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Abstract

As the fast development of IoT technology, various security solutions have to

be considered when the corresponding solutions are being deployed. Due to

the lightweight nature of the IoT devices such as the RFID tags and so on,

traditional encryption schemes such as AES which are relatively heavy in the

sense of operations cannot be applied here. Lightweight block ciphers have

since become a default standard when considering security protections on such

lightweight IoT devices. Compared with the security analysis approaches by

taking advantage of the differential or linear cryptanalysis, the security margin

of the lightweight block ciphers can be further derived more accurately due

to the small internal state. In this paper, we investigate the security margin

of the lightweight block cipher structure especially the SPN design by taking

advantage of the parallel computing power of modern GPU architecture. We

show how to accelerate the computing of the statistical distinguisher, which is

the crucial point for analyzing the security of the cipher design. Our proposed

methods gain notable advantage against traditional CPU architecture in terms

of time complexity and possess extensibility for other block ciphers.
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1. Introduction and Previous Works

The security of block ciphers heavily depends on the work of cryptanalysis

to gain confidence regarding their security margin as well as the corresponding

efficiency. Currently there are two main approaches in cryptanalysis, namely,

differential cryptanalysis [1] and linear cryptanalysis[2]. Differential cryptanal-5

ysis was proposed by Eli Biham and Adi Shamir back in 1991 while cryptana-

lyzing DES. It was applied to attack DES from the perspective of plaintext and

ciphertext differences. The evolution of a differential in each round is crucial

to the success of an attack on a cipher and to date, differential cryptanalysis

is still regarded a powerful and universal method in attacking block ciphers.10

Variants of conventional differential cryptanalysis like [3] and [4] has also been

used for a long time. For cipher designers, a well designed cipher should be

able to resist differential attacks to provide a reference on how to construct or

improve a secure cipher. Classic differential cryptanalysis is based on the dif-

ferential characteristics that are derived by connecting single round differential15

paths to form a large round differential path. Differential characteristics are

relatively easy to compute using various approaches such as the branch and

bound algorithm proposed by Matsui in 1993 [5]. However, it cannot represent

the true differential distribution but can only provide a rough bound on the

security margin. Rather, the concept of a differential, which takes all interme-20

diate paths into consideration, provides a more accurate measure of a cipher’s

security margin. It will help increase the differential probability, and better

reflects the true differential distribution. On the other hand, it is even more

difficult to compute the differential given a large block size (for example 32-bit

or larger). Recently, [6] proposed the idea of taking advantage of multiple differ-25

ential paths to further improve the differential distinguisher. This concept can

be extended to the extreme case where given one input difference, we compute

all output differences (2n−1 where n is the block size). This further increases
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the computational complexity for identifying differentials.

Differential characteristic. A differential characteristic for a single round can30

be represented by a pair (α, β) where α denotes the input difference and β de-

notes the output difference such that difference α leads to β (denoted by α
R→ β).

Differential characteristics with high probability P (α
R→ β) can be exploited in

the statistical attack. For multiple rounds, characteristics of each round are con-

catenated to produce a specific differential path α
R→ δ1

R→ δ2
R→ ...

R→ β. The35

probability of concatenating these characteristics is the product of the probabil-

ities of each single-round characteristic. While performing traditional differen-

tial cryptanalysis, most researchers identify differential characteristics with high

probability like Wang et al in [7] whereby certain differences appear again af-

ter several rounds with high probability (called iterative characteristics). These40

iterative characteristics are used to help reduce the workload of cryptanalysis.

However iterative characteristics may not always be found and more impor-

tantly, a differential characteristic considers only one specific path from start

to end, neglecting information from other paths that could potentially expose

more severe weaknesses of a block cipher.45

Differential. When analyzing the block cipher, attackers only know the plain-

text and ciphertext differences, and nothing else. It means that for a 3 round

block cipher, attackers require knowledge of differential: α
R→?

R→?
R→ β where

’?’ denotes the unknown and irrelevant difference value of intermediate rounds.

This is called a differential that contains all the characteristics with same input50

and output differences. Conventionally, an individual differential characteristic

restricts analysis to a specific differential path with a fixed evolution procedure.

Thus, we can overcome this disadvantage by clustering all the characteristics

and the probability of P (α
Rn

→ β) can be calculated in the following way:

P (α→ β) =
∑
δn

...
∑
δ2

∑
δ1

P (α→ δ1 → δ2...→ δn → β) (1)

Such probability is also the theoretical probability of β’s appearance for in-55

put difference α when collecting samples to recover keys. From the viewpoint
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of a cipher designer, preventing attacks based on individual characteristics do

not guarantee sufficient security. Instead, more emphasis should be given to

preventing attacks against differentials.

Full distribution. Based on the differential, we want to go even further to60

obtain a more precise result for cryptanalysis. Blondeau et al investigate the

statistical accuracy of the multiple differential cryptanalysis in [6]. They use

more than one differential to allow the attacker to extract more information from

the samples because for an input difference there exists multiple possible output

differences given a large number of rounds. Usually if we take advantage of all65

the output differentials for some fixed input, we call this a full distribution It is

more effective because for each input difference it leads to a unique distribution

which include all the differential information and helps an attacker analyse the

cipher. By using statistical approaches such as the χ2 or LLR test, we can get

an improved effect on the distinguisher.70

Although using the full distribution leads to a more powerful cryptanalysis

approach, its computational cost increases rapidly. Therefore, distinguishers

based on differential characteristics are still used as the main approach since it

is usually within our computational capabilities, making it a practical solution

as compared to the full differential distribution approach. To compute the full75

distribution in a practical manner, parallel cryptanalysis can be adopted. We

have attempted to compute full distribution cryptanalysis on a computer with

128 logic CPU cores but it still takes much time. Therefore we leverage upon the

GPU’s parallel advantage to mitigate this problem. [8] has used the PlayStation

3 to solve ECDLPs due to the game console’s graphic processing ability. [9],80

[10], [11], [12] have shown that GPU has been accepted as a new implementation

platform to improve the performance for block ciphers. The results of [13] and

[14] show that the GPU possesses a much powerful parallel performance than

CPU and can largely fasten the speed of encryption algorithms. Cryptanalysis

field also starts to explore the potential on the new platform like [15], [16] where85

theoretically existing attacks that are hard to implement in real-world in the

past can eventually be achieved thanks to GPU. Parallel computing on GPUs
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has also gained wide adoption in various areas such as deeping learning, Bitcoin

mining and so on. Compared with a CPU framework, GPU supports more

parallel threads and is cheaper. Thus, we want to propose a common method90

that achieves full distribution differential cryptanalysis on GPU for the SPN

(substitution-permutation network) Structure.

Our contribution. In this paper we take advantage of GPU parallel comput-

ing power to speed up the computation of differential distinguishers for SPN

cipher. First, we introduce an algorithm to to calculate the full distribution of95

SPN ciphers by parallel computation. Based on the aforementioned algorithm,

three upper layer methods are introduced to solve two problems: limited GPU

memory space, and achieving efficient attacks on large sized SPN block ciphers.

For our experiments, we chose PRESENT[17], an ultralight SPN cipher designed

by Bogdanov et al, as the target cipher and reduce its block size to calculate100

its security margin based on full differential distribution. We then evaluate the

performance of our cryptanalysis. We use a reduced block size because searching

for the full distribution for the original PRESENT with 64-bit block size is still

impractical even with the help of GPU power. Hence we reduce the block size

to 8,12,16,20,24,28-bit so that the search space of the distribution is reduced.105

By studying the security margin of the reduced versions we can obtain evidence

that helps us to predict the security margin of PRESENT. Based on experimen-

tal results, we found that the GPU approach leads to a significant advantage

over regular CPU computation.

Outline. Section 2 introduces background information regarding differential110

cryptanalysis and GPU programming. Then in Section 3 we propose the gen-

eral GPU-based algorithm for a full differential distribution search. Section 4

introduces three upper-layer methods based on the proposed base algorithm.

They are used to solve the problem of inadequate memory space and improve

computational efficiency. Performance analysis is given in Section 6 where the115

computational cost of GPU and CPU is compared. Finally we conclude the

paper in Section 7.
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2. Preliminaries

2.1. SPN Cipher and block size reduced PRESENT

Substitution-Permutation Network(SPN) is a common block cipher design120

strategy in order to achieve fast diffusion and confusion. It is widely used by

many famous block ciphers such as AES, PRESENT and so on. And massive

analysis results showed that this structure can indeed provide strong security

margin given the primitives are flawless.

There are three operations in a basic encryption operation of SPN: Key125

addition layer, substitution box (S-Box) layer, permutation layer. In

key addition layer, round key generator provides a round key based on the key

update algorithm. Input of this round is XORed with the round key and go

to the S-Box layer. S-Box is a substitution on the input data. The rule of

substitution is defined when a specific SPN cipher is proposed. The input and130

output length is not required. Designers can create a S-Box of 4-bits length or

8-bits length or any other length. And how to map the input to output is also

up to the cipher designed. S-Box is the only non-liner part that introduces the

differential evolution.

Figure 1: PRESENT cipher

Figure 1 shows the structure of the original PRESENT cipher. The standard135
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cipher PRESENT although being widely considered to be lightweight, the 64-

bit block size is still too large for our experiment purpose. Luckily, PRESENT

follows a very symmetric design structure and we can tweak the cipher by shrink-

ing the block size without changing the cipher property. Actually Toy Present

cipher has already been proposed for this purpose [18]. During the experiment140

we reduce the block size to 8, 12, 16, 20 and 24-bits for our experiment purpose.

2.2. Full distribution and security margin

For a block cipher with block size b and r round, differential(plaintext) space

is N = 2b. We denote all differences as δ1, δ2, ..., δN . Full distribution means

while doing differential cryptanalysis, we need to calculate N differentials after145

r round: (assume input difference is δ2)



δ2 → δ1

δ2 → δ2

...

δ2 → δN

(2)

After the calculation we acquire an two dimension array of length N and ele-

ments in it is (δi, P (δi)), which represents the full distribution. Then a statistical

test inspired by [19] is applied to calculate the data complexity of distribution.

A statistical test is used to create distinguisher to distinguish two distributions150

D0 and D1, where D0 is the full distribution we get from the experiment and

D1 is the uniform distribution. Then we calculate data complexity n as follows:

n =
d∑

z∈Z
ε2z
pz

≈ d

2D(D0‖D1)
(3)

The error probability for distinguisher is Pe ≈ Φ(−
√
d/2). In our test, we

set Pe to be 0.1. D is the Kullback-Leibler distance, which is calculated by:

D(D0‖D1) =
∑
z∈Z

PrD0
[z]log

PrD0 [z]

PrD1
[z]

(4)
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Data complexity n means how many samples the distinguisher needs to distin-155

guish between the two distributions. Intuitively, n increase with round number

r. Security margin is defined as followed: for a cipher with block size b and r, if

n > 2b then the test needs more samples than the whole sample space. In other

words, we cannot distinguish a distribution between the cipher and a theoretical

uniform distribution. The smallest value of r that provides an indistinguishable160

case can be used to evaluate the security margin.

2.3. GPU feature

Running Program on GPU. In 2007 Nvidia release CUDA, a parallel com-

puting platform and application programming interface (API) model, to enable

programmers use their GPU and do general purpose process. [20] suggests that165

to run a program on GPU, first we need to create a kernel function that tells

GPU how to deal with input data. Kernel function is run by GPU and use re-

sources (memory and processors) inside GPU. GPU has its own memory space.

If kernel function needs some input data, they can only be taken from GPU’s

memory. And if the result of kernel function needs to be recorded, kernel func-170

tion can only store them in GPU’s memory. There only exists a pipe that can

copy memory between host (computer) and device (GPU). So all the input data

is copied from host to device before calling kernel function and results that are

stored in GPU memory is copied from device to host after all kernel function

finish.175

Thread Organization in GPU. The organization of threads can be defined

by programmer. Kernel function create a grid, which contains all the threads,

and runs inside this grid. Those threads share a global memory inside this grid.

Threads are divided into several blocks as shown in figure 2. The number of

threads and blocks can be customized according to the programmer. Streaming180

Multiprocessors(SM) inside GPU is in charge of dispatch threads. There are

more than one SM in a GPU. SM can be seen like the core in CPU. While

running the program, one block can only be dispatched by one SM. And SM

dispatch thread in the unit of warp and one warp contains 32 threads.
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Figure 2: Organization of threads in GPU

3. Using GPU to calculate full distribution185

Nvidia’s GPU use SIMD (Single Instruction Multiple Data) to improve ef-

ficiency. For different data, GPU apply same instructions to them. We exploit

this feature by arranging kernel function in this way: kernel function takes only

one input difference and calculate the full distribution derived from this differ-

ence. Hence every thread is in charge of searching full distribution for one input190

difference.

3.1. Search the full distribution of one input difference after one round

Process of differential cryptanalysis can be seen as two main operation:

Difference combination. Differential distribution table of S-Box can be built

from the substitution rule. Each S-Box provides a set Si = si,1, si,2, si,3... which195

contains all the possible output difference from it. Then to decide the difference

of whole block, chose one possible difference of each S-Box for one time and

combine them as:

Diff = s1,a||s2,b||s3,c||... (5)

All the possible combination should be recorded so it is a full combination. Each

si,x is generated with a probability P (si,x) hence the probability of combined200
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difference can be calculated as:

P (Diff) =
∏

P (si,x) (6)

Permutation. Like plaintext, differential after S-Box layer can also be per-

muted. The same permutation rule is applied to the distribution obtained from

difference combination and the differential distribution after this round can be

get.205

Table 1: SP table of the first S-Box in 8-bit version PRESENT

0x00 0x02 0x08 0x0a 0x20 0x22 0x28 0x2a 0x80 0x82 0x88 0x8a 0xa0 0xa2 0xa8 0xaa
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0
2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0
3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0
4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0
5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0
6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4
7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4
8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4
9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0
a 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0
b 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0
c 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0
d 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0
e 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0
f 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4

Notice that permutation is a one to one map, so it is possible to combine two

process above into one step. A SP(substitution permutation) table is created

to do previous two steps in one time. Based on the original differential distri-

bution table of S-Box, we pre-calculate the result of permutation for all output

differences. Table 1 gives an example of the first S-Box’s (in order from left)210

SP table. In such way we remove the time cost of bit-wise operation permuta-

tion and increase only a little memory cost (each S-Box has its unique SP table

rather than share one differential distribution table).

While searching the full distribution on GPU, each thread is in charge of

only one input difference and search for all output differences after a round.215

Probability for output δx is calculated by:

P (δx) =
∑
i

(P (δi)× P (δi → δx)) (7)
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Algorithm 1 shows the detailed process in searching full distribution for 1 round,

which is also the kernel function.

Algorithm 1 Search full distribution for one input difference after one round

Input: Input difference Diff; Probability of the input difference Pin; Block size

l.

Output: Array A as differential distribution of ciphertext.

1: A[2l] = [0..]

2: x1, x2, ...← Diff //separate input for every S-Box

3: for all y1 in SP1[x1] do

4: for all y2 in SP2[x2] do

5: ...

6: for all yn in SPn[xn] do

7: A[y1 ⊕ ...⊕ yn]← Pin ∗ SP1[x1][y1] ∗ SP2[x2][y2] ∗ ...
8: end for

9: ...

10: end for

11: end for

For more rounds, the algorithm can be executed many times. Pin can be

obtained from the result of previous round. Finally a full distribution that220

indicates probability of every differential can be obtained.

3.2. Memory and Thread Organization for Search full distribution

3.2.1. Memory Organization

Memory is the biggest limitation on GPU. 16 GB is already a large memory

space for current GPU but is not adequate for large block size cipher’s crypt-225

analysis. Therefore how to make good use of memory space is a key point. In

full distribution search algorithm, every S-Box has its unique SP table. Kernel

function use these tables to decide the output differences and its probability.

They are copied to the shared memory of GPU, which is the fastest memory

space but it is much smaller compared to the global memory.230

To analyze as in Section 3.1, two arrays A1, A2 with length 2b are needed

to record full distribution. They are located in the global memory. One is for
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Figure 3: Reusing two arrays to record full distribution

input differential distribution and another is for output differential distribution.

After every round the roles are changed. For example A1 is the input of round

1 and output are stored in A2. A1 is cleaned after round 1 and then in round235

2 A2 becomes the input and outputs are written to A1. These two arrays are

recycled in turn to save memory space.

For every thread, it runs a kernel function and searches the full distribution

for its input difference. All the threads share the same A1, A2 during the crypt-

analysis. For each search result D and its probability P , P is added to A1[D]240

(or A2[D]). Unavoidably writing conflict may happen when multiple threads

want to add probability on same place of array. This is solved by CUDA’s

built-in function atomicAdd that every addition operation cannot be broken so

that write conflict is avoided.

3.2.2. Thread Organization245

CUDA allows programmers to create any amount of threads as long as it do

not exceed the maximum number of thread, which is relatively large when used
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in cryptanalysis. So we do not consider the case where the number of threads

is not enough. It can be seen in Figure 3 that every thread calculate only one

input difference. For a cipher with block size b, 2b threads are needed for our250

cryptanalysis task. After the thread amount is decided, block and grid still

can be constructed in different ways. Due to the feature of GPU introduced in

section 2.3, we give two principle for thread organization:

How many threads in block: SM process threads in the unit of wrap (32

threads). Therefore the thread number of block should always be multiple of255

32.

How many blocks in grid: As for block number, it depends on the number of

SM. One block can only be dispatched by one SM. Different SM works parallel.

So the best condition is to make the block number no less than SM number.

4. Improved measures on the proposed search algorithm260

4.1. Pruning for large block size

To shorten the time cost for large block size cipher, we propose a method

that prune differential path with little probability in every round. Two arrays

A1 and A2 only record parts of differentials with high probability rather than

full distribution. Elements of A1 and A2 are recorded in form of {difference,265

probability}. Every time when a new output differential is found by threads, it

is checked that if such differential’s record has already been written. If it is then

add the probability to existing record otherwise create a record in empty address.

When there is no more space to store more records, a threshold probability is

set for the current and further rounds that only the differential with higher270

probability than the threshold can be written to the array.

We set the threshold value to a theoretical value that every differential path

has the same probability, which represents the uniform distribution. For a

cipher with block size b, the uniform differential probability is 1/2b. Assume

the cipher also has ideal permutation on characteristics, then probability of any275

characteristic is even and uniform characteristic probability is 1/2b × 1/2b =

13



1/22b. Such probability is chosen as threshold value. And the result of this

cryptanalysis method is a semi-full distribution. Distinguisher from section 2.2

can still work on such distribution.

4.2. Meet in the middle approach by branch and bound280

Meet in the middle attack is an efficient way to reduce time cost for differ-

ential cryptanalysis because in early rounds most input differences’ probability

is 0 so searching processes finishes fast. It takes several rounds before the input

probability spread to the other part of the differential space. If cryptanalysis

starts from both plaintext and ciphertext, then we can make use of early rounds285

twice.

Figure 4: Meet in the middle attack

Supposing all threads are parallel worked, such meet in the middle improves

nearly nothing. But things are different if there are thread blocking. While cre-

ated threads’ amount is more than what all SM can process, a waiting queue is

produced and some threads are delayed, which largely decrease the parallel effi-290

ciency. However in early rounds when most differentials have 0 probability and

the full distribution searching is not required, kernel function ends up quickly

and spare SM to other threads. In addition, while recording probabilities to the

14



output array in global memory, writing conflict is unavoidable but less writing

request can reduce the chance of writing conflict.295

One problem is that meet in the middle attack requires to decide which

differences pair is chosen before begin the cryptanalysis. A branch and bound

algorithm is introduced to help us predict which differential may have a high

probability. Matsui first gives a branch and bound searching algorithm in citem-

atsui1994correlation. The purpose of it is to quickly find a characteristic with300

very high probability among all the characteristics. It do not guarantee a high

differential probability but research [21] by Chen et al shows that Matsui’s

algorithm also gives a high probability on differential. Algorithm 2 is the com-

bination of Matsui’s algorithm and meet in the middle attack, in which Matsui’s

algorithm is used to predict what plaintext and ciphertext difference (with po-305

tential high probability differential) is chosen. Then based on its result we use

meet in the middle attack to calculate the differential probability. branch and

bound returns the output very fast and is a recursion algorithm. Therefore we

run this algorithm on CPU rather than GPU.
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Algorithm 2 Use branch and bound to search for differential probability

Input: Total round number of cipher R; Block size b.

Output: Plaintext and ciphertext difference α,β; Differential probability P

1: α, β ← Branch&bound() //Done by CPU

2: A0[2b], A1[2b], B0[2b], B1[2b] = [0..]

3: A0[α] = 1; B0[β] = 1

4: P ← 0

5: for i← 0;i < R
2 ;i+ + do

6: A1 = full distribution search(A0, b) //Encryption direction

7: Swap(A0,A1)

8: A1 = [0..]

9: end for

10: for i← 0;i < R
2 + 1;i+ + do //Decryption direction

11: B1 = full distribution search(B0, b) //Decryption direction

12: Swap(B0,B1)

13: B1 = [0..]

14: end for

15: for i← 0;i < 2b;i+ + do

16: if A0[i]! = 0 and B0[i]! = 0 then

17: P+ = x ∗ y
18: end if

19: end for

4.3. Matrix based differential cryptanalysis310

Differential cryptanalysis on full distribution can be seen as matrix mul-

tiplication as well. Assume a full distribution (δ1, δ2, δ3...) with probabilities

(p1, p2, p3...), full distribution of next the round can be calculated in the follow-

ing way:

p(δi) =
∑
j

pj × p(δj → δi) (8)

while p(δj → δi) is the differential characteristic of one round, and it is always a315

fixed value. Therefore the only parameter that changes in previous equation is
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pj . If all the information of p(δj → δi) can be calculated in advance, the process

of searching full distribution can be represented by a matrix multiplication:

[
p1,r+1 p2,r+1 · · · pn,r+1

]
=

[
p1,r p2,r · · · pn,r

]
×

δ1 → δ1 δ1 → δ2 · · · δ1 → δn

δ2 → δ1 δ2 → δ2 · · · δ2 → δn
...

...
. . .

...

δn → δ1 δn → δ2 · · · δn → δn


(9)

pi,r is the probability of difference δi in round r. δi → δj denotes the probability

of differential characteristic from δi to δj in one round. Let equation 9 be written320

as:

Pr+1 = Pr ×∆ (10)

We can perform the calculation iteratively to obtain the full distribution of

round k + i from round i, which is described by the the following relation.

Pk+i = Pi ×∆k (11)

It is obvious that two ways can be used to calculate equation 11. One is to

normally start from Pr ×∆ and multiplied ∆ one by one (left to right order).325

The second one is changing to a new calculation order that ∆k is calculated

first and then multiplied by Pi. One big advantage of using the latter way is

that this fasten the process of searching the full distribution compared to the

original method used in section 3, because it does not need to calculate round

by round. After ∆2 is calculated, ∆k can be transformed to (∆2)
k
2 , (∆4)

k
4 and330

so on. As a result, ideally the time of calculation can be reduced to log2k. Thus

the original method in section 3 can be used to obtain ∆ first and then used

the matrix way for further rounds.

After transforming differential cryptanalysis into pure matrix multiplication,
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it is more clear to see the problem in a mathematical way: how to fasten large335

matrix multiplication on GPU. Section 3 provides a way of searching full distri-

bution in differential view but many characteristics or techniques of GPU cannot

be applied directly. As a result efficiency is not always satisfying. However for

matrix multiplication, it has been studied for many years and a large number of

matrix multiplication solutions are available. Taking advantage of those mature340

solutions makes the most use of GPU’s parallel ability. MatrixMulCUBLAS,

a highly recommended algorithm by Nvidia that depends on CUBLAS (CUDA

Basic Linear Algebra Subroutines) library, is chosen to conduct matrix multi-

plication in our experiments because it costs little time when matrix has a large

size.345

In some cases matrix based method may face the memory limitation and ∆

is too large for the GPU’s memory, which is pretty common considering that

nowadays GPUs do not have memory space as large as RAM or hard disk.

Despite that the memory space of GPUs cannot be increased at will, matrix

approach provides some characteristics that can help with this problem.350

Sparse matrix. ∆ contains the 1-round differential characteristic infor-

mation for all input differential. We did a test on 16-bit PRESENT that a

number of input differentials are chosen and their 1-round full distributions are

computed independently. It turns out that about 99% output differentials have

0 probability. In other words ∆ is a very large but sparse matrix with about355

99% elements being 0. Therefore storage format for sparse matrix like COO,

CSR, CSC save a lots of memory space need, and corresponding calculation

approaches are still feasible for parallel operation.

Matrix partition. Although ∆ can be compressed as sparse matrix, after

several times of multiplication ∆r will become a dense matrix and the com-360

pressing method loses its effectiveness. Under this circumstance, ∆r can only

be stored in RAM or hard disk. But matrix partition enables us to split a large

matrix into some sub-matrices and those sub-matrices follow the calculation

rule as the elements in matrix. Assuming that the GPU memory can only store

two n× n matrices, ∆r can be split to an assemble of n× n matrices. For each365
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time two sub-matrices are transferred to GPU and the result is written back to

RAM or hard disk.

5. Security margin of tested cipher

We use Tesla V100-PCIE-16GB to search the full distribution of several block

size reduced PRESENT cipher. Then the statistical methodology is applied370

based on the full distribution result to calculate the data complexity, which

indicates the security margin of the tested cipher. For each version, we choose

plaintext difference in such principle:

a. There is only one active S-Box in the first round.

b. Value of input difference in the active S-Box is chosen randomly375

We search the full distribution up to 8 rounds and detailed information

about log2C (Denote data complexity as C) is shown in table 2. Logarithm

is applied to make it more clearly to see whether distinguisher can successfully

distinguish the two distributions while the value is directly compared with block

size. Bold number represents the least round number when distinguisher cannot380

distinguish practical and theoretical distributions. The security margin of round

number can be further derived from table 3.

Table 2: log2C of tested cipher

Version Input Diff round 1 round 2 round 3 round 4 round 5 round 6 round 7 round 8
8-bits 0x7 -0.213 1.064 3.762 7.972 12.120 15.469 19.762 23.992
8-bits 0x80 -0.213 1.702 5.756 9.880 13.856 17.541 22.209 25.872
12-bits 0x8 -1.003 0.362 3.404 7.017 10.402 14.986 19.441 24.415
12-bits 0x50 -0.964 0.079 3.335 7.765 12.807 17.264 22.175 27.204
12-bits 0x400 -0.964 0.028 2.902 6.586 11.519 16.587 21.621 26.255
16-bits 0xc -1.483 -0.964 0.971 5.114 8.0956 12.263 17.201 21.634
16-bits 0x40 -1.483 -0.575 1.841 6.116 10.782 15.026 19.181 23.229
16-bits 0x200 -1.483 -0.575 1.79 6.170 10.960 15.066 19.342 23.552
16-bits 0x7000 -1.510 -0.842 0.938 5.173 9.031 12.227 16.721 22.141
20-bits 0x3 -1.863 -1.362 0.121 3.617 8.911 14.786 20.607 26.562
20-bits 0x40 -1.863 -1.294 0.817 5.975 11.941 18.139 23.985 29.904
20-bits 0xb00 -1.863 -1.420 -0.174 2.773 7.609 13.076 18.679 24.376
20-bits 0x9000 -1.884 -1.462 -0.337 2.603 7.582 13.166 18.926 24.863
20-bits 0xd0000 -1.863 -1.441 -0.221 2.727 7.710 13.402 18.919 24.790
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Security margin of those block size reduced PRESENT versions are obtained

as follow:

Table 3: The maximum number of rounds for an effective distinguisher.

8-bits 12-bits 16-bits 20-bits
5th round 6th round 7th round 8th round

We can observe that the data complexity increases with the round number.385

Before the round where data complexity’s logarithm (log2C) is less than 0, it

grows slowly. While log2C > 0, the increment suddenly changes to around 4.

Besides, increment between neighboring rounds is nearly the same (4 for each

neighboring round), which indicates that the growth of the data complexity

can be exponential. So we predict that the security margin of the original390

PRESENT is around round 19 when log2C ≥ 64 . Another factor that affects

the data complexity is the plaintext’s difference. For a certain version, various

differentials may derive different security margins and the largest one is often

chosen to evaluate the final security margin.

6. Performance analysis395

In previous work we use a 128 core CPU to do same full distribution search

on block size reduced PRESENT. Time cost for GPU and CPU to find full

distribution up to 8 rounds for randomly chosen plaintext difference is shown

below:

Table 4: Time cost of using CPU and GPU

CPU GPU
8-bits 2s 4.6ms
12-bits 10s 4.7ms
16-bits 30min 14.5ms
20-bits 12h 5.6s
24-bits N/A 3.8min
28-bits N/A 7.6h
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It can be easily seen from the table 4 that using GPU increase the speed400

greatly. GPU can help finish all the work but CPU takes a few days and still

cannot derive the results of the 24-bit version. Considering the ecomonical cost

of a 128 core computer is even more than a TESLA graphic card, using GPU

to do cryptanalysis has more advantages over the CPU structure. It also can

be seen that time cost grows largely from 24-bits version to 28-bits version for405

GPU. It shows that after 24-bit version thread amount engages a bottleneck of

GPU’s maximum parallel thread number.

For improved measures, time cost of pruning method in Section 4.1 depends

on the array length which can be referred to Table 4. Meet-in-the-middle attack

costs double time of half rounds and same block size for corresponding ciphers in410

Table 4. Table 5 shows the time comparison of matrix method and the original

method. While using matrix multiplication, 12-bit version is the limit without

the matrix partition. For small block size version such as 8-bit and 12-bit,

Matrix 1 shows the dominant advantage over Original. Matrix 2 requires

more parallel threads because it contains multiplication of larger matrix (∆n).415

Thus it only excel Original in 8-bit version when block size is too small that

Original cannot make use of all the parallel capacities. After matrix partition

is involved from 16-bit, although the problem of inadequate memory is solved,

partition process makes two matrix methods slower than Original. Due to

that Original, Matrix 1’s time cost grows linearly along with round number420

when Matrix 2’s grows logarithmically, the former is more effective when the

round number is not too large. And given enough memory space, Matrix 1

is relatively the faster way for differential cryptanalysis. We expect it to be

powerful in the further when GPU memory no longer being the bottleneck.

The matrix partition is done by the following ways: For Matrix 1, Pr ×∆425

is partitioned to be
[
Pr

]
×

[
δ1 δ2 · · · δn

]
where Pr is a 2b × 1 sub-matrix

and δi being j × 2b. j is adaptive that is expected to make the most use of

memory space in GPU. As Matrix 2, it is always a multiplication of two n×n

matrix and Tesla V100 can hold 212 × 212 matrix multiplication at most. So

for larger matrix, they are all partitioned to be a square matrix with elements430
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Table 5: Time cost of matrix multiplication and original method for calculating 8 rounds full
distribution

Original Matrix 1 Matrix 2
8-bits 4.6ms 0.08ms 0.08ms
12-bits 4.7ms 0.96ms 88ms
16-bits 14.5ms 156.3ms 6min
20-bits 5.6s 52s N/A

Matrix 1: Calculate in left to right order
Matrix 2: Calculate ∆8 first

being 212 × 212.

7. Conclusion

In this paper, we studied how to derive multiple differentials by taking ad-

vatange of the parallel computing, and specifically, we choose Tesla V100 as our

experiment platform. According to our performance test, it shows that GPU435

can indeed largely speed up the procedure of cryptanalysis compared with CPU

platform. Based on the full distribution searching algorithm, we provide some

improvements to solve some limitations introduced by the GPU structure. Fac-

ing the inadequate memory space of GPU, we save memory cost by abandoning

low probability in every round. And if the thread blocking occurs seriously in440

GPU, a meet in the middle attack method with guidance of branch and bound

algorithm can help to increase the efficiency. Furthermore, differential crypt-

analysis is transformed into matrix multiplication when mature algorithms of

such area are adopted to both solving memory and efficiency problems. Besides,

although only differential cryptanalysis is included, the process of linear crypt-445

analysis is similar to differential cryptanalysis, which means by applying the

some transformations the proposed method can be used in linear cryptanalysis

as well. Although at present full distribution differential cryptanalysis can only

be achieved on block size reduced cipher, with the development of industries

more powerful GPU can be used to analyse ciphers with larger block size in the450

future.
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