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Abstract

Eff is a programming language based on the algebraic approamntputa-
tional effects, in which effects are viewed as algebraicratiens and effect han-
dlers as homomorphisms from free algebr&st supports first-class effects and
handlers through which we may easily define new computdtiefiacts, seam-
lessly combine existing ones, and handle them in novel waje give a de-
notational semantics a#ff and discuss a prototype implementation based on it.
Through examples we demonstrate how the standard effecteeated ireff, and
how eff supports programming techniques that use various formslohided con-
tinuations, such as backtracking, breadth-first seardbctsen functionals, coop-
erative multi-threading, and others.

Introduction

Eff is a programming language based on the algebraic approafetts, in which
computational effects are modelled as operations of aldyitthosen algebraic the-
ory [12]. Common computational effects such as input, oltgiate, exceptions, and
non-determinism, are of this kind. Continuations are ng¢htaic[4], but they turn out
to be naturally supported sff as well. Effect handlers are a related notion [14, 17]
which encompasses exception handlers, stream rediretrdmsactions, backtracking,
and many others. These are modelled as homomorphisms thdhycthe universal
property of free algebras.

Because an algebraic theory gives rise to a monad [11], elgeéffects are sub-
sumed by the monadic approach to computational effects They have their own
virtues, though. Effects are combined more easily than m®({&, and the interaction
between effects and handlers offers new ways of programnfingexperiment in the
design of a programming language based on the algebraioagptherefore seems
warranted.

Philip Wadler once opined [19] that monads as a programnongept would not
have been discovered without their category-theoretiatsparts, but once they were,
programmers could live in blissful ignorance of their onigBecause the same holds
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for algebraic effects and handlers, we streamlined therdapthe benefit of program-
mers, trusting that connoisseurs will recognize the cotiores with the underlying
mathematical theory.

The paper is organized as follows. Secfidn 1 describes thiuspfeff, Sectiorf 2
informally introduces constructs specific éff, Sectior 8 is devoted to type check-
ing, in Sectio 4 we give a domain-theoretic semanticef6f and in Section]5 we
briefly discuss our prototype implementation. The examiplé@ectio & demonstrate
how effects and handlers can be used to produce standarditatiopal effects, such
as exceptions, state, input and output, as well as theiatians and combinations.
Further examples show hoeff’s delimited control capabilities are used for nondeter-
ministic and probabilistic choice, backtracking, selectfunctionals, and cooperative
multithreading. We conclude with thoughts about the futmoek.

The implementation offf is freely available étittp: //math.andrej.com/eff/.

Acknowledgements We thank Ohad Kammar, Gordon Plotkin, Alex Simpson, and
Chris Stone for helpful discussions and suggestions. OfadrKar contributed parts
of the type inference code in our implementatioefif The cooperative multithreading
example from Sectidn 6.10 was written together with Chrenst

1 Syntax

Eff is a statically typed language with parametric polymorphénd type inference.
Its types include products, sums, records, and recurgpeedegfinitions. To keep to the
point, we focus on a core language with monomorphic typestgmel checking. The
concrete syntax follows that of OCaml [6], and except for m@nstructs, we discuss
it only briefly.

1.1 Types
Apart from the standard typesif haseffect typed~ andhandler typesd = B:
A,B,C ::= int ‘ bool ‘ unit ’ empty ‘ (type)
AxB | A+B| A-B | E | A=B,
E ::= effect (operationop,:A; — B;); end. (effect type)

In the rule for effect types and elsewhere belpw- ); indicates that-- may be re-
peated a finite number of times. We include the empty type aseed it to describe
exceptions, see Sectibn b.2. An effect type describes aatiulh of related operation
symbols, for example those for writing to and reading fronoenmunication channel.
We writeop: A — B € FE or justop € FE to indicate that the effect typE contains
an operatiorop with parameters of typel and results of typd3. The handler type
A = B should be understood as the type of handlers acting on catiqus of typeA
and yielding computations of typg.
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1.2 Expressions and computations

Eff distinguishes betweesxpressiongndcomputationswhich are similar to values
and producers of fine-grain call-by-valleé [7]. The formex mert and free from com-
putational effects, including divergence, while the lattay diverge or cause computa-
tional effects. As discussed in Sectidn 5, the concreteasywiteff hides the distinction
and allows the programmer to freely mix expressions and coatipns.

Beware that we use two kinds of vertical bars below: the ﬁa:ﬂeparates grammat-
ical alternatives, and the shdrseparates cases in handlers and match statements. The
expressions are

e =T ’ n ‘ c ‘ true ‘ false ‘ O ’ (e1,e2) ’ (expression)
Lefte | Right e | funz:A—c ‘ e#op | h,
h ::= handler (e; #op;xk — ¢;); | val © — ¢, | finally z — c¢¢, (handler)

wherex signifies a variablep an integer constant, andother built-in constants. The
expressiong), (e, e2), Left e, Right e, andfun z: A — c are introduction forms
for the unit, product, sum, and function types, respectivéDperations # op and
handlersh are discussed in Sectibh 2.

The computations are

c = vale | letz =c¢; incs | letrec fox =c; inco ‘ (computation)
if e then c¢i else ¢y ’ match e with ‘ match e with (x,y) — ¢ ‘
match e with Left 2 — ¢; | Right y — c2 ‘ eq e ‘
new F ’ new £ @ e with (operation op,z @y > ¢;); end ’
with e handle c.

An expressiore is promoted to a computation withal e, but in the concrete syntax
val is omitted, as there is no distinction between expressiadscamputations. The
statemenflet * = ¢; in ¢ bindsz in ¢o, andlet rec fax = ¢; in co defines
a recursive functiory in c;. The conditional statement and the variationsafch
are elimination forms for booleans, the empty type, progluand sums, respectively.
Instance creation and the handling construct are discuissgekttiori 2.

Arithmetical expressions such as+ e, count as computations because the arith-
metical operators are defined as built-in constants, s@that is parsed as a double
application. This allows us to uniformly treat all operat¥p irrespective of whether
they are pure or effectful (division by zero).

2 Constructs specific toeff

We explain the intuitive meaning of notions that are spetdfieff, namely instances,
operations, handlers, and resources. We allow ourselvas stack in distinguishing
syntax from semantics, which is treated in detail in Sedfioit is helpful to think of
a terminating computation as evaluating either to a valugnooperation applied to a
parameter.



2.1 Instances and operations

The computationew E generates a fregffect instancef effect typeF. For example,
new ref generates a new referenassw channel a new communication channel,
etc. The extended form afew creates an effect instance with an associaésdurce
which determines the default behaviour of operations arekjdained separately in
Sectior Z.B.

For each effect instanceof effect typeE and an operation symbep € E there
is anoperatione # op, also known as generic effecfl2]. By itself, an operation is a
value, and hence effect-free, but an applied operatiop e’ is a computational effect
whose ramifications are determined by enveloping handietshe resource associated
with e.

2.2 Handlers
A handler

h = handler (e; #op, x k + ¢;); | val & — ¢, | finally z — ¢y
may be applied to a computatienwith the handling construct
with h handle c, Q)
which works as follows (we ignore thieinally clause for the moment):
1. If c evaluates taral e, (1) evaluates te, with = bound toe.

2. If the evaluation o encounters an operatien# op, e, (1) evaluates te; with
2 bound toe andk bound to the continuation ef # op; e, i.e., whatever remains
to be computed after the operation. The continuation isvdted by [1) and is
handled byh as well.

The finally clause can be thought of as an outer wrapper which perfornasidin
tional transformation, so thdfl(1) is equivalent to

let x = (with A’ handle ¢) in ¢y

whereh’ is like h without thefinally clause. Such a wrapper is useful because we
often perform the same transformation every time a giverdlearis applied. For ex-
ample, the handler for state handles a computation by wamgfig it to a function ac-
cepting the state, anfiinally applies the function to the initial state, see Sedtioh 6.3.

If the evaluation ofc encounters an operatier# op ¢’ that is not listed inh, the
control propagates to outer handling constructs, and eaéntto the toplevel, where
the behaviour is determined by the resource associated:with

2.3 Resources

The construct

new £ Q e with (operation op,z@Qy > ¢;); end
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creates an instaneewith an associategesource inspired by coalgebraic semantics of
computational effects [16, 13]. A resource carries a statkepaiescribes the default be-
haviour of the operations # op,. The paradigmatic case of resources is the definition
of ML-style references, see Section]6.3.

The initial resource state for is set toe. When the toplevel evaluation encounters
an operatiom # op, ¢/, it evaluates:; with = bound toe’ andy bound to the current
resource state. The result must be a pair of values, the firghigh is passed to the
continuation, and the second of which is the new resourde.sti& c; evaluates to
an operation rather than a pair of values, a runtime erroepented, as there is no
reasonable way of handling it.

In eff the interaction with the real world is accomplished throbglit-in resources.
For example, there is a predefined channel instandewith operationsstd # read
andstd #write whose associated resource performs actual interactidmtiagt stan-
dard input and the standard output.

3 Type checking

Types ineff are like those of ML[[9] in the sense that they do not captuseiaforma-
tion about computational effects. There are two typing prdgnts" I e: A states
that expression has typeA in contextl’, andI” I ¢: A does so for a computatian
As usual, a context is a list of distinct variables with associated types. Tlamdard
typing rules for expressions are:

z:Ael
_ I'ken:int I' k. true:bool ' false:bool
I'z:A
I'K tA 'K : B I'ke: A

'k O:unit e Ol e 2 e €

I'k (e1,e9):AXx B ' Lefte: A+ B

I'e:B I'z:Ak c:B
I't.Righte: A+ B I'~funz:A—c:A— B

We also have to include judgements that assign types to bthikin constants. An
operation receives a function type

I'ke:E op:A—-BeFE
Ne#op:A— B

while a handler is typed by the somewhat complicated rule

I'e;: E; op;:4; =+ B; € E;
I'x:A;,k:B;, > Bt.c¢;:B

I' k. (handler (e; #0p, k> ¢;); | val x — ¢, | finallyz +—cf): A= C

I'z:Ak.c,: B I'Nz:Bkcs:C

which states that a handler first handles a computation & #yinto a computation
of type B according to theral and operation clauses, after which thmally clause
transforms it further into a computation of type



The typing rules for computations are familiar or expectechmotions of expres-
sions andlet statements are typed by

T'ke:A T'ke: A I'z:Alcco: B
I'kvale: A I'kcletz=cyincy: B

I'f:A—>B,z:At.c1:B If:A— Blccy:C
' letrec fx=c incy:C

and various elimination forms are typed by

I e:bool I'tec:A Tk A 'k e:empty
I' if ethencj elsecy: A I' . matchewith: A

I'ke:Ax B Tz:Ay:Btrc.c:C
I' . matchewith (z,y) —c:C

I'ke:A+ B Iz:Abcey: C INy:Blcco:C
I' . match ewith Left z — ¢; | Right y — co: C

I'ke:A— B T'hes: A
I‘l—celeng

The instance creation is typed by the rules

't new E: FE

I'ke:C op;:Ai =+ B; € E Tx:Aj,y:Checci: Bi xC
I'  new E @ e with (operationop,z Qy — ¢;); end: E

The rule for the simple form is obvious, while the one for tivéeaded form checks
that the initial state: has typeC' and that, for each operatiap, : A; — B; € E, the
corresponding computatian evaluates to a pair of typB; x C.

Finally, the rule for handling expresses the fact that hewscire like functions:

T'kec:A I'te:A= B
I' . with e handlec: B

4 Denotational semantics

Our aim is to describe a denotational semantics which explaow programs imeff
are evaluated. Since the implemented runtime has no typeniattion, we give Curry-
style semantics in which terms are interpreted withoutdpgiped. See the exposition
by John Reynolds$ [18] on how such semantics can be relatelduitrc@-style semantics
in which types and typing judgements receive meanings.



We give interpretations of expressions and computatiomimains ofvaluesV’
andresultsR, respectively. We follow Reynolds by avoiding a particutapice ofV/
andR, and instead require propertiesidfand R that ensure the semantics works out.
The requirements can be met in a number of ways, for exampkolwng suitable
domain equations or by takirig and R to be sufficiently large universal domains.

The domainV has to contain integers, booleans, functions, etc. Inqdati, we
require thatl” contains the following retracts, whekés a set of effect instances, and
@ is coalesced sum:

Lint Lbool lunit

Li=——=V 01, ——=V ==V
Leffect Ux Ly
I \% VxV =V VeVv =V
Peffect Px P+
RV 4% Vv RR 4% 1%
P— P=

As expressions are terminating, the bottom elemeit &f never used to denote diver-
gence, but we do use it to indicate ill-formed values andinaerrors.
The domain
(V+IxOxV xRY), (2)

embodies the idea that a terminating computation is eithesilae or an operation
applied to a parameter and a continuation. There are camlaeiractions from[{2)
onto the two summands,

V.<:>VM(V+HX@XVXRV)J_$>(HX@XVXRV)J_

Pval Poper
3)
A typical element of[(R) is eithet , of the form.,,; (v) for a uniquev € V, or of the
form topex (1, op, v, k) for uniquen € I, op € O, v € V, andk € RV. We require that
R contains[(R) as a retract:

lres

(V4+IxOxV xR, R. (4)

Pres

We may define a strict map frorhl(2) by cases, with one casefgperhow to map
tva1(v) and the other how to mapy.. (1, op, v, k). For example, givenamafp: V' —
R, there is a unique strict mafy : (V+1x O x V x RY)| — R, called thdifting
of f, which depends o1 continuously and satisfies the recursive equations

fT(Lval(U)) = f(v),
fT(Loper(na op, v, 5)) = Loper(na op, v, fT O Pres © 5)-

An environment) is a map from variable names to values. We denotg[by— v]
the environment which assignsto « and otherwise behaves as An expression is



interpreted as a map from environments to values. The stdrdaes are as follows:

[z]n = n(z)
[n]n = tine(M)
[false] n = tboo1(0)
[true] n = tboor(1)
[[Oﬂ 7 = lunit (*)
[Cer,ed]n = x([er] m, [e2]n)
[Left e] n =ty (co([e] )
[Right €] n = t4(e1([e] n))
[funz: A c]n =150 :V.][c]n[z— v])

Of course, we need to provide the semantics of other budbirstants, too. The inter-
pretation ofe # op make sense only whenevaluates to an instance, so we define

[e #op]y = 15 (AV 2 V- tres (Loper (12, 0P, U, Lres © tva1))) i pessect([e] m) = n €1,
(M V. 1) if pettect(fe] 7) = L.

The interpretation of a handler is
[handler (e; #op, zk — ¢;); | val © — ¢, | finally x — ¢s]n =
Lb(f-r o pres o h o pres)

wheref : V — Ris f(v) = [ef]nlz — v]andh: (V +Ix O x V x RY), — Ris
characterized as follows: if one of thg:sect ([ei] ) is L we seth = Az . L, otherwise
pestect ([ei] n) = m; € I for all ¢ and then we take thie defined by cases as

h(tva1 (v)) = [eo] [z = ]
h(toper (ni, 0p;, v, k) = [ci] N[z — v, k = K] for all 4,
I(toper (1, 0P, ¥, K)) = Lres(loper (11, OP, U, B O pres © K))
if (n,op) # (n;, op;) for all <.

We proceed to the meaning of computations, which are intégdras maps from
environments to results. Promotion of expressions ispméted in the obvious way as

[val e[ n = tres(tvar([e] m))
Thelet statement corresponds to monadic-style binding:
[Let o =ciinca]n= (W : V. [e2] na = v]) (pres([e] M),
A recursive function definition is interpreted as

[let rec fx =c1 in o] n = [eo] n[f — t—(1)]



wheret : V' — R s the least fixed point of the map
t— (A V. [a]nlf — =),z — v)).

The elimination forms are interpreted in the usual way as:

[[cl]] n If Poool [[eﬂ n= 1
[if e then ¢; else 2] n = [ea]n  if proore] 7 =0
1 otherwise

[match e with]n= L
[match e with (z,y) = c[n = [c] n[z — vo,y — v1]
where(vg, v1) = px ([e] 1)

[elnlz = o] if py(feln) = wo(v)
[match e with Left x +— ¢1 | Right y — ca] n = ¢ [e2] nly — v]  if pi([e] n) = t1(v)
L otherwise

ler e2] n = p—([ea] n)([e2] n)

For the interpretation afew we need a way of generating fresh names so that we may
sensibly interpret

[new E] 1 = tres(tvai(tessect(n))) wWheren € Tis fresh.

The implementation simply uses a local counter, but a satisfy semantic solution
needs a model of names, such as the permutation modelsoaRitiGabbay [10], with
I then being the set of atoms.

Finally, the handling construct is just an application

[with e handle c] n = p= ([e] n)([c] 7).

4.1 Semantics of resources

To model resources, the denotational semantics has to guppanutable nature of
resource state, for example by explicitly threading it thgh the evaluation. But we
prefer not to burden ourselves and the readers with the mgéechnicalities. Instead,
we assume a mutable stareindexed by effect instances which supports the lookup
and update operations. Thatdgn| gives the current contents at locatiore I, while
o[n] -+ v; x sets the contents at locatiarto v € V and yieldse.

A resource describes the behaviour of operations, i.es,dtmap0 x V x V —
V' x V which computes a value and the new state from a given oparagimbol,
parameter, and the current state. Thus an effect instanmat jsist an element aof
anymore, but an element §f= 1 x (V x V)®xV*V_Consequently in the semantics
we replacd with J throughout and adapt the semanticaef so that it sets the initial
resource state and gives an elemenj:of

[new E Q e with (operation op; x Qy — ¢;); end] n =
a[n] < [e] 7; tres(tval(tettect(n,7))) Wheren € Tis fresh



wherer : O x V x V — V x V is defined by

r(op,v,s) = P (pvar(pres([ci] nlz — v,y = s]))) if op = op, for some,
- L otherwise.

If no resource is provided, we use a trivial one:
[new E] 1 = tres(tval (tersect (R, L))) wheren € Tis fresh.

Finally, to model evaluation at the toplevel, we defthe(V+IxOxV xRY), —
V by cases:

E(tyar (v)) =0
5(Loper((na ’f‘), op, v, '%)) = U[TL] S5 ‘c/’(pres(’<J vl))
where(v', s) = r(op, v, a[n]).

The meaning of a computatiarat the toplevel in the environment(and an implicit
resource state) is &(pres([c] 7))

5 Implementation

To experiment witteff we implemented a prototype interpreter whose main evanati
loop is essentially the same as the denotational semamscsided in Sectidn 4. Apart
from inessential improvements, such as recursive type itefig, inclusion offor
andwhile loops, and pattern matching, the implemented languagerdiffom the
one presented here in two ways that make it usable: we implddiindley-Milner
style type inference with parametric polymorphism [8], amthe concrete syntax we
hid the distinction between expressions and computatiesbriefly discuss each.

There are no surprises in the passage from monomorphic hgoking to paramet-
ric polymorphism and type inference. The infamous valug&ric®n [20] is straight-
forward because the distinction between expressions amguatations corresponds
exactly to the distinction between nonexpansive and expaterms. In fact, it may be
worth investing in an effect system that would relax the gakstriction on those com-
putations that can safely be presumed pure. Becaesel is a computation, effect
instances araot polymorphic, which is in agreement with ML-style refereadeing
non-polymorphic.

A syntactic division between pure expressions and possfictful computa-
tions is annoying because even something as simplg¢aag has to be written as
let ¢ = fx in gy, and having to insertal in the right places is no fun either.
Therefore, the concrete syntax allows the programmer tibrariy mix expressions
and computations, and a desugaring phase appropriatelyedep the two.

The desugaring process is fairly simple. It insert@a when an expression stands
where a computation is expected. And if a computation stardse an expression is
expected, the computation is hoisted to an enclosigstatement. Because several
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computations may be hoisted from a single expression, thstiqun arises how to order
the correspondinget statements. For examplgf, z, g y) can be desugared as

leta= fzin letb=gyin
letb=gy in (a,b) leta = fx in (a,b)

The order off x andg y matters when both computations cause computational effect
The desugaring phase avoids making a decision by usingittdtaneoud et state-
ment

leta= frandb= gy in (a,b)

which leaves open the possibility of various compiler oftetions. The prototype
simply evaluates simultaneous bindings in the order theygaren, and a command-
line option enables sequencing warnings about possibbepanted order of effects. It
could be argued that the warnings should actually be erbotsye allow some slack
until we have an effect system that can detects harmlesanicess of simultaneous
binding.

For one-off handlersff provides an inline syntax so that one can write

with
handle ] handler
_Ch instead of )
Wit handle

C

Additionally, theval and finally clauses may be omitted, in which case they are
assumed to be the identities.

6 Examples

In this section we consider a number of examples that demaiaghe possibilities
offered by first-class effects and handlers. Functionajmmmers will notice similar-
ities with the monadic programming style, and continuatiaficionados will recognize
their favourite tricks as well. The point we are making thbigthat even though mon-
ads and continuations can be simulateefi) it is usually more natural to use effects
and handlers directly.

6.1 Choice

We start with an example that is infrequently met in prackigeis a favourite of the-
oreticians, namelynondeterministic) choicéA binary choice operation which picks a
boolean value is described by an effect type with a singleaijpndecide:

type choice = effect
operation decide : unit -> bool
end

Let c be an effect instance of typfhoice:
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let ¢ = new choice
The computation

let x = (if c#decide () then 10 else 20) in
let y = (if c#decide () then 0O else 5) in
X -y

expresses the fact thateceives either the valu® or 20, andy the valued or 5. If we
ran the above computation we would just get a message abautcaught operation
c#decide. For the computation to actually do something we need to \itraip a
handler. For example, if we wanrttdecide to always chooserue, we handle the
operation by passingrue to the continuatiork:

handle
let x = (if c#decide () then 10 else 20) in
let v = (if c#decide () then 0O else 5) in
X -y
with
| c#decide () k -> k true

The result of course i$0. A more interesting handler is one that collects all possibl
results. Because we are going to use it several times, weedefiandler (the operator
@ is list concatenation):

let choose_all d = handler
| d#decide () k -> k true @ k false
| val x -> [x]

Notice that the handler calls the continuatibriwice, once for each choice, and it
concatenates the two lists so obtained. It also transforr@duee to a singleton list.
When we run

with choose_all c¢ handle
let x = (if c#decide () then 10 else 20) in
let vy = (if c#decide () then 0O else 5) in
X -y

the result is the lis{10; 5;20; 15]. Let us see what happens if we use two instances
of choice with two handlers:

let cl = new choice in
let c2 = new choice in
with choose_all cl1 handle
with choose_all c2 handle
let x = (if cl#decide () then 10 else 20) in
let vy = (if c2#decide () then 0 else 5) in
X -y

Now the answer i§[10;5];[20;15]] because the outer handler runs the inner one
twice, and the inner one produces a list of two possible tesalch time. If we switch
the order of handlerand of operations,
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let cl = new choice in
let c2 = new choice in
with choose_all c2 handle
with choose_all cl1 handle
let vy = (if c2#decide () then 0 else 5) in
let x = (if cl#decide () then 10 else 20) in
X -y

the answer i [10;20]; [5;15]]. For a true understanding of what is going on, the
reader should figure out why we get a listfolir lists, each containing two numbers,
if we switch only the order of handlers but not of operations.

6.2 Exceptions

An exception is an effect with a single operatiomi se with an empty result type:

type ’'a exception = effect
operation raise : ’a -> empty
end

The parameter afaise carries additional data that can be used by an exception han-
dler. The empty result type indicates that an exceptioneaatsed, never yields the
control back to the continuation. Indeed, as there are noesspns of the empty type
(but there are of course computations of the empty type) nallbacannot restart the
continuation ofraise, which matches the standard behaviour of exception hasdler
In practice, most exception handlers are one-off and ar#enmrusing the inline

syntax discussed in Sectibh 5. There are also conveniertajezxceptions handlers,
for example,

let optionalize e = handler
| e#raise -> None

| val x -> Some x

converts a computation that possibly raises the given giueg to one that yields an
optional result. We can use it as follows:

with optionalize e handle
computation

In ML-style languages exceptions can be raised anywher@useeaise is polymor-
phic, whereas ireff we cannot use # raise ¢’ freely because its type is empty, not
polymorphic. This is rectified with the convenience funotio

let raise e x = match (e#raise x) with

of type a exception — a — S which eliminates the empty type, so we may use
raise e ¢/ anywhere.

Another difference between ML-style exceptions and thogffiis that the former
are like a single instance of the latter, i.e., if we were toimiML exceptions ireff we
would need a (dynamically extensible) datatype of excegtiac and a single instance
e of typeexc exception. The definition ofraise would be
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let raise x = match (e#raise x) with

and exception handling would be done as usual. One consegjoéthis is that in ML
it is possible to catclall exceptions at once, whereassdfi locally created exception
instances are unreachable, just as local references aré&.ifich brings us to the
next example.

6.3 State

In eff state is represented by a computational effect with ogmrafior looking up and
updating a value:

type 'a ref = effect
operation lookup: unit -> ’a
operation update: ’a -> unit
end

We refer to instances of typse f asreferences To get the same behaviour as in ML,
we handle them with

let state r x = handler
| val y -> (fun s -> y)
| r#lookup (O k -> (fun s -> k s s)
| r#update s’ k -> (fun s -> k () s’)
| finally £ -> f x

The handler passes the state around by converting congmaati functions that accept
the state. For example, lookup takes the stand passes it to the continuati&n
Because s is handled too, it is again a function accepting state, so agspto k s
again, which explains why we wrotes s. Values and updates are handled in a similar
fashion. Thefinally clause applies the function so obtained to the initial state

The above handler is impractical because for every use deserece we have to
repeat the idiom

let r = new ref in
with state r x handle
computation

An even bigger problem is that the reference may propagatideuthe scope of its
handler where its behaviour is undefined, for instance endaged in a\-abstraction.
The perfect solution to both problems is to use resourcesliasvs:

let ref x =
new ref @ x with
operation lookup () @ s -> (s, s)
operation update s’ @ _ -> (0, s’)
end

With this definition a reference carries a current state tvidgdnitially set tox, lookup
returns the current state without changing it, while updeterns the unit and changes
the state. With the definition of the operators
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let (!) r = r#lookup ()
let (:=) r v = r#update v

we getexactlythe ML syntax and behaviour. Of course, a particular refegzenay still
be handled by a custom handler, for example to fetch itsainilue from an external
persistent storage and save the final value back into it.

6.4 Transactions

We may handle lookup and update so that the state remainsnget in case an
exception occurs. The handler which accomplishes this §iven reference is

let transaction r = handler
| r#lookup (O k -> (fun s -> k s s)
| r#update s’ k -> (fun -> k O s’)
| val x -> (fun s -> r := s; X)
| finally £ -> £ !Ir

I wn

The handler passes around temporary stajest like thestate handler in Section @13,
and only commits it ta- when the handled computation terminates with a value. Thus
the computation

with transaction r handle

r := 23;
raise e (3 * Ir);
r := 34

raises the exceptionwith paramete69, but does not change the valuerof

6.5 Deferred computations

There are many variations on store, of which we mention jastthat can be imple-
mented with resources, namdbzy or deferred computationsSuch a computation
is given by a thunk, i.e., a function whose domainuisit. If and when its value is
needed, the thunk ®rcedby application to(), and the result is stored so that it can
be given immediately upon subsequent forcing. This idearibaglied in the effect
type

type 'a lazy = effect

operation force: unit ->
end

a

together with functions for creating and forcing deferrggdressions:

type ’'a deferred = Value of ’a | Thunk of (unit -> ’a)

let lazy t =
new lazy @ (Thunk t) with
operation force () @ v ->
(match v with
| Value v -> (v, Value v)
| Thunk t -> let v = t () in (v, Value v))
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end

let force d = d#force ()

The functionlazy takes a thunk and creates a new instance whose initial state is
Thunk t. The first time the instance is forced, the thunk is evalutiexdvaluev, and
the state changes talue v. Thereafter the stored value is returned immediately.

If the thunk triggers an operatioeff reports a runtime error because it does not
allow operations in resources. While this may be seen as stadb, it also promotes
good programming habits, for one should not defer effecemtanpredictable future
time. It would be even better if deferred effectful compiaias were prevented by a
typing discipline, but for that we would need an effect syste

6.6 Input and output

A program worth running has to connect with the real-worldiemment in some way.
In eff this is done cleanly through built-in effect instances tvalvide an interface to
the operating system. For input and outpfithas a predefined effect type

type channel = effect
operation read : unit -> string
operation write : string -> unit
end

and achannel instancestd which actually writes to standard output and reads from
standard input. Of course, we may hansitel just like any other instance, for example
the handler

handler std#write _ k -> k (O
erases all output, while

let accumulate = handler
| std#write x k -> let (v, xs) =k (O in (v, x :: Xs)
| val v -> (v, [

intercepts output and accumulates it in a list so that

with accumulate handle
std#write "hello"; std#write "world"; 3 * 14

prints nothing and evaluates @2, ["hello"; "world"]). Similarly, one could
feed the input from a list with the handler

let read_from_list 1lst = handler
| std#read () k -> (fun (s::1st’) -> k s 1lst’)
| val x -> (fun _ -> x)
| finally £ -> f 1st

Both handlers can be quite useful for unit testing of intévagrograms.
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6.7 Ambivalent choice and backtracking

We continue with variations of choice from Sectionl6.1. Riebat ambivalenthoice
is an operation which selects among several options in sushyathat the overall
computation succeeds. We first define the relevant types:

type ’'a result = Failure | Success of ’a

type ’'a selection = effect
operation select : ’a list -> ’a
end

The handler which makes:1ect ambivalent is

let amb s = handler
| s#select 1st k ->
let rec try = function
| [1 -> Failure
| x::xs -> (match k x with
| Failure -> try xs
| Success y -> Success y)
in
try 1lst
Given a list of choicedst, the handler passes each one to the continu&tionturn
until it finds one that succeeds. The net effect is a depthdaarch with which we
may solve traditional problems, such as the 8 queens problem

let no_attack (x,y) (x’,y’) =
X <> X’ & y <>y’ & abs (x - x') <> abs (y - y’)

let available x qgs =
filter (fun y -> forall (no_attack (x,y)) gs)
[1;2;3;4;5;6;7;8]

let s = new selection in
with amb s handle
let rec place x gs =
if x = 9 then Success gs else
let y = s#select (available x gs) in
place (x+1) ((x,y) :: gs)
in place 1 []

The functionfilter computes the sublist of those elements in a list that satiefy
given criterion. The auxiliary functioavailable computes a list of available rows in
columnx if queensgs have been placed onto the board so far. As usual, the program
places the queens onto the board by increasing column nsmgen a columrx

and the listgs of the queens placed so far, an available soig selected for the next
queen. Because the backtracking logic is contained eptinethe handler, we may
easily switch from a depth-first search to a breadth-firstcteby replacingonly the

amb handler with
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let bfs s =
let q = ref [] in

handler
| s#select 1lst k ->
(q := !q @ (map (fun x -> (k,x)) 1st) ;

match !q with
| [1 -> Failure
| (k,x) :: 1st -> q := 1lst ; k x)

The bfs handler maintains a stateful quegeof choice points(k,x) wherek is a
continuation anck an argument to be passed to it. Téelect operation enqueues
new choice points, dequeues a choice point, and activates it

The fact thabfs seamlessly combines a stateful queue with multiple a@ratof
continuations may lure one into writing an imperative sioluto the 8 queens problem
such as

let s = new selection in
with amb s handle
let qs = ref [] in

for x = 1 to 8 do
let y = s#select (available x !qgs) in
qs := (x,y) :: !gs

done ;

Success !qgs

However, becausgs is handled with a resouraritsidethe scope ofmb a queen once
placed onto the board is never taken off, so the search fadsnake sure thadmb
restores the state when it backtracks, the state has to loéelamsideits scope:

let s = new selection in
with amb s handle
let gs = new ref in
with state gqs [] handle
for x = 1 to 8 do
let y = s#select (available x !gs) in
gs := (x,y) :: !gs
done ;
Success !qgs

The program finds the same solution as the first version. Thalmbthe story is that
even though effects combine easily, their combinationshatealways easily under-
stood.

6.8 Selection functionals

The amb handler finds an answer if there is one, but provides no inddion on the
choices it made. If we care aboutthe choices that lead tatizplar answer we proceed
as follows. First we adapt theelect operation so that it acceptshoice pointas well
as a list of values to choose from:

type (’a, ’'b) selection = effect
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operation select: ’a * 'b list -> 'b
end

The idea is that we would like to record which value was seltet each choice point.
Also, multiple invocations of the same choice point shodldead to the same selec-
tion. The handler which performs such a task is

let select s v = handler
| s#select (x,ys) k -> (fun cs ->
(match assoc x cs with
| Some y -> k y cs
| None ->
let rec try = function
| [1 -> Failure
| y:riys ->
(match k y ((x,y)::cs) with
| Success 1st -> Success 1st
| Failure -> try ys)
in try ys))
| val u -> (fun cs ->
if u = v then Success cs else Failure)
| finally £ -> £ []1 ;;

The functionassoc performs lookup in an associative list. The handler keepsta |
cs of choices made so far. It handlgslect by reusing a choice that was previously
recorded incs, if there is one, or else by trying in turn the choigesuntil one suc-
ceeds. Avalue is handled as success if it is the desired adeggsa failure otherwise.

A simple illustration of the handler is a program which lodks a Pythagorean
triple:

let s = new selection in
with select s true handle
let a = s#select ("a", [5;6;7;8]) in
let b = s#select ("b", [9;10;11;12]) in
let ¢ = s#select ("c", [13;14;15;16]) in
a*a + b*b = c*c

It evaluates tGuccess [("c", 13); ("b", 12); ("a", 5)1].

Martin Escard6’s “impossible” selection functional [8lay be implemented with
our selection handler. Recall that the selection functienaccepts a propositional
functionp : 2% — 2 and outputs: € 2V such thap(z) = 1 if, and only if, there exists
y € 2 such thap(y) = 1. Such anr can be found by passing taan infinite sequence
of choice points, each selecting eitfal se or true, as follows:

let epsilon p =
let s = new selection in
let r = (with select s true handle
p (fun n -> s#select (n, [false; truel)))
in
match r with
| Failure -> (fun _ -> false)
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| Success 1lst ->
(fun n -> match assoc n 1lst with
| None -> false | Some b -> b)

The select handler either fails, in which case it does not matter whatetern, or
succeeds by computing a list of choices for whickvaluates tarue. In other words,
r is a basic open neighbourhood on whigkvaluates tarue, and we simply return
one particular function in the neighbourhood.

There are several differences between our implementatidrEacard6’s Haskell
implementation. First, our implementationnst recursive, or to be more precise, it
only employs structural recursion and whatever recurs@ontained ip. Second, we
compute a basic neighbourhood on whichvaluates tarue and then pick a witness
in it, whereas the Haskell implementation directly comptutee witness. Third, and
most important, we heavily use the intensional featuresffao direct the search, i.e.,
we pass a specially crafted argumenptwhich allows us to discover how uses its
argument. The result is a more efficient implementatioagfi lon, which however
is not extensional. A Haskell implementation must necélgdae extensional, because
all total functionals in Haskell are.

6.9 Probabilistic choice

Probabilistic choice is a form of nondeterminism in whicloides are made according
to a probability distribution. For example, we might defimeaperation which picks
an element from a list according to the given probabilities:

type ’'a random = effect
operation pick : (’a * float) list -> ’a
end

The operatiorpick accepts a finite probability distribution, represented disteof
pairs whose second components are nonnegative numbeaslthap tol. The handler
which computes the expected value of a computation of flpat is fairly simple

let expectation r = handler
| val v -> v
| r#pick 1lst k ->
fold_right (fun (x,p) e -> e +. p *. k x) 1lst 0.0

Herefold_right is the list folding operation, e.gfpld_right f [a;b;c] xeval-
uatesas a (f b (f c x)).

Computing the distribution of results of a computation i$ much more compli-
cated:

let combine =
let scale p xs = map (fun (i, x) -> (i, p
let rec add (i,x) = function
| [1 -> [(i,x)]
| (3,y)::1lst ->
if i = j then (j,x+.y)::1st else (j,y)::add(i,x) 1st

s

*. X)) Xs in

in
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fold_left
(fun e (d,p) -> fold_right add (scale p d) e) []

let distribution r = handler
| val v -> [(v, 1.0)]
| r#pick 1st k ->
combine (map (fun (x,p) -> (k x, p)) lst)

Here,combine is the multiplication for the distribution monad that comés a distri-
bution of distributions into a single distribution. The fitionmap is the familiar one,
while fold_left is the left-handed counterpart 661d_right.

As an example, let us consider the distribution of positiona random walk of
length5, where we start at the origin, and step to the left, stay pustep to the right
with probabilities2/10, 3/10 and5/10, respectively. The distribution is computed by

let r = new random in
let x = new ref in
with distribution r handle
with state x 0 handle
for i = 1 to 5 do
X := !x + r#pick [(-1,0.2); (0,0.3); (1,0.5)]
done ;
I'x

Just like in the 8 queen example from Secfion 6.7 the hanotetéte must be enclosed
by the distribution handler. We were surprised to see tledttinong” order still works:

let r = new random in
let x = new ref in
with state x 0 handle
with distribution r handle
for i = 1 to 5 do
X := !x + r#pick [(-1,0.2); (0,0.3); (1,0.5)]
done ;
I'x

How can this be? The answer is hinted agffywhich issues a warning about arbitrary
sequencing of effects in the assignment téf we write the program with less syntactic
sugar, we must decide whether to write the body of the loop as

let a = !x in
let b = r#pick [(-1,0.2); (0,0.3); (1,0.5)] in
X :=a+b
or as
let b = r#pick [(-1,0.2); (0,0.3); (1,0.5)] in
let a = !x in
X :=a+b

In the first case holds the value ok as it isbeforeprobabilistic choice happens, so
update correctly reinstates the valuexpfvhereas in the second case it fails to do so.
Indeed, we get the wrong answer if we swap the summands irsffigrement tx and
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handle state on the outside. On one hand we should not basadpinat the order in

which effects happen matters, but on the other it is unsatisfy that a simple change
in the order of addition matters so much. Perhaps the semgwarnings should be

errors after all.

6.10 Cooperative multithreading

Cooperative multithreading is a model for parallel progmaing in which several threads
run in parallel, but only one at a time. A new thread is creatéd a fork operation,
a running thread relinquishes control witlyaeld operation, and a scheduler decides
which thread runs next. As is well known, cooperative miutéading can be imple-
mented in languages with first-class continuations.

To get cooperative multithreadding eff we first define an effect type with the
desired operations:

type coop = effect
operation yield : unit -> unit
operation fork : (unit -> unit) -> unit
end

Next we define a scheduler, in our case one that uses a robirsteategy, as a han-
dler:

let round_robin c =
let threads = ref [] in
let enqueue t = threads := !threads @ [t] in
let dequeue () =
match !threads with

[ [1 -> O

| t :: ts -> threads := ts ; t O
in
let rec scheduler () = handler

| c#yield () k -> enqueue k ; dequeue ()
| c#fork t k ->
enqueue k ; with scheduler () handle t (O
| val () -> dequeue ()
in

scheduler QO
The handler keeps a queue of inactive threads, represesitiedréks. Note that dequeu-
ing automatically activates the dequeued thunk. Yield engs the current thread, i.e.,
the continuation, and activates the first thread in the quEak enqueues the current
thread and activates the new one (an alternative would erghe new thread and re-
sume the current one). The handler must not just activataetdy forked thread but
also wrap itself around it, lestield and fork triggered by the new thread go unhan-
dled. Thus the definition of the handler is recursive. Th& clause makes sure that
the threads in the queue get a chance to run when the curreatitterminates.

Nothing prevents us from combining threads with other effethreads may use

common or private state, they may raise exceptions, indidieead we can have another
level of multithreading, etc.
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6.11 Delimited control

Our last example shows how to implement standard delimitedimuations ineff.
As a result we can transcribe code that uses continuatioastlyi into eff, although
we have found that transcriptions are typically cleaner easler to understand if we
modify them to use operations and handlers directly.

We consider the static variant of delimited control thatsuseset andshift [2].
The first operation delimits the scope of the continuatioth #re second one applies
a function to it, from which it follows that one acts as a hamndind the other as an
operation. Indeed, theff implementation is as follows:

type (’a, ’'b) delimited =
effect

operation shift : (("a -> ’b) -> 'b) -> ’a
end

let rec reset d = handler
| d#shift f k -> with reset d handle (f k)

Since f itself may callshift, the handler wraps itself arounfl k. The standard
useless example of delimited control is

let d = new delimited in
with reset d handle
d#shift (fun k -> k (k (k 7))) * 2 + 1

The captured continuatidnmultiplies the result by two and adds one, thus the result is
2x(2x(2x74+1)+1)+1=63. In Scheme the obligatory example of (undelimited)
continuations is the “yin yang puzzle”, whose translatioeff is

let y = new delimited in
with reset y handle

let yin =

(fun k -> std#write "@" ; k) (y#shift (fun k -> k k))
and yang =

(fun k -> std#write "*" ; k) (y#shift (fun k -> k k))
in

yin yang

The self-applicatiork k is suspect, andff indeed complains that it cannot solve the
recursive type equatiom = o — 5. We have not implemented unrestricted recursive
types, but we can turn off type checking, after which the pripzints out the same
answer as the original one in Scheme.

7 Discussion
Our purpose was to design a programming language based afgtt®raic approach

to computational effects and their handlers. We feel thasuazeeded and that our
experiment holds many promises.
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First, we already pointed out several times th#twould benefit from an effect
system that provided a static analysis of computationaktsf However, for a useful
result we need to find a good balance between expressivitg@nglexity.

Next, it is worth investigating how to best reason about paots ineff. Because
the language has been inspired by an algebraic point of Viesgems clear that we
should look into equational reasoning. The general theay lbeen investigated in
some detail[15, 17], but the addition of effect instancey o@mplicate matters.

Finally, continuations are the canonical example of a ngetaaic computational
effect, so it is a bit surprising tha&fff provides a flexible and clean form of delimited
control, especially since continuations were not at all ondesign agenda. What then
can we learn froneff about control operators in an effectful setting?
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