
12: while s ≤ 50% of [xν,τ ] do Vary sample sizes to up to the nearest integer 50% of X
13: Sampling for Training: str ← X
14: Sampling for Testing: sts ← X
15: Fit Training and Testing Models L̂tr,ts ∝ Φ(.)tr,ts with current parameters
16: Update Training Parameters: Θtr(.)← Θtr

17: Update Testing Parameters: Θts(.)← Θts

18: Compare: Φ(.)tr with Φ(.)ts : Plotting or otherwise
19: Update Comparative Parameters: Π(.)cp ← Φ(.)tr,ts
20: Assess:P (ΨD,POP ≥ ΨB,POP ) = 1⇐⇒ E [ΨD,POP −ΨB,POP ] = E [∆] ≥ 0
21: end while
22: end for
23: Output the Best Models L̂tr,ts based on E [∆] ≥ 0
24: end procedure

Initialisation of the algorithm is problem–specific and focuses on the two main problems in data mining–data clustering
and classification. Thus, the learning model in line 3 may be initialised without or with class labels. The initial training
and testing parameters in lines 5 and 6 are determined by the investigator–these may be from sources ranging from
experimental to expert knowledge. A simple example for unlabelled data would be the starting points for running
the K-Means algorithm or in the case of random forest classification, the number of bagged trees. The comparative
parameters in line 6 provide comparative performance measures after each successive iterations, updating the set as
the algorithm proceeds and selecting the best performance at the end of the algorithm execution.

3 Implementation, Results and Discussions

Optimal results of random forests obtained from multiple runs are presented in Figure 4 with an estimated Out-of-Bag
(OOB) error of 18.41% obtained from training sample aggregation of 1500 trees in the left hand side panel while the
predicted traffic structures are in the right hand side panel. Notice that since the random forest classifier aggregates
individual trees based on a generic bagging procedure, it may not always be possible to find the best split. Bootstrap
aggregation without underlying model relies only on sample reprsentativeness which may not always be guaranteed.
It becomes a serious issue with imbalanced class as then, the model will learn more of the highly weighted classes
than of others.

As noted above, we circumvent the shortcomings of random forests by applying Algorithm 1. One of its key outputs
is the tree partitioning in Figure 5 with its overall results showing that the importance of the splitting variables is in
the order sbytes (20), smean (11), dload (11), rate (11), sload (8), dur7, sttl (6), dbytes (6), dmean (5), dpkts (4),
dloss (4), synack (3), tcprtt (3), sjit (2), ackdat (2), dinpkt (2), sloss (1), swin (1) and djit (1). Note that the order
of the attack types–the bar charts at the bottom of Figure 5 is the same as that in the right hand side panel of Figure 4.

The binary response version of the tree is shown in Figure 6 the overall results of which order the importance of
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3. IMPLEMENTATION, RESULTS AND DISCUSSIONS

Figure 4: Optimal results of random forests obtained after multiple runs yielded a 18.41% OOB error

Figure 5: Individual random trees showing the main tree splitting variables and proportions at nodes

variables as follows: sttl (14), dload (12), dbytes (7), dpkts, dloss, tcprtt, dmean, smean, dinpkt and synack (6),
sjit, djit and ackdat (5), sbytes (3), sload (2) and rate, sinpkt, dttl, dur, spkts (1). This type of discretisation pools
together all types of attacks versus normal flow and while it may look like masking information, it has greater pro-
tection potential than breaking them down in that the number of attributes required to identify intrusion is minimised.
Performance comparisons of the two targets can be contextualised as follows. System administrators will typically be
interested in identifying the specific nature of the attacks and while this knowledge may help them develop specialist
deterrents, Zargari and Voorhis [23] note that the dynamic behaviour of attacks can add an extra burden on them,
technically and financially. The foregoing concern, further highlights the need for developing enhanced variability
monitoring tools. For example, the nine attack types identified in this paper are likely to be highly dynamic and so it
is reasonable to expect some attacks evolving into other previously unknown variants or two or more merging.
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3. IMPLEMENTATION, RESULTS AND DISCUSSIONS

Figure 6: The binary target version of the Individual Decision Trees model

Figure 7: Multiple Decision Tree models on the binary variable

A better option is probably being able to generalise–i.e., isolating normal from malicious data flows. Below is a com-
parative performance based on specific and general target variables. Figure 7 exhibits error plots based on the binary
variable label with an OOB of just over 6% compare this to the 18.41% for the multi-class target above. While it is
technically obvious to see why the binary target yields more accurate results than the multi-class target variable, it is
imperative to focus on the analytical impact of randomness in the intrusion types as implied in Table 1. One way of
achieving that goal is to focus on the variability of the model results which is what this paper sought to achieve.

Various model variability outputs can be captured for comparative purposes. For DT models, these may include the
key parameters in Table 2–the complexity parameter, number of splits and variation in the model validation process.
We can assess the predictive performance of the model by looking at the root node error in conjunction with the values
in this table. The relative error is equivalent to 1−R2 and it represents the error on the observations used to estimate
the tree model. The training and validation errors are obtained by multiplying relative error RE and CV E by the
XSTD respectively. To avoid over-fitting, the two errors and the standard deviation provide a guide as to when to
stop growing the tree–typically, RE +XST < CV E, and will feature in Θtr,ts in Algorithm 1.
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4. CONCLUDING REMARKS

Complexity Parameter Splits Relative Error (RE) Cross-Validation Error (CVE) XSTD
0.479838710 0 1.000000000 1.000000000 0.023526986
0.117943548 1 0.520016129 0.520016129 0.020034240
0.073588710 2 0.422177420 0.439516129 0.018848184
0.072580645 3 0.328629032 0.349798387 0.017233736
0.017137097 4 0.256048387 0.283266129 0.015782203
0.014112903 5 0.238911290 0.246975806 0.014874193
0.010000000 6 0.210685484 0.230846774 0.014439031

Table 2: Performance of the algorithm on binary target data

Table 2 epitomises some of the results from the SMA Algorithm, which addresses the randomness issues in Table 1,
by searching for optimal values for line 23. The algorithm works with a wide range of unsupervised and supervised
models and Table 2 illustrates predictive performance assessment of the model, based on DT’s complexity parameter,
number of splits and variation in the model validation process. Different complexity parameters and other relevant
metrics would be tabled for different models–such as the number of layers, number of neurons and learning rate,
in the case of Neural Networks or the margins on hyperplanes, for Support Vector Machines. These parameters are
fundamental in determining the quantities in line 19 which, ultimately, determine the desired optimal values in line 23.

4 Concluding Remarks

This paper was motivated by the random nature of analytical studies which has previously inspired many comparative
analyses-based classifier design, datasets used and other experimental setups, particularly Moustafa and Slay [15, 16]
and Mwitondi et al. [24]. We presented an iterative algorithm that is trained and tested on multiple random datasets
with the ultimate objectives being to identify key predictors of intrusion and predict likelihoods of future attacks. The
algorithm generates an ensemble model–a derivative data mining technique embedded with data adaptation capabilities
for intrusion detection and it is adaptable to various learning algorithms. Its main idea is to combine existing domain
knowledge and automated learning techniques for intrusion detection which fits in nicely with the overall objective
of data mining–extraction knowledge from data as highlighted in Wu and Banzhaf [4]. The paper provided a unified
unsupervised-supervised approach to modelling of cyber intrusion dataset. The two examples drawn from binary and
multi-class target variable were motivated by the fact that frameworks for attaining the two objectives are based on
pre-defined ontologies with inherently highly dynamic parameters. As reported in Mwitondi and Said [9], these pa-
rameters tend to randomise not only the training and testing datasets, but also the predictive power of the models. The
proposed algorithm can be applied with many learning algorithms and, as we seek to achieve generalisation rules in
isolating malicious from normal data flows, we expect that this work will pave the way for more model comparisons
across applications. Results show that the ensemble model conforms to data variability and yields more insightful
predictions on multinomial targets. We sought to combine the power of automated learning techniques and existing
domain knowledge to uncover networks intrusion patterns.

The nature and purpose of data generation and the two-class label scenario provided perfect settings for our method’s
novelty–ability to learn concept rules from highly masked to highly spurious cases while observing model robustness.
From an intrusion detection perspective, normal and malicious flows do not fit in any current concept definition across
tools, and so our work is expected to enhance that understanding from a modelling point of view. The objectives of
the paper confined it to developing, training and testing an ensemble models that conform to data variability; carry out
predictive modelling of intrusion using historical data and carrying out comparative analysis of the predictive models.
It is imperative to envision some of the attributes in Equations 1 and 2 as being encrypted, since encryption is always
going to remain part of IT security. For the purpose of this paper, a plain text or numerical variable jumbled into
unreadable code will still retain its key feature, describing its type as a data attribute. Thus, while the paper pays no
particular focus on Deep Packet Inspection (DPI), Algorithm 1 has the potential for dealing with encrypted packages,
given minor adaptation and the right data attributes. One example of such adaptation is Roni et al. [25] who propose
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using the K-Nearest Neighbour method to classify real-time encrypted data.

Finally, the SMA Algorithm performed fine on a single machine, but it is reasonably assumed that it is suitably
applicable to large, distributed situations. We did not delve further into this, as it is an infrastructural design problem.
Thus, while SMA has neither been tested for the number of users on a distributed system, nor on multiple processors,
it provides new potential for scalable systems for intrusion detection. The algorithm is adaptable to multiple users
and concurrent database access–i.e., running distributed applications on multiple servers across geographical and time
zones as in Neill and Carloni [26]. The work was completed using open source tools–RStudio and TexStudio as the
authors commitment to promoting Open Science. It is expected that our findings will open new research directions
into cyber-security and related areas of open science through sharing of data and research findings.
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