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Abstract

Nowadays, malware campaigns have reached a high level of sophistica-
tion, thanks to the use of cryptography and covert communication channels
over traditional protocols and services. In this regard, a typical approach to
evade botnet identification and takedown mechanisms is the use of domain
fluxing through the use of Domain Generation Algorithms (DGAs). These
algorithms produce an overwhelming amount of domain names that the in-
fected device tries to communicate with to find the Command and Control
server, yet only a small fragment of them is actually registered. Due to the
high number of domain names, the blacklisting approach is rendered use-
less. Therefore, the botmaster may pivot the control dynamically and hinder
botnet detection mechanisms. To counter this problem, many security mech-
anisms result in solutions that try to identify domains from a DGA based on
the randomness of their name.

In this work, we explore hard to detect families of DGAs, as they are con-
structed to bypass these mechanisms. More precisely, they are based on the
use of dictionaries or adversarial approaches so the generated domains seem
to be user-generated. Therefore, the corresponding generated domains pass
many filters that look for, e.g. high entropy strings or n-grams. To address
this challenge, we propose an accurate and efficient probabilistic approach to
detect them. We test and validate the proposed solution through extensive
experiments with a sound dataset containing all the wordlist-based DGA
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families that exhibit this behaviour, as well as several adversarial DGAsS,
and compare it with other state-of-the-art methods, practically showing the
efficacy and prevalence of our proposal.
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1. Introduction

The ceaseless efforts of malware authors to enhance cybercrime with so-
phisticated techniques [1] is creating a new “business” paradigm. Such a
business has a myriad of monetisation sources [2], [3] including, but not lim-
ited to, ad injection [4], spamming [5], denial of service [6], ransomware-based
extorsion [7] or phishing [8]. In this regard, one of the most critical aspects
of such malware campaigns is the control and management of the compro-
mised hosts. This enables the malware author, apart from compromising the
victim’s security and privacy, to orchestrate further attacks and prolong the
discovery of the attack.

In the past, the prevalent methodology was to establish a direct commu-
nication channel between the Command and Control (C&C) server and the
infected devices. However, this strategy had several flaws, since blacklisting
a specific IP or a domain name served as an effective takedown mechanism.
Nowadays, to counter direct communication issues, cybercriminals try to use
communication channels that disguise the traffic as benign and cannot be eas-
ily blocked, e.g. social networks or use multiple domains to manage infected
hosts. In the latter case, the adversary uses a Domain Generation Algorithm
(DGA) to periodically generate multiple domains which can be used as ren-
dezvous points to retrieve updates and commands. However, only a few of
them are registered. Therefore, the C&C server can be transferred from
one domain to another without losing control of the compromised devices.
In addition to the dynamic domain transfers, the lack of proper reporting
from domain registrars aggravates the problem, since requests made from
law enforcement authorities and security practitioners may receive delayed
responses, hindering botnet detection. Therefore, the use of a DGA intro-
duces an asymmetry of cost for the attacker and the defender, as the former
has only a minimal cost to register the domains while it is impossible for the
latter to block all possible domains.



1.1. Motivation and Contributions

DGAs come in different flavours depending on how they generate the do-
main names. The general rule is that they use a pseudo-random generator to
create a string that is used as the domain name that the infected hosts would
query to reach the C&C server. To allow the botmaster and bots to generate
the same list of domain names, the DGA contains a set of preshared secrets,
e.g. the seed. The algorithmically generated domains (AGDs) can be dif-
ferentiated from benign domains due to a difference in character probability
distributions as well as other lexical and statistical features [9, [10, 1T}, 12].

To counter this detection method, some DGAs resort to using random
combinations of words which are extracted from predefined dictionaries.
Therefore, these DGAs are often referred to as wordlist-based DGAs. This
way, wordlist-based DGAs bypass many security mechanisms as the gen-
erated domains not only have a low entropy, but they also appear to be
generated and requested by humans. This is of particular relevance since
more than 2/3 of the top domain list contains at least one English word, and
around 1/3 are entirely composed by English words [I3]. Therefore, distin-
guishing between benign and malicious word-based AGDs becomes a more
challenging task.

In this work, we illustrate that AGDs can be easily identified by the fact
that wordlist-based DGAs use a limited dictionary which results in often
word repetitions. In this regard, we either exploit the well-known “birthday
problem” and populate custom dictionaries from the Non-existent Internet
Domains (NXDomains) that a host queries, or the structure of the domains
they produce. Once the queries exceed some quota, we consider that a mal-
ware that uses a DGA has infected the host. Despite its simplicity, our
method manages to be efficient in terms of both computational effort and
detection, allowing it to be easily deployed in existing environments. No-
tably, the method is more efficient and accurate than the current state of
the art, managing to throttle all such DGAs after only a few NXDomain
requests without the need for training. Moreover, beyond implementing an
additional support layer to detect well-known DGA families, several modules
of our method can detect new such DGA families, since they do not depend
on training data nor are constrained by domain-specific features. Notably,
our methodology is applied to a statistically sound dataset, containing all
the known wordlist-based DGA families up to date and 2,189,992 unique do-
mains, which is by far the largest and most complete dataset in the literature



of studies for wordlist-based DGAs. This dataset is provided to the research
community for reproducing the results and further improvements.

1.2. Organisation of this work

The rest of this work is structured as follows. In Section [2, we present
the related work regarding DGAs and detection methods. Then, in Section
Bl we discuss the proposed methodology for identifying the operation of a
wordlist-based DGA malware, using only network traffic logs. In Section [4]
we describe our experimental setup, the datasets we utilise and our results.
Afterwards, in Section [5], we discuss the findings of our extensive experiments
using our proposed methodology and compare it to the current state of the
art. Finally, the article concludes discussing open challenges, future work
and summarising our contributions.

2. Related Work

Nowadays, malware developers use DGAs, which create a set of AGDs
to communicate with C&C servers, overcoming the drawbacks of static IP
addresses [I4], [I5]. In essence, DGAs use a deterministic pseudo-random
generator (PRNG) to create a set of domain names [16, [I7]. Therefore,
the infected devices query a set of domains generated by the DGA till they
resolve to a valid IP (i.e. the C&C server), whose location may also change
dynamically. In this regard, blacklisting domains is rendered useless as it
implies many practical issues.

According to the literature, there are two main families of DGAs: (i)
Random-based DGA methods, which use a PRNG to generate a set of char-
acters to create a domain name, and (ii) Dictionary/Wordlist-based DGA
methods, which use a predefined dictionary of existing words to generate
such domains and thus, their detection becomes a more challenging task.
There also exists a minor subset of DGA families that use valid domains that
were previously hacked to hide their C&C servers (i.e. domain shadowing)
[18] and DGAs that generate domain names that are very similar to existing
valid domains or the ones generated by other DGA families [19] hindering
the detection task. Considering the dependency of the pre-shared secret to
time, Plohmann et al. [20] further categorise DGAs to time-independent
and deterministic, time-dependent and deterministic, and time-dependent
and non-deterministic. Fu et al. [2I] proposed two DGAs which use hidden
Markov models (HMMs) and probabilistic context-free grammars (PCFGs)
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and tested them on state-of-the-art detection systems. After analysing the
outcomes by using metrics such as Kullback-Leibler (KL) distance, Edit dis-
tance (ED), and Jaccard index, their results showed that these DGAs hin-
dered the detection rate of such approaches.

In the case of random-based DGA detection, a common practice is to
analyse some features of the domain names and their lexical characteristics
to determine whether a DGA has generated them [22, 23]. Moreover, auxil-
iary information such as WHOIS and DNS traffic (e.g. frequent NXDomain
responses) is often used to detect abnormal behaviours [24], 25, 0]. Other
approaches use machine learning-based techniques and combine the previous
information to identify Random-based DGA such as in [25] 26], 27, 28].

Nevertheless, many researchers have recently started focusing on the de-
tection of wordlist-based DGAs. In [29], authors propose the smashword
score, a metric that uses n-gram overlapping combined with information
provided from WHOIS lookups to detect AGDs. The WordGraph method
[30] extracts dictionary information that is embedded in the malware using
a graph-based approach, which models repetitions and combinations of do-
main name strings. In [31], authors use a machine learning approach based
on recurrent neural networks trained using “familiar” (i.e. already known)
dictionaries to detect wordlist-based AGDs. Similarly, the work presented in
[10] focuses on AGD classification and characterisation, generating knowledge
about the evolving behaviour of botnets. The authors of [32] propose a gen-
erative adversarial network (GAN), which can learn and bypass classical deep
learning detectors. Thereafter, such acquired information is used as feedback
to the system to improve the accuracy of the AGD detectors. Neural Net-
works are also used to classify domain names based on word-level information
in [33]. More concretely, researchers use ELMo [34], a context-sensitive word
embedding, and a classification network that consists of a fully-connected
layer with 128 rectified linear units and a logistic regression output layer. In
[35], the authors propose an improvement of Phoenix botnet detection [10]
by using a modified Mahalanobis distance metric to perform classification as
well as a variant of k-means to increase clustering effectiveness. The work
described in [36] proposes a short-term memory network (LSTM), which uses
raw domain names as features to perform binary classification. Yang et al.
proposed a classification based on a set of features such as word correlations,
frequency, and part-of-speech tags in [37]. Later, they enhanced their de-
tection mechanism by the use of inter-word and inter-domain correlations
using semantic analysis [13]. Spooren et al. [38] recently showed that their
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deep learning recurrent neural network is significantly better than classical
machine learning approaches. More interestingly though, they showed that
one of the dangers of manual feature engineering is that an adversary may
adapt her strategy if she knows which features are used in the detection. To
this end, they introduce properly crafted DGAs that bypass these classifiers.
Berman [39] developed a method based on Capsule Networks (CapsNet) to
detect AGDs. They compare their method with well-known approaches such
as RNNs and CNNs, and the outcomes showed that the accuracy obtained
by CapsNet was similar with better performance. Xu et al. [40] proposed
the combination of n-gram and a deep CNNs to create an n-gram combined
character-based domain classification (n-CBDC) model. Their model runs in
an end-to-end way and does not require from domain feature extraction, en-
hancing its performance. Vinayakumar et al. [41] implemented a set of deep
learning architectures with Keras Embedding and classical machine learn-
ing algorithms to classify DGA families. Their best-reported configuration
is obtained when using RNNs with SVM with radial basis function (SVM-
RBF). For a detailed overview and classification of methods of how malicious
domains can be detected, the interested reader may refer to [42].

In a recent work [I2], the authors extend the notion of DGAs into a
more generic one, namely Resource Identifier Generation Algorithms (RIGA)
which allows the use of other protocols beyond DNS. In this regard, au-
thors show how decentralised permanent storage (DPS), although being a
useful technology able to enhance a myriad of applications, has some po-
tential drawbacks and exploitable characteristics for armouring a botnet as
already exploited in the real world [43], primarily due to its immutability
properties. Therefore, the authors showcase the potential risks and opportu-
nities for malware creators and raise awareness about the symbiotic relation-
ship between DPS and malware campaigns. Finally, due to recent advances
and the widespread use of covert/encrypted communication channels (e.g.
DNSCurve, DNS over HTTPS and DNS over TLS) malware creators have
an additional layer to hide their communications, rendering traditional DGA
detection mechanisms useless. Nevertheless, as shown in [44], NXDomain de-
tection can still be performed in such a scenario as well as feature extraction
so that DGA families can be further classified with high accuracy.

In addition to the related work analysis, we argue that it is also worth
discussing the fact that NXDomain requests may be a result of user type-
writing errors. Each human produces different typing patterns depending
on the writing surface (e.g. keyboard, smartphone, or larger touch screen

6



surfaces such as tablets) [45] and according to its physical and physiological
conditions [46, 47], which can be used, for instance, to uniquely identify an
individual. Nevertheless, typewriting errors are strongly influenced by the
language and therefore, exhibit common characteristics regardless of one’s
typing pattern. The most common typing errors [48, 49] (more than 80%)
are caused by (i) transposition of two adjacent letters, (ii) adding one extra
letter, (iii) one missing letter or (iv) one wrong letter. Therefore, such errors
can be corrected backspacing or moving the cursor to the point at which the
error occurred and then retyping [50].

As previously discussed, although typewriting errors may lead to NX-
Domain with high probability, usually lots of similar domain names to the
original are often registered |51} [52] to avoid homograph attacks [53]. More-
over, several techniques which aim to overcome homograph attacks can be
found in the literature. For example, in [54], authors designed an accurate
typo categorisation framework and found that typosquatting using parked
ads and similar monetisation techniques exist for popular domains as well
as in the Alexa list. To mitigate this problem, the authors implemented ty-
posquatting blacklists and a browser plugin to prevent mistyping at the user
side. In the case of [55], the authors analyse the main typosquatting issues
and monetisation market behind it and recall the effectiveness of several poli-
cies and efforts to regulate typosquatting. More recently, novel approaches
[56] developed by the Google Chrome security team, implement suggestions
for lookalike URLs, which also prevent typewriting errors. These techniques,
added to the fact that most domains are queried after using a search en-
gine, historical data and bookmarks, vastly reduce the number of domains
accessed directly through typewriting [57), 58].

Therefore, we can safely assume that typosquatted domains or homo-
graph attacks represent a marginal percentage or potential danger (com-
pared to DGA queries, which are much more frequent) taking into account
the aforementioned prevention and security measures.

3. Proposed methodology

As already discussed, wordlist-based DGAs have predefined dictionaries
that they use to create the possible domains that the malware would try
to connect to find the C&C server. In our methodology, we exploit the
fact that this set is often rather constrained, so we expect to have often
repetitions of words in the NXDomain requests. The general methodology



can be summarised as follows. A monitoring mechanism collects all the
NXDomain requests performed by hosts. First, a set of statistical and lexical
features of these domains are computed, and next, the domains are split into
words, and those words are divided into buckets. The buckets are filled with
words either statistically (each word has an individual bucket) or because
they fit a specific pattern. If either the features and/or a set of buckets,
reach a threshold, an alert is raised.

In what follows, we assume that the monitoring mechanism has a cache
that stores the result and would either periodically wipe them after an epoch
T or wipe records that are older than T'. This prevents the mechanism of
reporting attacks as a result of, e.g. old typing errors which are stacked over
time.

To facilitate the reader, we consider a simple scenario and gradually build
on this one to describe our proposal. In our scenario, we have a wordlist-
based DGA which selects two words from a dictionary of n words. It adds a
separator symbol (e.g. -) between them, and then appends a top-level domain
(TLD) from a predefined set. If we assume that n is small, then from the
well-known “birthday problem” [59] we expect to have a collision, that is a
word being repeated, in approximately y/n domain name generations. More
precisely, the latter is expected to happen with 50% probability.

Setting the threshold of repetitions too low, e.g. 2, it is evident that may
lead to many false positives as a user may have mistyped a domain name.
This small amount of false positives is an acceptable trade-off in the event of
human errors; as described in Section [2] Although typewriting attacks are
much less frequent than DGA-based malware, as discussed in Section [2] one
may set the threshold for repetitions of words in domain names higher to
allow for some grace for typos. In what follows, we denote this threshold as
t.

Generalising the above, one DGA may have k dictionaries and generate
each fragment of the domain name by selecting a word from each dictionary.
Therefore, we may formalise our problem as follows:

Problem setting: Let us assume that a DGA has k dictionaries d;, i €
{1,...,k}. The DGA uses words (denoted as w) to create domain names of
the form dom such that:

dom = wy||wsll...||wk, w; € d;, Vi € {1,2,3, ..., k}.

That is, dom is the ordered concatenation (||) of k words by randomly
selecting one word from each dictionary and putting them in the same order
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as their dictionaries. Find the probability p of having at least one word from
any of the dictionaries being selected at least t times, for t constant.

It is clear that the case of having one dictionary (k = 1) and requesting
one collision (¢t = 2) is the well-known birthday problem. Levin [60] and
Diaconis and Mosteller [61] have thoroughly studied the birthday problem
and its extensions. Based on their proofs, we have that the probability p of
having ¢ collisions on a dictionary of L words in n trials is subject to the
following approximation:

—n/Lt 1 1/t
(o ()
(1= ) o

L{t+1)

Therefore, solving for p we have that:

1—t -2 n —t '
L ne Lt <1 — m)

t!

p~1l—exp| —

From the latter approximation, and the fact that in the generic wordlist-
based DGAs, discussed above, the collisions may affect different dictionaries
are independent; one can compute the probability of a t-collision as follows:

k
P(t — collision) = Zpi,
i=1

where:

1-t —ﬁ n -1/t '
Li ne i (1 — m)

t!

pi=1—exp| -

and L; denotes the length of dictionary d;.

Going a step further, let us assume that we have captured an NXDomain
name request from a host. We may split the name to see the pattern of the
domain name in terms of structure. For instance, the domain name consists
of 2 or 3 words with a total length above M characters. Note that DGAs
tend to have rather long domain names to, e.g. maximise the chances of
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purchasing the domains they want and avoid compromised machines con-
tacting existing domains. Therefore, due to the way wordlist-based DGAs
work, requests to NXDomains which have long names or with a specific
amount of concatenated words may imply the existence of an infected ma-
chine. More precisely, wordlist-based DGAs often have a static template of
the form, e.g. wy||wy.TLD (see DGAs like nymaim, pizd, and suppobox) or
willwal!|...||w,,.TLD so that:

lwi| + |wa| + ... + |w| > M,

which contents would change according to each DGA. As it is shown in
Section [4], typical user DNS queries do not follow this template.

In addition to the word and pattern filters, we apply another filter, namely
a classification filter, which works in real-time and analyses the statistical
and lexical features of an SLD to determine whether it has been created by
a DGA or not. Therefore, the proposed methodology is a three-layer filter
for the collected NXDomains. By default, DNS queries are performed in
cleartext format and can be captured by any network device that is hosted
in the same network. Therefore, a network monitoring device can passively
collect all DNS queries performed in the network and submit the NXDomains
for processing in our three-filter mechanism. The proposed methodology is
illustrated in Figure [I]

First, the network monitoring mechanism collects all the DNS queries and
logs all NXDomain requests. Each such request is analysed by the three filters
to check whether a threshold is exceeded. To do so, we first remove the TLD
of the domain request, and we keep only the SLD which is analysed. The
bulk of the literature studies SLDs only, as TLDs offer little information and
they are well-known and fixed. Third level domains, since any anomaly in
them, can be easily detected and handled controlled by the owner of the SLD
are not considered in the related work. Next, the classification filter receives
as an input the SLD and performs a classification based on its features, which
outcome is either such SLD has been created by a DGA or not. The word
filter receives as an input the SLD, splits it into words and sets a counter for
each word that appears in such analysis. Once the counter of a word exceeds
a given threshold 7', a warning is issued. In parallel, the SLD is analysed for
structural patterns, e.g. number of words, total length etc. as later discussed
in Section 4 Again, if the counter that keeps track of repetitions of these
patterns exceeds a given threshold 7", a warning is raised.
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Figure 1: An illustration of the proposed methodology. Network devices (see below)
perform DNS queries which are captured by the monitoring mechanism. Our filters then
process all NXDomain requests, and if they exceed specific thresholds, the corresponding
alerts are raised.

As it will be discussed in Section [ the three-layer approach, which anal-
yses the domain names in parallel, manages to provide high reliability, ac-
curacy, and robustness. Moreover, due to the template that such AGDs are
expected to have, our methodology is generic enough to counter other and
non-reported wordlist-based DGAs.

4. Experiments

In this section, first, we describe the setup and methodology of our ex-
periments. Next, we use the implementation of several DGAs, as provided
by researchersﬂﬂ who have reversed engineered the corresponding malware
that embeds them, the real-world captures of the DGArchive [20], and two
DGAs that were designed to bypass machine learning algorithms [38]. More
concretely, we study the following DGA families: beebone, banjori, gozi,
matsnu, nymaim2, pizd, rovnix, suppobox and volatilecedar. Apart from
these families, we include in our dataset two arithmetic-based DGAs beebone

'https://github.com/baderj/domain_generation_algorithms, https://github.
com/andrewaeva/DGA
“https://github.com/ynvb/ExplosiveScripts

11


https://github.com/baderj/domain_generation_algorithms
https://github.com/andrewaeva/DGA
https://github.com/andrewaeva/DGA
https://github.com/ynvb/ExplosiveScripts

and banjori and one permutation-based (volatilecedar) to see the effec-
tiveness of our method in other families of DGAs. In addition, we included
several adversarial DGA families. The first two are khaos [I1] and charbot
[62]. The other two families have been retrieved from [38], namely decept
and decept2, all of which were crafted to bypass machine learning-based
mechanisms. Table [1| provides an overview of our dataset. To this end, the
table presents how many samples each DGA has and how many seeds. More-
over, we provide ten AGDs from each DGA in our dataset to facilitate the
reader in understanding the AGDs of each DGA produces.

The underlying dictionaries vary in length, origin, and amount for each
DGA. More precisely, matsnu contains two dictionaries, one for verbs (878)
and one for nouns (1008). Depending on the seed its AGDs will either always
start from a verb or a noun. Then, using the seed for its PRNG, matsnu se-
lects one word from each dictionary iteratively from each dictionary, until the
length of the domain exceeds 24 characters. nymaim2 uses two dictionaries,
one for the first word (2450 words) and one for the second one (4387 words)
which are concatenated either directly without any separator or with the “-”
character. pizd uses by default a wordlist containing 384 words and uses
a PRNG to select two words and concatenate them to generate an AGD.
rovnix uses as its source the US Declaration of Independence. The dictio-
nary contains all the alphanumeric words of the document. To construct an
AGD, rovnix selects words according to a PRNG until the selected words
exceed the 20 characters. gozi is a variant of rovnix. Its various dictio-
naries originate from various public domain documents that are unlikely to
be moved to another location, e.g. Request for Comments pages and the
GNU Lesser General Public License. From these documents, gozi splits the
documents according to stop characters (spaces, commas, etc.) and selects
the words with at least three characters that contain only letters. From
this wordlist, the PRNG selects random words that are concatenated so that
the resulting AGD contains between 12 and 23 characters. suppobox in the
three seeds that have been identified so far has a dictionary of 384 words
from which it selects two random words and concatenates them.

In our dataset, we have also added the top 1 million websites from Alexa.
The reason for including this is to have some ground truth of benign traffic
and illustrate the domains that an actual user would use is significantly
different from the ones that would be derived from a DGA, even if they are
made to do so. It should be noted here that the Alexa top 1 million dataset
contains web pages and not domains. Therefore, there are repetitions of
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domains, e.g. blogspot. Moreover, there are several Internationalized domain
names (IDN)| (i.e. domains that start with the characters xn--) therefore,
the domain name cannot contain any word. We opted to remove the latter
domains and to keep each domain once. Note that up to now, there is no
DGAs using IDN domain names. Therefore, the Alexa dataset consists of
915,994 unique domains.

Finally, we have an additional real-world dataset consisting of NXDomain
requests as collected from our institution. The dataset was provided by our
network department, containing only the NXDomain requests that were per-
formed; therefore, the data were completely anonymised. The data collection
period was for a week, and it involved all the NXDomain requests that were
performed in the whole network of the University of Piraeus. From these
domains, we kept each domain once. The final dataset that from now on, we
will refer to as unipi consists of 3547 domains. The use of this dataset in
our experiments enables us to evaluate our method against real-world NXDo-
main requests. It should be noted that some of these requests are malicious,
however, this will be discussed in detail in Section [5]

Using real data from the DGArchive [63] and the reversed code, we collect
the set of the domain names they create. The total AGDs are 1,270,425
and adding the benign domains from Alexa and unipi; we end up with a
dataset of 2,189,992 unique domains. The dataset and additional information
can be found in [64]. Each domain in the dataset is processed to extract a
set of features and the words that were concatenated to generate them as
well. The latter is achieved with the use of Wordninjaﬂ a natural language
processing (NLP) method that probabilistically splits concatenated words
based on English Wikipedia uni-gram frequencies.

In all filters, we assume that the network monitoring device intercepts all
the NXDomain requests from each device and analyses them for each one
individually. For the sake of clarity, we assume that the network monitoring
device gets as input a stream of NXDomain requests from only one device.
Moreover, we assume that the device is infected by only one malware with
DGA capabilities, and therefore the malware uses one seed. In our experi-
ments, this practically means that each one of them has to be executed per
DGA family and using one seed at a time. We argue that this is strategy is

Shttps://www.icann.org/resources/pages/idn-2012-02-25-en
4https://github.com /keredson/wordninja
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correct as the malware will not manage to connect directly to the C&C server
and several connections would be attempted before the malware manages to
connect and receives the command to, e.g. use a different dictionary/seed.
Note that in our DGA dataset, the different seed in several cases translates
to the use of another dictionary. Nevertheless, our classification filter is able
to manage any configuration regardless of the seed and the amount of DGAs
infecting a machine, as described below.

We created a classification filter that will analyse all the domain names
queried as follows. First, we cache the domain name for analysis, and we
compute a set of statistical, lexical (including a 2-Chain Markov model for
English gramsﬂ) and entropy features. The set of features computed for each
domain name is depicted in Table After computing such features and
using a classification scheme, we are able to determine, with high accuracy,
whether the domain name is benign or not without the need for external
information or waiting for the domain name resolution response.

We employ a Random Forest (RF) model, which is a non-parametric en-
semble classifier. RF is widely used in state of the art, achieving outstanding
performance results on DGA classification tasks [32], [38]. The hyperparam-
eters of the RF algorithm were tuned with grid search, to maximise classi-
fication performance in the task of distinguishing between benign and mali-
cious domains in a subset of our dataset. We found that best performance
is achieved using an ensemble of 100 decision trees with unlimited depth
and bootstrap aggregation (bagging), where each new tree is fitted from a
bootstrap sample of the training data [65]. In all experiments, we employed
10-fold cross-validation to get an unbiased estimate of the classification ac-
curacy. Moreover, we employed random sampling without replacement for
AGDs and repeated the experiments 100 times with the previous setup, to
guarantee statistically sound outcomes. Table |3| shows the outcomes of our
classification. All our experiments were performed on a system equipped
with an NVIDIA TITAN Xp PG611-c00 to boost the performance, while
we utilised the implementations of the scikit-leard| library. We evaluate
the performance of the trained classifiers using the standard classifications
metrics of Precision, Recall, and F}-score.

As it can be observed, we can distinguish, with detection rates ranging

Shttps://github.com/rrenaud/Gibberish-Detector
Shttps://scikit-learn.org
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from 85.70% to 99.74%, between malicious and benign domains for the tested
families. The most difficult families to distinguish were decept2 and khaos
(i.e. according to the F; metric). Nevertheless, as we will discuss in Sec-
tion 5, the outcomes obtained for adversarial families outperform the current
state of the art. Moreover, the op, values remain low, showcasing the statis-
tical relevance of the outcomes. Note that capturing with high accuracy all
the word-based DGAs with the same feature set evinces the efficacy of our
approach. With such a classification filter, our approach is able to discern
between malicious and benign domains at each iteration. Moreover, when
the corresponding thresholds of either the word or the pattern buckets are
reached, the system will trigger an alert, ensuring AGD detection. We mea-
sured several statistics during our classification pattern experiments, such as
the time required to compute the features and the prediction time in the
binary setting with our dataset. The average time required to compute all
the features for an SLD is 0.54 ms, while the prediction time is 1.05 ms on
average. Therefore, this filter is suitable for real-time AGD detection, even
in environments with a high volume of traffic.

In the next set of experiments, we test the frequency of word collisions on
specific thresholds. More precisely, we split each domain name in words and
record their occurrences if their length is more than three letters to avoid stop
words, articles, pronouns etc. Based on a threshold of how many occurrences
we expect from an AGD during an epoch, we monitor all NXDomain requests
and raise an alert when the threshold is reached. To provide better insight on
these results, more to than simply reporting the first time that an NXDomain
query is performed for each AGD and seed in our dataset, we shuffled them
and made the same measurement 1,000 times. In Figure [2] we illustrate the
results for different threshold levels, which range from 3 to 7. By shuffling
the domains that a DGA generates, we test the DGA with different possible
seeds, far more than the ones we originally had. Since the use of different
seed is a common practice in malware, we may study how our methodology
performs in different settings, and show that it is generic enough to be used
in various configurations. Although this threshold can be modified, we claim
that three unrelated NXDomain queries that contain the same word are likely
not to be generated by a human, according to Section [2| as well as discussed in
our problem setting. This hypothesis is confirmed from our first experiment,
which shows that our word filter is able to detect the domains generated by
each family of DGA accurately. It should be noted that the real-world unipi
dataset exhibits very similar characteristics to the Alexa dataset. Despite the
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existence of DGA domains, most of the domains are typed, or more precisely,
are mistyped by humans, so they have similar statistical characteristics with
the Alexa dataset.
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Figure 2: Number of domains, generated by each DGA family, that are needed to reach
the strike threshold.

We conducted another set of experiments to study the statistical differ-
ence that the wordlist-based DGAs have from regular domains. Intuitively,
we argue that the “poor” dictionary that these DGAs have would result in
often repeating the same words in NXDomain queries as well as exhibiting
some identifiable patterns. To this end, we analyse the textual statistical
properties of the previously selected DGA families. Next, we compare them
with those obtained in the case of Alexa top 1 million domains, and we depict
the results in Figure [l It should be noted that each domain in the unipi
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Figure 3: Textual statistics for Alexa top 100K and the DGA families studied.

dataset has more or less the same length and similar amount of words with
the Alexa ones.

Based on these statistics, we create a filter as follows. We keep a short
registry of the five most recent NXDomain requests, and we check whether
any of the following criteria holds:

e All the requests are above ten characters.
e The amount of words in all requests are the same.
e The amount of words in all requests is above 2.

e The amount of the “short” words (less than four characters) are more
than 2 in all requests.

e All the requests are made to the same SLD and different TLD.

The results of this process are illustrated in Figure @l While this pattern
approach introduces a bias in terms of language constraints, it is something
that can be resolved by extending the dictionary of the underlying splitting
algorithm. This extension may solve the issue for Latin-based dictionar-
ies; however, this does not resolve the case of IDNs. Apparently, this filter
manages to efficiently determine the lexicographical structure of the domain
name. Moreover, it complements the previous filter by keeping a record of
how many times a specific lexicographical structure was identified. Should
these occurrences pass a threshold during a predefined epoch, the correspond-
ing alert is raised.
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As in the previous case, we performed our experiments 1,000 times. It is
evident that our filter shows significant differences between AGDs, the benign
(Alexa), and semi-benign (unipi). Notably, while there are some outliers for
all DGAs the average of the counter is close to 5, with the highest being 5.24
from suppobox, while Alexa had an average of 24.19 requests, and unipi
ranged from 5 to 25 with an average of 6.93. We believe that the above
illustrates that almost all DGAs could be identified with at most six requests.
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ale'xa ban'jori beel')one g(;zi mat'snu nym'aimZ pi'zd rov'nix supp'obox un'ipi volatilécedar
Figure 4: Number of requests needed to pass the pattern criterion threshold.

Finally, we used our pattern approach on the hard to detect DGAs crafted
in [38] and [II]. Notably, All three DGAs scored significantly higher than
the other DGAs. Interestingly, the average of 1,000 experiments showed that
charbot achieved the worst performance, requiring 5.33 queries in average.
In the case of decept, it was marginally harder than decept2, requiring
7.78 and 7.01 queries in average, respectively. Nonetheless, the previous are
outperformed by the khaos DGA of Yun et al. [I1] which needed an average
of 9.47 queries to be detected. The corresponding statistics are illustrated in

Figure
5. Discussion

In this section, we discuss the results of the experiments described in
Section [4] as well as the main benefits of our approach and how it compares
to the current state of the art.
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Figure 5: Number of requests needed for the artificially made DGAs.

In the case of the classification filter, Table [3 provides the classification
outcomes of all the families analysed in this paper. As we previously dis-
cussed, the most difficult families to detect are the adversarial ones, with
the exception of charbot, which is detected in almost 100% of cases. Nev-
ertheless, as later seen in Table 2, our approach outperforms khaos, decept,
decept?2 and charbot detection rate reported by their corresponding original
works, even if it is not crafted to detect them. Moreover, this is the first work
which provides an analysis of such a rich set of wordlist-based families. The
latter means that our approach is able to detect, in real-time, different DGA
families created using different algorithms without modifying the classifica-
tion filter, showcasing the efficiency and adaptability of our approach.

The results depicted in Figure [2] show that all the DGA families evaluated
can be detected by our word-based filter with only a few NXDomain queries
(each domain resulting in a set of processed words), except nymaim2. This
means that the AGDs generated by them tend to repeat words with statistical
significance, as detected by our word-based filter. In the simplest case (i.e.
with a threshold of 3 words, cf Figure ), we can detect AGDs with less
than 30 NXDomain queries in almost all cases. For instance, the malware
gozi uses 3 times the same word after generating 28 domains (see Figure )
In addition, the growth pace exhibited in Figure [2 in terms of NXDomain
queries needed to reach from 3 to 7 strikes, exhibits the same growth pace as
the probabilities defined in Section[3] The latter implies that, proportionally,
the number of strikes grows faster than the number NXDomains analysed.
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In the case of nymaim2, the results show that we need a high amount
of NXDomains to find coincidences (see Figure [2f). This occurs because
nymaim2 uses a predefined structure to create domains in which two words,
selected from two separate dictionaries with 2450 and 4387 words, respec-
tively, are appended to a TLD (i.e. the number of possible TLDs is 74).
Therefore, the amount of possible combinations hinders its detection. Nev-
ertheless, this variability is only in the dictionary, and since the structure
remains the same, it is captured by our pattern filter. It is worth noting that
beebone needs a constant number of queries to be detected by our word filter
as the words that act as prefix/suffix are constant (cf Table [1)) in all queries.
Therefore, they both trigger the alert in as many queries as the threshold is.

It is clear from Figure |3 that benign domain names most likely consist
of at most three words containing less than ten letters in total. Therefore,
NXDomain requests that do not meet these criteria can be considered as
‘suspicious’ by our pattern-based filter. Our claim is verified by the results
of our pattern filter in Alexa and unipi (cf. Figure , since the number of
domains needed to pass the threshold is far higher than those required by the
rest of DGAs. Note that the pattern-based filter can fully capture nymaim2
behaviour (as well as the rest of families, with few exceptions) so that we
can raise an alert faster than our word-based filter in such cases.

Of specific interest is the unipi dataset. As already mentioned, the
dataset consists of NXDomain requests from our institution’s network. The
extracted network traffic contained 253 NXDomain requests that originated
from DGAs. Therefore, at least 7% of the dataset is malicious. Nonetheless,
this was quickly detected from our filters and is depicted in the significant
difference between the Alexa and unipi dataset in the experiments reported
in Section 4

Finally, it is worth noticing that the bulk of hash and arithmetic-based
DGAs, such as Dyre, Gameover, Gspy and Omexo, produce domains that are
long (more than 15 characters) and as they are hex-encoded, they hardly cre-
ate words. Therefore, all such AGDs fail our structure criterion. Moreover,
AGDs generated by other DGA families, including DNS Changer, DiamondFox,
DirCrypt and EKforward also fail our structure criterion, as they might gen-
erate shorter domains, but the produced domains do not have meaningful
words.

To showcase the efficacy of our method, we compared it with the most
relevant state-of-the-art. Note that, despite comparing the same DGA fam-
ilies, the datasets reported in the related works may have different samples
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and /or they are not reproducible and thus, a thorough comparison with such
works is not feasible. The use of different datasets and the lack of updated
benchmarks is a well-known issue in DGA research, due to the continuous
introduction of new DGA families. Nevertheless, in Table [4, we reported
the best outcomes for each related work, according to either Accuracy or
F1-Score metric. It can be observed that none of the methods compared in-
cludes the whole list of word-based DGAs analysed in this article, as stated
in the Motivation section. We can observe that most of the methods succeed
to provide a remarkable detection rate in at least one of the families. More-
over, in many cases, the size of the samples evaluated is extremely small (i.e.
which evinces the difficulty to obtain a quality database such as the one used
in this article).

After a deeper analysis of the outcomes, we observed a common trend
in most of them. More concretely, when a method can accurately detect a
DGA family, it fails to detect others, due to the particular characteristics
of each DGA, as seen in [39, 29| [T3] [66]. Note that there are cases where
the method is not able to capture any instance of a DGA (i.e. the reported
detection rate is 0). In addition, some of the families are only explored in this
paper (i.e. nymaim2) as well as decept, decept2, charbot khaos, which are
only analysed by their creators [38, [T, 62] by using state-of-the-art meth-
ods. More precisely, in the case of decept and decept2 the detection rate is
below 85% using LTSM, and in the case of khaos, the authors reported that
they detected the AGDs in the 80.30% of cases. Our experiments show that
we can efficiently detect charbot, decept, decept2, and khaos, with higher
accuracy by just using the classification filter. Moreover, as described in Sec-
tion 3, the classification filter is analysing in real-time the characteristics and
features of each domain name. In the case of reaching the bucket thresholds,
we assume that our method is fully capturing the DGA with no exception,
due to the birthday paradox and the outcomes of our experiments in Section
4. Therefore, as described in Table [4] the detection rate of our method is
equal to the classification filter outcome if ¢ < ¢, where ¢ is the number of
queries required to reach the bucket threshold (this varies according to each
family, as seen in Figure [2), and ¢ is the threshold value. In the case of
g >=t, we report a 100% detection rate.

Finally, it is worth mentioning that when some DGAs change their seed,
the accuracy of their detection drops significantly, as stated by Berman [39] in
the case of pizd and suppobox. However, the latter behaviour does not affect
our method, since it only implies a restart of the word counter. In addition,
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we did not include the works presented in [30] and [31] due to their database
size, since they train their methods with a high amount of domains, in some
cases orders of magnitude higher than the queries needed by our method to
detect them. For instance, in [30], authors use 8-day real traffic data, result-
ing in thousands of domains. In the case of [31], they use tens of thousand
queries generated by banjori, gozi, nymaim2, rovnix, suppobox, matsnu
(i.e. with low detection accuracy in the case of matsnu, which is below 0.16),
and hundreds of queries in the case of beebone and volatilecedar, to train
their system using a 10-fold scheme. Another recent work, proposed by Yang
et al. in [13], uses machine learning and semantic analysis to detect two DGA
families, namely suppobox and matsnu. Using different dataset configura-
tions, they report accuracies between 83.63% and 86.23% for suppobox and
between 88% and 93.01% in the case of matsnu. Although they also consider
an additional set of unclassified word-based AGDs, their average detection
accuracy is 80.58%, which is significantly lower than our proposed work. Fi-
nally, in work presented by Spooren et al. [38], the authors achieve different
accuracies depending on the classifier and the parameters. In general, the
random forest classifier is rendered useless for decept and decept2 with ac-
curacies below 60%. In the case of LTSM, the classification accuracy for such
families is also lower than ours. Nevertheless, as seen in our experiments, the
performance key of such classifier is the proper use of a rich set of features
which represents relevant statistical patterns.

In summary, in addition to absolute accuracy in DGA detection, our
method enables a set of benefits, compared to other well-known literature
methods based on neural networks or other feature-based classification mech-
anisms [33, 36}, 30, BT, 13], B8, [66]. More concretely, our method can be de-
ployed instantly and is parallel by design. In addition, the threshold-based
patterns do not require training, contrary to the aforementioned approaches,
enabling the adaptable discovery and detection of novel DGA families. Note
that, since they require training, Neural Networks are sensitive to dictionary
changes, hence providing less robust outcomes for real-time DGA analysis
than our approach. As a further enhancement, our pattern-based setting
can filter out almost instantly DGAs, which means that only a minimal
subset needs to be further analysed. Moreover, our word-based filter only
needs a small number of NXDomain queries to achieve DGA detection. This
also enables personalised policies, where benign domains that fall out of the
threshold can be whitelisted since their amount would be relatively small.
We also argue that the fast detection of decept, decept2 and khaos signify
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another advantage of our methodology. More precisely, while these DGAs are
crafted to exploit many character features, they fail to be meaningful enough
and end up being detected by our classification and pattern filters. Finally,
paired with recent advances in human typewriting error detection and appli-
cation layers preventing such behaviour, the robustness of our method can
be highly enhanced.

It is worth noting that the proposed method is directly affected by the
language of the dictionaries and their size. Large dictionaries, as seen in the
case of nymaim2, imply a longer detection threshold. On the other hand, the
case of using other languages for the dictionaries implies another issue for
the method. Nevertheless, the latter is the same for all methods targeting
these DGASs, as they all depend on the knowledge of the used language to
split the words accordingly and perform their analysis. In this regard, one
strategy to circumvent our approach could entail the use of large dictionaries
based on, e.g. Alexa words. In this setup, our system would require from
larger thresholds, and most of the times the resolved domains would not
generate an NXDomain response. Nevertheless, this implies a set of risks for
an attacker, since finding the C&C server would require a higher number of
queries, reducing the practicality and efficiency of the attack and increasing
the detection risk due to the suspicious amount of queries.

Another, more generic, approach to bypass the NXDomain filters is the
use of covert and encrypted communications. Nevertheless, this approach
has been already studied in [44], where authors described that NXDomain
responses could be properly captured and patterns could be learned from such
encrypted response data to detect AGDs accurately. Further approaches to
bypass the methodology could entail the use of different combinations of n-
grams following, e.g. English statistical patterns, so that a large subset of
features would be similar for both benign and malicious domain names. The
latter would also hinder the probability-based filters of our approach, yet
new features could be designed to train the classification filter in such case.

6. Open challenges and final remarks

There are several challenges to overcome in the DGA-based research field,
and these are mainly related to the quality and reproducibility of the experi-
ments. In contrast to other research fields, such as computer vision or medical
diagnosis, which rely on standardised and well-known benchmarks, the DGA-
based benchmarks need to be continuously updated due to the appearance
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of novel DGA families. The latter implies that for the proper assessment
of a methodology in real scenarios, the system should be tested against the
most recent DGA families. Nevertheless, the creation of a rich and balanced
dataset containing all possible families is a hard task [67], since some of
the families have not been reverse engineered yet, or because their inherent
implementation only creates a small subset of combinations. Therefore, we
believe that the creation of upgradable benchmark versions is a requirement
for this research field.

Another issue that arises in the DGA literature is the lack of standardised
metrics to enable robust comparisons. In this regard, after analysing the
works described in Section 2, we observed that several authors used ad-
hoc benchmarks or feeds that are no longer available (note that authors
report the use of well-known sources, yet the feeds change daily or weekly)
[68, 69] [70, [71], specific metrics which hinder the comparison with other
works (e.g. not using precision, recall, Fj-score, or accuracy) [68], 29] 36 [72],
and finally, reporting the binary classification outcomes in an aggregated
way [73], (72, [67, [74], 66, [75 B6l, B, 70 [71, [76]. The latter is particularly
relevant to evaluate the quality of a method against specific sets of families
since approaches might obtain highly accurate results for some families, while
they are unable to detect other families. Moreover, an unbalanced amount
of AGD samples per family can also bias the aggregated outcome.

From the adversary’s point of view, the main research lines, as they also
have to be investigated, there are two main streams: adversarial DGAs and
alternatives. In the former case, the adversary tries to exploit the knowl-
edge about the machine learning algorithm which is used to detect these
domains. This way, the adversary may try to, e.g. create AGDs with specific
n-gram properties. Recently, several researchers have followed this train of
thought introducing several such DGA, some of which are analysed in this
work. Therefore, this showcases the need for exploring adversarial training
and other such methods in this field, as well as extracting relevant features
to identify them. Finally, one has to consider that DGAs might be a mecha-
nism widely used by malware, however, they may soon switch to alternatives
to exploit, e.g. decentralised platforms, as highlighted in [I2]. Figure [f]
summarises the main challenges of the DGA research field.

In this work, we analyse the current state of the art in Domain Genera-
tion Algorithms, a family of algorithms that use pseudo-random generators
to create a set of AGDs, used as rendezvous points for their C&C servers.
More concretely, we focus on DGA families which use wordlists to gener-
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Figure 6: Mindmap representation of the main challenges of the DGA research.

ate such domains. Therefore, to provide efficient and accurate detection of
wordlist-based DGAs, we propose a probabilistic method inspired by the
“birthday paradox” and the structure that these generators have. In this
regard, our method exhibits a series of benefits compared with other state-
of-the-art methods, since it can be instantly deployed, leverages real-time
classification, and several of its modules do not require training, as they
can filter the bulk of domain names in terms of their pattern construction,
enabling efficient and adaptable DGA detection. Moreover, extensive experi-
ments using state-of-the-art benchmarks show that we need between 3 and 27
NXDomain queries (with strike threshold set to 3) to detect DGA malware
with high confidence using our word-based filter. Future work will focus on
analysing the statistical properties of benign domains (including IDN), es-
pecially in the case of Alexa, to enhance their classification using different
wordlist-based probabilistic word splitters.
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Table 2: Features used in our approach and the corresponding description.

Feature Set Notation Description

Dom Domain without TLD
Dom — D Dom without the digits
Dom — 3G Set of 3-grams of Dom

Alphanumeric Sequences Dom — 4G Set of 4-grams of Dom
Dom — 5G Set of 5-grams of Dom
Dom — WS Domain concatenated words with spaces
Dom — WDS Dom — D concatenated words with spaces
Dom — W2 Domain concatenated words of length > 2
Dom — W3 Domain concatenated words of length > 3
L—-—HEX The domain name is represented with hexadecimal

characters
Statistical Attributes L - LEN The length of Dom

L—-DIG The number of digits in Dom
L —-CON - MAX The maximum number of consecutive consonants Dom
L—-W2 Number of words with more than 2 characters in Dom
L—-W3 Number of words with more than 3 characters in Dom

Ratios and Lexical Attributes

R—-CON - VOW
R — Dom — 3G
R — Dom — 4G
R — Dom — 5G
M2 — Dom — WS
M2— Dom—WDS
R—- WS —LEN
R—-—WDS - LEN
R—W2—-LEN
R—-W3—-LEN

Ratio of consonants and vowels of Dom

Ratio of benign grams in Dom — 3G

Ratio of benign grams in Dom — 4G

Ratio of benign grams in Dom — 5G

2-Chain Markov English grams applied to Dom — WS
2-Chain Markov English grams applied Dom — W DS
Dom — WS divided by L — LEN

Dom — WDS divided by L — LEN

Dom — W2 divided by L — LEN

Dom — W3 divided by L — LEN

Entropy

E — Dom

E — Dom — WS
E — Dom —WDS
E — Dom — W2
E — Dom — W3

Entropy of Dom
Entropy of Dom — WS
Entropy of Dom — W DS
Entropy of Dom — W2
Entropy of Dom — W3
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Table 3: Performance measures for the binary classification (in percentage) averaged over
100 experiments.

Class Prec. Recall Fi op
khaos 89.76 83.89 86.73 0.11
banjori 99.94 99.54 99.74 0.03
beebone 99.30 100 99.65 0.57
charbot 99.65 98.22 98.93 0.09
decept 90.68 87.97 89.31 0.15
decept2 86.89 84.55 85.70 0.32
gozi 92.81 9293 92.87 0.20
matsnu 87.30 92.75 89.94 0.15
nymaim?2 88.14 91.30 89.69 0.34
pizd 91.29 96.05 93.61 0.44
rovnix 97.76 99.62 98.68 0.08

suppobox 85.68 91.48 88.49 0.25
volatilecedar 99.47 97.59 98.52 0.18
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