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Abstract

A recently proposed group key distribution scheme known as UMKESS,
based on secret sharing, is shown to be insecure. Not only is it insecure,
but it does not always work, and the rationale for its design is unsound.
UMKESS is the latest in a long line of flawed group key distribution schemes
based on secret sharing techniques.

1 Introduction

There is a long and sad history of insecure group (cryptographic) key estab-
lishment schemes based on secret sharing. As noted by Boyd and Mathuria,
[2], the ‘idea to adapt secret sharing for key broadcasting seems to have
been first proposed by Laih et al. [12]’, in a paper published over 30 years
ago. However, the shortcomings of the approach, and of the many variants
that have been proposed since 1989, have been widely discussed for almost
as long, in particular that:

• as noted by Boyd and Mathuria, [2], a ‘malicious principal who obtains
one key gains information regarding the shares of other principals’, and
an outside eavesdropper can also gain this information if the old group
keys are revealed;

• again as noted by Boyd and Mathuria, [2], since ‘knowledge of any
of the shared secrets is sufficient to construct the session key, none of
these protocols provides forward secrecy’;
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• insider attacks of various attacks appear impossible to prevent, as
many authors have observed (see, for example, [13, 14, 15], and the
papers cited therein).

The history of such protocols is long and tangled, but one sequence of
flawed protocol proposals, breaks, proposed fixes, and breaks of the fixes
is explained very carefully in Section 5 of Liu et al. [13], and we now briefly
summarise part of the story. In 2010, Harn and Lin [5] proposed an ‘authen-
ticated group key transfer protocol based on secret sharing’ (itself intended
to address issues in the Laih et al. scheme [12] from 1989). Unfortunately,
this was shown not only to be insecure (by Nam et al. [16, 17]) but also erro-
neous in that it does not always work even if all parties execute it correctly
(see Nam et al. [17]). Nam et al. [17] also proposed a fixed version, but this
was shown to be insecure by Liu et al. [13]. Inspired by the Harn and Lin
2010 paper, Sun et al. [20] proposed another group key transfer protocol
using secret sharing, and this was shown to be insecure by both Kim et al.
[9] and Olimid [18]. Olimid [18] also proposed a fix, but this was shown to
be insecure by Kim et al. [10]. These are not the only examples of broken
schemes of this type — one common element is the lack is a rigorous proof
of security in a complexity-theoretic setting, the established state of the art
for such protocols for the last decade or two.

Unfortunately, despite the extensive literature pointing out these and other
problems, new and fundamentally flawed schemes of this general type keep
being published. One common element in the papers published over the
last 31 years is that many share one of the authors of the 1989 paper. A
further common element is that each new paper cites some of the previously
published schemes, but many completely fail to acknowledge any of the
many attacks against the previously published and often very closely related
schemes. This is most unfortunate, especially given that many of the newer
schemes suffer from the same problems as older schemes. As we show below,
some of the above statements are also true for UMKESS, a scheme of this
general type published in a very recent paper by Hsu, Harn and Zeng [7].

The remainder of the paper is structured as follows. The UMKESS scheme
is summarised in §2. A detailed critique is provided in §3. A brief discussion
of why proposing arbitrary fixes to such schemes is unwise is given in §4,
and conclusions are drawn in §5.
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2 The UMKESS scheme

2.1 Objectives

This scheme is designed to allow a single trusted authority, the Key Gener-
ation Centre (KGC) to simultaneously distribute a number of secret group
keys to a number of distinct sets (groups) of entities, with each set being
drawn from a larger set of entities all of which have a pre-established rela-
tionship with the KGC.

The scheme uses the Shamir secret sharing scheme [19], involving polyno-
mials over a prime finite field GF(p) = Zp, for large p.

2.2 Preliminaries

Prior to use a large safe prime p is selected. The definition of safe is not pro-
vided by the authors, but presumably it must be sufficiently large to prevent
exhaustive searching for individual keys (which are elements of GF(p)).

The protocol involves the KGC and a set of n users U = {U1, U2, . . . , Un},
from which groups are created who are provided with new shared session
keys by the KGC on demand. Each user Ui ∈ U is assumed to share a
unique secret xi ∈ GF(p) with the KGC.

All involved parties must also agree on a cryptographic hash-function h,
whose domain and range is GF(p).

2.3 Security claims

The authors claim the protocol is secure against both insider and outsider
attacks, where an insider attacker is a member of U . The security properties
are not defined formally.

2.4 Operation

As noted above, the protocol enables the KGC to simultaneously broad-
cast a set of group keys to a disparate collection of groups. We sup-
pose that an instance of the protocol is being executed to distribute m

group keys K1,K2, . . . ,Km to m distinct groups G1, G2, . . . , Gm, where
Gi ⊆ U and we write |Gi = si| for every i, 1 ≤ i ≤ m. For each group
Gi = {Ui1 , Ui2 , . . . , Uisi

}, say (1 ≤ i ≤ m), define

S(Gi) =

si∑

j=1

ij
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i.e. S(Gi) is the sum of the indices of the members of the group. Here as
throughout addition is computed in GF(p), i.e. modulo p.

The protocol proceeds as follows, where the step numbers correspond to
those given by Hsu et al. [7].

2. The KGC broadcasts the list of groups G1, G2, . . . , Gm and their mem-
bers in a reliable way, i.e. it is assumed that these cannot be modified
by a malicious insider or outsider1.

3. Each participating user Ui ∈ U (1 ≤ i ≤ n), i.e. each user who is a
member of at least one group, proceeds as follows. Suppose Ui is a
member of mi groups Gi1 , Gi2 , . . . , Gimi

. Ui chooses mi random values
rij ∈ GF(p), 1 ≤ j ≤ mi, and sends them (unprotected) to the KGC,
i.e. in a way that might permit them to be changed by a malicious
party (this assumption is in line with the protocol specification — see,
for example, the ‘proof’ of Theorem 5 [7]).

4. Once the KGC has received the sets of random values rij from all the
participating members of U , it performs the following steps.

(a) The KGC chooses m random keys Ki ∈ GF(p), 1 ≤ i ≤ m,
where Ki is intended for use by group Gi, and a random value
r0 ∈ GF(p).

(b) For each participating user Ui (1 ≤ i ≤ n), the KGC:

• computes the unique degree mi polynomial fi over GF(p)
that passes through the following mi + 1 points:

(i, xi + r0) and (S(Gij ),Kij + h(xi + rij + r0)), 1 ≤ j ≤ mi;

• randomly chooses a set of mi points {P1, P2, . . . , Pmi
} lying

on the curve defined by fi; and

• sends P1, P2, . . . , Pmi
to Ui (again unprotected, i.e. in a way

that might permit them to be changed by a malicious party).

(c) The KGC makes the values of r0 and h(Ki), 1 ≤ i ≤ m, publicly
available to all members of U in a reliable way, i.e. it is assumed
that these cannot be modified by a malicious insider or outsider2.

5. Each participating user Ui (1 ≤ i ≤ n) proceeds as follows.

(a) On receipt of P1, P2, . . . , Pmi
, Ui uses them together with the

point (i, xi + r0) to recover the degree mi polynomial fi.

1This integrity/authenticity assumption is implied but never explicitly made, but with-
out it certain obvious attacks apply, as discussed in §3.3 below.

2Again this assumption is only implicit, but without it certain attacks apply — see
§3.3.
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(b) Using fi and S(Gij ), 1 ≤ j ≤ mi, Ui can compute Kij + h(xi +
rij + r0) and hence Kij , for every j.

(c) Finally, Ui checks the recovered group keys Kij against the pub-
lished list of values h(Ki), ≤ i ≤ m, made available in a reliable
way to all participants.

In essence, a separate ‘secret’ polynomial is computed for each participating
user, and the user recovers group keys from points on this polynomial (which
has degree equal to the number of group keys to be distributed to this user).

3 A critique

3.1 A definitional issue

We first observe that, in certain not unlikely cases, the system cannot work.

In Step 4(b), the KGC generates the following m points:

(S(Gij ),Kij + h(xi + rij + r0)), 1 ≤ j ≤ mi;

Clearly, if the values rij are all distinct, 1 ≤ j ≤ mi, then the y coordinates
will all be distinct. However, there is nothing to prevent the possibility that
S(Gij ) = S(Gij′

) for two distinct groups Gij and Gij′
. This could happen

very easily, e.g. if Gij = {U1, U5} and Gij′
= {U1, U2, U3}, where we have

S(Gij ) = S(Gij′
) = 6. In such a case, the polynomial f1 for user U1 cannot

exist, since it cannot pass through two points with the same x coordinate
but distinct y coordinates.

This issue could, of course, be fixed, e.g. by replacing S(Gi) throughout by a
unique numeric identifier for the group Gi. Indeed, it would seem reasonable
to require the KGC to devise a new (and unique) set of group identifiers for
every instance of the protocol, and to distribute them as part of Step 2 of the
protocol. However, given that there are more serious issues with the security
of, and rationale for, the protocol, we do not explore such fixes further here.

3.2 A serious security weakness

We now demonstrate that a much more serious security issue exists, in that
the long-term secret xi of one user can be recovered by another user (an
insider attacker), who needs only make a small modification to one message
sent to the KGC by the ‘victim’ user and then intercept the response. We
use the same notation as employed in the protocol description in §2.4.

We suppose that the insider attacker (Ua, say) is a member of (at least)
two groups in common with the victim user Uv. Suppose that Ua intercepts

5



the set of random values {r1, r2, . . . , rmv
} sent by user Uv to the KGC in

Step 3, and prevents them reaching the KGC; we suppose also, without loss
of generality, that Ua is a member of the two groups Gv1 and Gv2 . We
further suppose that T modifies the set of random values sent by Uv to
{r1, r

′

2
, r3, . . . , rmv

} before forwarding them to the KGC, where r′
2
= r1.

The protocol proceeds exactly as specified and we observe that Ua, as a
legitimate protocol participant, will be able to learn Kv1 and Kv2 from the
set of points it is sent by the KGC (since we assumed that Ua is a member
of the two groups Gv1 and Gv2).

We further suppose that Ka intercepts the set of points P1, P2, . . . , Pmv
sent

to Uv — these points will all lie on the polynomial fv generated by the KGC
in Step 4. This polynomial will also pass through the points:

(S(Gv1),Kv1 +H) and (S(Gv2),Kv2 +H)

(amongst others), where H = h(xv + rv1 + r0). That is, apart from the mi

points P1, P2, . . . , Pmv
, Ua will know the difference between the y values for

two other points on the curve defined by fv (with known x values). That is,
if we let z1 = S(Gv1) and z2 = S(Gv2), Ua will know the following equation
holds:

fv(z1)− fv(z2) = Kv1 −Kv2

where all the values (apart from the coefficients of fv are known. This yields
a linear equation in the coefficients of fv.

The mv points P1, P2, . . . , Pmv
can be used to yield a set of mv further linear

equations in the mi + 1 coefficients of fv, i.e. Ua will have a set of mv + 1
linear equations in the mv + 1 coefficients of fv, which will almost certainly
be independent given that P1, P2, . . . , Pmv

are randomly chosen and p is
very large. These can very easily be solved to yield fv. Finally, Ua simply
evaluates fv(v) to yield xv + r0, i.e. Ua has the long-term secret of Uv (since
r0 is public).

That is, using this simple attack, one legitimate user can obtain the secret
belonging to another user, and can thereafter learn all the group keys issued
to this user. This clearly invalidates Theorem 5 of Hsu et al. [7]; this is
not so surprising since the ‘proof’ offered is a series of heuristic arguments
rather than a rigorous proof.

3.3 Reliable broadcasts

In the protocol description in §2, there are four main communications flows:

• two broadcasts to all participants from the KGC: a broadcast of the
list of groups (Step 2), and a broadcast of the values r0 and h(Ki)
(1 ≤ i ≤ m) (Step 4c);
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• transmission of mi random values rij from each participating user Ui

to the KGC (Step 3);

• for every participating user Ui, transmission from the KGC to Ui of
the set of points {P1, P2, . . . , Pmi

} (Step 4b).

Hsu et al. [7] do not made clear the degree to which these communications
flows need to be protected. They variously refer to a ‘broadcast channel’,
‘broadcasts’, and making information ‘publicly known’. However they do
claim (in the ‘proof’ of Theorem 5), that ’service requests from group mem-
bers are not authenticated’, and also that ‘an adversary (insider) can . . .

forge challenges of other group member’. They also explicitly refer to the
possibility that one of the mi values rij is modified by an adversary.

We have therefore assumed throughout this paper that the transmission of
the rij values to the KGC in Step 3 is unprotected. This enables the attack
described in §3.2. We have correspondingly assumed that the transmission
of the points P1, P2, . . . , Pmi

from the KGC to each participating user Ui in
Step 4b is unprotected, although we do not discuss this further here.

There is no substantive discussion of the security requirements for the two
broadcasts made by the KGC to all participants. On reflection, and to be
as fair as possible to the protocol designers, we have assumed that these are
protected in some way, e.g. by being posted on a KGC website which can be
authenticated (e.g. using TLS). Of course, this adds an ‘invisible’ overhead
to the protocol, but it is a necessary assumption, since if either of these
broadcasts can be manipulated then attacks are possible, as we now briefly
describe.

• If the list of groups can be manipulated then a simple outsider attack
is possible which we describe in the form of a short example. Suppose
group Gi in the list includes the users U1, U2 and U3. Then, clearly,
S(Gi) = 6. Suppose that the version of the group list sent to U1 is
modified to G′

i so that G′

i includes U1 and U5. Then S(G′

i) = 6, i.e.
the polynomial f1 computed by the KGC would be exactly the same
in both cases; this means that, when performing the protocol, user U1

will recover key Ki correctly, but will believe it is shared with user U5

when it is in fact shared with users U2 and U3. This is clearly not a
desirable situation.

• If the list of hashed keys h(Ki) (1 ≤ i ≤ m) can be manipulated, then
in this case an insider attack is possible, which we again describe in the
form of a simple example. Suppose a ‘victim’ user Uv is in the same
group, Gvt say (for some t satisfying 1 ≤ t ≤ mv), as an attacker user
Ua. Both users perform the protocol correctly, except Ua prevents the
correct list of hashed keys {h(K1), h(K2), . . . , h(Km)} and the correct
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set of points {P1, P2, ..., Pmv
} reaching Uv. UA completes the protocol

correctly, and learns Kvt (since both Ua and Uv are in group Gvt). Ua

now chooses a key K ′

vt which will be accepted by Uv instead of Kvt .

Ua next computes the unique polynomial δ of degreemv passing through
the mv + 1 points:

(i, 0), (S(Gvt),K
′

vt
−Kvt) and (S(Gvj ), 0), 1 ≤ j ≤ mi (j 6= t).

Suppose the points P1, P2, ..., Pmv
sent by the KGC to Uv (but which

did not reach Uv) satisfy Pi = (xi, yi). Ua now computes a new set
of points Di = (xi, di), 1 ≤ i ≤ mv, which lie on δ, and puts P ′

i =
(xi, yi + di), 1 ≤ i ≤ mv. It should be clear that the points P ′

i all lie
on the curve defined by the polynomial fv + δ; it should also be clear
that the point (v, xv + r0) also lies on this curve, although the y value
is of course not known to Ua.

Ua now sends to Uv (masquerading as the KGC), the correct set of
hashed keys except that h(Kvi) is replaced by h(K ′

vi
), and the new

set of points P ′

1
, P ′

2
, ..., P ′

mv
. Since P ′

1
, P ′

2
, ..., P ′

mv
and (v, xv + r0) all

lie on the curve defined by fv + δ, this is the polynomial that will
be recovered by Uv (instead of fv). Uv now evaluates this polynomial
and it is simple to see that Uv will recover the correct set of keys
except that Kvi will be replaced by K ′

vi
— this is consistent with the

manipulated set of hashed group keys, and hence Uv will accept the
recovered keys as valid.

3.4 A questionable rationale

We further point out that the rationale for the scheme is highly questionable.
One instance of the scheme costs each participant a total of mi executions
of the hash function h, together with solving for the coefficients of a degree
mi + 1 polynomial and a few modular additions, i.e. on average one hash
execution plus some minor computations for each key.

Hsu et al. [7] compare the cost of their scheme with two other protocols.
The first uses a public key cryptosystem, and the second involves a number
of parallel executions of another secret sharing based scheme proposed by
Harn and Lin [5]. Neither of these are sensible comparisons. The public key
scheme is designed with different assumptions, and it would be expected
to be significantly more costly. The comparison with the scheme of Harn
and Lin makes no sense at all because, as discussed in §1, it is known to
be insecure. Moreover, the comparisons avoid the cost of providing publicly
verifiable lists of the groups and of group key hashes.

Even more importantly, there are very well-established protocols which
achieve the same goal in a provably secure way at comparable computa-
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tional and communications cost, and which avoid the need for a publicly
verifiable publication of group key hashes. The authors completely ignore
the huge and very well-established literature in the area, e.g. as summarised
in the excellent Boyd and Mathuria [2] (and the recent second edition, [1]).
Indeed, there is even an international standard for group key establishment
— ISO/IEC 11770-5 [8], which was published in 2011.

4 Pointless fixes

In §1, some of the sad history of group key distribution schemes based on
secret sharing was described. It seems clear that the cycle of design, break
and fix is itself broken, at least until and unless a ‘fixed’ protocol is proven
secure in a rigorous way. This point is made by Liu et al. [13].

The security proof for each vulnerable group key distribution
protocol only relies on incomplete or informal arguments. It can
be expected that they would suffer from attacks.

Sadly, this lesson has not yet been recognised by everyone. Apart from the
cases mentioned in §1, we should also mention the secret-sharing-based group
key transfer scheme proposed by Hsu et al. in 2017 [6]. This was shown to be
insecure [14] shortly after its publication. In a response published shortly
afterwards, Kisty and Saputra [11] proposed a fixed version of the 2017
protocol. Sadly this ‘fix’ completely lacks a rigorous security analysis. As
a result, it too may be insecure. However, perhaps more significantly, the
fix involves the addition of digital signatures to enable recipients of certain
messages to verify their origin and integrity. Whilst this may well prevent
attacks, it completely negates any rationale for the design of the protocol by
greatly increasing the computational complexity. Distributing group keys
using public key techniques is a well known and solved problem, and thus
the Kisty-Saputra scheme is not a valuable contribution to the literature.

Finally we observe that there are well-established formal security models
within which properties of group key establishment protocols can be estab-
lished — see in particular Bresson et al. [3] and Gorantla et al. [4]. A helpful
summary of the scope of the various models for group key establishment pro-
tocols can be found in §2.7.1 of Boyd et al. [1].

5 Concluding remarks

In this paper we have discussed two related themes: the (sad) history of
insecure group key distribution schemes based on secret sharing, and the
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details of why a specific example of a recently proposed scheme of this type
is insecure. Perhaps the saddest point is that the literature reviewed here
is only a small sample of a very extensive literature on secret-sharing-based
group key distribution, including a number of other sagas involving schemes
repeatedly broken and fixed.

In conclusion, this evidence strongly argues in favour of two recommenda-
tions. Firstly, the academic world should stop publishing security schemes
for which there is a lack of robust evidence of security. Secondly, academia
should stop attempting to publish fixed schemes which are pointless either
because there is no proof of security or because, whilst they may be secure,
they invalidate the rationale of the original unfixed scheme.
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