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Abstract

The s-box plays the vital role of creating confusion between the
ciphertext and secret key in any cryptosystem, and is the only nonlin-
ear component in many block ciphers. Dynamic s-boxes, as compared
to static, improve entropy of the system, hence leading to better resis-
tance against linear and differential attacks. It was shown in [2] that
while incorporating dynamic s-boxes in cryptosystems is sufficiently
secure, they do not keep non-linearity invariant. This work provides
an algorithmic scheme to generate key-dependent dynamic n×n clone
s-boxes having the same algebraic properties namely bijection, nonlin-
earity, the strict avalanche criterion (SAC), the output bits indepen-
dence criterion (BIC) as of the initial seed s-box. The method is based
on group action of symmetric group Sn and a subgroup S2n respec-
tively on columns and rows of Boolean functions (GF (2n)→ GF (2))
of s-box. Invariance of the bijection, nonlinearity, SAC, and BIC for
the generated clone copies is proved. As illustration, examples are
provided for n = 8 and n = 4 along with comparison of the algebraic
properties of the clone and initial seed s-box. The proposed method
is an extension of [3, 4, 5, 6] which involved group action of S8 only
on columns of Boolean functions (GF (28) → GF (2) ) of s-box. For
n = 4, we have used an initial 4 × 4 s-box constructed by Carlisle
Adams and Stafford Tavares [7] to generated (4!)2 clone copies. For
n = 8, it can be seen [3, 4, 5, 6] that the number of clone copies that
can be constructed by permuting the columns is 8!. For each column
permutation, the proposed method enables to generate 8! clone copies
by permuting the rows.
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1 Introduction

Cryptography has emerged as a key solution for protecting information and
securing data transmission against passive and active attacks. Substitution
box or s-box is a vital component of symmetric block encryption schemes such
as Data Encryption Standard (DES), Advanced Encryption Standard (AES)
and International Data Encryption Algorithm (IDEA). The cryptographic
strength of these encryption systems mainly depends upon the efficiency
of their substitution boxes being the only components capable of inducing
the nonlinearity in the cryptosystem [8]. This attracted the attentions of
many researches to design cryptographically potent s-boxes for the sake of
developing robust encryption schemes. Theoretically, there are several prop-
erties that can evaluate the performance of a proposed s-box [9]. The most
commonly applied properties are the bijective property, nonlinearity, strict
avalanche criteria (SAC) and bits independence criterion (BIC).

Depending on the design nature of s-box, it can be classified into either
static or dynamic. The static s-box is one whose values are key-independent
and once defined by the designer it is maintained during the whole encryption
process. This means that the same s-box will be used in every round, and
so it might be vulnerable to cryptanalysis. On the other hand, dynamic s-
boxes do not suffer from fixed structure block ciphers since the s-boxes itself
are changed in every encryption round and it is considered key-dependent.
Hence, the adoption of dynamic s-boxes improves the security of the system
and better resists against various differential and cryptanalysis attacks [10].

Many researchers have explored several ideas for s-box design such as
randomness, dynamicity, and key-dependency. For instance, Krishnamurthy
and Ramaswamy employed s-box rotation and used it as an additional com-
ponent in the traditional AES algorithm to design a dynamic s-box [11].
The process consists of three steps in which the s-boxes are rotated based
on fixed, partial and whole key values to increase their security. In [12],
Piotr Mroczkowski proposed an algorithm to replace the available s-boxes
through using pseudo-randomly generators to design similar s-boxes in both
encryption and decryption processes. The work claims that changing of s-
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boxes could prevent intruders from receiving enough information to execute
effective cryptanalysis attack. Stoianov [13] proposed a novel approach for
changing the s-boxes used in the AES algorithm through introducing two
new s-boxes known as SBOXLeft and S-BOXRight that employs the left and
right diagonals as the axis of symmetry.

The practice of using key-dependent generated s-boxes in cryptography
has been also extensively studied in the literature. For instance, the work
in [14] used RC4 algorithm to generate key dependent s-boxes based on the
input key. The authors showed that their generated dynamic s-boxes have
increased the AES complexity and also make the differential and linear crypt-
analysis more difficult. In [15], Kazlauskas et al. proposed an approach to
randomly generate key dependent s-box that rely on changing only one bit
of the secret key. Their approach is claimed to solve the problem of the fixed
structure s-boxes, and increase the security level of the AES block cipher
system due to its resistance of linear and differential cryptanalysis attacks.
Ghada Zaibi et al. presented dynamic s-boxes based on one dimensional
chaotic maps and evaluated its efficiency compared to the static s-box [16].
Their findings showed that AES using dynamic chaotic s-box is more secure
and efficient than AES with static s-box. In their work [17], Jie Cui et al.
proposed to increase the complexity and security of AES s-box by modify-
ing the affine transformation cycle. The evaluation results suggested that
the improved AES s-box has better performance and can readily be applied
to AES. Likewise, Anna Grocholewska-Czurylo [18] described an AES-like
dynamic s-boxes generated using finite field inversion. The significant re-
mark for this work indicates that removing the affine equivalence cycles from
s-boxes does not influence on their cryptographic properties. Julia Juremi
et al. [19] proposed a key-dependent s-box to enhance the security of AES
algorithm through employing a key expansion algorithm together with s-box
rotation. The obtained results showed that the enhancement on the original
AES does not violate the security of the cipher. Similar to the work in [15],
Razi Hosseinkhani et al. [20] introduced an algorithm to generate dynamic
s-box from cipher key. The quality of this algorithm was tested by changing
only two bits of cipher key to generate new s-boxes. The authors claim that
the key advantage of this algorithm is that various s-boxes can be generated
by changing cipher key. Iqtadar Hussain et al. [3] presented a method for
constructing 8× 8 s-boxes using the Liu J substitution box as a seed during
the creation process. The proposed design relies on the symmetric group
permutation operation which is embedded in the algebraic structure of the

3



new s-box. An extension of the above work was conducted by the same au-
thors in [4]. They proposed a novel method that uses the symmetric group
permutation based on the characteristics of affine-power-affine structure to
generate nonlinear s-box component with the possibility to incorporate 40320
unique instances. The work presented a deep analysis to evaluate the prop-
erties of these new s-boxes and determine its suitability to various encryption
applications.

In the middle of the last decade, several attempts were made to design
robust dynamic s-boxes for symmetric cryptography systems. For instance,
Oleksandr Kazymyrov et al. [21] described an improved method based on
the analysis of vectorial Boolean functions properties for selection of s-boxes
with optimal cryptographic properties that would lead to provide high level
of robustness against various types of attacks. Mona Dara et al. [22] used
chaotic logistic maps with cipher key to construct key dependent s-boxes
for AES algorithm. The proposed s-box was tested against equiprobable in-
put/output XOR distribution, key sensitivity, nonlinearity, SAC and BIC
properties. In [23], Eman Mahmoud et al. designed and implemented a dy-
namic AES-128 with key dependent s-boxes using pseudo random sequence
generator with linear feedback shift Register. The quality of the implemented
s-boxes is experimentally investigated, and compared with original AES in
terms of security analysis and simulation time. In their work [24], Sliman
Arrag et al. improved s-box complexity through using nonlinear transforma-
tion algorithm. Further, they also adjusted key expansion schedule and use
s-box lookup table to make it dynamic. Fatma Ahmed et al. [25] proposed
s-boxes by using dynamic key and employed it as a repository for randomly
selecting s-boxes in AES algorithm.

Using pseudo-random generators have also been broadly employed to de-
sign dynamic key-dependent s-boxes. Following the approaches in [12, 15, 23],
Adi Reddy et al. [26] enhanced the AES security by designing s-boxes us-
ing random number generator for sub keys in key expansion module of their
algorithm. The work showed that the proposed s-boxes are free from linear
and differential cryptanalysis attack, and also it required less memory with
high processing speed compared to other existing improvements. In [27],
Kazlauskas et al. modified the existing AES algorithm by generating key-
dependent s-boxes using random sequences. The authors claim that the new
generated algorithm outperform the traditional AES. Balajee Maram et al.
[28] generated key-dependent s-boxes by using Pseudo-Random generator.
Their statistical analysis shows that the proposed algorithm could generate
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s-boxes faster than other available algorithms.
Recently, Shishir Katiyar et al. [29] generated dynamic s-boxes by using

logistic maps. The efficiency of the proposed dynamic s-box was reviewed
and analyzed over static s-box. The carried out experiments have shown
that the key-dependent s-box satisfies all the cryptographic properties of
good s-box and can enhance the security due to its dynamic nature. In [30],
Tianyong Ao et al. made affine transformation key-dependent to generate
dynamic s-boxes for their algorithm. The authors investigations revealed
that the algebraic degree of an s-box is conditional invariant under affine
transformation. Unal C. et al. [31] proposed a secure image encryption al-
gorithm design using dynamic chaos-based s-box. The work showed that the
developed s-box based image encryption algorithm is secure and speedy. In
[32], Agarwal P. et al. developed a key-dependent dynamic s-boxes using
dynamic irreducible polynomial and affine constant. This latter algorithm
was used by Amandeep Singh et al. to [33] develop a new dynamic AES in
which s-boxes are made completely key-dependent. In [5], Iqtadar Hussain et
al. proposed an encryption algorithm based on the substitution-permutation
performed by the S8 Substitution boxes and also incorporates three differ-
ent chaotic maps. The presented simulation and statistical results showed
that the proposed encryption scheme is secure against different attacks and
resistant to the channel noise.

Despite the extensive works by many researcher towards designing key-
dependent s-boxes, Chuck Easttom [2] showed that while key-dependent vari-
ations of Rijndael are sufficiently secure, they do not demonstrate improved
non-linearity over the standard Rijndael s-box, instead they do introduce
additional processing overhead. To address this claim, Amir Anees et al. [6]
proposed a new method for creating multiple substitution boxes with the
same algebraic properties using permutation of symmetric group on a set
of size 8 and bitwise XOR operation. Their analysis demonstrated that the
proposed substitution boxes can resist differential and linear cryptanalysis
and sustain algebraic attacks. Ultimately to further extend the latter work,
we propose a novel method to generate key dependent s-boxes with identical
algebraic properties by applying two permutations on both of the inputs and
outputs vectors of an initial s-box. A rigorous analysis is also presented to
evaluate the properties of the newly created s-boxes particularly the bijection,
nonlinearity, SAC, and BIC invariant.

The remainder of this paper is organized into following sections: Section
2 discusses in details the common algebraic properties of the s-box, Section
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3 presents main theorem and describes the proposed key-dependent dynamic
s-box generation algorithm. The conclusion is provided in Section 4.

2 Preliminaries

A Boolean function of n inputs, f(x1, x2, ..., xn), is a function of the form
f : {0, 1}n → {0, 1}. It can be regarded as a binary vector f of length 2n,
where f is the rightmost column of the truth table describing this function.
We denote the set of all Boolean functions of n inputs Bn.

The Boolean functions can serve as the n output bits of the s-box. Let
f1, f2.....fn be the n Boolean functions, where each function fi corresponds
to a binary vector fi of length 2n. Then the s-box S = [f1, f2.....fn] is a
2n× n bit matrix with the fi as column vectors. Any given input vector x =
x1, x2, ..., xn, maps to an output vector y = y1, y2, ..., yn, by the assignment
yi = fi(x1, x2, ..., xn).

The main purpose of this paper is providing a key-dependent algorithm
that generates a set of Boolean functions f1, f2, ..., fn, such that the cor-
responding s-box is bijective, nonlinear, and fulfills SAC and BIC. Before
introducing this algorithm, let us first revise these four algebraic properties.

2.1 Bijection

It ensures that all possible 2n n-bit input vectors will map to distinct output
vectors (i.e., the s-box is a permutation of the integers from 0 to 2n − 1).

Proposition 2.1. [7] The necessary and sufficient condition for the s-box S
to be bijective is that any linear combination of the columns of S has Hamming
weight 2n−1. (i.e., wt(a1f1 ⊕ a2f2 ⊕ ...⊕ anfn) = 2n−1, where the ai ∈ {0, 1}
and the ai are not all simultaneously zero).

2.2 Nonlinearity

It ensures that the s-box is not a linear mapping from input vectors to output
vectors (since this would render the entire cryptosystem easily breakable).

The nonlinearity Nf of a function f is defined [34] as the minimum
Hamming distance between that function and every linear function. (i.e.,
Nf = minl∈LndH(f, l), where Ln is a set of the whole linear and affine func-
tions and dH(f, l) denotes the Hamming distance between f and l)
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Remark 2.2. Pieprzyk and Finkelstein [35] claim that the highest nonlinear-
ity achievable with 0-1 balanced functions can be calculated by the following
equation

Nf =


∑

1
2
(n−3)≤i≤n−3

2i+1 for n = 3, 5, 7, ... ,∑
1
2
(n−4)≤i≤n−4

2i+2 for n = 4, 6, 8, ... .
(2.1)

Remark 2.3. Carlisle Adams and Stafford Tavares [7] stated that if the n
Boolean functions of an s-box S are nonlinear, then S is guaranteed to be
nonlinear at the bit level and at the integer level.

Lemma 2.4. [36] Let f be a Boolean function over {0, 1}n, B be an n × n
nonsingular matrix, and β a constant vector from {0, 1}n. Then the function
g(x) = f(xB ⊕ β) has the same nonlinearity as the function f so Ng = Nf .

2.3 Strict avalanche criterion

SAC was introduced by Webster and Tavares [37]. Informally, an s-box
satisfies SAC if a single bit change on the input results in changes on a half
of output bits. More formally, a function f : {0, 1}n → GF (2) satisfies the
SAC if f(x)⊕f(x⊕γ) is balanced for all γ whose weight is 1, (i.e., wt(γ) = 1).
In other words, the SAC characterizes the output when there is a single bit
change on the input.

Theorem 2.5. [36] Let f : {0, 1}n → GF (2) be a Boolean function and A
be an n× n nonsingular matrix with entries from GF (2). If f(x)⊕ f(x⊕ γ)
is balanced for each row γ of A, then the function ψ(x) = f(xA) satisfies the
SAC.

2.4 Bit independent criterion

Given two Boolean functions fj, fk in an s-box, if fj ⊕ fk is highly nonlinear
and meets the SAC, then the correlation coefficient of each output bit pair
may be close to 0 when one input bit is flipped. Thus, we can check the BIC
of the s-box by verifying whether fj ⊕ fk (j 6= k) of any two output bits of
the s-box meets the nonlinearity and SAC [37].
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3 The main theorem and proposed key-dependent

dynamic s-box algorithm

Definition 3.1. A permutation matrix is a matrix obtained by permuting
the rows of an n × n identity matrix according to some permutation of the
numbers 0 to n − 1. Every row and column therefore contains precisely a
single 1 with 0s everywhere else, and every permutation corresponds to a
unique permutation matrix.

Lemma 3.2. Let X be the identity s-box with the 2n×n bit matrix [x1,x2, ...,xn]
and P1 be a permutation matrix of size n×n. There exist a permutation ma-
trix Q1 of size 2n × 2n such that Q1X = XP1.

Proof. The post-multiplying of the permutation matrix P1 with the matrix X
to form the matrix W1 = XP1 results in permuting columns of the matrix X.
Using proposition 2.1, the 2n×n bit matrix W1 is bijective s-box. Therefore,
converting the rows of the matrix W1 to the decimal representation provides
a permutation P3 of size 2n.

Let Q1 be the permutation matrix of size 2n × 2n corresponding to the
permutation P3. Since the pre-multiplying of the permutation matrix Q1

with the matrix X to form the matrix Q1X results in permuting rows of the
matrix X, then Q1X = XP1.

Theorem 3.3. Let X be the identity s-box with the 2n×n bit matrix [x1,x2, ...,xn],
Y be an s-box with the 2n×n bit matrix [y1,y2, ...,yn], P1, P2 be permutation
matrices of size n × n, and Q1 be the permutation matrix of size 2n × 2n

satisfying Q1X = XP1. The 2n × n bit matrix Q1Y P2 is new s-box with the
same algebraic properties: bijection, nonlinearity, SAC, BIC as the initial
s-box Y .

Proof. Let the n Boolean functions f1, f2.....fn correspond to the column
vectors yi = fi of the matrix Y .

Since, the post-multiplying of the permutation matrix P2 with the matrix
Y to form the matrix Y P2 results in permuting columns of the matrix Y =
[f1, f2, ..., fn], then it is clear that the 2n × n bit matrix Y P2 is new s-box
with the same algebraic properties: bijection, nonlinearity, SAC, BIC as the
initial s-box Y . Therefore, it is enough to prove that the 2n × n bit matrix
Q1Y = [Q1f1, Q1f2, ..., Q1fn] is new s-box with the same algebraic properties:
bijection, nonlinearity, SAC, BIC as the initial s-box Y .

8



a) Bijection:
The pre-multiplying of the permutation matrix Q1 with the matrix Y

to form the matrix Q1Y results in permuting rows of the matrix Y . Using
proposition 2.1, Q1Y is bijective s-box.

b) Nonlinearity and SAC:
Introduce g1(x), g2(x), ..., gn(x) to be the Boolean functions defined by

gi(x) = fi(xP1) for i = 1, ..., n. Using lemma 2.4, Nfi = Ngi for i = 1, ..., n.
Also, if the functions fi(x) satisfy the SAC for i = 1, ..., n, then fi(x)⊕fi(x⊕
γ) is balanced for each row γ of P1 for i = 1, ..., n. Therefore, using theorem
2.5, the functions gi(x) satisfy the SAC for i = 1, ..., n. Hence, the s-box
[g1,g2, ...,gn] satisfies the SAC and has the same nonlinearity as the initial
s-box Y = [f1, f2, ..., fn].

Finally, since Y = [f1(X), f2(X), ..., fn(X)] and Q1X = XP1, then the
s-box

[g1(X),g2(X), ...,gn(X)] = [f1(XP1), f2(XP1), ..., fn(XP1)]
= [f1(Q1X), f2(Q1X), ..., fn(Q1X)]
= [Q1f1(X), Q1f2(X), ..., Q1fn(X)] = Q1Y.

(3.2)
c) BIC:

Assume that the function hij(x) = fj(x)⊕ fk(x) of any two different out-
put bits fj and fk of the s-box Y meets the nonlinearity and SAC. Introduce
kij(x) to be the Boolean functions defined by the function kij(x) = hij(xP1).
Using lemma 2.4, Nhij

= Nkij for i 6= j. Similarly, using theorem 2.5,
the functions kij(x) satisfy the SAC for i 6= j. Therefore, the function
kij(x) = hij(xP1) = fj(xP1) ⊕ fk(xP1) = gj(x) ⊕ gk(x) meets the nonlin-
earity and SAC. Hence, the s-box [g1,g2, ...,gn] satisfies BIC.

The proposed method for key-dependent dynamic s-boxes consists of per-
mutations of the inputs and outputs vectors of an initial s-box. The following
algorithm provides s-boxes with identical algebraic properties. The steps are
summarized as follows.

1. Express the initial n×n s-box as a vector IS consisting of different 2n

values ranging between 0 and 2n − 1.
2. Compute the matrix Y of size 2n × n by evaluating the binary repre-

sentation of the initial s-box. Similarly, compute the matrix X of size 2n×n
by evaluating the binary representation of the identity s-box.

3. Use the key to construct two permutations σ1 and σ2 of different n
values ranging between 0 and n− 1.
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4. Construct the corresponding permutation matrices P1 and P2 of size
n× n for the two permutations σ1 and σ2.

5. Compute the matrix W1 = XP1 of size 2n × n.
6. Construct the corresponding permutation P3 of size 2n by getting back

the decimal representation of the matrix W1 as a vector.
7. Construct the permutation matrix Q1 of size 2n× 2n corresponding to

the permutation P3.
8. Compute the matrix W2 = Q1Y P2 of size 2n × n.
9. Construct the dynamic key-dependent s-box by getting back the deci-

mal representation of the matrix W2 as the vector NS.
10. Detect the possible fixed point and reverse fixed point of the con-

structed vector NS.
11. In case there are fixed points or reverse fixed points, update the

initial permutations using σ1 = σ̄1σ1, σ2 = σ̄2σ2 such that σ̄1, σ̄2 ∈ Sn where
Sn is the symmetric group and then return back to step 4. Otherwise, end
the algorithm and produce the vector NS as clone dynamic key-dependent
s-box.

An efficient Maple code implementation of the method described in this
section is presented in the Appendix.

Remark 3.4. The two permutations σ1 and σ2 of size n can be extracted
from the key using factorial number system and Lehmer code.
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Figure 1: Flowchart of constructing cloned key-dependent s-box
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4 Performance analysis

This section provides demonstration of how our algorithm can be applied to
construct clone copies for a given s-box while preserving its cryptographic
features and strength. The application is independent of the method used
for construction of the given s-box. In case of the initial given s-box having
fixed points or reverse fixed points, the algorithm can be applied to obtain
improved clone versions where all the fixed points and reverse fixed points are
removed but the specifications like bijection, nonlinearity, SAC, and BIC are
conserved with same strength as the initial given s-box. This adds particular
significance and increases the scope of applications of the algorithm in the
context of the recent analysis [1] of the exploitable weakness of fixed point
and reverse fixed point contained in s-boxes.

The performance of our method is illustrated through the following two
examples:

Example 4.1. Demonstration of algorithm for n = 4
We use the initial 4× 4 s-box given as a vector IS

IS = [9, 13, 10, 15, 11, 14, 7, 3, 12, 8, 6, 2, 4, 1, 0, 5]t (4.3)

constructed by Carlisle Adams and Stafford Tavares [7]. Let us assume that
the key gives the two permutations σ1 = (1, 2, 0, 3), σ2 = (3, 2, 0, 1) of size 4.

The corresponding X, Y, P1, P2,W1, P3, Q1,W2 are found as

X =


0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1


t

Y =


1 1 0 1 1 0 1 1 0 0 0 0 0 1 0 1
0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0
0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1
1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0


t

P1 =


0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

 , P2 =


0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0
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W1 =


0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1


t

P3 = (0, 2, 4, 6, 1, 3, 5, 7, 8, 10, 12, 14, 9, 11, 13, 15)

Q1 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



W2 =


0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1
1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 0
0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0
1 0 1 1 1 1 0 1 0 0 0 0 0 0 1 1


t

Finally, the vector NS

NS = [10, 6, 14, 13, 11, 15, 7, 12, 3, 5, 1, 0, 2, 4, 8, 9]t (4.4)

provides the dynamic key-dependent s-box, having the same four algebraic
properties as the initial vector IS as shown in the following table.

Nonlinearity SAC BIC of nonlinearity BIC of SAC
min max avg min max avg SD min max avg SD min max avg SD

Initial s-box IS 4 4 4 0 1 0.5 0.132583 4 4 4 0 0.4375 0.75 0.552083 0.104686
Clone copy s-box NS 4 4 4 0 1 0.5 0.132583 4 4 4 0 0.4375 0.75 0.552083 0.104686

Table 1: Comparison of the algebraic properties of the initial s-box IS (Equa-
tion 4.3) and its clone copy NS (Equation 4.4) resulting from applying the two
permutations σ1 = (1, 2, 0, 3), σ2 = (3, 2, 0, 1) on IS
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Remark 4.2. The algorithm was applied using the initial 4× 4 s-box and all
the 4! permutations of size 4. As a result, (4!)2 = 576 different s-boxes were
generated and it was verified that all have the same four algebraic properties
as the initial s-box.

Example 4.3. Demonstration of algorithm for n = 8
We use the initial 8 × 8 AES s-box constructed by Joan Daemen and

Vincent Rijmen [38] given in Table 2. Let us assume that the key gives the
two permutations σ1 = (1, 2, 0, 6, 5, 7, 3, 4), σ2 = (5, 7, 3, 4, 1, 2, 0, 6) of size 8.
Simillarly, applying the new method provides new s-box given in Table 3 with
the same four algebraic properties as the initial AES s-box.

R/C 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

99 124 119 123 242 107 111 197 48 1 103 43 254 215 171 118
202 130 201 125 250 89 71 240 173 212 162 175 156 164 114 192
183 253 147 38 54 63 247 204 52 165 229 241 113 216 49 21
4 199 35 195 24 150 5 154 7 18 128 226 235 39 178 117
9 131 44 26 27 110 90 160 82 59 214 179 41 227 47 132
83 209 0 237 32 252 177 91 106 203 190 57 74 76 88 207
208 239 170 251 67 77 51 133 69 249 2 127 80 60 159 168
81 163 64 143 146 157 56 245 188 182 218 33 16 255 243 210
205 12 19 236 95 151 68 23 196 167 126 61 100 93 25 115
96 129 79 220 34 42 144 136 70 238 184 20 222 94 11 219
224 50 58 10 73 6 36 92 194 211 172 98 145 149 228 121
231 200 55 109 141 213 78 169 108 86 244 234 101 122 174 8
186 120 37 46 28 166 180 198 232 221 116 31 75 189 139 138
112 62 181 102 72 3 246 14 97 53 87 185 134 193 29 158
225 248 152 17 105 217 142 148 155 30 135 233 206 85 40 223
140 161 137 13 191 230 66 104 65 153 45 15 176 84 187 22

Table 2: Presentation of AES s-box [38] in 16× 16 matrix form
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

165 175 199 189 31 183 181 105 48 28 178 147 224 146 157 68

238 226 142 239 127 140 190 89 67 212 161 166 253 247 57 104

121 162 187 9 24 93 234 170 214 44 26 78 23 156 204 201

69 150 49 12 134 144 136 27 101 82 53 216 87 34 115 74

6 173 223 244 32 180 235 143 131 203 52 188 182 230 229 72

14 109 39 38 108 103 83 42 41 128 3 250 119 191 30 84

73 159 13 50 236 62 59 167 85 15 177 240 123 186 126 208

193 92 98 77 227 133 106 55 242 232 217 20 154 117 43 251

209 113 215 169 192 63 51 71 163 0 4 102 99 125 95 179

8 164 18 40 233 225 202 210 35 1 194 22 228 248 122 111

5 185 132 66 96 91 148 80 7 110 17 207 158 141 160 152

237 174 120 153 81 61 107 116 88 112 254 129 100 56 205 21

124 196 90 135 75 252 76 65 149 222 145 19 241 54 25 249

168 64 245 198 130 197 172 47 94 211 2 231 206 36 255 195

137 86 219 176 221 10 155 243 37 171 200 58 46 118 97 218

29 79 45 220 139 213 151 16 33 60 70 246 114 184 11 138

Table 3: Presentation of clone copy s-box as 16×16 matrix resulting from applying
the two permutations σ1 = (1, 2, 0, 6, 5, 7, 3, 4), σ2 = (5, 7, 3, 4, 1, 2, 0, 6) on AES s-
box shown in Table 2

Nonlinearity SAC BIC of nonlinearity BIC of SAC
min max avg min max avg SD min max avg SD min max avg SD

AES s-box 112 112 112 0.453125 0.5625 0.504883 0.015678 112 112 112 0 0.480469 0.525391 0.504604 0.011271
Clone copy of AES s-box 112 112 112 0.453125 0.5625 0.504883 0.015678 112 112 112 0 0.480469 0.525391 0.504604 0.011271

Table 4: Comparison of the algebraic properties of AES s-box (Table 2) and its
clone copy (Table 3)

5 Conclusion

This work investigates the question of generating key-dependent dynamic
n×n clone s-boxes having the same algebraic properties. Using initial s-box,
we provide an algorithmic approach to generate clone s-boxes which have
the same genetic traits like bijection, nonlinearity, SAC, and BIC. Invariance
of the bijection, nonlinearity, SAC, and BIC for the generated clone copies
is proved. The flow chart and Maple code of the presented algorithm are
also given. The efficiency of the algorithm is tested through examples. In
conclusion, instead of focusing on finding ways to generate strong s-boxes, it
may be enough to start with one strong s-box such as AES s-box, S8 AES
s-box, APA s-box, and Gray s-box and then get its clone copies.
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Appendix: Maple code for the proposed algo-

rithm

Listing 1: Maple Procedure for converting a permutation σ to a permutation
matrix R

permatr ix :=proc ( sigma )
l o c a l R, i ;
R:=Matrix ( nops ( sigma ) , nops ( sigma ) , [ 0 ] ) ;
f o r i from 1 to nops ( sigma ) do R[ i , sigma [ i ]+1 ] :=1 ; end do ;
R;
end proc :

Listing 2: Maple Procedure for evaluating the binary representation of an s-box
S as a Boolean matrix M of size 2n × n
BLmatrix := proc (S , n)
l o c a l M;
M:=Matrix ( [ seq ( convert ( [ S [ i ] ] , base , 1 0 , 2 ) , i =1. . nops (S ) ) ] ) ;
end proc :

Listing 3: Maple Procedure for evaluating the decimal representation of a Boolean
matrix M of size 2n × n as an s-box S

Sbox := proc (M, n)
l o c a l S ;
S :=[ seq ( add ( convert (Row(M, i ) , l i s t ) [ j ]∗2ˆ ( j −1) , j =1. . n ) , i =1. . RowDimension (M) ) ] ;
end proc :

Listing 4: Maple code for the proposed algorithm for constructing new s-box NS
using the initial s-box IS and the two permutations σ1 and σ2 which extracted
from the key

NS := proc ( IS , sigma1 , sigma2 )
l o c a l n ,Y, IDSBox ,X,P1 , P2 ,W1,P3 ,Q1,W2,NS;
n:= log [ 2 ] ( nops ( IS ) ) ;
Y:=BLmatrix ( IS , n ) ;
IDSBox :=[ seq ( i , i =0. .2ˆn−1) ] ; X:=BLmatrix ( IDSBox , n ) ;
P1:=permatr ix ( sigma1 ) ; P2:=permatr ix ( sigma2 ) ;
W1:=X.P1 ; P3:=Sbox (W1, n ) ; Q1:=permatr ix (P3 ) ;
W2:=Q1 .Y. P2 ;
NS:=Sbox (W2, n)
end proc :
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Listing 5: Maple code for deduction of fixed point and reverse fixed point for
s-box S

FIXP :=proc (S)
l o c a l n , i , FPS,RFPS;
n:=nops (S ) ;
FPS:={} ;
RFPS:={} ;
f o r i from 1 to n do
i f S [ i ]= i−1 then
FPS:={S [ i ]} union FPS ;
e l i f S [ i ]=255−( i −1) then
RFPS:={S [ i ]} union RFPS;
end i f ;
end do ;
[FPS,RFPS ] ;
end proc :
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