
Usable Security for QR Code I

Riccardo Focardia, Flaminia L. Luccioa,⇤, Heider A. M. Wahsheha

aDAIS, Università Ca’ Foscari Venezia, via Torino 155, 30170, Venezia, Italy,

Abstract

QR codes are widely used in various settings such as consumer advertising,
commercial tracking, ticketing and marketing. People tend to scan QR codes
and trust their content, but there exists no standard mechanism for providing
authenticity and confidentiality of the code content. Attacks such as the
redirection to a malicious website or the infection of a smartphone with a
malware are realistic and feasible in practice. In this paper, we present
the first systematic study of usable state-of-the-art cryptographic primitives
inside QR codes. We select standard, popular cryptographic schemes and
we compare them based on performance, size and security. We conduct tests
that show how di↵erent usability factors impact on the QR code scanning
performance and we evaluate the usability/security trade-o↵ of the considered
cryptographic schemes. Interestingly, we find out that in some cases security
breaks usability and we provide recommendations for the choice of secure
and usable cryptographic schemes.

Keywords: QR codes; Usable Security; Cryptography; Digital Signature;
HMAC.

1. Introduction

A barcode is a machine-readable image that represents data in parallel
lines (one-dimensional, 1D, barcode), or as dots or lines that are arranged

IThis paper is an extended and revised version of Focardi et al. (2018b).
⇤Corresponding author
Email addresses: focardi@unive.it (Riccardo Focardi), luccio@unive.it

(Flaminia L. Luccio), heider.wahsheh@unive.it (Heider A. M. Wahsheh)
URL: http://dsi.unive.it/~focardi (Riccardo Focardi),

http://dsi.unive.it/~luccio (Flaminia L. Luccio)

Preprint submitted to Elsevier August 6, 2019

Preprint version, only for personal use.
Paper downloadable here: https://www.sciencedirect.com/science/article/abs/pii/S2214212619301693
 
Riccardo Focardi, Flaminia L. Luccio, Heider A.M. Wahsheh,
Usable security for QR code,
Journal of Information Security and Applications, Volume 48, 2019,
102369, ISSN 2214-2126, https://doi.org/10.1016/j.jisa.2019.102369



in matrix form (two-dimensional, 2D, barcode). Quick Response (QR) codes
are the most widely used 2D barcodes in the marketing world, in education
and in public services. Users believe that they are simple to use and useful
(Vidas et al., 2013). They are also the barcodes with higher data capacity
(Dabrowski et al., 2014), and may store di↵erent types of data, such as
numeric, alphanumeric, binary and Kanji characters (ISO/IEC Standard,
2015).

Barcodes are used in various scenarios for di↵erent purposes. A typical
application is to encode a URL that links to a related Web page containing
detailed information about a product or a service. When the barcode is
scanned, the link is usually shown to the user that can decide whether to
open it or not in the browser. Barcodes are also used for physical access
control, identification and logistics. In these cases, they contain data that
are given as input to back-end applications, which interpret them and act
consequently.

In general, barcodes are just a way to provide input to users or appli-
cations and, since they do not o↵er any standard way to guarantee content
authentication, the input they provide is in fact, untrusted. Potential security
risks regard the encoding of malicious URLs that look similar to the honest
ones and the encoding of data that trigger vulnerabilities in the back-end
applications. Moreover, the barcode reader application may become a point
of attack since, independently of the use case, the barcode content passes
through it and might trigger vulnerabilities directly on the user device.

In September 2011 the first malicious usage of QR code was detected by
the KasperSky Lab (Kaspersky Lab, 2011). The attack was performed using
a malicious link that was encoded in a QR code: the users were obliviously
directed to a Web page, where a malware was unconsciously downloaded
in the connecting device. In general, attacks can target barcode scanning
devices (e.g., smartphones) by reaching sensitive information such as pass-
words, contact information, photos, videos, credit card numbers, etc., and
can thus violate the users’ privacy. Attackers may also take full control of
mobile devices by, e.g., accessing E-mail, SMS, etc. (Kieseberg et al., 2012).

In the last years there has been a large increase in the use of barcodes
in everyday life, thus preventing attacks is a necessary and challenging issue.
In the literature, there are some proposals and tools to improve QR code
security but none of them justifies the architectural choices and the usage
of the underlying cryptographic scheme, and often the adopted schemes are
vulnerable or deprecated. Focardi et al. (2018a) provides a comprehensive

2



discussion on existing QR codes security mechanisms.
In this paper, we present the first systematic study of usable state-of-the-

art cryptographic primitives inside QR codes. Following European Union
Agency for Network and Information Security (ENISA) (2014) guidelines, we
select well studied and standard cryptographic schemes and we compare them
based on performance, size and security. We conduct tests that show how
di↵erent usability factors impact on the QR code scanning performance, and
we evaluate the usability/security trade-o↵ of the considered cryptographic
schemes. Our results show that secure QR codes can be used in practice,
but schemes with big size overhead might rise usability issues. Moreover,
secure QR codes are denser and cannot be printed on small areas without
compromising usability. In particular, we show that in some cases providing a
high degree of security breaks usability, and we provide recommendations for
the choice of secure and usable cryptographic schemes. We have implemented
a proof-of-concept Android app that confirms our findings. In particular,
when the scheme and the printing size are chosen appropriately with respect
to usability constraints, the QR codes can be scanned without a↵ecting the
user experience.

1.1. Contributions

Our contributions can be summarized as follows: (i) we survey attacks
on QR codes and discuss the potential benefits of enhancing them with cryp-
tography; (ii) we present the results of extensive experiments to determine
the impact of usability factors on QR code scanning; (iii) we analyze the
time and space overhead of a selected set of cryptographic schemes, with
various key sizes and formats; (iv) we evaluate the cryptographic schemes
with respect to the usability analysis.

1.2. Related work

In Ishihara and Niimi (2014), it is proposed a tamper detection system
for QR codes based on steganographically embedding a digital signature into
the error correcting area. However, the paper appears preliminary as it only
considers small sizes for signatures x and the embedding of actual signatures
is left as a future work. In Razzak (2012), the Elliptic Curve Digital Signa-
ture Algorithm (ECDSA) is used to digitally sign barcodes. Experimental
results on di↵erent key lengths and hash functions for ECDSA show a rea-
sonable space overhead but, with respect to our paper, no comparison with

3



other signature schemes is done and there are no considerations about us-
ability. The reported time overhead might also, by itself, break usability.
We show that with modern smartphones time is not anymore, an issue. In
Peng et al. (2014), a group of students from MIT have performed prelimi-
nary experiments about enhancing QR codes with cryptography and digital
signature.

We also find proposals that are not based on security enhanced QR codes.
For example, the study of Yao and Shin (2013) investigates the security fea-
tures of existing QR code scanners for preventing phishing and malware
propagation. Authors propose a new scanner, named SafeQR, based on two
existing Web services: the Google Safe Browsing API (Google, 2019) and
the Phishtank API (Phishtank, 2019). There exist some commercial solu-
tions for secure QR codes, e.g. (2D Technology Group Inc., 2016; Yakshtes
and Shishkin, 2012), but there is no publicly available description of the
proprietary technology which prevents us to perform any security analysis.

1.3. Paper Structure

The rest of the paper is organized as follows: in Section 2 we present
well known attacking scenarios and discuss which are prevented by adopting
digitally signed QR codes. Section 3 analyzes the performance of QR code
scanning with respect to di↵erent usability factors, and discusses the results
of di↵erent usability tests. In Section 4, we analyze the overhead of time
and space introduced by the addition of cryptographic primitives inside QR
codes, using di↵erent standard formats, and we evaluate the cryptographic
primitives with respect to usability. Section 5 draws some concluding re-
marks.

2. Security of cryptographic QR codes

In the following, we consider the most prominent attack scenarios for QR
codes and discuss in which extent cryptographic QR codes prevent them.

Phishing. In a barcode phishing attack, the attacker tries to get sensitive
information such as the login details and the credit card number of a user
by, e.g., encoding a malicious Web address inside the barcode that redirects
the user to a fake Web page which appears very similar to the legitimate one
(Kieseberg et al., 2012; Krombholz et al., 2014; Vidas et al., 2013). This is a
typical case of social engineering attack (Krombholz et al., 2013).

4



Malware propagation. In Kharraz et al. (2014) it is discussed how QR codes
can be used by attackers to redirect users to malicious sites that silently
install a malware by exploiting vulnerable applications on the device. This is
typically done through an exploit kit that fingerprints the device and selects
the appropriate exploit and malware.

Barcode tampering and counterfeiting. Since QR codes can be used to provide
information about a good, an attacker can benefit by pasting a fake QR code
so to advertise false products information or false special o↵ers in which the
adversary will sell another product to the victims (Dabrowski et al., 2014;
Kieseberg et al., 2012). When barcodes are used to identify and track items,
such as in a supply chain, barcode tampering might enable an attacker to
counterfeit a product.

Barcode-in-barcode attacks. It is a special case of tampering in which some
pattern in a barcode image corresponds to another valid barcode (Dabrowski
et al., 2014). The QR code will be scanned normally most of the times but
in some cases the secondary barcode will be decoded, triggering potentially
dangerous situations. This is somehow related to decoding a file format
di↵erently in two di↵erent applications (Albertini, 2014). Interestingly, we
discovered that this barcode-in-barcode decoding might happen by chance,
especially when barcodes become dense (cf. Wrong scans of section 3).

SQL and command injections. The study of Kieseberg et al. (2012) refers to
automated systems using the information encoded in the barcodes to access
a relational database. If the string in the barcode is appended to the query
without proper sanitization, the attacker may easily trigger a SQL injection
attack.

Cross-site scripting attacks (XSS). Mobile apps are often based on Web tech-
nology and this may allow malicious JavaScript code to be injected into
trusted HTML pages, and executed in the app, for example when the server
does not sanitize the user data that is rendered in a page (Jin et al., 2014).

Reader applications attacks. During the installation process, many barcode
reader applications ask for full permissions to access user’s resources such as
the device location, the contact list and the photos. In case of a vulnerability
that can be triggered by a suitable crafted barcode, the attacker would get
access to private user’s data Kieseberg et al. (2010).

5



2.1. Discussion

Enhancing QR codes with cryptography may prevent the above attacks,
assuming that the attacker cannot forge the cryptographic material. For ex-
ample, a digital signature or a Message Authentication Codes (MAC) of the
QR code content would allow to verify its origin. In both cases, it is nec-
essary that the verification key is known to the barcode reader. In an open
environment this can be hard to achieve, since a Public Key Infrastructure
(PKI), similar to the one for the HTTPS protocol, would be vulnerable to
the “HTTPS phishing problem”, i.e., attackers that have a valid certificate
and use names similar to the one of legitimate entities (Wired, 2017). More-
over, MACs are based on symmetric keys that are known to be hard to deal
with in an open environment. In fact, the reader should share the MAC
symmetric key with the QR code generator. However, in a closed/controlled
environment, the reader might be configured to only recognize internal cer-
tificates or MAC keys, and verifying the signature/MAC would prove the
trustworthiness of the QR code content. For example, entities of a supply
chain might share their public keys in order to check the trustworthiness
of the QR codes used to identify and track products. This would prevent
counterfeiting and any other type of attack targeting reader and back-end
applications that might disrupt and/or take control of the system as, e.g.,
reader application attacks and SQL injections.

In many situations it is useful to encrypt the QR code content so to
protect its confidentiality. Consider again the example of a supply chain. If
QR codes contain the product ID which is also physically stamped on the
product, an attacker might reuse a signed barcode (e.g., collected from a box)
by simply stamping the expected ID on the counterfeited product. A solution
to this problem is to encrypt the barcode payload so that it does not leak
any sensitive information. Interestingly, this would implicitly prevent the
above-mentioned attacks as barcode content decryption would give random
bytes in case of an attacker trying to forge a valid encrypted QR code without
knowing the encryption key. Using authenticated encryption schemes (such
as the Galois Counter Mode, GCM) would add the additional feature of
making decryption fail in case of a forging attack.

3. Usability of QR code scanning

In order to evaluate the usability of QR codes, we have developed an
Android app, called BarTest, that automatically collects user feedback about

6



the scanning experience on a proposed set of test barcodes.
After each successful scan, the user can express her subjective satisfaction:

Questionnaire 1 (User evaluation). User expresses her subjective evalu-

ation about successful scans, through the three-level scale:

1. Excellent;

2. Good;

3. Bad.

Notice that, our scale di↵ers from a standard Likert scale as it does not have
a neutral point and it is asymmetric providing only one negative option. In
particular: (i) we preferred not to have a neutral point in order to force users
to express an opinion; (ii) we did not want users to choose between di↵erent
negative evaluations, as negative would be equivalent to unusable, but we
kept two positive evaluations in order to judge the degree of usability.

In case the answer is di↵erent from Excellent , the user is also asked to
provide more feedback.

Questionnaire 2 (User feedback). When user satisfaction is di↵erent from

Excellent, the user is also asked to provide more feedback by selecting one or

more of the following choices:

1. I had to move the phone too much;

2. Scanning took too much time;

3. I had to rescan the barcode too many times;

4. Other (filled by the user).

There might be a risk that not collecting feedback for excellent answers would
incentive users to pick that choice in order to simplify their task. We believe
that this has not a↵ected the study for two reasons: (i) users did not know in
advance that feedback was not asked in that case; (ii) feedback was relatively
simple to give, except for option 4 (Other, filled by users), and lazy users had
the chance to answer quickly just by selecting options 1, 2 or 3 with a simple
click. Moreover, we believe that asking a feedback for excellent answers
would have looked artificial and superfluous with the risk of loosing users’
engagement in the task.

Together with the subjective user evaluation, BarTest also records infor-
mation about the scanning outcome:

Successful scan the barcode is successfully decoded, and user satisfaction
is collected through Questionnaire 1;

7



(a) Scanning outcome of experiments. (b) User evaluation for Successful scans.

Figure 1: Summary of outcome and evaluation.

Wrong scan the barcode is incorrectly decoded, e.g., when some pattern
in a barcode image corresponds to another valid barcode (Dabrowski
et al., 2014). This is automatically detected by BarTest since test QR
codes contain a known payload together with the barcode ID. Whenever
the scanned payload does not match the expected one the application
declares it as Wrong . In this case, the user is o↵ered to rescan the
barcode or abort (see below);

Aborted scan the user cancels the scan, e.g., when scanning takes too much
time or gives wrong results. The user is asked for a feedback, through
Questionnaire 2.

Interestingly, BarTest automatically collects statistics about scanning
and abort time for each barcode. This improves on previous work (Focardi
et al., 2018b) by providing data that can be used to correlate scanning ef-
ficiency and e↵ectiveness with respect to the user subjective evaluation and
feedback (cf. Section 3.7).

3.1. Experimental Setup

The barcodes proposed to users are of four di↵erent sizes: 200 ⇥ 200,
300 ⇥ 300, 400 ⇥ 400, 500 ⇥ 500 pixels that, visualized on a 96 DPI screen,
correspond to 5.29⇥5.29, 7.93⇥7.93, 10.58⇥10.58, 13.22⇥13.22 centimeters.
The idea is to cover both barcodes that can be printed on small areas, e.g.,
in products, and bigger ones that might be printed on advertisements, bus
stops, etc. For readability, in the following we will always refer to the size

8



in pixel (assuming implicitly 96 DPI) but, of course, what matters in the
experiment is the actual size. The generated barcodes contain random data
of various sizes, multiple of 100, from 100 to 2000 bytes. We adopted the
most recent version of QR codes (model 2) with an error correction capability
of level M (approximatively 15%), which is the most frequently used.1

When conducting the experiments there was a risk of having the users
judging app usability instead of scanning usability. For this reason, we care-
fully designed our experimental setup making the following choices: (i) we
designed our app so to have a simple, intuitive control-path. We double-
checked that all the obvious choices were covered (e.g., letting the users
press the back button in order to abort a scanning); (ii) we conducted the
experiments with first and second year computer science undergraduate stu-
dents. This ensured that users did not encounter big issues while installing
and using the app, letting them concentrate on the barcode scanning. It
might be objected that computer science students could be more skilled at
scanning barcodes than a normal user of the same age, but in fact we believe
that there is no technical skill related to that, and any person confident with
a smartphone camera would have accomplished the task in the same way.
Moreover, in our opinion, this represents well the population of users that
would mostly be interested in scanning barcodes; (iii) we asked students to
run the experiments before class so that they had the chance to take their
time and ask us questions in case they encountered technical di�culties about
how to install or start the app. We also did not impose any time restriction.

The experiments were conducted with the help of 149 users,which is a big
enough population size for usability studies. Each user was asked to scan four
barcodes printed on A4 paper using the BarTest app, for a total of 596 QR
codes. The four barcodes were picked at random from the above described
set.
3.2. Scanning outcome

Figure 1a shows the overall outcome percentage of the scanning exper-
iments. The users Aborted only in 8.5% of cases, while in the remaining
91.5% of the cases, they obtained 65.9% Successful and 25.6% Wrong scans.
The high percentage of Wrong scans highlights the possible risk of the so-
called misleading problem, i.e., patterns in a barcode image that correspond
to another valid barcode (Dabrowski et al., 2014)).

1https://www.qrcode.com/en/about/error_correction.html

9



Figure 2: Scanning time for di↵erent outcomes.

The Successful percentage, which represents about two thirds of the global
scans, is divided into: Excellent (58.9%), Good (27.9%) and Bad (13.2%)
scans, as shown in Figure 1b.

3.3. Scanning time

Figure 2 presents the boxplot of the scanning time for the various out-
comes. We can observe that, there is a clear correlation between the scanning
time and the outcome. In particular, we notice that Aborted scans are re-
lated to long scanning time. This can be easily understood by considering
that users explicitly abort scans when time becomes longer than their ex-
pectation. Moreover, Wrong scans take longer than Successful scans. A
plausible justification is that when barcodes are complex and contain pat-
terns that correspond to other valid barcodes, the reader first tries to decode
the complex barcode and, only when it fails, looks for other types of barcodes.

The scanning time distribution for the three user evaluation levels is re-
ported in the boxplots of Figure 3. It is evident how smaller scanning times
are related to better user experiences. We notice, in particular, that Excel-
lent readings are more centered around their median point 4.1 seconds and
the majority of them recorded less than 10.6 seconds delay, with some out-
liers (16 scans out of 209) that exceed 10.6 seconds. Moreover, Good and
Bad readings show minimum values close to the Excellent scans, but with a
wider range of points distribution. The majority of Good scans recorded less
than 28.9 seconds with some outliers (9 scans out of 99). The Bad maximum

10



Figure 3: Scanning time for di↵erent user evaluations.

non-outlier reached 56 seconds with few outliers (2 scans out of 47). The
distinction between Good and Bad evaluations is thus not so neat as the one
between Excellent and Good .

Interestingly, the median scanning time for Successful scans (5 seconds,
cf. Figure 2) is close to median of Excellent (4.1 seconds), and well below the
median of Good (7.3 seconds). This is consistent with the intuition that users
typically give Excellent or Good to scan that are immediately Successful and
Bad when barcodes need to be re-scanned (e.g., with Wrong outcome).

3.4. Scanning outcome vs. data size

Figure 4 presents the frequency of the scanning outcomes for the 300⇥300
pixels image size. The data sizes are grouped into five ranges of 100-400,
500-800, 900-1200, 1300-1600 and 1700-2000 bytes, respectively. The X-axis
represents the data size groups, while the Y-axis represents the outcome
percentage. The summation of Successful , Wrong and Aborted percentages
is 100%.

The figure clearly shows that the fraction of Successful outcomes de-
creases when the data size increases, in favor of increasingWrong and Aborted

outcomes. In particular, the Successful outcome percentage is the highest
(100%) for the minimum data size group, i.e., barcodes with 100-400 bytes,
while the maximum data size group, i.e., barcodes with 1700-2000 bytes,
yields 18.2% Successful , 59.1% Wrong and 22.7% Aborted outcomes. We
conclude that, when the barcode becomes denser the probability of getting

11



Figure 4: Outcome percentage for 300⇥300 pixels image size.

Figure 5: Successful percentage for all image sizes

a wrong result increases and, when getting the correct result becomes too
hard, users start aborting the scanning. This, of course, points out a usabil-
ity problem for dense barcodes.

Figure 5 shows how the fraction of Successful is a↵ected by density for
the di↵erent barcode sizes. We notice that for dense barcodes, bigger sizes
increase the number of Successful outcomes. In fact, bigger barcodes will be
less dense than smaller ones, when the data size is the same. For small data
size groups (100-400 and 500-800) we notice that bigger sizes give less Suc-
cessful scans in some cases. This might be justified by some external factors
that make the scanning of bigger barcodes more di�cult. For example, when
the barcode is very big the user needs to scan it from a bigger distance so to
capture the whole image. In fact, barcodes were provided on an A4 sheet of

12



Figure 6: User evaluation of Successful outcomes for 400⇥400 pixels and di↵erent data
size groups.

paper and scanning a big barcode might have required the user to stand-up
in order to have a reliable scanning (cf. Section 3.6).

3.5. User evaluation vs. data size

Figure 6 shows the users’ evaluation for barcodes with 400⇥400 pixels.
The X-axis represents the data size groups, while the Y-axis represents the
percentage. The Successful percentage (red bar) is divided into three sub-
groups, depending on user evaluation: Excellent , Good and Bad . For exam-
ple, the group of 100-400 bytes recorded 85.7% Excellent , 10.7% Good and
3.6% Bad . In the group of 900-1200 bytes, instead, the percentage was 20%,
32% and 20% for Excellent , Good and Bad , respectively (out of 72% which
is the Successful percentage). Generally, user evaluation is worse when data
size increases and Successful rate decreases.

3.6. User feedback

We analyze user feedback for non-Excellent scans, collected through Ques-
tionnaire 2. We observe that:

• I had to move the phone too much was chosen in 26.4% of the answers.
This resembles the Readability Range, introduced in (Focardi et al.,
2018b) to measure the minimum and maximum distance inside which
the QR code is readable: a small Readability Range requires users to
excessively move the phone in order to scan the barcode. Figure 7
shows the measured Readability Range for 500 ⇥ 500 pixels (Focardi

13



Figure 7: Measuring the Readability Range.

et al., 2018b), which decreases when the data size increases reducing
usability. However, in the present study, we could not find a clear
correlation between this answer and the image and data sizes. We
speculate that the necessity of moving the phone might be influenced
by additional external factors, such as light and physical position of
the user with respect to the barcode.

• Scanning took too much time was chosen in 39.1% of the answers. It is
interesting to analyze the user subjective evaluation of scanning time.
Figure 8 plots the scanning time for users that did not complain about
scanning time (boxplot on the left) with the median around 5.7 seconds,
and users that answered with Scanning took too much time with the
median around 23.34 seconds (boxplot on the right). Interestingly, the
first quartile of the rightmost boxplot is around 10.13 seconds that
corresponds to the 10 seconds threshold between what was considered
reasonably readable and hardly readable in (Focardi et al., 2018b).

• I had to rescan the barcode too many times was chosen in 50.6% of the
answers. We have analyzed the rescan results as shown in Figure 9. In
total, 48.7% of rescan attempts ended with Successful decoding (even
with several rescans), divided into Excellent (12.9%), Good (17.5%)
and Bad (18.3%) scans. The remaining rescan attempts ended with
Wrong scans in 42.4% of the cases, and with Aborted scans in 8.9% of
the cases. Rescanning decreases by itself usability and our study shows
that, in about half of the cases, it does not solve the scanning issue

14



Figure 8: Acceptable scanning time, based on user’s selection of Scanning took too much
time in Questionnaire 2.

providing wrong results or aborts.

• Only 6.9% of the answers contained personal comments from users.
Some regarded the environment, confirming that the light in the room
can a↵ect the scanning task and the surface where the QR code is
printed can a↵ect the scanning outcome, as already discussed in (Grover
et al., 2010). Other comments regarded the di�culty in scanning very
big barcodes that might require to move the phone far from the sheet of
paper. Some users got confused by Wrong outcomes, confirming that
this case reduces usability.

3.7. Barcode Usability

We define QR code usability based on ISO 9241 (ISO, 2018) through
E↵ectiveness, E�ciency, Satisfaction, defined below.

Definition 1. E↵ectiveness (Alturki and Gay, 2017) is the success ratio,

defined formally as:

E↵ectiveness =
n. of successful tasks

n. of undertaken tasks

In our experiments, the successful tasks are the scans with Successful outcome
and the total tasks undertaken are all the performed scans, i.e., Successful ,
Wrong and Aborted ones.

15



Figure 9: Rescan Impact.

Inspired again from (Alturki and Gay, 2017) we give the following defini-
tion of E�ciency:

Definition 2. E�ciency is the relative time for accomplishing successful

tasks, defined formally as:

E�ciency =
time for successful tasks

time for all tasks

Definition 3. Satisfaction (A. Sergeev, 2010) is the user comfort in terms

of simplicity to perform the scanning, determined by users’ answers.

Satisfaction =
�

UP
j=1

Q+P
i=1

P+
ij +

UP
j=1

Q�P
i=1

P�
ij

�
Q+ ⇥Q�

�
⇥ U

�

Where:

• U: represents number of users;

• Q+: the number of positive answers;

• Q�: the number of negative answers;

• P+
ij : positive weight for the answer to a positive question;

• P�
ij : negative weight for the answer to a negative question.

In our setting, positive answers Q+ are the ones of Questionnaire 1 while
the negative answers Q� are the ones of Questionnaire 2. We assigned the
following weights: Excellent 3/3, Good 2/3 and Bad 1/3, for Q+ and neg/4,
where neg is the number of negative replies, for Q�.

16



Figure 10: Barcode Usability Score (BarScore).

Definition 4. The usability score for barcodes (BarScore) is defined as:

BarScore = (E↵ectiveness + E�ciency + Satisfaction)/3

Fig. 10 plots the BarScore values for the tested image and data sizes.
The X-axis represents the data size groups, the Y-axis represents BarScore

and each line represents a specific image size.
We consider three usability levels:

• High Usable level (H): BarScore � 80%.
• Low Usable level (L): 60%  BarScore < 80%.
• Unusable level (U): BarScore < 60%.

Figure 11 summarizes the resulting usability levels for barcodes.

4. Usable cryptographic QR codes

We consider selected symmetric and asymmetric key cryptographic primi-
tives provided by standard Android smartphone libraries, that might be used
to provide data confidentiality, integrity and authenticity. Augmenting the
QR code payload with cryptographic material makes the barcode denser and
harder to read. We study in detail the usability of adopting such crypto-
graphic primitives based on the barcode usability result of previous section.

In particular, in Section 4.1 we describe the primitives and in Section 4.2
we study their time overhead; in Section 4.3 we discuss space overhead of
embedding the cryptographic data together with the QR code payload; fi-
nally, in Section 4.4 we summarize the usability of QR codes with the various
cryptographic algorithms and key sizes.

17



Data Size
(Bytes)

200
Pixel

300
Pixel

400
Pixel

500
Pixel

100-400 H H H H

500-800 L L L L

900-1200 U U U L

1300-1600 U U U U

1700-2000 U U U U

Figure 11: Summary of usability levels.

4.1. Cryptographic primitives

Digital signature. We consider the two most commonly used digital signa-
ture algorithms: RSA with key lengths 1,024 bits, 2,048 bits and 3,072 bits
and Elliptic Curve Digital Signature Algorithm (ECDSA) with key length of
256 bits. We use SHA-256 as hash function. For new applications, European
Union Agency for Network and Information Security (ENISA) (2014) recom-
mends a key length of 3,072 bits for RSA and of 256 bits for Elliptic Curve,
so we will consider RSA 1,024 as low-secure, 2,048 as medium-secure, and
RSA 3,072 together with ECDSA 256 as high-secure. However, it is worth
noticing that ENISA recommends adopting only certain variants of RSA
and ECDSA for new applications, i.e., the ones provided with a security
proof in a strong computational model. We believe that, size and perfor-
mance are not significantly a↵ected by picking a specific variant. We thus
report on results achieved using the default implementations o↵ered by the
cryptographic library, and we leave as future work a comparison between the
di↵erent variants of the signature algorithms. The interested reader can refer
to (European Union Agency for Network and Information Security (ENISA),
2014) for more detail.

Message Authentication Codes (MACs). We consider Hash-based Message
Authentication Code (HMAC), a standard mechanism for achieving authen-
tication and integrity under a symmetric key. HMAC is based on a secure

18



hash function and can be proved secure if the hash function is a pseudo ran-
dom function. In this study we considered standard implementations based
on SHA-256, SHA-384 and SHA-512, which provide strong security (Euro-
pean Union Agency for Network and Information Security (ENISA), 2014).

Symmetric key cryptography. We consider Advanced Encryption Standard
(AES) under four standard modes: Cipher Block Chaining (CBC), Output
Feedback (OFB), Cipher Feedback (CFB) and Galois/Counter Mode (GCM).
AES supports three key lengths: 128, 192 and 256 bits. AES-128 is consid-
ered secure for future applications (European Union Agency for Network
and Information Security (ENISA), 2014), but it is worth noticing that time
overhead for symmetric cryptography is negligible and, since the block size
is 128 bits independently of the key length, there is no practical di↵erence in
adopting AES-192 or AES-256.

4.2. Time overhead

We have developed an Android mobile application to test time overhead
for the slowest cryptographic primitive considered: signature verification.
The tests have been performed on an Android smartphone with 1.2 GHz
dual-core CPU, 1 GB of RAM. We found that digital signature verification
took, on average, between 20 and 30 milliseconds for the various key lengths
and algorithms, posing no usability problem. The time overhead for HMAC
and symmetric cryptography is orders of magnitude smaller than the one for
digital signature, so we can safely conclude that time is not problematic for
any of the considered cryptographic primitive. However, size can be critical
with respect to usability in some cases, as we will discuss in Section 4.4.

4.3. Space overhead

We need to embed at least the following information:

Payload The actual data that we want to load in the QR code. It can
be o✏ine information requiring no Internet connection, or an URL
referencing to an external resource. Payload is encrypted when using
symmetric cryptography;

Generator The identity of the QR code generator;

Algorithm The cryptographic mechanisms adopted;

19



Digital
signature

Signature
size

without
certifi-
cate

with
certifi-
cate

ECDSA 256 64 118 365
RSA 3,072 384 436 1327
RSA 2,048 256 308 943
RSA 1,024 128 180 555

Table 1: Control data overhead (bytes) for digital signatures.

Auth. &
integrity

HMAC size Overall
size

HMAC 256 32 109
HMAC 384 48 125
HMAC 512 64 141

Table 2: Control data overhead for HMAC (bytes).

Signature/HMAC The digital signature or HMAC;

Certificate The certificate of the QR code generator. This applies to digital
signatures and can be included in the barcode or referenced through
an URL.

We use JavaScript Object Notation (JSON) JSON (2016). In principle
it would be possible to adopt ad-hoc, less verbose, formats but at the price
of a less reliable encoding and decoding. So, even if there is margin for
improvement, we preferred to adopt a standard format in our study.

Table 1 reports the overhead with or without certificates for digital sig-
natures. The first column reports the size in byte of the signature without
control data. Notice that, ECDSA signature length is twice the size of key
length, i.e., 256 ⇥ 2 = 512 bits = 64 bytes, while RSA signature length is
equal to the key length. Table 2 shows authentication and integrity control
data overhead for HMAC with three di↵erent block lengths: 256, 384 and
512 bits. Table 3 shows the overhead for AES in various modes. Notice that,
CBC requires padding to reach a multiple of the 16 bytes block size and GCM
contains extra data to achieve authenticated encryption. Intuitively, GCM
provides, at the same time, confidentiality and data authentication/integrity.

20



AES Overall size
CBC 69a

OFB 69
CFB 69
GCMb 85

a requires padding to reach a multiple of 16
b guarantees both authentication and data integrity

Table 3: Control data overhead for AES di↵erent modes (bytes).

4.4. Usability evaluation

Crossing Figure 11, Table 1, Table 2 and Table 3, we obtain Table 4
which summarizes the usability of cryptographic barcodes, assuming up to
200 bytes for the payload.

(European Union Agency for Network and Information Security (ENISA),
2014) recommends a key length of 3,072 bits for RSA and of 256 bits for El-
liptic Curve, so we will consider RSA 1,024 as low-secure, 2,048 as medium
secure, and RSA 3,072 together with ECDSA 256 as high secure. According
to Table 4, we recommend ECDSA for high usable/secure digital signature
scheme. Including a certificate in the QR code gives usability problems, sug-
gesting that using on-line certificates, downloadable via HTTPS and cached
by the application might o↵er an appealing alternative. In fact, when cer-
tificates are included, we observe usability issues for all of the experimented
signature schemes.

HMAC is highly usable and secure and might provide a suitable alterna-
tive to digital signatures for authentication and integrity. Of course, since
HMAC uses symmetric keys, its adoption requires suitable key management
mechanisms that allows for distributing such shared secrets in a secure way.
HMAC is typically used in closed, corporate applications where all readers
share the symmetric key.

AES is highly usable and secure (any key size can be adopted) in all of
the considered modes. However, we recommends GCM since it provides both
confidentiality and authentication/integrity.

We have implemented a proof-of-concept usable barcode security tool Bar-
code Security Studio (BarSec) (Wahsheh and Luccio, 2019). BarSec adopts
symmetric and asymmetric cryptographic mechanisms in order to generate
safe and usable QR codes. It abstracts away the underlying security mech-
anisms by proposing high level security objectives that include: barcodes

21



Solution Key/hash
size (bits)

H L U

ECDSA 256 3

RSA

1,024 3

2,048 3

3,072 3

ECDSA
(cert.)

256 3

RSA (cert.)

1,024 3a

2,048 3

3,072 3

HMAC

128 3

256 3

384 3

AES
(CBC)

128-256

3

AES
(OFB)

3

AES
(CFB)

3

AES
(GCM)

3

a preferred 500 pixels

Table 4: Usability of cryptographic barcodes: High (H), Low (L), Unusable (U).

22



authentication, data integrity, access control and confidentiality. It provides
usability warning messages based on the present usability study, and can be
used for both generating and reading QR codes. In addition, it provides de-
tailed information about the used algorithms, usability level, scanning time
and size overhead. Two of the authors have implemented an Android reader
application that supports the above mentioned functionalities (Wahsheh and
Luccio, 2019).

5. Conclusion

QR codes may be subject to attacks in which malicious content is em-
bedded in the barcodes in order to break user’s privacy, steal credentials,
redirect to malicious websites or install malware. In fact, a QR code is just
a medium that provides input and, as such, might easily become source of
attacks. Moreover, QR codes might contain confidential data that should
only be read by authorized users. Cryptography o↵ers standard primitives
that provide data confidentiality, integrity and authenticity, preventing most
of the attacks on QR codes, especially when they are adopted in closed
environments, i.e., when the public keys of trustworthy entities are clearly
established, and symmetric key can be securely exchanged. However, cryp-
tography is rarely adopted in this setting since QR codes have limited space
and are usually scanned by smartphones that do not generally o↵er the same
performance as personal computers or laptops. This motivated us to perform
a systematic study of usable cryptographic QR codes.

First of all, we have tested that modern smartphones do not have per-
formance issues when performing typical cryptographic operations, including
digital signature which is usually considered one of the heaviest. Notice that,
this was not the case a few years ago Razzak (2012). Then, we have consid-
ered size issues. QR codes can potentially embed up to about 3Kbytes which
would allow for easily embedding digital signature and certificates. However,
we have performed a series of experiments to check in which extent such “big”
QR codes can be e�ciently scanned, with a reasonable user experience. We
have considered the scanning time, the distance range tolerated while scan-
ning, and the possibility of spuriously scanning other (simpler) barcodes that
appear, by chance, in the QR code.

Our results show that ECDSA and RSA with small keys are usable on
QR codes, even when printed in small sizes (for example on supermarket
products). Including a certificate in the QR code gives usability problems,

23



suggesting that using on-line certificates, downloadable via HTTPS might
o↵er an appealing alternative. In fact, when certificates are included, we have
pointed out potential usability issues for all of the experimented signature
schemes. Of course, downloading a certificate would not come for free, but
the application might transparently download it once and cache it internally
so to require connectivity only once. HMACs and AES-based symmetric
encryption are both highly secure and usable.

We have implemented a proof-of-concept Android app that performs the
scan of cryptography enhanced barcodes, confirming our findings. We have
used standard algorithms and formats so we are confident that our solution
might be employed in practice (Wahsheh and Luccio, 2019).

In this study we have only focused on whether QR codes would remain
usable when cryptographic information is incorporated in the payload, in
terms of the scanning experience. However, notice that other orthogonal
factors might a↵ect the usability of cryptographic barcodes. For example key
management is a crucial issue that makes cryptographic solutions complex to
deal with, and involves usability, e.g., when users are asked questions about
certificate validity. Similarly, it would be important to study appropriate
ways to warn the user about possibly insecure barcodes, so that the user
understands the consequent security risks. We leave this as future work.
We also plan to study less popular signature schemes to look for potential
secure-and-usable alternatives to the popular ones.

Acknowledgment. Work partially supported by CINI Cybersecurity National
Laboratory within the project FilieraSicura: Securing the Supply Chain of
Domestic Critical Infrastructures from Cyber Attacks (www.filierasicura.it)
funded by CISCO Systems Inc. and Leonardo SpA.

References

2D Technology Group Inc., 2016. Barcode Security Suite. http://www.
2dtg.com/node/74.

A. Sergeev, 2010. UI Designer - ISO-9241 Satisfaction Metrics - Theory of
Usability. http://ui-designer.net/usability/satisfaction.htm.

Albertini, A., 2014. Funky File Formats, in: 31st Chaos Communication
Congress (31C3). https://fahrplan.events.ccc.de/congress/2014/
Fahrplan/events/5930.html.

24



Alturki, R., Gay, V., 2017. Usability Testing of Fitness Mobile Application:
Case Study Aded Surat App. International Journal of Computer Science
and Information Technology (IJCSIT) 9(5), 107–127.

Dabrowski, A., Krombholz, K., Ullrich, J., Weippl, E., 2014. QR Inception:
Barcode-in-Barcode Attacks, in: Proceedings of the 4th ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices (SPSM’14),
pp. 3–10.

European Union Agency for Network and Information Security (ENISA),
2014. Algorithms, Key Size and Parameters Report.

Focardi, R., Luccio, F.L., Wahsheh, H.A.M., 2018a. Security Threats and So-
lutions for Two Dimensional Barcodes: A Comparative Study, in: Daimi,
K. (Ed.), Computer and Network Security Essentials. Springer, pp. 207–
219.

Focardi, R., Luccio, F.L., Wahsheh, H.A.M., 2018b. Usable cryptographic
QR codes, in: Proceedings of the 2018 IEEE International Conference on
Industrial Technology (ICIT’18), Lyon, France, pp. 1664–1669.

Google, 2019. Google Safe Browsing API. https://developers.google.
com/safe-browsing/.

Grover, A., Braeckel, P., Lindgren, K., Berghel, H., Cobb, D., 2010. Param-
eters E↵ecting 2D Barcode Scanning Reliability. Advances in Computers
80, 209–235.

Ishihara, T., Niimi, M., 2014. Compatible 2D-code Having Tamper Detection
System with QR-code, in: Proceedings of the 10th International Confer-
ence on Intelligent Information Hiding and Multimedia Signal Processing
(IIHMSP’14), IEEE. pp. 493–496.

ISO, 2018. ISO 9241-11:2018, Ergonomics of human-system interaction —
Part 11: Usability: Definitions and concepts. https://www.iso.org/obp/
ui/#iso:std:iso:9241:-11:en.

ISO/IEC Standard, 2015. ISO/IEC 18004:2015, Information technology –
Automatic identification and data capture techniques – QR code 2005 Bar
code Symbology Specification.

25



Jin, X., Hu, X., Ying, K., Du, W., Yin, H., Peri, G., 2014. Code Injection
Attacks on HTML5-based Mobile for Apps: Characterization, Detection
and Mitigation, in: Proceedings of the 21st ACM Conference on Computer
and Communications Security (ACMCCS’14), pp. 66–77.

JSON, 2016. Introducing JSON. http://www.json.org.

Kaspersky Lab, 2011. Malicious QR Codes: Attack Methods & Tech-
niques Infographic. http://usa.kaspersky.com/about-us/press-
center/press-blog/2011/malicious-qr-codes-attack-methods-
techniques-infographic.

Kharraz, A., Kirda, E., Robertson, W., Balzarotti, D., Francillon, A., 2014.
Optical Delusions: A Study of Malicious QR Codes in the Wild, in: Pro-
ceedings of the 44th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN’14), pp. 192–203.

Kieseberg, P., Leithner, M., Mulazzani, M., Munroe, L., Schrittwieser, S.,
Sinha, M., Weippl, E., 2010. QR Code Security, in: Proceedings of the
8th International Conference on Advances in Mobile Computing and Mul-
timedia (MoMM’10), pp. 430–435.

Kieseberg, P., Schrittwieser, S., Leithner, M., Mulazzani, M., Weippl, E.,
Munroe, L., Sinha, M., 2012. Malicious Pixels Using QR Codes as Attack
Vector. Trustworthy Ubiquitous Computing 6, 21–38.

Krombholz, K., Fruhwirt, P., Kieseberg, P., Kapsalis, I., Huber, M., Weippl,
E., 2014. QR Code Security: A Survey of Attacks and Challenges for Us-
able Security, in: Proceedings of Human Aspects of Information Security,
Privacy, and Trust (HAS’14), pp. 79–90.

Krombholz, K., Hobel, H., Huber, M., Weippl, E., 2013. Social Engineering
Attacks on the Knowledge Worker, in: Proceedings of the 6th International
Conference on Security of Information and Networks (SIN 2013), pp. 28–
35.

Peng, K., Sanabria, H., Wu, D., Zhu, C., 2014. Security Overview of QR
Codes. MIT Student Project.

Phishtank, 2019. https://www.phishtank.com/.

26



Razzak, F., 2012. Spamming the Internet of Things: A Possibility and its
Probable Solution, in: Proceedings of the 9th International Conference on
Mobile Web Information Systems (MobiWIS’12), pp. 658–665.

Vidas, T., Owusu, E., Wang, S., Zeng, C., Cranor, L., Christin, N., 2013.
QRishing : The Susceptibility of Smartphone Users to QR Code Phishing
Attacks, in: Proceedings of Financial Cryptography and Data Security
(FC’13), LNCS, Springer, 7862, pp. 52–69.

Wahsheh, H.A.M., Luccio, F.L., 2019. Evaluating Security, Privacy and
Usability Features of QR Code Readers, in: Proceedings of the 5th Inter-
national Conference on Information Systems Security and Privacy (ICISSP
2019), Prague, Czech Republic, pp. 266–273.

Wired, 2017. Sneaky exploit allows phishing attacks from sites that look
secure. https://www.wired.com/2017/04/sneaky-exploit-allows-
phishing-attacks-sites-look-secure/.

Yakshtes, V., Shishkin, A., 2012. Mathematical Method of 2-D Barcode
Authentication and Protection for Embedded Processing. https://www.
google. com/patents/US8297510.

Yao, H., Shin, D., 2013. Towards Preventing QR Code Based for Detecting
QR Code Based Attacks on Android Phone Using Security Warnings, in:
Proceedings of the ACM ASIA Conference on Computer and Communi-
cations Security (ACM ASIACCS’13), pp. 341–346.

27


