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Abstract

We examine several extensions and variants of Plotkin’s language PCF, in-
cluding non-deterministic and probabilistic choice constructs. For each, we
give an operational and a denotational semantics, and compare them. In
each case, we show soundness and computational adequacy: the two seman-
tics compute the same values at ground types. Beyond this, we establish
full abstraction (the observational preorder coincides with the denotational
preorder) in a number of cases. In the probabilistic cases, this requires the
addition of so-called statistical termination testers to the language.
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1. Introduction

There are at least two common ways of giving semantics to a program-
ming language. Denotational semantics defines domains of values, typically
directed-complete partial orders (dcpos), and maps each program to its value,
directly. Operational semantics define the semantics of a program by a fixed
collection of computation rules. The latter can be thought of as abstractions
of elementary computation steps that a machine would implement to run a
given program.

Now, given two semantics for a programming language, one denotational,
one operational, how do these two relate to each other? To our knowledge,
this question was first asked, and answered, in G. Plotkin’s seminal paper
[38]. The language studied here, which came later to be known as PCF, is a
prototypical higher-order, typed, side-effect free programming language.
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Plotkin showed that the relation between the two semantics covered sev-
eral distinct questions. The simplest question is soundness, which holds
whenever any program M that evaluates, operationally, to some normal form
V , has the same denotational value as V . A harder question is computational
adequacy, which is a form of converse: if a program M has the same value
as some normal form V , then the operational semantics will run M until it
terminates, with V as normal form. In PCF, this holds for all programs at
ground types, such as the type of natural numbers, but the question would be
hopeless at higher types. Instead, full abstraction holds if and only if equality
of denotations of two programs M , N is equivalent to observational equiva-
lence, i.e., to the fact, intuitively, that M and N behave operationally in the
same ways under any evaluation context E. Plotkin then showed that PCF
was not fully abstract, but that PCF plus the so-called parallel or construct
was [38].

Our purpose is to extend the study of these questions to higher-order,
typed programming languages that implement choice: either non-deterministic
(angelic, demonic, erratic) or probabilistic, or both. Our extensions of PCF
with choice will be side-effect free, just like PCF. The questions of soundness,
computational adequacy, and full abstraction, in the presence of side-effects
(assignments and global stores, input/output for example) fall outside the
scope of this paper, and already involve dealing with subtle issues such as
snapback (see [35, 36] or [39, 33] for example).

On the other hand, we shall concentrate on non-deterministic and prob-
abilistic choice. As A. Jung noticed, our present work can be seen as a test
case for our notions of previsions, which we proposed as a denotational model
for both kinds of choice [11].

Outline. We give an overview of related work in Section 2, and necessary
domain-theoretic preliminaries in Section 3. We recap our notions of previ-
sions in Section 4, then proceed to define our languages PCFS in Section 5,
which are variants of PCF with various forms of non-deterministic choice and
probabilistic choice. While we shall eventually only deal with full abstraction
in the angelic cases S = A and S = AP, it takes no more effort to give seman-
tics, prove soundness (Section 6) and computational adequacy (Section 7)
for every possible value of S. In Section 8, we show that no language PCFS
that has probabilistic features (in particular PCFAP, but not PCFA) can be
fully abstract. This prompts us to introduce so-called statistical termination
testers in Section 9 . With the help of a few additional topological facts, re-
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lating the Scott and weak topologies on spaces of previsions (Section 10), this
allows us to prove our final full abstraction results in Section 11: PCFAP plus
statistical termination testers is fully abstract (Theorem 11.7), and PCFA,
even without termination testers, is fully abstract as well (Theorem 11.9).

2. Related Work

Although the question of full abstraction for PCF with choice is natural,
it does not seem there has been any study of the question since Plotkin’s
seminal paper [38], at least when the denotational side of the matter consists
of domain semantics, i.e., semantics based on dcpos, in the style of D. S.
Scott.

One of Plotkin’s result is that PCF alone is not fully abstract with respect
with its domain semantics. The key to the problem lies in the undefinability
(through PCF terms) of the so-called parallel or map from N⊥ × N⊥ to N⊥,
defined as mapping (0, 0) to 0, the pairs (0, 1), (1, 0) and (1, 1) to 1, and
all other pairs to the “undefined” element ⊥. But PCF with an extra por

primitive that implements this function is fully abstract, as shown, again, by
Plotkin [38].

A lot of research has been devoted to finding fully abstract semantics
models for PCF, without por. Milner showed that there was only one such
model enriched over the category of dcpos, up to isomorphism [27]. Since
PCF is sequential, this involved attempts at characterizing sequentiality in
denotational models, of which one of the first is Berry’s stable domain seman-
tics [4]. To our knowledge, the only attempts that were successful in proving
full abstraction for domain-theoretic models are due to O’Hearn and Riecke
[34], for a call-by-name language, and to Riecke and Sandholm [40], for a
call-by-value language. Both are based on refinements of domain-theoretic
models that rest on Kripke logical relations of varying arity [22]. Chapters 14
and 15 of Streicher’s book [42] give a complete and readable exposition of
the matter.

A completely different line of research led to game semantics [19, 1].
These are sometimes claimed to provide fully abstract models for PCF, but
one should be aware that full abstraction is obtained only after the game
model is quotiented by the intrinsic, a.k.a., observational preorder, as in the
Milner model.

As far as extensions of PCF with non-deterministic or probabilistic choice
are concerned, one must cite Harmer and McCusker [16], who proposed a fully
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abstract game semantics for Idealized Algol with non-deterministic choice.
(Idealized Algol is essentially PCF with mutable references.) One must also
cite Danos and Harmer, who proposed a fully abstract game semantics for
Idealized Algol with probabilistic choice [6]. Again, full abstraction is ob-
tained after a quotienting step.

The initial difficulties with PCF and parallel or, and the subsequent suc-
cesses of game semantics may explain why similar questions were not consid-
ered with standard domain semantics instead, i.e., using dcpo-based seman-
tics. Another plausible reason is that the treatment of probabilities in domain
semantics (using Jones and Plotkin’s probabilistic powerdomain [21]) has its
share of problems, too [23]: there is simply no known Cartesian-closed cate-
gory of continuous domain that would be closed under Jones and Plotkin’s
probabilistic powerdomain. Although we shall prove soundness and compu-
tational adequacy for probabilistic extensions of PCF, with domain-theoretic
denotational semantics, the latter difficulties will prevent us from attacking
the question of full abstraction with probabilistic choice alone.

Curiously, these difficulties simply vanish if we decide to work with ex-
tensions of PCF that include non-deterministic choice, either alone or in
combination with probabilistic choice. E.g., the category of bc-domains is
Cartesian-closed, and closed under both the lower and upper prevision pow-
erdomains of [11], which we shall rely on; see [12].

It is the purpose of this paper to examine questions of soundness, com-
putational adequacy, and full abstraction in extensions of PCF with mixed
non-deterministic and probabilistic choice. It has come as a surprise to some
that no such work seems to have been done earlier. One possible explanation
is that adequate domain-theoretic models of mixed choice have only been
invented rather recently. One family of such models is due to Mislove et al.
[29, 30] and independently by Tix et al. [44, 45]. Another one is due to the
author, under the name of previsions [11]. In categories of coherent pointed
continuous domains, the two kinds of models are isomorphic [12, 15]. Pre-
cursors of these models include work by Morgan, McIver and coauthors in
computer science [32, 26], or by Walley in mathematical finance and statistics
for example [46].

Note added to the final version.. While this paper was being reviewed, Ehrhard,
Tasson and Pagani independently produced a denotational model of proba-
bilistic PCF that is fully abstract [7], based on probabilistic coherence spaces.
This is a very clever model, of an algebraic rather than a domain-theoretic
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nature, where morphisms are power series rather than continuous maps.
There are many other differences with our result: we incorporate angelic
non-determinism, they do not; in the probabilistic cases, we need statisti-
cal termination testers, they do not; our notion of full abstraction is the
strong, inequational form (the observational preorder coincides with the de-
notational preorder), while only the weaker equational form holds in their
case. Nonetheless, our two models have in common that, unlike with game se-
mantics, they are fully abstract by themselves, without requiring any further
quotient.

3. Preliminaries

We refer the reader to [10, 2, 28] for background on domain theory and
topology.

Domain Theory. A set with a partial ordering ≤ is a poset . We write ↑E
for {y ∈ X | ∃x ∈ E . x ≤ y}, ↓E = {y ∈ X | ∃x ∈ E . y ≤ x}. A dcpo
is a poset in which every directed family (xi)i∈I has a least upper bound
(a.k.a., supremum or sup) supi∈I xi. Symmetrically, we call inf (or infimum)
any greatest lower bound. A family (xi)i∈I is directed if and only if it is
non-empty, and any two elements have an upper bound in the family. Any
poset can be equipped with the Scott topology , whose opens are the upward
closed sets U such that whenever (xi)i∈I is a directed family that has a least
upper bound in U , then some xi is in U already. A dcpo X is pointed if and
only if it has a least element, which we shall always write ⊥.

We shall always consider R+ (the set of non-negative reals), or R+ =
R+ ∪ {+∞}, or [0, a] with a ∈ R+—in particular I = [0, 1]— as posets, and
implicitly endow them with the Scott topology of their ordering ≤. The
opens of R+ in its Scott topology are the intervals (r,+∞), r ∈ R+, together
with R+ and ∅. Those of [0, 1] are ∅, [0, 1], and (r, 1], r ∈ [0, 1). Those of R+

are ∅, R+, and (r,+∞], r ∈ R+.
Given two dcpos X and Y , a map f : X → Y is Scott-continuous if

and only if it is monotonic and f(supi∈I xi) = supi∈I f(xi) for every directed
family (xi)i∈I in X. The space [X → Y ] of all Scott-continuous maps from
X to Y is again a dcpo with the pointwise ordering.

The way-below relation � on a poset X is defined by x � y if and
only if, for every directed family (zi)i∈I that has a least upper bound z
such that y ≤ z, then x ≤ zi for some i ∈ I already. We also say that x
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approximates y. Note that x � y implies x ≤ y, and that x′ ≤ x � y ≤ y′

implies x′ � y′. However, � is not reflexive or irreflexive in general. Write
↑↑E = {y ∈ X | ∃x ∈ E . x � y}, ↓↓E = {y ∈ X | ∃x ∈ E . y � x}. X is
continuous if and only if, for every x ∈ X, ↓↓x is a directed family, and has x
as least upper bound. One may be more precise: A basis is a subset B of X
such that any element x ∈ X is the least upper bound of a directed family
of elements way-below x in B. Then X is continuous if and only if it has a
basis, and in this case X itself is the largest basis.

In a continuous poset with basis B, interpolation holds : if x1, . . . , xn are
finitely many elements way-below x, then there is a b ∈ B such that x1, . . . ,
xn are way-below b, and b� x. (See for example [28, Section 4.2].) Moreover,
the Scott-opens are exactly the unions of sets of the form ↑↑b, b ∈ B.

The category of continuous dcpos and Scott-continuous maps is not Car-
tesian-closed. However, several full subcategories are known that are. We
shall be especially interested in the category of bc-domains. A bc-domain
(for bounded complete domain) is a pointed, continuous dcpo in which every
pair of elements that has an upper bound has a least upper bound. We
shall also be interested in the full subcategory of continuous lattices, i.e., of
complete lattices that are also continuous. Alternatively, a continuous lattice
is exactly a bc-domain with a top element. The unit interval I, and every
interval [0, a], a ∈ R+, is a continuous lattice, for example.

We shall sometimes need to deal with continuous dcpos (not necessarily
pointed) in which every pair of elements that has an upper bound has a least
upper bound. Call these nbc-domains, for nearly bounded complete domains.
The typically example is N, with equality as ordering. Given a dcpo X, X⊥
denotes its lifting , i.e., X plus a fresh element ⊥ below all elements of X. It
is clear that X is an nbc-domain if and only if X⊥ is a bc-domain.

Topology. A topology O on a set X is a collection of subsets of X, called
the opens , such that any union and any finite intersection of opens is open.
The interior of a subset A of X is the largest open included in A. A closed
subset is the complement of an open subset. The closure of A is the smallest
closed subset containing A.

A topology O1 is finer than O2 if and only if it contains all opens of O2.
We also say that O2 is coarser than O1.

A base B (not a basis) of O is a collection of opens such that every open is
a union of elements of the base. Equivalently, a family B of opens is a base if
and only if for every x ∈ X, for every open U containing x, there is a V ∈ B
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such that x ∈ V ⊆ U . A subbase of O is a collection of opens such that the
finite intersections of elements of the subbase form a base; equivalently, the
coarsest topology containing the elements of the subbase is O, and then we
say that O is generated by the subbase.

The specialization preorder of a space X is defined by x ≤ y if and only
if for every open subset U of X that contains x, U also contains y. For every
subbase B of the topology of X, it is equivalent to say that x ≤ y if and only
if every U ∈ B that contains x also contains y. The specialization preorder of
a dcpo X, with ordering ≤, in its Scott topology, is ≤. A topological space
is T0 if and only if ≤ is a partial ordering, not just a preorder. A subset A of
X is saturated if and only if it is upward-closed in the specialization preorder
≤.

A subset K of a topological space X is compact if and only if every open
cover of K has a finite subcover. A map f from X to Y is continuous if and
only if f−1(V ) is open in X for every open subset V of Y . The image f [K] of
any compact subset of X by any continuous map f : X → Y is compact in Y .
When X and Y are posets in their Scott topology, f : X → Y is continuous
if and only if it is Scott-continuous.

A topological space X is locally compact if and only if for every x ∈ X,
for every open subset U of X containing x, there is a compact subset K ⊆ U
whose interior contains x. Every continuous dcpo is locally compact in its
Scott topology.

4. Powerdomains, Previsions

We shall design languages PCFS, where S is a non-empty set of letters
among A (for angelic non-determinism), D (for demonic non-determinism),
and P (probabilistic choice). Such sets S are written as the mere con-
catenation of its elements, so that, e.g., PCFA is PCF plus angelic non-
deterministic choice, PCFAP is PCF plus demonic non-deterministic and prob-
abilistic choice.

Our denotational model for PCFS will rest on relevant monads from the
literature, or variants thereof. For purposes of uniformity, the space PS(X)
of “choices” of elements of X will always be a dcpo of continuous maps from
[X → I] to I, where we remind the reader that I = [0, 1].

Given a space X, let 1 denote the constant map from X to I with value
1. For every a ∈ I, a1 is the constant map with value a.
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Definition 4.1 (Prevision). Let X be a topological space. A prevision on
X is any continuous map F from [X → I] to I such that:

• F (ah) = aF (h) for all a ∈ I, h ∈ [X → I];

• F (a1 + (1− a)h) ≤ a+ (1− a)F (h) for all a ∈ I, h ∈ [X → I].

Previsions, and more generally all the functionals we shall consider, are or-
dered pointwise: F ≤ F ′ if and only if F (h) ≤ F ′(h) for every h ∈ [X → I].

Remark 4.2. Up to isomorphism, these are the same objects as those which
we called continuous, subnormalized previsions in [11].

The latter were defined as continuous maps F from the poset 〈X → R+〉
of all bounded Scott-continuous maps from X to R+ to R+ (with the pointwise
ordering), such that F (ah) = aF (h) and F (a+h) ≤ a+F (h) for all a ∈ R+,
h ∈ 〈X → R+〉. Such a map yields a prevision in the sense of Definition 4.1
by restricting it to [X → I], noticing that F (h) must then be in I for every
h ∈ [X → I]. (Indeed, F (0 1) = 0 since F (0h) = 0.F (h) for every h; so
F (1) = F (1 + 0 1) ≤ 1 + F (0 1) = 1, whence we infer F (h) ≤ F (1) = 1.)
Conversely, any prevision F in the sense of Definition 4.1 yields a contin-
uous, subnormalized prevision in the sense of [11] by extending it to every
h ∈ 〈X → R+〉 as yielding aF (h/a), for any upper bound a ∈ R+ on the
values of h.

To deal with the non-probabilistic cases, we introduce the following. A
map between pointed dcpos is called strict if and only if it maps bottom to
bottom. In particular, a strict map f : I→ I is one that maps 0 to 0.

Definition 4.3 (Discrete Prevision). Let X be a topological space. A
functional F : [X → I] → I is discrete if and only if, for every h ∈ [X → I]
and every strict Scott-continuous map f : I → I, F (f ◦ h) = f(F (h)). A
discrete prevision is a prevision that is discrete in this sense.

Discreteness implies F (ah) = aF (h) for every a ∈ I, by taking f(t) = at.
Therefore, in verifying that a functional is a discrete prevision, we only need
to verify that it is continuous, discrete, and satisfies the second property of
Definition 4.1, not the first one.

Discreteness also implies that F sends every continuous map h : X →
{0, 1} to a value in {0, 1}: letting f map 0 to 0 and every t ∈ (0, 1] to 1,
discreteness together with f ◦ h = h implies F (h) = f(F (h)) ∈ {0, 1}. More

8



precisely, the restriction F|[X→{0,1}] is an element of the poset [[X → {0, 1}]→
{0, 1}]0 of strict continuous functionals from [X → {0, 1}] to {0, 1}. Here,
the set {0, 1} is equipped with the ordering induced from I; this is sometimes
called Sierpiński space.

Lemma 4.4. The restriction map that sends every discrete prevision F on
X to F|[X→{0,1}] ∈ [[X → {0, 1}] → {0, 1}]0 is an order isomorphism.
Its inverse maps Φ ∈ [[X → {0, 1}] → {0, 1}]0 to F defined by F (h) =
supt∈I tΦ(χh−1(↑↑t)).

In order to clarify the notation ↑↑t in the last statement, note that the way-
below relation � on I is defined by t � u if and only if t = 0 or t < u.
Accordingly, ↑↑t is equal to (t, 1] if t 6= 0, and to [0, 1] if t = 0. Also, we write
χU for the characteristic map of U .

Proof. We first draw a few consequences of the fact that F is discrete. χU
is a continuous map if and only if U is open. Also, all the continuous maps
h : X → {0, 1} are of this form, with U = h−1(0, 1].

For h ∈ [X → I], using the definition of discrete previsions with f = χ↑↑t,
so that f ◦ h = χh−1(↑↑t), we obtain F (χh−1(↑↑t)) = χ↑↑t(F (h)). Multiplying by
t and taking sups, while noticing that the pointwise supremum supt∈I tχ↑↑t is
the identity map on I, F (h) = supt∈I tF (χh−1(↑↑t)).

We can therefore define the inverse map as mapping Φ ∈ [[X → {0, 1}]→
{0, 1}]0 to the functional F defined by F (h) = supt∈I tΦ(χh−1(↑↑t)). Note
that, conversely, the restriction of the latter to [X → {0, 1}] is Φ: for every
h ∈ [X → {0, 1}], write h = χU for some open subset U of X, observe that
h−1(↑↑t) is equal to X if t = 0, to U if 0 < t < 1 and to ∅ if t = 1, so that
F (h) = supt∈(0,1) tΦ(χU) = Φ(h).

The only remaining non-obvious claim is that F really is a discrete pre-
vision. Scott-continuity is easy and F (ah) = aF (h) will follow from discrete-
ness, as explained in the remark following Definition 4.3.

We deal with the case where Φ(χX) = 0 separately. In that case, Φ is
identically zero, so F = 0 as well, and F is therefore a discrete prevision.
Otherwise, assume Φ(χX) 6= 0. Then F (h) is the supremum of all t ∈ I such
that Φ(χh−1(↑↑t)) = 1. This is a non-empty family, and it is easily seen to be
directed.

Let us show that F is discrete. Consider a strict Scott-continuous function
f : I → I. We first show that f(F (h)) ≤ F (f ◦ h). To this end, pick any
t� f(F (h)), and by interpolation find v such that t� v � f(F (h)). Since
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F (h) is the (directed) sup of all u ∈ I such that Φ(χh−1(↑↑u)) = 1, and f is
continuous, f(F (h)) is the sup of all f(u) for u ∈ I such that Φ(χh−1(↑↑u)) = 1.
Since v is way-below this sup, there is an u ∈ I such that v ≤ f(u) and
Φ(χh−1(↑↑u)) = 1. Since t � v ≤ f(u), u ∈ f−1(↑↑t), so ↑↑u ⊆ f−1(↑↑t), from

which we obtain h−1(↑↑u) ⊆ h−1(f−1(↑↑t)) = (f ◦ h)−1(↑↑t). It follows that
Φ(χ(f◦h)−1(↑↑t)) = 1. By definition F (f ◦ h) must then be at least t. Taking
sups over all t� f(F (h)), we obtain f(F (h)) ≤ F (f ◦ h).

For the converse inequality, pick any t� F (f ◦h), so there is an element
u ∈ I such that t ≤ u and Φ(χ(f◦h)−1(↑↑u)) = 1. The open subset f−1(↑↑u)
is non-empty: if it were empty, then χ(f◦h)−1(↑↑u) = χh−1(f−1(↑↑u)) would be
identically 0, so Φ(χ(f◦h)−1(↑↑u)) would be equal to 0 by strictness, not 1. As

an open subset of I, f−1(↑↑u) is the union of all subsets of the form ↑↑v where
v ∈ f−1(↑↑u), and this union is non-empty (because f−1(↑↑u) is non-empty)
and directed (because I is a chain). It follows that χ

(f◦h)−1(↑↑u) = χh−1(f−1(↑↑u))

is the sup of the directed family of all maps χh−1(↑↑v), v ∈ f−1(↑↑u). Since

Φ maps it to 1, and is Scott-continuous, there is a v ∈ f−1(↑↑u) such that
Φ(χh−1(↑↑v)) = 1. By definition, F (h) ≥ v, and v ∈ f−1(↑↑u) implies that
f(v) ≥ u ≥ t, so f(F (h)) ≥ t. Taking sups over all t� F (f ◦ h), f(F (h)) ≥
F (f ◦ h).

We must finally show that F (a1 + (1 − a)h) ≤ a + (1 − a)F (h). When
a = 1, this means F (1) ≤ 1, which is clear. Otherwise, it will be easier
to consider an equivalent definition of F , viz., F (h) = supt∈I tΦ(χh−1(t,1]).

Indeed (t, 1] only differs from ↑↑t when t = 0, a case that contributes noth-
ing to the sup. For every t ∈ I, (a1 + (1− a)h)−1(t, 1] = h−1( t−a

1−a , 1] if

t ≥ a and (a1 + (1− a)h)−1(t, 1] = X if t < a, so F (a1 + (1 − a)h) =
sup(supt∈[0,a) tΦ(1), supt∈[a,1] tΦ(χh−1( t−a

1−a
,1])). Now Φ(1) ≤ 1, and renaming

t−a
1−a as u, supt∈[a,1] tΦ(χh−1( t−a

1−a
,1]) = supu∈[0,1](a + (1 − a)u)Φ(χh−1(u,1]) ≤

a+ (1− a) supu∈I uΦ(χh−1(u,1]) = a+ (1− a)F (h). 2

In particular, we could have simply defined the discrete previsions as the
strict Scott-continuous maps from [X → {0, 1}] to {0, 1}. One advantage of
not doing so is the uniformity of the following definition.

Definition 4.5 (PS). Let X be a topological space.

(PP) PP(X) is the set of all previsions F on X that are linear, i.e., such that
F (ah+ (1−a)h′) = aF (h) + (1−a)F (h′) for all a ∈ I, h, h′ ∈ [X → I].

10



(PAP) PAP(X) is the set of all previsions F on X that are sublinear, i.e.,
such that F (ah + (1 − a)h′) ≤ aF (h) + (1 − a)F (h′) for all a ∈ I,
h, h′ ∈ [X → I].

(PA) PA(X) is the set of all sublinear discrete previsions on X.

(PDP) PDP(X) is the set of all previsions F on X that are superlinear, i.e.,
such that F (ah + (1 − a)h′) ≥ aF (h) + (1 − a)F (h′) for all a ∈ I,
h, h′ ∈ [X → I].

(PD) PD(X) is the set of all superlinear discrete previsions on X.

(PADP) PADP(X) is the set of all forks on X, i.e., of all pairs (F−, F+) ∈
PDP(X)× PAP(X) that satisfy Walley’s condition:

F−(ah+ (1− a)h′) ≤ aF−(h) + (1− a)F+(h′) ≤ F+(ah+ (1− a)h′)

for all a ∈ I, h, h′ ∈ [X → I].

(PAD) PAD(X) is the set of discrete forks, i.e., of forks (F−, F+) where both
F− and F+ are discrete previsions.

Walley’s condition implies, but is not equivalent to, F− ≤ F+. We shall see
in Lemma 4.7 3 that Walley’s condition simplifies somewhat in the discrete
(PADP) case. In the general case, Walley’s condition has the following geomet-
rical interpretation. Imagine you draw F− and F+ as curves, with h on the
x-axis (see Figure 1). Walley’s condition means that the line segment from
the point on the F− curve with x value h to the point on the F+ curve with
x value h′ remains entirely between the two curves (as shown left), and never
crosses the curves (as shown right).

Recall that previsions are ordered pointwise. Forks are ordered compo-
nentwise: (F−1 , F

+
1 ) ≤ (F−2 , F

+
2 ) if and only if F−1 ≤ F−2 and F+

1 ≤ F+
2 . Then

PS(X) is a pointed dcpo, whatever S is.
Up to the isomorphism mentioned in Remark 4.2, the elements of PS(X)

coincide with the linear (resp., upper, lower) continuous, subnormalized pre-
visions on X of [11] when S = P (resp., D, A), which were proposed as
denotational models of probabilistic (resp., probabilistic plus demonic non-
deterministic, probabilistic plus angelic non-deterministic) choice in op. cit.
Notably, PP(X), is isomorphic to Jones and Plotkin’s (sub)probabilistic pow-
erdomain V≤1(X) [21, 20]. The latter is the dcpo of all subnormalized con-
tinuous valuations, that is, all Scott-continuous maps ν from the dcpo O(X)
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F−

F+

h h′
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F+

h

Figure 1: Walley’s condition: OK (left), fails (right)

of open subsets of X to I such that ν(∅) = 0 and ν(U ∪ V ) + ν(U ∩ V ) =
ν(U) + ν(V ) for all U, V ∈ O(X). The isomorphism maps F ∈ PP(X) to
ν ∈ V≤1(X) defined by ν(U) = F (χU), where χU is the characteristic map
of U . Conversely, one retrieves F from ν by F (h) =

∫
x∈X h(x)dν.

Remark 4.6. A prevision F is normalized if and only if F (a1+(1−a)h) =
a + (1 − a)F (h) for all a ∈ I, h ∈ [X → I]. We write P1

S(X) for the subset
of those normalized elements of PS(X).

We have chosen to use subnormalized previsions (or valuations), not nor-
malized ones (or probability valuations). This allows us to account for non-
termination, represented as the constant 0 prevision. We might also have
decided on using normalized previsions on X⊥ instead of X, where X⊥ is
X plus a fresh least element ⊥. The theory would essentially be equiva-
lent, since PS(X) is isomorphic to P1

S(X⊥). We leave this as an exercise:
map F ∈ PS(X) to (h′ ∈ [X⊥ → I] 7→ F (h′|X − h′(⊥) 1) + h′(⊥)), where

h′|X is the restriction of h′ to X, and conversely, map F ′ ∈ P1
S(X⊥) to

(h ∈ [X → I] 7→ F ′(ĥ)), where ĥ(x) = h(x) for every x ∈ X and ĥ(⊥) = 0.

When no probabilistic choice is involved, the domains of choices are usually
given by the Hoare, Smyth, and Plotkin powerdomains, rather than the dcpos
PA(X), PD(X), PAD(X) described above. We claim that these are the same
dcpos, up to isomorphism, in all practical situations. Historically, one may
trace the idea of characterizing these powerdomains as domains of second-
order functionals to Heckmann [17].

We start by observing that the conditions of linearity, sublinearity, su-
perlinearity, and Walley’s condition simplify somehow in the discrete case.
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Lemma 4.7. The isomorphism of Lemma 4.4 specializes to one between:

1. sublinear discrete previsions and those strict continuous functionals Φ ∈
[[X → {0, 1}]→ {0, 1}]0 that are sup-preserving, namely such that for
all open subsets U, V of X, Φ(χU∪V ) = max(Φ(χU),Φ(χV ));

2. superlinear discrete previsions and strict continuous functionals that
are inf-preserving, namely such that Φ(χU∩V ) = min(Φ(χU),Φ(χV ))
for all opens U, V ;

3. discrete forks and Heckmann pairs, namely pairs (Φ−,Φ+) of an inf-
preserving strict continuous functional Φ− and a sup-preserving strict
continuous functional Φ+, such that for all opens U, V of X, if Φ+(χV ) =
0 then Φ−(χU∪V ) = Φ−(χU), and if Φ−(χU) = 1 then Φ+(χU∩V ) =
Φ+(χV ).

In the latter case, note that Heckmann pairs satisfy Φ− ≤ Φ+. Indeed, for
every open subset V , if Φ+(χV ) = 0, then Φ−(χV ) = Φ−(χ∅∪V ) = Φ−(χ∅) =
0. Heckmann pairs are a direct reformulation of Heckmann’s A-valuations
[18], without the normalisation condition.

Proof. Write F for an arbitrary discrete prevision, and Φ for its restriction
to [X → {0, 1}].

1. If F is sublinear, then taking a = 1/2, h = χU and h′ = χV , F (1/2χU+
1/2χV ) ≤ 1/2Φ(χU) + 1/2Φ(χV ). Since χU∪V ≤ χU + χV , 1/2Φ(χU∪V ) ≤
1/2Φ(χU) + 1/2Φ(χV ), which implies that if Φ(χU) = Φ(χV ) = 0, then
Φ(χU∪V ) = 0. If Φ(χU) or Φ(χV ) is equal to 1, then Φ(χU∪V ) = 1 by
monotonicity. In any case, Φ(χU∪V ) = max(Φ(χU),Φ(χV )).

Conversely, assume Φ is sup-preserving. Given any non-empty family
(Ui)i∈I of open subsets of X, we can write their union as the directed union
of all finite unions

⋃
i∈J Ui, when J ranges over the non-empty subsets of I.

Since Φ is Scott-continuous and ∪-preserving, Φ(χ⋃
i∈I Ui

) = supi∈I Φ(χUi
):

we say that Φ preserves non-empty sups.
Recall that F is obtained from Φ by the formula F (h) = supt∈I tΦ(χh−1(↑↑t)).

For every element x in the open subset (ah+ (1− a)h′)−1(↑↑t), t� ah(x)+
(1 − a)h′(x), which implies that there are elements u, u′ ∈ I such that u �
h(x), u′ � h′(x), and t ≤ au+(1−a)u′. It follows that (ah+ (1− a)h′)−1(↑↑t)
is included in the union

⋃
u,u′∈I,t≤au+(1−a)u′(h

−1(↑↑u)∩h′−1(↑↑u′)). Since Φ pre-

serves non-empty sups, Φ(χ(ah+(1−a)h′)−1(↑↑t)) is equal to supu,u′∈I,t≤au+(1−a)u′
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Φ(χh−1(↑↑u)∩h′−1(↑↑u′)), and therefore:

F (ah+ (1− a)h′) = sup
t,u,u′∈I

t≤au+(1−a)u′

tΦ(χh−1(↑↑u)∩h′−1(↑↑u′))

≤ sup
t,u,u′∈I

t≤au+(1−a)u′

(au+ (1− a)u′)Φ(χh−1(↑↑u)∩h′−1(↑↑u′))

≤ sup
t,u,u′∈I

t≤au+(1−a)u′

(auΦ(χh−1(↑↑u)) + (1− a)u′Φ(χh′−1(↑↑u′)))

= aF (h) + (1− a)F (h′).

Thus 1 is proved. Before we proceed to 2, let us notice the following
Claim (∗): for every discrete prevision F , with restriction Φ = F|[X→{0,1}],
and for all open subsets U and V of X, F (1/2χU + 1/2χV ) = 1/2Φ(χU∪V ) +
1/2Φ(χU∩V ). This is proved as follows. For h = 1/2χU +1/2χV , we note that
h−1(↑↑t) is equal to ∅ if t = 1, to U ∩V if 1/2 ≤ t < 1, to U ∪V if 0 < t < 1/2,
and to X if t = 0. Using the formula F (h) = supt∈I tΦ(χh−1(↑↑t)), we ob-
tain F (h) = sup(sup1/2≤t<1 tΦ(χU∩V ), sup0<t<1/2 tΦ(χU∪V )) = sup(Φ(χU∩V ),
1/2Φ(χU∪V )). The latter can only have three possible values: 1 if Φ(χU∩V ) =
1 (hence also Φ(χU∪V ) = 1), 1/2 if Φ(χU∩V = 0) and Φ(χU∪V ) = 1, 0 if
Φ(χU∩V ) = Φ(χU∪V ) = 0. These are the same values as for 1/2Φ(χU∪V ) +
1/2Φ(χU∩V ).

2. If F is superlinear, then F (1/2χU + 1/2χV ) ≥ 1/2Φ(χU) + 1/2Φ(χV ).
Using (∗), 1/2Φ(χU∪V )+1/2Φ(χU∩V ) ≥ 1/2Φ(χU)+1/2Φ(χV ). If both Φ(χU)
and Φ(χV ) equal 1, then this inequality implies that Φ(χU∩V ) = Φ(χU∪V ) =
1. In all other cases, Φ(χU∩V ) = 0 by monotonicity. In any case, Φ(χU∩V ) =
min(Φ(χU),Φ(χV )).

Conversely, assume that Φ is inf-preserving. We compute aF (h) + (1 −
a)F (h′) = supu,u′∈I(auΦ(χh−1(↑↑u))+(1−a)u′Φ(χh′−1(↑↑u′))). Using the fact that
Φ takes its values in {0, 1}, one checks that this is the sup over the values
u, u′ ∈ I such that Φ(χh−1(↑↑u)) = Φ(χh′−1(↑↑u′)) = 1 of the quantity au+(1−a)u′

(the other terms of the supremum do not contribute any larger value). For
every such pair u, u′, since Φ is inf-preserving, Φ(χh−1(↑↑u)∩h′−1(↑↑u′)) = 1. Since

h−1(↑↑u) ∩ h′−1(↑↑u′) ⊆ (ah+ (1− a)h′)−1(↑↑(au + (1 − a)u′)), we obtain that
aF (h) + (1 − a)F (h′) is less than or equal to the sup of the quantity au +
(1− a)u′ over all pairs u, u′ ∈ I such that Φ(χ(ah+(1−a)h′)−1(↑↑(au+(1−a)u′))) = 1;
this is at most the sup of all t ∈ I such that Φ(χ(ah+(1−a)h′)−1(↑↑t)) = 1, namely
F (ah+ (1− a)h′).
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3. Given a pair (F−, F+) of discrete previsions, write Φ− (Φ+) for the
restriction of F− (F+) to [X → {0, 1}].

If (F−, F+) is a fork, the first half of Walley’s condition with a = 1/2,
h = χU , h′ = χV yields F−(1/2χU + 1/2χV ) ≤ 1/2Φ−(χU) + 1/2Φ+(χV ).
In particular, if Φ+(χV ) = 0, then Φ−(χU∪V ) ≤ 2F−(1/2χU + 1/2χV ) ≤
Φ−(χU). Since Φ− is monotonic, we obtain Φ−(χU∪V ) = Φ−(χU). The second
half of Walley’s condition yields 1/2Φ−(χU) + 1/2Φ+(χV ) ≤ F+(1/2χU +
1/2χV ). The right-hand side, F+(1/2χU+1/2χV ), is equal to 1/2Φ+(χU∪V )+
1/2Φ+(χU∩V ) by (∗), so, if Φ−(χU) = 1 (hence also Φ−(χU∪V ) = 1), then
Φ+(χV ) ≤ Φ+(χU∩V ), whence Φ+(χV ) = Φ+(χU∩V ).

Conversely, if (Φ−,Φ+) is a Heckmann pair, then we claim that (F−, F+)
is a fork.

We first prove F−(ah + (1 − a)h′) ≤ aF−(h) + (1 − a)F+(h′), which
is the more difficult of the two inequalities that we must establish. Con-
sider an arbitrary t ∈ I such that Φ−(χ(ah+(1−a)h′)−1(↑↑t)) = 1. As in 1,

(ah+ (1− a)h′)−1(↑↑t) is included in the union
⋃
u,u′∈I,t≤au+(1−a)u′(h

−1(↑↑u) ∩
h′−1(↑↑u′)). We split this union into the terms such that Φ+(χh′−1(↑↑u′)) = 1
and those such that Φ+(χh′−1(↑↑u′)) = 0. We take an even larger subset by

replacing the terms h−1(↑↑u) ∩ h′−1(↑↑u′) of the first kind by h−1(↑↑u), and
those of the second kind by h′−1(↑↑u′). To sum up, (ah+ (1− a)h′)−1(↑↑t) is
included in the union U ∪ V , where:

• U is the union of the subsets h−1(↑↑u) where u ranges over those elements
of I such that, for some u′ ∈ I, t ≤ au+(1−a)u′ and Φ+(χh′−1(↑↑u′)) = 1;

• V is the union of the subsets h′−1(↑↑u′) when u′ ranges over those ele-
ments of I such that Φ+(χh′−1(↑↑u′)) = 0.

The union defining V is directed, since the sets h′−1(↑↑u′) form a chain (I is
a chain), and a non-empty one, because u′ = 1 satisfies Φ+(χh′−1(↑↑u′)) = 0,
since Φ+ is strict. Since Φ+ is Scott-continuous, Φ+(χV ) = 0.

Recalling that Φ−(χ(ah+(1−a)h′)−1(↑↑t)) = 1, and because Φ− is monotonic,
Φ−(χU∪V ) = 1. Using the definition of a Heckmann pair, Φ−(χU) = 1. In
particular, U is non-empty, since Φ− is strict. This implies that the union
defining U is also non-empty, and as it is a chain, it is directed. Since Φ− is
Scott-continuous and Φ−(χU) = 1, one of the terms in the union defining U
must have a Φ− value of 1, that is: there is a u ∈ I such that Φ−(χh−1(↑↑u)) = 1
and, for some u′ ∈ I, t ≤ au + (1 − a)u′ and Φ+(χh′−1(↑↑u′)) = 1. It follows
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that t ≤ aF−(h) + (1− a)F+(h′), and by taking sups over those t such that
Φ−(χ(ah+(1−a)h′)−1(↑↑t)) = 1, F−(ah+ (1− a)h′) ≤ aF−(h) + (1− a)F+(h′).

It remains to establish the inequality aF−(h) + (1−a)F+(h′) ≤ F+(ah+
(1 − a)h′). We should in principle distinguish four cases, depending on
whether there is a u ∈ I such that Φ−(χh−1(↑↑u)) = 1, and whether there is a
u′ ∈ I such that Φ+(χh′−1(↑↑u′)) = 1. If there is no such u, then F−(h) = 0, and
the claim is obvious. If there is no such u′, then F+(h′) = 0, and the claim is
obvious as well. So assume there is a u ∈ I such that Φ−(χh−1(↑↑u)) = 1 and a
u′ ∈ I such that Φ+(χh′−1(↑↑u′)) = 1, and consider arbitrary such values. Using
the definition of a Heckmann pair, Φ+(χh−1(↑↑u)∩h′−1(↑↑u′)) = Φ+(χh′−1(↑↑u′)) =

1. Every element of h−1(↑↑u) ∩ h′−1(↑↑u′) is in (ah+ (1− a)h′)−1(↑↑t), where
t = au + (1 − a)u′. So Φ+(χ(ah+(1−a)h′)−1(↑↑t)) = 1. The latter implies
F+(ah + (1 − a)h′) ≥ t = au + (1 − a)u′. Taking sups over u, u′, we ob-
tain F+(ah+ (1− a)h′) ≥ aF−(h) + (1− a)F+(h′). 2

The standard model of angelic non-deterministic choice is the Hoare pow-
erdomain H(X). This is the dcpo of all closed non-empty subsets of X,
ordered by inclusion. In order to account for non-termination again, we shall
consider the lifted Hoare powerdomain H⊥(X). This is the dcpo of all closed
subsets of X, including the empty one ∅, which acts as bottom element. (And
again, H⊥(X) is isomorphic to H(X⊥).) The essence of the following result
is due to Heckmann [17, Proposition 18.3.1].

Proposition 4.8. Let X be a topological space. (i) PA(X) and H⊥(X) are
isomorphic. (ii) P1

A(X) and H(X) are isomorphic.

Proof. In view of Lemma 4.7 (1), we can equate PA(X) with the strict,
sup-preserving continuous functionals. Heckmann showed that the latter
formed a poset that is isomorphic to H⊥(X). Here is the argument. Given
any poset Z, we can equate the Scott-continuous maps from Z to {0, 1}
with (the characteristic maps of) open subsets of Z: [Z → {0, 1}] ∼= O(Z).
Modulo this identification, [[X → {0, 1}]→ {0, 1}]0 is the collection of Scott-
open subsets of O(X) not containing ∅. The sup-preserving functionals are
equated with what Heckmann calls the open grills, i.e., the non-trivial Scott-
open subsets G of O(X) such that, for all U, V ∈ O(X) with U ∪ V ∈ G, U
or V is in G. Given any open grill G, the union of any family of open sets not
in G must still be outside G, so there is a largest open subset not in G. The
isomorphism of (i) maps G (or the isomorphic sublinear discrete prevision
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F ) to the complement of this largest open subset. The isomorphism of (ii)
is obtained by restriction to the relevant subsets. 2

Remark 4.9. Explicitly, the isomorphism maps F to the complement of the
largest open subset U of X such that F (χU) = 0. Its inverse maps every
closed subset C of X to the open grill of all the open subsets U that intersect
C; equivalently, to the sublinear discrete prevision that maps h ∈ [X →
{0, 1}] to supx∈C h(x). (The actual formula from Lemma 4.4 is sup{t ∈
I | h−1(↑↑t) intersects C}. But h−1(↑↑t) intersects C if and only if for some
x ∈ C, t� h(x), and this is equivalent to t� supx∈C h(x). The sup of these
numbers t is exactly supx∈C h(x).)

The standard model of demonic non-deterministic choice is the Smyth
powerdomain Q(X) of all non-empty compact saturated subsets of X, or-
dered by reverse inclusion. We consider its lifted version: Q⊥(X) is Q(X)
plus an extra least element. (Again, this is isomorphic to Q(X⊥), where the
least element of the latter is X⊥ itself.) The following is a slight variant of a
result by Heckmann [17, Proposition 19.2.1].

Proposition 4.10. Let X be a sober topological space (e.g., a continuous
dcpo). (i) PD(X) and Q⊥(X) are isomorphic. (ii) P1

D(X) and Q(X) are
isomorphic.

We will not define what sober means, see [10, Definition O-5.6] or [2, Sec-
tion 7.2.1]. In this paper, we only use the fact that every continuous dcpo
is sober in its Scott topology, see [10, Corollary II-1.12] or [2, Proposi-
tion 7.2.27].

Proof. Using Lemma 4.7 (2), and equating [Z → {0, 1}] with O(Z) as
above, PD(X) is isomorphic to the poset of all Scott-open subsets F of O(X)
that do not contain ∅ and are closed under binary intersections: if U1, U2 ∈ F
then U1∩U2 ∈ F . Apart from the empty set, these subsets F are exactly the
Scott-open filters of open subets of X, and the Hofmann-Mislove Theorem
[10, Theorem II-1.20] states that F must then be equal to the set of open
neighborhoods of Q, where Q is some uniquely determined compact satu-
rated subset of X; precisely, Q is the intersection

⋂
F of all the elements of

F . Moreover, since the empty set does not belong to F , Q is non-empty.
Mapping the Scott-open filters F to

⋂
F , and the empty family to ⊥ there-

fore yields an isomorphism with image Q⊥(X). By composition with the
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isomorphism of Lemma 4.7 (2), we obtain the isomorphism mentioned in (i)
(and, by restriction, (ii) as well). 2

Remark 4.11. The isomorphism maps every superlinear discrete prevision
F to ⊥ if F is identically 0, and to

⋂
{U ∈ O(X) | F (χU) = 1} ∈ Q(X)

otherwise. Its inverse maps ⊥ to the constant 0 prevision, and every Q ∈
Q(X) to the prevision mapping h ∈ [X → I] to minx∈Q h(x). The latter
requires some proof. We first realize that minx∈Q h(x) is attained: indeed the
image h[Q] of Q by h is compact, so ↑h[Q] is compact saturated in I; but the
compact saturated subsets of I are the closed intervals [a, 1], so there is an
x ∈ Q such that h(x) = a = minx∈Q h(x). Then, the formula of Lemma 4.4
yields that h should be mapped to sup{t ∈ I | Q ⊆ h−1(↑↑t)}. For every t,
Q ⊆ h−1(↑↑t) if and only if t � minx∈Q h(x), and taking sups over t ∈ I, we
obtain that sup{t ∈ I | Q ⊆ h−1(↑↑t)} = minx∈Q h(x).

A similar treatment of the standard model of erratic non-deterministic
choice—the Plotkin powerdomain P`(X)—is possible as well. The easiest
route is through Heckmann’s A-valuations [18]. Let A be the poset {0,M, 1},
ordered by 0 < M < 1. A sub-A-valuation on a space X is a strict Scott-
continuous map α : O(X) → A such that, for all U, V ∈ O(X), if α(V ) = 0
then α(U ∪ V ) = α(U), and if α(U) = 1 then α(U ∩ V ) = α(V ). An
A-valuation is a sub-A-valuation such that α(X) = 1.

Sub-A-valuations look a lot like Heckmann pairs (Lemma 4.7 3), and in-
deed every Heckmann pair (Φ−,Φ+) yields a sub-A-valuation α, defined by
α(U) = 0 if Φ+(χU) = 0, α(U) = M if Φ−(χU) = 0 and Φ+(χU) = 1, and
α(U) = 1 if Φ−(χU) = 1. Conversely, every sub-A-valuation α yields a Heck-
mann pair (Φ−,Φ+), where Φ−(χU) = 0 if α(U) = 0, Φ−(χU) = 1 otherwise,
and Φ+(χU) = 1 if α(U) = 1, Φ+(χU) = 0 otherwise. This defines an isomor-
phism of posets, once sub-A-valuations are ordered pointwise, which restricts
to an isomorphism between normalized Heckmann pairs (i.e., those such that
Φ−(1) = 1) and A-valuations.

Proposition 4.12. Let X be a topological space. (i) PAD(X) and the poset
of sub-A-valuations on X are isomorphic. (ii) P1

AD(X) and the poset of A-
valuations on X are isomorphic.

One sees that the poset of sub-A-valuations on X is also isomorphic to the
poset of A-valuations on X⊥, by similar arguments as in the Hoare and
Smyth cases. The relevance to the Plotkin powerdomain P`(X), which is
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(S ⊆ {D, P})

Demonic cases
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Angelic cases
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Erratic cases

(S ⊆ {P}, ↓may = ↓must)

Deterministic cases
∅

A P D

AP AD DP

(↓must)

Figure 2: The Eight Languages PCFS , S ⊆ {A, D, P}

defined rather differently [2, Section 6.2.1], is that the poset of A-valuations
on X is isomorphic to it in common cases: when X is a continuous dcpo
[18, Corollary 6.2], a Hausdorff space [18, Theorem 5.1], or a stably compact
space [13, Proposition 5.3].

5. PCF with Choice

Let us proceed to the definition of our languages PCFS, where S is one
among the seven non-empty subsets of {A, D, P}. Whatever S, PCFS will
be an extension of PCF [38], a simply-typed λ-calculus with support for
primitive arithmetic and recursion.

5.1. Syntax

The ground types are:

γ ::= Nat | Unit.

The standard presentation of PCF only uses Nat. We find it practical to
use the unit type Unit as well. Intuitively, while the values of Nat are the
natural numbers, Unit has just one value ∗, representing termination. In
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usual presentations of PCF, Unit is usually emulated by Nat, representing ∗
as 0, for instance.

The general types are:

σ, τ ::= γ | σ → τ

There is no dedicated type for choice sets, as one would require if we used
the syntax of Moggi’s monadic metalanguage [31]. Instead, all types will be
thought as choice sets of actual elements of the type. For example, Nat will
be interpreted denotationally as PS(N), where N is the dcpo of all natural
numbers, ordered by equality.

The terms of PCFS are those of PCF, plus binary choice constructs >
and ⊕. We also include a let construct that allows one to force a sequential
order of evaluation. In particular, while PCFS is a call-by-name language,
just like PCF, it also includes some features of call-by-value: notably, one
can encode the call-by-value application of M to N as letx⇐ N inMx.

Just like PCF, PCFS is a typed language. We write M : τ to abbreviate
that M is a term of type τ . Explicitly, the terms of PCFS are inductively
defined by the rules:

• There are countably many variables xτ of type τ , for each type τ . We
shall usually abbreviate xτ as x when the type is clear or irrelevant, as
in, e.g., λxτ . x.

• For every natural number n, n is a term of type Nat.

• ∗ is a term of type Unit.

• For every term M : σ → τ and every term N : σ, the application MN
is a term of type τ .

• For every term M : τ , for every variable xσ, λxσ . M is a term of type
σ → τ .

• For every type τ , for every term M : τ → τ , YM is a term of type τ .

• For every M : Nat, succM and predM are terms of type Nat.

• For every type τ , for all terms M : Nat, N : τ , P : τ , ifz M N P is a
term of type τ .
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• For all terms M : σ and N : τ , letxσ ⇐M in N is a term of type τ .

• In PCFS where S contains at least one of A or D (non-deterministic
choice), for every type τ , for all terms M : τ and N : τ , M > N is a
term of type τ .

• In PCFS where S contains P, for every type τ , for all terms M : τ and
N : τ , M ⊕N is a term of type τ .

The variable x is bound in λx . M and in letx⇐M in N ; in the latter
case, its scope is the term N . We take the usual conventions on α-renaming
of bound variables.

Among these, the values V are ∗, n, and expressions of the form λxσ .M .

5.2. Operational Semantics

We define the operational semantics of PCFS using a context machine,
similar for example to the Krivine abstract machine [5]. A distinctive aspect
of such machines is that they run by rewriting configurations to other con-
figurations by elementary steps, where a configuration is a pair C ·M of an
evaluation context C and of a term M . The evaluation contexts C are certain
terms with a distinguished unique occurrence of a placeholder , called the
hole. The term C[M ] is obtained by replacing the hole by the term M , and a
configuration C ·M encodes the fact that we are attempting to find the value
of C[M ], together with the fact that the current focus is on the subterm M .

Evaluation contexts are typed, too, and we shall reserve the notation
C : σ ` τ to state that C has type τ provided we assume the hole has type
σ.

For reasons of proof, it is more profitable to define evaluation contexts
as finite sequences of elementary evaluation contexts, which only apply one
PCFS construct to the hole (and possibly other terms).

Definition 5.1 (Evaluation Context). An elementary evaluation context
is any formal expression of one of the following forms:

• [ N ], of type (σ → τ) ` τ , for any term N : σ, and all types σ, τ ;

• [succ ] and [pred ], of type Nat ` Nat;

• [ifz N P ], of type Nat ` τ , for all terms N,P : τ , and every type τ ;

• [letxσ ⇐ in N ], of type σ ` τ , for every term N : Nat;
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C ·MN → C[ N ] ·M C · predN → C[pred ] ·N
C · succN → C[succ ] ·N C · ifzM N P → C[ifz N P ] ·M

C · letx⇐M in N → C[letx⇐ in N ] ·M

Figure 3: Redex Discovery Rules in PCFS

C[ N ] · λx . P → C · P [x := N ] C · YN → C ·N(YN)
C[pred ] · n+ 1→ C · n C[succ ] · n→ C · n+ 1
C[ifz N P ] · 0→ C ·N C[ifz N P ] · n+ 1→ C · P
C[letx⇐ in N ] · V → C ·N [x := V ] (V a value)

Figure 4: Computation Rules in PCFS

An evaluation context C of type σ ` τ is any finite sequence EnEn−1 . . . E2E1

of elementary evaluation contexts E1 : σ0 ` σ1, E2 : σ1 ` σ2, . . . , En−1 :
σn−2 ` σn−1, En : σn−1 ` σn, where σ0 = σ and σn = τ . (When n = 0,
we write for the empty evaluation context, which has all types of the form
σ ` σ.)

A configuration is a pair C ·M of an evaluation context C of type τ ` Unit
and of a term M : τ .

Given any elementary evaluation context E1 of type σ → τ , and any term M :
σ, the result E1[M ] of replacing the hole in E1 by M yields a term of type
τ . We extend this to arbitrary evaluation contexts C = EnEn−1 . . . E2E1, by
defining C[M ] as En[En−1[. . . E2[E1[M ]] . . .]].

One should note that our machine will only work on configurations C ·M ,
such that C[M ] has type Unit. One might as well replace the latter by any
type in the definition of the machine itself, but it will be important that it
be a ground type, when we attack questions of computational adequacy and
of full abstraction.

The rules of the PCFS machine will comprise four kinds of rules. We first
find the redex discovery rules of Figure 3, whose rule is to shift the focus until
one finds a place where computation can happen. Deterministic computation
occurs through the computation rules of Figure 4, which contract a redex
under focus.

As far as choice (>, ⊕) is concerned, rules such that M > N → M ,
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C ′ ·M ′ ↓m a
if C ·M → C ′ ·M ′

C ·M ↓m a
(a ∈ [0, 1))

· ∗ ↓m a C ·M ↓m 0

C ·M ↓may a

C ·M >N ↓may a

C ·N ↓may a

C ·M >N ↓may a
(both only if A ∈ S)

C ·M ↓must a C ·N ↓must a

C ·M >N ↓must a

C ·M ↓m a C ·N ↓m b

C ·M ⊕N ↓m 1
2
(a+b)

(only if D ∈ S) (only if P ∈ S)

Figure 5: Termination Semantics for PCFS

M > N → N would be in order, but using termination judgments in the
style of Pitts and Stark [37] will prove to be more convenient. In such a
semantics, we give rules to derive judgments of the form C · M↓ stating
that M terminates when evaluated in evaluation context C. In the presence
of non-determinism, this judgment must be split in two: C ·M↓may states
that M may terminate when evaluated in evaluation context C, i.e., that
some execution of C ·M eventually terminates, and C ·M↓must states that M
must terminate when evaluated in evaluation context C, i.e., that all possible
executions of C ·M do terminate.

In the presence of probabilistic choice, it is reasonable to ask whether
C ·M terminates with probability greater than some fixed number a. By
“greater” we mean way-greater, the opposite of the way-below relation on I,
which will be mathematically convenient. We write this judgment C ·M ↓ a,
and recall that, due to the way � behaves on I, this means: the probability
that C ·M terminates is strictly greater than a, when a > 0; the probability
that C ·M terminates is greater than or equal to 0, when a = 0. The latter
statement looks like a triviality, yet we need a specific rule to ensure that
it holds for all configurations, including non-terminating configurations: see
the top right rule in Figure 5. For reasons of implementability, a should
be taken rational. It should also be taken in [0, 1), excluding 1, because a
probability cannot be way-greater than 1.

In the presence of both forms of choice, we use judgments of the form
C ·M ↓may a (“there is a strategy for resolving all non-deterministic choices
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to come, such that C ·M terminates with probability way-greater than a,
when evaluated under this strategy”) and C ·M ↓must a (“for every strategy,
C ·M will necessarily terminate with probability way-greater than a, when
evaluated under this strategy”). In general, our judgments will be of the
form C ·M ↓m a where the mode m is either may or must, and a is a rational
number in [0, 1): see Figure 5. Note that, depending on the subscript S in
the name of the language (PCFS) that we consider, some of the rules may be
absent. E.g., the two middle rules are only present in PCFA, PCFAD, PCFAP

and PCFADP.
The last four rules implement choice. The top left rule incorporates all

our deterministic rules from Figure 3 and Figure 4. For example, it implies
the following derivation:

C · P [x := N ] ↓m a

C[ N ] · λx . P ↓m a
which states that to ensure that λx . P terminates (may, must; with proba-
bility larger than a) when applied to N in evaluation context C, it suffices
to show that P [x := N ] terminates in evaluation context C.

The middle top rule of Figure 5 is the final state rule: it states that
any configuration of the form · ∗ is final, i.e., terminates (may, must) with
probability exactly 1. Since the type of any evaluation context C appearing
in a configuration is of the form τ ` Unit, · ∗ is the only configuration that
we can sensibly call final.

Given a configuration C · M , the set of numbers a ∈ [0, 1) such that
C ·M ↓m a is derivable:

• is non-empty: 0 is in it, by the top right rule of Figure 5;

• is downward closed: for a, b ∈ [0, 1), if C ·M ↓m a is derivable, and
b ≤ a, then C ·M ↓m b is derivable, too;

• and is such that if a > 0 is in it, then there is an even larger b > a in
it: for a ∈ (0, 1) such that C ·M ↓m a is derivable, there is a b ∈ (a, 1)
such that C ·M ↓m b is derivable, too.

The latter two properties are proved by induction on the derivation. These
properties imply that the set of values a ∈ [0, 1) such that C · M ↓m a is
derivable is an interval, and one that is entirely described by their supremum.
Temporarily calling this supremum A, this interval is {0} if A = 0, and [0, A)
otherwise. We reserve the following notation for this supremum.
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Definition 5.2. Given any PCFS term M : τ , and any evaluation context
C of type τ ` Unit, let Pr(C · M↓m) be sup{a ∈ Q ∈ [0, 1) | C · M ↓m
a is derivable}, where sups are taken in [0, 1].

Proposition 5.3. The following equalities hold:

Pr(C ·M ⊕N↓m) = 1
2
(Pr(C ·M↓m) + Pr(C ·N↓m))

Pr(C ·M >N↓may) = max(Pr(C ·M↓may),Pr(C ·N↓may))
Pr(C ·M >N↓must) = min(Pr(C ·M↓must),Pr(C ·N↓must)).

Proof. Define ⇓ A as [0, A) when A ∈ (0, 1], {0} when A = 0. We have
seen that ⇓ Pr(C ·M↓m) is the set of values a ∈ [0, 1) such that C ·M ↓m a
is derivable.

Let A = Pr(C ·M↓m), B = Pr(C ·N↓m). The set of numbers of the form
1
2
(a + b), a ∈⇓ A, b ∈⇓ B, is equal to ⇓ 1

2
(A + B). Using the bottom right

rule of Figure 5, it follows that ⇓ Pr(C ·M ⊕ N↓m) =⇓ 1
2
(A + B), whence

Pr(C ·M ⊕N↓m) = 1
2
(A+B). The other two equalities are proved by noting

that ⇓ A∪ ⇓ B =⇓ max(A,B) and ⇓ A∩ ⇓ B =⇓ min(A,B). 2

5.3. Denotational Semantics

We define the semantics of type τ in PCFS as dcpos JτKS, as follows.
First, for every type τ , JτKS is defined as PS(JτK◦S), so that every type is
interpreted as a space of previsions (or forks). Then we let:

JNatK◦S = N
JUnitK◦S = {∗}

Jσ → τK◦S = [JσKS → JτKS]

where N is considered as a dcpo with ordering taken as equality. Notice that
JNatKS is PS(N): we incorporate the possibility of making non-deterministic,
resp. probabilistic choices on natural numbers, through the recourse to PS.

To distinguish the function that maps values v in a domain D to values
e(v) from the syntax λv . e(v), write such functions as (v ∈ D 7→ e(v)). For
each non-empty S ⊆ {A, D, P}, PS defines the functor part of a monad (more
on this in Remark 5.4). Using notations inspired from Moggi [31], define:

valS a = (h ∈ [X → I] 7→ h(a)) (a ∈ X)
letS v ⇐ F in G(v) = (h ∈ [Y → I] 7→ F (v ∈ X 7→ G(v)(h)))
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whenever S 6⊇ {A, D}. One easily checks that valS a is in PS(X) for every
a ∈ X, and that valS : X → PS(X) is Scott-continuous. Also, for every
F ∈ PS(X), and for every continuous map G from X to PS(Y ), letS v ⇐ F in
G(v) is an element of PS(Y ). This was shown in the non-discrete cases
(namely, P ∈ S) in [11]. Clearly, letS v ⇐ F in G(v) is a discrete prevision
when F is discrete and when G(v) is discrete for every v ∈ X, which covers
the remaining cases. Finally, letS v ⇐ F in G(v) is Scott-continuous in F
and G, which will be required to make sure that the denotation of every
term, evaluation context, and value, is continuous, and therefore that the
denotation of YN makes sense.

When S ⊇ {A, D}, where elements of PS(X) are forks, not previsions,
the analogous quantities are computed componentwise. I.e., letting S− =
S ∩ {D, P} and S+ = S ∩ {A, P}, we let:

valS a = (valS− a, valS+ a)
letS v ⇐ F in G(v) = (letS− v ⇐ F− in G−(v), letS+ v ⇐ F+ in G+(v))

where F = (F−, F+), G(v) = (G−(v), G+(v))

Remark 5.4. Declaring that PS is the functor part of a monad only makes
sense once we have defined the ambient category. In this paper, this will
always be the category of dcpos and Scott-continuous maps, and we shall
always think of PS(X) as a dcpo of previsions.

Remark 5.5. The monads PS all have (order-preserving and) order-reflecting
units. In other words, valS a ≤ valS b if and only if a ≤ b. Indeed, valS a ≤
valS b implies that χU(a) ≤ χU(b) for every open subset U , i.e., that a is
below b in the specialization preorder. In particular, on T0 spaces (dcpos, for
example), valS is injective, and therefore an order embedding.

Remark 5.6. The monads PS are all strong. In the non-erratic cases S 6⊇
{A, D}, the so-called tensorial strength tX,Y : PS(X)× Y → PS(X × Y ) maps
(F,w) to letS v ⇐ F in valS(v, w), i.e., to (h ∈ [X × Y → I] 7→ F (v ∈
X 7→ h(v, w))). (In the erratic cases S ⊇ {A, D}, it maps ((F−, F+), w)
to (letS v ⇐ F− in valS(v, w), letS v ⇐ F+ in valS(v, w)).) The fact that
we are working in a category of dcpos, not general topological spaces,is im-
portant here: the formula (h ∈ [X × Y → I] 7→ F (v ∈ X 7→ h(v, w))) is
separately continuous in F and w, and joint continuity follows because joint
and separate continuity coincide on dcpos.

26



Remark 5.7. The monads PA, PD, PAD and PP are not just strong but even
commutative, meaning that for S = A, S = D, S = AD or S = P, the equation:

letS v ⇐ F in (letS w ⇐ G in valS(v, w)) (1)

= letS w ⇐ G in (letS v ⇐ F in valS(v, w))

holds. (Equivalently, letS v ⇐ F in (letS w ⇐ G in f(v, w)) = letS w ⇐ G in
(letS v ⇐ F in f(v, w)) for every continuous map f .) Expanding the defini-
tions in the non-erratic cases S 6⊇ {A, D}, PS is commutative if and only if,
for all dcpos X, Y , for all F ∈ PS(X), G ∈ PS(Y ), h ∈ [X × Y → I],

F (v ∈ X 7→ G(w ∈ Y 7→ h(v, w))) (2)

= G(w ∈ Y 7→ F (v ∈ X 7→ h(v, w))).

For PP, this is a form of Fubini’s Theorem, which one can obtain by
carrying Jones’s version for continuous valuations [20, Theorem 3.17] along
the isomorphism between PP(X) and V≤1(X).

For PA, we use Proposition 4.8 and the fact that the Hoare powerdomain
monad is commutative; using Remark 4.9, the essence of the proof is the fact
that, given two closed sets C, C ′, supx∈C supx′∈C′ h(x, x′) = supx′∈C′ supx∈C
h(x, x′).

For PD, a similar argument using Proposition 4.10 works provided that
X and Y are sober topological spaces, and the proof boils down to the fact
that given two compact saturated subsets Q, Q′, minx∈Q minx′∈Q′ h(x, x′) =
minx′∈Q′ minx∈Q h(x, x′). We deal with the general case, establishing (2) when
X and Y are general topological spaces, as follows. Embed X into its sobri-
fication Xs (see [10, Exercise V-4.9] or [14, Section 8.2]). Every previ-
sion F ∈ PS(X) extends to a prevision F̂ ∈ PS(Xs) by F̂ (h) = F (h|X),
where h|X is the restriction of h ∈ [Xs → I] to X. Note in particular that

F̂ is in PS(Xs): if F is discrete, resp. sublinear, resp. superlinear, then
so is F̂ . Since Xs and Y s are sober, we have seen that F̂ (v ∈ Xs 7→
Ĝ(w ∈ Y s 7→ h′(v, w))) = Ĝ(w ∈ Y s 7→ F̂ (v ∈ Xs 7→ h′(v, w))) for ev-
ery h′ ∈ [Xs × Y s → I]. For every h ∈ [X × Y → I], h extends to a unique
continuous map h′ from (X×Y )s → I [14, Theorem 8.2.44], and noting that
(X × Y )s = Xs × Y s up to natural isomorphism [14, Theorem 8.4.8], the
latter equality specializes to (2).

Showing that PAD is commutative reduces to the cases of PA and PD.
The monads PAP, PDP and PADP are not commutative, and this reflects the

fact that non-deterministic and probabilistic choices do not commute. For a
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J∗K◦S ρ = ∗ JnK◦S ρ = n Jλxσ . MK◦S ρ = (G ∈ JσKS 7→ JMKS (ρ[x := G]))

Figure 6: Denotational Semantics: Values

JxKS ρ = ρ(x) JV KS ρ = valS JV K◦S ρ (V a value)
JMNKS ρ = letS f ⇐ JMKS ρ in f(JNKS ρ)
JYNKS ρ = supn∈N f

n(0)
where f(F ) = letS g ⇐ JNKS ρ in g(F )

JpredMKS ρ = letS n⇐ JMKS ρ in

{
valS (n− 1) if n 6= 0
⊥ if n = 0

JsuccMKS ρ = letS n⇐ JMKS ρ in valS (n+ 1)

JifzM N P KS ρ = letSm⇐ JMKS ρ in

{
JNKS ρ if m = 0
JP KS ρ if m 6= 0

Jletx⇐M in NKS ρ = letS v ⇐ JMKS ρ in JNKS (ρ[x := valS v])
JM >NKS ρ = (h 7→ max(JMKS ρ (h), JNKS ρ (h)))(if A ∈ S, D 6∈ S)
JM >NKS ρ = (h 7→ min(JMKS ρ (h), JNKS ρ (h))) (if D ∈ S, A 6∈ S)
JM >NKS ρ = (h 7→ min(F−(h), G−(h)), (if A ∈ S, D ∈ S)

h 7→ max(F+(h), G+(h)))
where JMKS ρ = (F−, F+), JNKS ρ = (G−, G+)

JM ⊕NKS ρ = (h 7→ 1
2
(JMKS ρ (h) + JNKS ρ (h))) (if P ∈ S)

Figure 7: Denotational Semantics of PCFS

counter-example, let X = Y = B⊥, the dcpo containing three elements tt,
ff and ⊥, with tt and ff incomparable and above ⊥. For h ∈ [B⊥ → I],
let F (h) = max(h(tt), h(ff)) (in the angelic case; min(h(tt), h(ff)) in the
demonic case), G(h) = 1

2
(h(tt) + h(ff)). Consider now h ∈ [X × Y → I]

defined as the “equals to” function: h(v,⊥) = h(⊥, w) = ⊥, while for v, w 6=
⊥, h(v, w) equals 1 if v = w and 0 otherwise. Then F (v ∈ X 7→ G(w ∈
Y 7→ h(v, w))) = max(1

2
, 1
2
) = 1

2
(in the angelic case; min(1

2
, 1
2
) = 1

2
in the

demonic case), while G(w ∈ Y 7→ F (v ∈ X 7→ h(v, w))) = 1
2
(1 + 1) = 1 (in

the angelic case, 1
2
(0 + 0) = 0 in the demonic case). As usual, the erratic

case reduces to considering both the angelic and demonic cases together.

The denotational semantics JMKS ρ of a PCFS term M : τ in the envi-
ronment ρ, which maps variables xσ of type σ to values in JσKS, is defined
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in Figure 7. In the non-erratic cases S 6⊇ {A, D}, JMKS ρ is a prevision, so it
makes sense to apply it to a function h, yielding a non-negative real number
that we write JMKS ρ (h). The notation (JMKS ρ)(h) would have had the
advantage of making clearer what is the function and what is its argument,
but would have been cumbersome.

We use an auxiliary definition of JV K◦S ρ for values V : τ as well, see
Figure 6. The environment ρ[x := V ] is the map that takes x to V and all
other variables y 6= x to ρ(y). The ⊥ symbol in the definition of JpredMKS
denotes the bottom element of PS(N): recall that PS(X) is always pointed;
pointedness is the reason we have chosen to work with subnormalized, not
normalized previsions. On the third line of Figure 7, 0 denotes the constant
0 prevision, or the fork (0, 0), depending on S. We also agree formulae
such as 1

2
(A + B) are interpreted componentwise when A = (A−, A+) and

B = (B−, B+) are pairs; this serves to interpret the last line in the case
S = ADP.

It is easy to check that JMKS ρ is in JτKS for every M : τ , and that JV K◦S ρ
is in JτK◦ for every value V : τ , whatever S ⊆ {A, D, P}.

6. Soundness

In PCF, soundness states that if M evaluates to a normal form V (in
the operational semantics), then M and V have the same semantics. This
translates to the following in our setting, where we write � for the constant 1
map from {∗} to I. For any term P : Unit, the application of the functional
JP KS ρ to �, which we shall write JP KS ρ �, is to be understood as the prob-
ability that P terminates (if S = P), the least probability that P terminates
under all possible strategies (if S = DP or S = D), or the supremum of all
probabilities that P terminates (if S = AP or S = A).

In our case, we claim that soundness is the following fact, which states
that the denotational probability of terminating is at least the operational
probability of terminating. By “JC[M ]KS ρ makes sense”, we mean that it
must be defined according to Figure 7; for example, this excludes cases where
the symbol ⊕ would occur in C[M ] but P 6∈ S.

Lemma 6.1 (Soundness). Let C be an evaluation context of type σ `
Unit, M be a term of type σ, ρ be an arbitrary environment, and S be a
non-empty subset of {A, D, P} be such that JC[M ]KS ρ makes sense.

(S ⊆ {A, P}) JC[M ]KS ρ � ≥ Pr(C ·M↓may).
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(S ⊆ {D, P}) JC[M ]KS ρ � ≥ Pr(C ·M↓must).

({A, D} ⊆ S) Letting (F−, F+) = JC[M ]KS ρ, the two inequalities F+(�) ≥
Pr(C ·M↓may) and F−(�) ≥ Pr(C ·M↓must) hold.

Proof. Let us first extend the notation JCKS to the case where C is an
evaluation context, not a term: let JCKS ρ be the map Jλx . C[x]K◦S = (G 7→
JC[x]KS ρ[x := G]), where x is some fresh variable. It is easy to see that: (a)
JC[M ]KS ρ = JCKS ρ (JMKS ρ) for any term M such that JC[M ]KS ρ makes
sense. Also: (b) if C is the concatenation C ′E of an evaluation context C ′

with an elementary evaluation context E, then JCKS ρ = JC ′KS ρ ◦ JEKS ρ.
Let us prove the Lemma. More precisely, we shall show that, for a ∈ [0, 1):

(S ⊆ {A, P}) If C ·M ↓may a is derivable, then a� JC[M ]KS ρ �.

(S ⊆ {D, P}) If C ·M ↓must a is derivable, then a� JC[M ]KS ρ �.

({A, D} ⊆ S) If C ·M ↓must a− and C ·M ↓may a+ are derivable, then a− �
F−(�) and a+ � F+(�), where (F−, F+) = JC[M ]KS ρ.

We only prove the first case. The second one is similar, and the third one is
proved similarly to the conjunction of the first two. If a = 0, this is obvious,
so we assume a 6= 0. It remains to show that if C ·M ↓may a is derivable
and 0 < a < 1, then JC[M ]KS ρ � > a. This is by structural induction on
derivations.

C ·M ↓may a cannot have been derived by the top right rule of Figure 5,
since a 6= 0.

If C ·M ↓may a was derived by the top left rule of Figure 5, then there
is a redex discovery rule or a computation rule C ·M → C ′ ·M ′, and we
have derived C ′ ·M ′ ↓may a. By induction hypothesis, JC ′[M ′]KS ρ � > a. If
C ·M → C ′ ·M ′ was a redex discovery rule (Figure 3), then we conclude right
away that JC[M ]KS ρ � > a, since C[M ] = C ′[M ′]. If this is a computation
rule (Figure 4), then we must analyze each of the seven cases in turn. Let
us deal with the case of pred, where C ·M is of the form C1[pred ] · n+ 1,
and C ′ ·M ′ equals C1 · n. We check that Jpred(n+ 1)KS ρ = JnKS ρ. The
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left-hand side is:

Jpred(n+ 1)KS ρ

= letS n
′ ⇐ valS (n+ 1) in

{
valS (n′ − 1) if n 6= 0
⊥ if n = 0

= (h ∈ [N→ I] 7→ valS (n+ 1)(n′ 7→
{

valS (n′ − 1) (h) if n′ 6= 0
0 if n′ = 0

))

= (h ∈ [N→ I] 7→ valS((n+ 1)− 1) (h))
= (h ∈ [N→ I] 7→ valS n (h)) = valS n = JnKS ρ.

The induction hypothesis states that JC1[n]KS ρ � > a. By Claim (a) above,
JC1[n]KS ρ = JC1KS ρ (JnKS ρ), and this is equal to JC1KS ρ (Jpred(n+ 1)KS ρ) =
JC1[pred ][n+ 1]KS ρ, by (a) again.

The other seven computation rules are similar, and reduce to proving
that J(λx . P )NKS ρ = JP [x := N ]KS ρ (which we do by first noticing that
JP [x := N ]KS ρ = JP KS (ρ[x := JNKS ρ])), that JYNKS ρ = JN(YN)KS ρ, that
JsuccnKS ρ = valS (n+ 1) = Jn+ 1KS ρ, that Jifz 0 N P KS ρ = JNKS ρ
and Jifz n+ 1 N P KS ρ = JP KS ρ, and finally that for every value V : σ,
Jletxσ ⇐ V in NKS ρ = JN [x := V ]KS ρ.

The middle top rule of Figure 5 is trivial. If C ·M ↓may a using this rule,
then C is empty and M = ∗. Then JC[M ]KS ρ � = valS ∗(�) = �(∗) = 1 > a.

We finally deal with the four rules that implement choice (>, ⊕). This re-
lies on the following auxiliary claim, which states that the semantics JCKS ρ (F ) (h)
of an arbitrary evaluation context C, applied to a prevision F and a function
h, is given by applying F to some function, depending only on C, ρ and h.
Precisely, the claim is:

(∗) For every evaluation context C of type τ ` Unit, for every
h ∈ [JUnitKS → I], and every environment ρ, there is a function
C.ρh ∈ [JτKS → I] such that, for every F ∈ JτKS (necessarily a
prevision—or a fork when {A, D} ⊆ S), JCKS ρ (F ) (h) = F (C.ρh)
(resp., JCKS ρ (F−, F+) (h) = (F−(C.ρh), F+(C.ρh)) in the case
of forks).

We shall prove (∗) below. Using (∗), we show that evaluation of evalua-
tion contexts commutes with max, min and averaging operations. E.g., still
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assuming S ⊆ {A, P},

JC[M >N ]KS ρ (h) = JCKS ρ (JM >NKS ρ]) (h)
(by Claim (a), in the prologue of this proof)

= JM >NKS ρ (C.ρh) (by (∗))
= max(JMKS ρ (C.ρh), JNKS ρ (C.ρh))
= max(JCKS ρ (JMKS ρ)(h), JCKS (JNKS ρ)(h)) (by (∗))
= max(JC[M ]KS ρ (h), JC[N ]KS ρ (h))

Therefore, if C ·M>N ↓may a is deduced from C ·M ↓may a, then by induction
hypothesis, and letting h = �, JC[M ]KS ρ � > a, so JC[M >N ]KS ρ � > a.
The case S ⊆ {D, P} (with ↓must instead of ↓may) works similarly, trading max
for min. In the erratic cases {A, D} ⊆ S, we consider both max and min.

Finally, in the probabilistic cases, if C ·M⊕N↓m 1
2
(a+b) (0 < 1

2
(a+b) < 1)

is deduced from C ·M ↓ma and C ·N ↓mb, then: if a 6= 0 then JC[M ]KS ρ (h) >
a, and if b 6= 0 then JC[N ]KS ρ (h) > b. We do not know whether a 6= 0, or
b 6= 0, here, but one of a, b must be non-zero since 1

2
(a + b) 6= 0, and in any

case JC[M ⊕N ]KS ρ (h) = 1
2
(JC[M ]KS ρ (h) + JC[N ]KS ρ (h)) > 1

2
(a+ b).

It only remains to prove (∗). By Claim (b) in the prologue of this
proof, it is enough to show this when C is an elementary evaluation con-
text E: in the general case where C = EnEn−1 . . . E2E1, we shall take
C.ρh = E1.ρE2.ρ . . . .ρEn−1.ρEn.ρh.

All the cases are similar. E.g., let E be [ N ]. Then:

JEKS ρ (F ) (h) = JxNKS (ρ[x := F ]) (h)
= [letS f ⇐ F in f(JNKS ρ)] (h) = F (f 7→ f(JNKS ρ)(h))

so one can take E.ρh to be the map f 7→ f(JNKS ρ)(h) in this case. In
general, whatever elementary evaluation context E we consider, JEKS ρ (F )
is of the form letS f ⇐ F in g(f) for some expression g(f), and we can then
define E.ρh as being f 7→ g(f)(h). 2

7. Computational Adequacy

Computational adequacy is the converse of soundness, and says that if
M and a normal form N have the same denotational value, then M will
evaluate, operationally, to N . In PCF, this only holds at ground types. The
situation is similar in PCFS, where we shall prove this at type Unit, under
the empty evaluation context. Together with soundness, this will mean that

32



JMKS ρ � is equal to Pr( ·M↓may), or to Pr( ·M↓must), or to the pair of
these two quantities, depending on S.

This is also traditionally harder to prove than soundness. Our proof
strategy is adapted from Streicher [42]. A term M is closed if and only if it
has no free variable. We define closed evaluation contexts similarly (the hole

is not a variable.) A substitution θ is a map from variables to terms of the
same type, with finite domain. We write Mθ for the result of applying the
(capture-avoiding) substitution θ to M . The substitution θ is closed if and
only if xθ is closed for every variable x.

Definition 7.1 (<∼
m

σ
). For any two closed terms M , N of type σ, for any

mode m ∈ {may,must}, let M <∼
m

σ
N if and only if for every closed evaluation

context C of type σ ` Unit, Pr(C ·M↓m) ≤ Pr(C ·N↓m).
Extend this to (not necessarily closed) terms by M <∼

m

σ
N if and only if

Mθ <∼
m

σ
Nθ for every closed substitution θ.

On closed terms, it is equivalent to define M <∼
m

a
N if and only if, for every

rational number a ∈ [0, 1), if C · M ↓m a is derivable, then C · N ↓m a is
derivable.

We shall use the following argument again and again. Assume C ·M →
C ′ ·M ′. Then, for every a ∈ Q∩ [0, 1), every derivation of C ′ ·M ′ ↓m a can be
extended to one of C ·M ↓ma, by using the top left rule of Figure 5. It follows
that Pr(C ·M↓m) ≥ Pr(C ′ ·M ′↓m). For example, since C · YN → C ·N(YN)
(for any term N : τ → τ), Pr(C · YN↓m) ≥ Pr(C ·N(YN)↓m). In particular,
N(YN) <∼

m

τ
YN .

When M is closed, JMKS ρ is independent of ρ. Let us write it JMKS, for
short, then. Similarly, when M is a term with at most x as a free variable,
we shall write JMKS [x := V ] for JMKS ρ where ρ is any environment such
that ρ(x) = V .

Proposition 7.2. Let M be a closed term of type Unit, and S ⊆ {A, D, P}
be such that JMKS makes sense. Then:

(S ⊆ {A, P}) Pr( ·M↓may) = JMKS �.

(S ⊆ {D, P}) Pr( ·M↓must) = JMKS �.

({A, D} ⊆ S) Pr( · M↓must) = F−(�) and Pr( · M↓may) = F+(�), where
(F−, F+) = JMKS.
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Proof. We concentrate on the case S ⊆ {A, P}, where the mode m is may.
The other two cases are similar, and we shall evoke them briefly near the end
of the proof.

Define a binary logical relation Rτ between closed terms M of type τ (up
to α-renaming) and previsions (or forks) in JτKS, by induction on types, as
follows. Remembering that JτKS is equal to PS(JτK◦S), we shall also define
auxiliary relations R◦τ between closed terms M of type τ and values in JτK◦S,
and R⊥τ between closed evaluation contexts C of type τ ` Unit and functions
h ∈ [JτK◦S → I]. For short, we say “for all C R⊥τ h” instead of “for every
evaluation context C of type τ ` Unit, every function h ∈ [JτK◦S → I], if
C R⊥τ h then”.

• M Rτ F if and only if for all C R⊥τ h, Pr(C ·M↓m) ≥ F (h).

• C R⊥τ h if and only if for all M R◦τ u, Pr(C ·M↓m) ≥ h(u).

• M R◦Unit u if and only if (u = ∗ and) ∗ <∼
m

Unit
M .

• M R◦Nat n if and only if n <∼
m

Nat
M .

• M R◦σ→τ f if and only if there is a term M1 : τ such that λx .M1
<∼
m

σ→τ
M and, for all N Rσ G, M1[x := N ] Rτ f(G).

A crucial item in the definition is the two-tiered definition of M Rτ F , by
quantification over all C R⊥τ h, while C R⊥τ h is defined by quantification
over all M R◦τ u. This pattern is similar to the technique of >>-lifting, and
particularly to Katsumata’s >>-logical predicates [24].

It is easy to show that, for every closed term M of type τ , M Rτ= {F ∈
JτKS |M Rτ F} is Scott-closed, i.e., downward closed and stable under sups
of directed families, and contains 0.

Also, we claim that, if M <∼
m

τ
N and M Rτ F , then N Rτ F , and similarly

for R◦τ . I.e., Rτ F = {M : τ | M Rτ F} and R◦τ u = {M : τ | M R◦τ u} are
upward closed in <∼

m

τ
. This is proved as follows: If M <∼

m

τ
N and M Rτ F ,

then for all C R⊥τ h, Pr(C ·M↓m) ≥ F (h). Since M <∼
m

τ
N , Pr(C ·N↓m) ≥

Pr(C ·M↓m) ≥ F (h). So N Rτ F . That R◦τ u is upward closed follows from
the transitivity of <∼

m

τ
.

Finally, we observe that: (‡) whenever M R◦τ v, then M Rτ valS v.
Indeed, for all C R⊥τ h, the assumption implies Pr(C ·M↓m) ≥ h(v). But
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valS v (h) = h(v), so we have proved that Pr(C ·M↓m) ≥ valS v (h) for all
C R⊥τ h, i.e., M Rτ valS v.

We can now prove the basic lemma: if θ is a substitution and ρ is an
environment such that for every variable x in the domain of θ (say, of type
σ), xθ Rσ ρ(x)—in which case we write θ R∗ ρ—, and if M is a term of type
τ , then Mθ Rτ JMKS ρ. This is by induction on the typing derivation.

When M is a value V , JMKS ρ equals valS (JV K◦S ρ). We first show that
for each value V : τ , V θ R◦τ JV K◦S ρ:

• When V = n, this amounts to showing n R◦Nat n, or equivalently n <∼
m

Nat

n, and this is clear.

• When V = ∗, similarly, this reduces to ∗ <∼
m

Unit
∗.

• When V = λxσ . M1, then JV K◦S ρ = (G ∈ JσKS ρ 7→ JM1KS (ρ[x :=
G])), and we need to show that for all N Rσ G, (M1θ)[x := N ] Rτ

JM1KS (ρ[x := G]). We assume that V has been α-renamed, so that x
is not in the domain of θ, and not free in any term of the form θ(y). In
particular, (M1θ)[x := N ] is equal to M1(θ[x := N ]), where θ[x := N ]
is the substitution mapping x to N and each y in the domain of θ to yθ.
Clearly θ[x := N ] R∗ ρ[x := G], so M1(θ[x := N ]) Rτ JM1KS (ρ[x :=
G]), and we are done.

Since V θ R◦τ JV K◦S ρ, we conclude immediately that V θ Rτ valS JV K◦S ρ =
JV KS ρ by (‡). This finishes the case where M is a value V .

The cases of succ, pred, ifz, let, applications, and Y remain. We deal
with pred, applications, Y and let only, since they are perhaps a bit subtler
than the other cases.

• For pred, it suffices to show that if M RNat F , then predM RNat

letS n⇐ F in

{
valS (n− 1) if n 6= 0
⊥ if n = 0

—the difficulty comes from some

juggling we shall need to do with RNat, R
⊥
Nat, and R◦Nat.

Assume C R⊥Nat h. We must show that Pr(C·predM↓m) ≥
(

letS n⇐ F in{
valS (n− 1) if n 6= 0
0 if n = 0

)
(h), in other words, that Pr(C·predM↓m) ≥

F (k), where k is the function n ∈ N 7→
{

valS (n− 1)(h) if n 6= 0
0 if n = 0

.
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Alternatively, k is the function that maps 0 to 0 and every n 6= 0 to
h(n− 1).

Since every derivation of C[pred ] ·M ↓m a can be completed to the
following:

C[pred ] ·M ↓m a

C · predM ↓m a
using the top left rule of Figure 5 and the redex discovery rule C ·
predM → C[pred ] ·M , we obtain Pr(C ·predM↓m) ≥ Pr(C[pred ] ·
M↓m). Therefore, it suffices to show that Pr(C[pred ] ·M↓m) ≥ F (k).

We claim that C[pred ] R⊥Nat k. Before we prove the claim, notice
that the definition of RNat, and the fact that M RNat F , will imply the
desired inequality.

To prove the claim, we must show that for all N R◦Nat n, Pr(C[pred ] ·
N↓m) is larger or equal to h(n − 1) if n ≥ 1, or to 0 if n = 0. The
case n = 0 is clear, otherwise write n = n′ + 1. The definition of
N R◦Nat n means that n′ + 1 <∼

m

Nat
N , in particular Pr(C[pred ]·N↓m) ≥

Pr(C[pred ] · n′ + 1↓m). Since every derivation of C · n′ ↓m a can be
completed to:

C · n′ ↓m a

C[pred ] · n′ + 1 ↓m a
by using the computation rule C[pred ] ·n′ + 1→ C ·n′, Pr(C[pred ] ·
n′ + 1↓m) ≥ Pr(C ·n′↓m). The latter is greater than or equal to h(n′) =
h(n− 1) since C R⊥Nat h. So Pr(C[pred ] ·N↓m) ≥ h(n− 1), as desired.

• As far as applications are concerned, we show more generally that:
(∗) if M Rσ→τ F , and N Rσ G, then MN Rτ letS f ⇐ F in f(G).
Assume C R⊥τ h: we must show that Pr(C ·MN↓m) ≥ [letS f ⇐ F in
f(G)] (h) = F (f 7→ f(G)(h)). Since every derivation of C[ N ] ·M ↓m a
can be completed to one of C ·MN ↓m a by the redex discovery rule
C ·MN → C[ N ] ·M , Pr(C ·MN↓m) ≥ Pr(C[ N ] ·M↓m), so it suffices
to show Pr(C[ N ] · M↓m) ≥ F (f 7→ f(G)(h)). To this end, since
M Rσ→τ F , it remains to show C[ N ] R⊥σ→τ (f 7→ f(G)(h)). That is,
let P R◦σ→τ f , and let us show that Pr(C[ N ] · P↓m) ≥ f(G)(h). By
definition of R◦σ→τ , there is a term P1 such that λx . P1

<∼
m

σ→τ
P and

(since N Rσ G), P1[x := N ] Rτ f(G). Since C R⊥τ h, Pr(C · P1[x :=
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N ]↓m) ≥ f(G)(h). Now Pr(C[ N ] ·P↓m) ≥ Pr(C[ N ] · λx . P1↓m) since
λx.P1

<∼
m

σ→τ
P , and Pr(C[ N ] ·λx.P1↓m) ≥ Pr(C ·P1[x := N ]↓m) since

every derivation ending in C · P1[x := N ] ↓m a can be completed to:

C · P1[x := N ] ↓m a

C[ N ] · λx . P1 ↓m a

by using the computation rule C[ N ] · λx . P1 → C · P1[x := N ]. So
Pr(C[ N ] · P↓m) ≥ f(G)(h), as claimed.

• For Y, we show that if N Rτ→τ G, then YN Rτ supn∈N f
n(0), where

f(F ) = letS g ⇐ G in g(F ). To this end, since YN Rτ→τ is Scott-
closed, it suffices to show that YN Rτ f

n(0) for every n ∈ N. This is
by induction on n.

If n = 0, then YN Rτ 0 is clear. Otherwise, assume YN Rτ f
n(0). By

(∗) (in the previous item), and sinceN Rτ→τ G, N(YN) Rτ letS g ⇐ G in
g(fn(0)) = fn+1(0). Remember that N(YN) <∼

m

τ
YN ; this was due to

the computation rule C ·YN → C ·N(YN). Since Rτ f
n+1(0) is upward-

closed, YN Rτ f
n+1(0).

• For let expressions, we must show that if M Rσ F , then letx⇐M in

(Nθ) Rτ letS v ⇐ F in JNKS (ρ[x := valS v]), under the induction hy-
pothesis that for all θ′ R∗ ρ

′, Nθ′ Rτ JNKS ρ
′. By α-renaming, choose

x fresh, in particular neither in the domain of θ or free in any term of
the form θ(y).

Let C R⊥τ h: we must show that Pr(C · letx⇐M in (Nθ)↓m) ≥
F (v 7→ JNKS (ρ[x := valS v]) (h)). By the redex discovery rule C ·
letx⇐M in (Nθ)→ C[letx⇐ in (Nθ)]·M , Pr(C ·letx⇐M in

(Nθ)↓m) ≥ Pr(C[letx⇐ in (Nθ)] ·M↓m), so it is enough to show
Pr(C[letx⇐ in (Nθ)] ·M↓m) ≥ F (v 7→ JNKS (ρ[x := valS v]) (h)).
Since M Rσ F , this reduces to showing that C[letx⇐ in (Nθ)] R⊥σ
(v 7→ JNKS (ρ[x := valS v]) (h)). To this end, fix Q R◦σ v, and show
that Pr(C[letx⇐ in (Nθ)] · Q↓m) ≥ JNKS (ρ[x := valS v]) (h). We
make a case analysis on the type σ:

– If σ = Unit, then v = ∗ and ∗ vmUnit Q, so Pr(C[letx⇐ in

(Nθ)] · Q↓m) ≥ Pr(C[letx⇐ in (Nθ)] · ∗↓m). By the compu-
tation rule C[letx⇐ in (Nθ)] · ∗ → C ·Nθ[x := ∗], we obtain
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Pr(C[letx⇐ in (Nθ)] · ∗↓m) ≥ Pr(C · Nθ[x := ∗]↓m). Since
∗ R◦Unit ∗ by definition, ∗ RUnit valS ∗ = valS v using (‡). It follows
that θ′ = θ[x := ∗] is such that θ′ R∗ ρ[x := valS v]. By induction
hypothesis, Nθ[x := ∗] Rτ JNKS (ρ[x := valS v]). Since C R⊥τ h,
Pr(C · Nθ[x := ∗]↓m) ≥ JNKS (ρ[x := valS v]) (h). We conclude
that Pr(C[letx⇐ in (Nθ)] ·Q↓m) ≥ JNKS (ρ[x := valS v]) (h),
as desired.

– If σ = Nat, the argument is similar.

– If σ is of the form σ1 → σ2, then Q R◦σ1→σ2 v means that there
is a term Q1 such that λy · Q1

<∼
m

σ1→σ2
Q and for all P Rσ1 G,

Q1[y := P ] Rσ2 v(G). The latter entails immediately that λy .
Q1 R◦σ1→σ2 v, so λy . Q1 Rσ1→σ2 valS v by (‡). It follows that
θ[x := λy . Q1] R∗ ρ[x := valS v], so by induction hypothesis
Nθ[x := λy . Q1] Rτ JNKS (ρ[x := valS v]). Since C R⊥τ h, Pr(C ·
Nθ[x := λy . Q1]↓m) ≥ JNKS (ρ[x := valS v]) (h). We complete
the argument by noting that Pr(C[letx⇐ in (Nθ)] · Q↓m) ≥
Pr(C[letx⇐ in (Nθ)] · λy . Q1↓m) ≥ Pr(C · (Nθ)[x := λy .
Q1]↓m), using the fact that λy.Q1

<∼
m

σ1→σ2
Q, then the computation

rule C[letx⇐ in (Nθ)] · λy . Q1 → C · (Nθ)[x := λy . Q1].
So Pr(C[letx⇐ in (Nθ)] · Q↓m) ≥ JNKS (ρ[x := valS v]), as
desired.

Finally, we deal with > and ⊕. Assume M RTτ F and N RTτ G, and let
C R⊥τ h. We must show that Pr(C ·M > N↓may) ≥ max(F (h), G(h)) and
Pr(C ·M ⊕N↓may) ≥ 1

2
(F (h) +G(h)). By definition, Pr(C ·M↓may) ≥ F (h)

and Pr(C ·N↓may) ≥ G(h). We have already seen that Pr(C ·M >N↓may) =
max(Pr(C ·M↓may),Pr(C ·N↓may)), so Pr(C ·M>N↓may) ≥ max(F (h), G(h)).
Similarly, Pr(C ·M⊕N↓may) = 1

2
(Pr(C ·M↓may)+Pr(C ·N↓may)) ≥ 1

2
(F (h)+

G(h)).
This terminates the proof of the basic lemma in the angelic cases.
To conclude the proof of the proposition in the case S ⊆ {A, P}, we

now note that: (†) R⊥Unit �. To show this, we need to show that, for all
Q R◦Unit v, Pr( ·Q↓m) ≥ �(v). The assumption Q R◦Unit v means that v = ∗
and ∗ <∼

m

Unit
Q, so Pr( ·Q↓m) ≥ Pr( · ∗↓m) = 1, while �(∗) = 1, whence the

claim.
Apply the basic lemma to closed terms M of type σ, with an arbitrary

environment ρ and an arbitrary substitution θ: for all C R⊥σ h, Pr(C ·M↓m) ≥

38



JMKS (h). In particular, by (†), when σ = Unit, Pr( ·M↓m) ≥ JMKS �.
The converse inequality is by soundness (Lemma 6.1).

The above arguments apply to the case S ⊆ {A, P}. When S ⊆ {D, P},
the same arguments apply, replacing ↓may by ↓must. The only change is in
the proof of the basic lemma, case of the > operator, where we use min
instead of max: Pr(C ·M >N↓must) = min(Pr(C ·M↓must),Pr(C ·N↓must)) ≥
min(F (h), G(h)). When {A, D} ⊆ S, the reasoning proceeds by proving the
conjunction of the previous two cases simultaneously. 2

Proposition 7.2 is especially useful in view of the following lemma.

Lemma 7.3. For every type τ , for every term M : τ , for every evalua-
tion context C of type τ ` Unit, for every mode m ∈ {may,must}, Pr( ·
C[M ]↓m) = Pr(C ·M↓m).

Proof. We claim that · C[M ] ↓m a is derivable if and only if C ·M ↓m a
is derivable. The key step is showing that if CE is an evaluation context,
obtained as the concatenation of C and of the elementary evaluation context
E, then C · E[M ] ↓m a if and only if CE ·M ↓m a, for every M : σ, every
elementary evaluation context E of type σ ` τ , and every evaluation context
C of type τ ` Unit.

We enumerate all five possible cases for E. They are all straightforward.
E.g., when E = [ N ], then if C[ N ] ·M ↓m a is derivable, we may produce
the following derivation using the redex discovery rule C ·MN → C[ N ] ·M :

···
C[ N ] ·M ↓m a

C ·MN ↓m a

Conversely, if C ·MN ↓m a is derivable, then, by inspection of the rules, the
proof must be exactly as above: so C[ N ] ·M ↓m a is derivable as well. 2

Proposition 7.2 then reads:

Theorem 7.4 (Computational Adequacy). Let S ⊆ {A, D, P}. Let C be
an evaluation context of type τ ` Unit, and M be a PCFS term τ such that
C[M ] is closed and such that JC[M ]KS makes sense. Then:

(S ⊆ {A, P}) Pr(C ·M↓may) = Pr( · C[M ]↓may) = JC[M ]KS �.
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(S ⊆ {D, P}) Pr(C ·M↓must) = Pr( · C[M ]↓must) = JC[M ]KS �.

({A, D} ⊆ S) Pr(C·M↓must) = Pr( ·C[M ]↓must) = F−(�) and Pr(C·M↓may) =
Pr( · C[M ]↓must) = F+(�), where (F−, F+) = JC[M ]KS.

8. The Failure of Full Abstraction: Statistical Termination Testers

Full abstraction is a result that relates the denotational ordering with the
so-called contextual preorder. Slightly more precisely, such a result would
state that for any two closed terms M , N of type σ, JMKS ≤ JNKS if and
only if M -mσ N , where -mσ is defined as follows.

Definition 8.1 (Contextual Preorder -mσ ). For any two closed terms M ,
N of type σ, for any mode m ∈ {may,must}, let M -mσ N if and only if for
every closed term P : σ → Unit, Pr( · PM↓m) ≤ Pr( · PN↓m).

A variant on Jung’s proof of Milner’s context lemma [42, Theorem 8.1]
shows that this is a familiar relation:

Proposition 8.2. For all closed terms M , N of type σ, for every mode
m ∈ {may,must}, M -mσ N if and only if M <∼

m

σ
N .

In any case, we leave the language PCFS implicit. For m = may, we may
take S = A, S = AP, or S = ADP. For m = must, S = D, S = DP, or S = ADP.

Proof. We first note that for every term Q : σ, for every subset S of {A, D, P}
such that the following terms make sense, J(λx . C[x])QKS = JC[Q]KS. In-
deed, using the definition yields J(λx . C[x])MKS = JC[x]KS [x := JMKS], and
this is equal to JC[Q]KS by a simple induction on C.

If M -mσ N , then in particular, for every closed evaluation context C
of type σ ` Unit, letting P = λx . C[x], Pr( · (λx . C[x])M↓m) ≤ Pr( ·
(λx .C[x])N↓m). Using computational adequacy (Theorem 7.4) and the fact
that J(λx . C[x])MKS = JC[M ]KS and J(λx . C[x])NKS = JC[N ]KS, we obtain
Pr( · C[M ]↓m) ≤ Pr( · C[N ]↓m), hence Pr(C ·M↓m) ≤ Pr(C · N↓m). So
M <∼

m

σ
N .

Conversely, assume M <∼
m

σ
N . We reuse the logical relation Rτ that

we defined in the proof of Proposition 7.2, and recall that we proved that
M Rσ JMKS, and also that if M Rσ F and M <∼

m

σ
N , then N Rσ F . So

N Rσ JMKS. We also proved (†): R⊥Unit �; (‡), which implies: ifQ R◦σ→Unit f
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then Q Rσ→Unit valS f ; and (∗), which together with the latter, implies: if
Q R◦σ→Unit f and N Rσ G for some G, then QN RUnit letS f ⇐ valS f in
f(G), that is, QN RUnit f(G).

Let P be a closed term of type σ → Unit. In particular, P Rσ→Unit JP KS.
For all Q R◦σ→Unit f , the last observation of the last paragraph entails that
QN RUnit f(JMKS). By (†), Pr( ·QN↓m) ≥ f(JMKS)(�), and by Lemma 7.3,
Pr([ N ] ·Q↓m) ≥ f(JMKS)(�). As this holds for all Q R◦σ→Unit f , we obtain
[ N ] R⊥σ→Unit (f 7→ f(JMKS)(�)), by definition of R⊥σ→Unit. Since P Rσ→Unit

JP KS, we deduce that Pr([ N ] · P↓m) ≥ JP KS (f 7→ f(JMKS)(�)). Using
Lemma 7.3, Pr([ N ] ·P↓m) = Pr( ·PN↓m), while JP KS (f 7→ f(JMKS)(�)) =
JPMKS �. So Pr( · PN↓m) ≥ JPMKS �. By Proposition 7.2, JPMKS � =
Pr( · PM↓m), so Pr( · PM↓m) ≤ Pr( · PN↓m), and as P is arbitrary,
M -m N . 2

The same technique yields the following useful lemma.

Lemma 8.3. Let m ∈ {may,must}. Let λxσ . M and λxσ . N be two closed
values of type σ → τ , and assume that for every closed term P : σ, M [x :=
P ] -mτ N [x := P ]. Then λxσ . M -mσ→τ λxσ . N .

Proof. In view of Proposition 8.2, we shall show that λxσ .M <∼
m

σ→τ
λxσ .N

under the assumption that for every closed term P : σ, M [x := P ] <∼
m

τ

N [x := P ].
We claim that for all P Rσ F , N [x := P ] Rτ JMKS [x := F ]. This follows

from M [x := P ] <∼
m

τ
N [x := P ] and M [x := P ] Rτ JMKS [x := F ], the latter

being a consequence of λx . M R◦σ→τ Jλx . MK◦S.
From this, we infer that λx . N R◦σ→τ Jλx . MK◦S. Indeed, for all P Rσ

F , N [x := P ] Rτ JMKS [x := F ] = Jλx . MK◦S (F ). So λx . N Rσ→τ
valS (Jλx . MK◦S) = Jλx . MKS.

For every closed evaluation context C of type (σ → τ) ` Unit, JC[λx . M ]KS =
JC[y]KS [y := Jλx . MKS]. By the basic lemma, C[y][y := λx . N ] RUnit

JC[y]KS [y := Jλx . MKS], i.e., C[λx . N ] RUnit JC[λx . M ]KS. Since R⊥Unit �,
Pr( · C[λx . N ]↓m) ≥ JC[λx . M ]KS �. But Pr( · C[λx . N ]↓m) = Pr(C ·
λx . N↓m) by Lemma 7.3, and JC[λx . M ]KS � = Pr(C · λx . M↓m) by The-
orem 7.4. So Pr(C · λx . N↓m) ≥ Pr(C · λx . M↓m). Since C is arbitrary,
M <∼

m

σ→τ
N . 2

By analogy with the case of PCF, one would expect PCFS to not be fully
abstract. However, the reasons of the failure of full abstraction are different:
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we are not lacking a parallel or construct, but so-called statistical termination
testers, as we shall see.

We should indeed ponder the fact that, given two terms M,N : Nat, the
PCFA-definable term (M orN) > (N orM) implements a variant of parallel
or, where M orN = ifzM N 1 is the sequential short-circuit or. Contrarily
to Plotkin’s, this form of parallel or terminates even when M and N have
values other than 0 or 1. Plotkin’s actual parallel or of M and N can be
defined as (M or′N) > (N or′M), where or′ is more complicated:

M or′N = ifzM (ifz N 0 (ifz (predN) 1 ΩNat))

(ifz (predM)

(ifz N 1 (ifz (predN) 1 ΩNat))

ΩNat

and ΩNat is a non-terminating term of type Nat (see below).
Another difference with PCF is that full abstraction will in fact fail only

in the probabilistic cases, where P ∈ S.
We shall keep in mind the following lemma, which will be useful in un-

derstanding what happens at type Unit.

Lemma 8.4. Let S ⊆ {A, D, P}, with {A, D} 6⊆ S.

• If P ∈ S, then PS{∗} is isomorphic to I: the elements of PS{∗} are all
of the form α valS ∗, α ∈ I and the isomorphism maps them to α.

• If P 6∈ S, then PS{∗} is isomorphic to {0, 1}: the elements of PS{∗}
are the zero map and valS ∗.

Proof. Recall that valS ∗ is the map (h 7→ h(∗)). The continuous maps
h ∈ [{∗} → I] are all constant maps, with value h(∗). For F ∈ PS{∗}, let
α = F (1): then F (h) = αh(∗) = α valS ∗ (h). In the second case, since F is
discrete, α can only be equal to 0 or 1. 2

Proposition 8.5 (Full Abstraction Fails in PCFS). Let S ⊆ {A, D, P},
and assume that P ∈ S. Let m = may if S = AP, must if S = DP, or any one
of may, must if S = ADP. Consider the following PCFS terms:

Ωτ = Y(λxτ . x)
M8.5 = λgUnit→Unit . g(ΩUnit ⊕ ∗)
N8.5 = λgUnit→Unit . g(ΩUnit)⊕ ∗

Then M8.5 -m(Unit→Unit)→Unit N8.5, but JM8.5K
◦
S 6≤ JN8.5K

◦
S.
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As a consequence, JM8.5KS = valS JM8.5K
◦
S 6≤ valS JN8.5K

◦
S = JN8.5KS, since

our monads have order-reflecting units (Remark 5.5).

Proof. We only deal with the non-erratic cases S 6⊇ {A, D}. As usual, the
erratic cases consist in playing the same arguments as in the corresponding
angelic and demonic cases simultaneously.

First step: defining a logical relation. Let . be any binary relation on I such
that 0 . 0, which is inductive in the sense that if (an)n∈N and (bn)n∈N are any
two non-decreasing chains of elements of I such that an . bn for every n ∈ N,
then supn∈N an . supn∈N bn; and which is closed under max, min, and means:
if a1 . a2 and b1 . b2, then max(a1, b1) . max(a2, b2), min(a1, b1) . min(a2, b2),
and 1

2
(a1 + b1) .

1
2
(a2 + b2).

Define binary logical relations (.)τ , (.)◦τ , (.)⊥τ between previsions in JτKS,
between continuous maps in [JτK◦S → I], and between values in JτK◦S respec-
tively, as follows:

• F1 (.)τ F2 if and only if for all h1 (.)⊥τ h2, F1(h1) . F2(h2);

• h1 (.)⊥τ h2 if and only if for all v1 (.)◦τ v2, h1(v1) . h2(v2);

• ∗ (.)◦Unit ∗;

• n1 (.)◦Nat n2 if and only if n1 = n2;

• f1 (.)◦σ→τ f2 if and only if for all F1 (.)σ F2, f1(F1) (.)τ f2(F2).

Given two environments ρ1, ρ2, write ρ1 (.)∗ ρ2 if and only if for every
variable xσ, ρ1(xσ) (.)σ ρ2(xσ). We prove the basic lemma: for every term
M : τ , if ρ1 (.)∗ ρ2, then JMKS ρ1 (.)τ JMKS ρ2. This is by induction on M ,
and we leave the verification of this claim to the reader. (As hints, first show
the following facts: (a) if v1 (.)◦σ v2, then valS v1 (.)σ valS v2; (b) 0 (.)τ 0;
(c) (.)τ is inductive for every type τ , i.e., for all non-decreasing chains of
previsions (F1n)n∈N and (F2n)n∈N such that F1n (.)τ F2n for every n ∈ N,
then supn∈N F1n (.)τ supn∈N F2n. The former is used when M is a constant,
the latter are used in the case where M is of the form YN . The fact that .
is closed under max, min, and means is used when M is of the form N > P ,
or N ⊕ P .)

In particular, when P is a closed term of type τ , JP KS (.)τ JP KS.
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A specific logical relation. Specialize the above construction to the case where
. is defined by: a1 . a2 if and only if a2 ≤ (1 − a)a1 + a, where a is some
fixed constant in [0, 1]. (Later, we shall be interested in a = 1

2
, but there is

no point now in taking a specific value for a.) Let us make (.)Unit explicit.

First, h1 (.)⊥Unit h2 if and only if h2(∗) ≤ (1 − a)h1(∗) + a. If we equate
[{∗} → I] with I (i.e., if we equate � with 1), hence hi with the real number
hi(∗) ∈ I, we have a1 (.)⊥Unit a2 if and only if a2 ≤ (1− a)a1 + a, if and only
if a1 . a2.

Let us turn to (.)Unit. At type Unit, PS{∗} is isomorphic to I, by
Lemma 8.4: any F ∈ PS{∗} can be written in a unique way as α valS ∗
for some α ∈ I.

We claim that α1 valS ∗ (.)Unit α2 valS ∗ if and only if α1 . α2. By defini-
tion, α1 valS ∗ (.)Unit α2 valS ∗ if and only if for all a1 . a2, α1 valS ∗(a11) .
α2 valS ∗(a21), that is, α1a1 . α2a2. If this is the case, namely if α1a1 . α2a2
for all a1 . a2, then taking a1 = a2 = 1 we obtain α1 . α2. Conversely, if
α1 . α2, then for all a1 . a2:

α2a2 ≤ ((1− a)α1 + a)((1− a)a1 + a) (since α1 . α2, a1 . a2)

= (α1 + a(1− α1))((1− a)a1 + a)

= α1((1− a)a1 + a) + a(1− α1)((1− a)a1 + a)

≤ α1((1− a)a1 + a) + a(1− α1)((1− a) + a)

= α1((1− a)a1 + a) + a(1− α1) = (1− a)α1a1 + a.

Relating two continuations. With the above definition of ., and taking a = 1
2

(so that a1 . a2 if and only if a2 ≤ 1
2
a1 + 1

2
), we claim that (f ∈ [PS{∗} →

PS{∗}] 7→ f(0)(h)) (.)⊥Unit→Unit (f ∈ [PS{∗} → PS{∗}] 7→ f(1
2

valS ∗)(h)), for
every h ∈ [{∗} → I].

To this end, let f1 (.)Unit→Unit f2, and let us show that f1(0)(h) .
f2(

1
2

valS ∗)(h). Since f1 (.)Unit→Unit f2, for all α1 . α2 (i.e., whenever
α1 valS ∗ (.)Unit α2 valS ∗), it must hold f1(α1 valS ∗) (.)Unit f2(α2 valS ∗).
Let α1 = 0, α2 = 1

2
: clearly, and since a = 1

2
, α1 . α2. So f1(0) (.)Unit

f2(
1
2

valS ∗). Now, h (.)⊥Unit h: this indeed means that h(∗) ≤ 1
2
h(∗) + 1

2
,

which is clear since h(∗) ≤ 1. By definition of (.)Unit, we conclude that
f1(0)(h) . f2(

1
2

valS ∗)(h).

Comparing M8.5 and N8.5. For every closed term P : Unit → Unit, the
above claim entails that JP KS (f 7→ f(0)(h)) . JP KS (f 7→ f(1

2
valS ∗)(h)),
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since JP KS (.)Unit→Unit JP KS; i.e., JP KS (f 7→ f(1
2

valS ∗)(h)) ≤ 1
2
JP KS (f 7→

f(0)(h)) + 1
2
.

Using the fact that JΩτKS = 0 at every type τ (which we leave as an
exercise to the reader), JΩUnit ⊕ ∗KS = 1

2
valS ∗. So:

JP (ΩUnit ⊕ ∗)KS (h) = JP KS (f 7→ f(JΩUnit ⊕ ∗KS)(h))
= JP KS (f 7→ f(1

2
valS ∗)(h))

and similarly:

JP (ΩUnit)⊕ ∗KS (h) = 1
2
JP KS (f 7→ f(0)(h)) + 1

2

So JP (ΩUnit ⊕ ∗)KS ≤ JP (ΩUnit)⊕ ∗KS. For every closed evaluation context C
of type Unit ` Unit, it follows that Pr(C ·P (ΩUnit⊕∗)↓m) ≤ Pr(C ·P (ΩUnit)⊕
∗↓m), using computational adequacy (Theorem 7.4). So P (ΩUnit ⊕ ∗) <∼

m

Unit

P (ΩUnit) ⊕ ∗, whence P (ΩUnit ⊕ ∗) -mUnit P (ΩUnit) ⊕ ∗ by Proposition 8.2.
Since P is arbitrary, Lemma 8.3 tells us that λg.g(ΩUnit⊕∗) -m(Unit→Unit)→Unit

λg . g(ΩUnit)⊕ ∗, in other words M8.5 -m(Unit→Unit)→Unit N8.5.

Comparing the denotations of M8.5 and N8.5. For everyG ∈ JUnit→ UnitKS,
by computations similar to the ones we have done above:

JM8.5K
◦
S (G) � = Jg(ΩUnit ⊕ ∗)KS [g := G] �

= G(f 7→ f(1
2

valS ∗) �)
JN8.5K

◦
S (G) � = Jg(ΩUnit)⊕ ∗KS [g := G] �

= 1
2
G(f 7→ f(0) �) + 1

2
.

For any b ∈ [0, 1], let [> b] be the map from PS{∗} to PS{∗} that sends
α valS ∗ to valS ∗ if α > b, and to 0 otherwise. (If we equate PS{∗} with I,
this is just the characteristic function χ(b,1].) This is a continuous map. By
taking G = valS[> 1

4
], so that G(f 7→ f(α valS ∗) �) = [> 1

4
](α), we obtain

JM8.5K
◦
S (G) � = 1 and JN8.5K

◦
S (G) � = 1

2
, so JM8.5K

◦
S 6≤ JN8.5K

◦
S. 2

Call a prevision F in JτKS definable in PCFS if and only if F = JMKS
for some closed term M : τ . Call a value v ∈ JτK◦S definable if and only if
valS v is definable. If [> 1

4
] were definable as a term P : Unit → Unit,

then JM8.5P KS � = JM8.5KS (f 7→ f(JP KS) �) = JM8.5K
◦
S (JP KS) � =

JM8.5K
◦
S (valS[> 1

4
]) �, and similarly for N8.5. The last part of the proof

shows that JM8.5K
◦
S (valS[> 1

4
]) � 6≤ JN8.5K

◦
S (valS[> 1

4
]) �, but we had shown

earlier that JM8.5P KS = JP (ΩUnit ⊕ ∗)KS ≤ JP (ΩUnit)⊕ ∗KS = JN8.5P KS,
contradiction.

This fact generalizes to [> b] for every b 6= 1, not just b = 1
4
:
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Proposition 8.6 (Failure of Definability). Let S ⊆ {A, D, P}, and as-
sume P ∈ S. No value [> b] ∈ JUnit→ UnitK◦S is definable, for any b ∈ [0, 1).

The assumption P ∈ S is important: if P 6∈ S, then JUnitKS is isomorphic to
{∗} (Lemma 8.4), there are only three values in JUnit→ UnitK◦S, and they
are definable as λxUnit . ΩUnit, λxUnit . xUnit, and λxUnit . ∗ respectively.

Proof. As we saw in the course of the proof of Proposition 8.5, if [> b]
were definable, then we would have [> b] (.)◦Unit→Unit [> b], where . is the
relation defined by a1 . a2 if and only if a2 ≤ (1 − a)a1 + a, and where
a ∈ [0, 1] is a fixed, but arbitrary constant. Since [> b] (.)◦Unit→Unit [> b],
for all α1 . α2 (hence α1 valS ∗ (.)Unit α2 valS ∗), [> b](α1 valS ∗) (.)Unit [>
b](α2 valS ∗). Now pick any a in (b, 1), and let α1 = 0, α2 = a. Then α1 . α2,
but [> b](α1 valS ∗) = 0, [> b](α2 valS ∗) = valS ∗, and it is wrong that
0 (.)Unit valS ∗, since 1 6≤ (1− a).0 + a. So [> b] is not definable in PCFS if
P ∈ S. 2

9. PCFS Plus Statistical Termination Testers

To repair this, we shall therefore add operations ©>b to PCFS whose
semantics will be the missing functions [> b], 0 < b < 1. Given any closed
term M : Unit, if P ∈ S then JMKS is a prevision of the form α valS ∗, and
α is the probability that M terminates. [> b](α valS ∗) tests whether the
probability that M terminates is larger than b, and this is also the seman-
tics we shall associate with ©>bM . We call the ©>b operators statistical
termination testers.

A theoretician’s implementation of ©>bM would consist in guessing a
derivation of ·M ↓m b, and checking that it is well-formed. If one is found,
then the computation may proceed, else we loop forever. This amounts to
simulating the recursively enumerable set of all possible runs of M , and
can be implemented in a more practical way by counting the proportion of
those runs of M that terminate, say within N execution steps, and checking
whether this proportion exceeds b in the limit N → +∞. We omit the
details, which are out of scope of the current paper.

The operator ©>b is related to, and inspired from, Escardó’s operator
© [9, Section 4.2]. In that paper, Escardó has another, clever strategy for
semi-deciding testing, and compiles his non-deterministic and probabilistic
extensions of PCF to (a fragment of) Real PCF, an extension of PCF with
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real numbers. Using a similar compilation strategy, we might implement
©>bM as b <©M , where < is the Real PCF comparison operator on I.

Call PCFS +© the natural extension of PCFS with ©>b operators, b ∈
Q ∩ (0, 1). The types of PCFS + © are as for PCFS. The definition of
the terms of PCFS + © is as for PCFS (see Section 5.1), except for the
replacement of “PCFS by “PCFS +©” throughout, and for the additional
clause:

• for every rational number b in (0, 1), for every PCFS+© termM : Unit,
©>bM is a PCFS +© term, of type Unit.

The operational semantics is as for PCFS (see Figure 5), with the following
additional rule:

·M ↓m b C · ∗ ↓m a
(©)

C · ©>bM ↓m a
(a ∈ Q ∩ [0, 1), b ∈ Q ∩ (0, 1)). We adapt Definition 5.2, and (re)define
Pr(C ·M↓m) as sup{a ∈ Q ∈ [0, 1) | C ·M ↓m a derivable}, where this time
“derivable” means derivable in the extended system of rules.

We also extend the denotational semantics accordingly, by letting:

J©>bMKS ρ =

{
valS ∗ if JMKS ρ � > b

0 otherwise

Soundness is established as for PCFS (Lemma 6.1); note in particular that
the evaluation contexts of PCFS +© are exactly those of PCFS (we are not
adding any elementary evaluation context of the form [©>b ]), and the proof
runs exactly as in PCFS.

The situation is similar with computational adequacy. Using the nota-
tions used in the proof of Proposition 7.2, the only new case to be consid-
ered consists in showing that, if M RUnit F , then ©>bM RUnit G, where
G = valS ∗ if F (�) > b and G = 0 otherwise. Assume C R⊥Unit h, and let
us show that Pr(C · ©>bM↓m) ≥ G(h). This is clear if G = 0. Otherwise,
G(h) = valS ∗ (h) = h(∗), and F (�) > b. Since R⊥Unit � (fact (†) in the
proof of Proposition 7.2), M RUnit F implies that Pr( ·M↓m) ≥ F (�) > b. So
·M↓mb is derivable. Using rule (©) above, for every a ∈ Q∩[0, 1), if C ·∗↓ma

is derivable then so is C · ©>bM ↓m a. So Pr(C · ©>bM↓m) ≥ Pr(C · ∗↓m).
Since C R⊥Unit h, for all N R◦Unit v, Pr(C ·N↓m) ≥ h(v). This certainly holds
for N = ∗ and v = ∗, so Pr(C ·©>bM↓m) ≥ Pr(C · ∗↓m) ≥ h(∗) = G(h), and
we conclude. To sum up:

47



Proposition 9.1 (Computational Adequacy). Let S ⊆ {A, D, P}. Let M
be a PCFS +© term of type Unit. Then:

(S ⊆ {A, P}) Pr( ·M↓may) = JMKS �.

(S ⊆ {D, P}) Pr( ·M↓must) = JMKS �.

({A, D} ⊆ S) Pr( · M↓must) = F−(�) and Pr( · M↓must) = F+(�), where
(F−, F+) = JMKS.

10. Extra Topological Facts

Before we start proving any full abstraction result, we shall need to char-
acterize the Scott topologies on the spaces we are interested in. On spaces
of previsions, it will be important to note that they coincide with the weak
topologies, defined as follows. We deal only with the cases S ⊆ {A, P}, since
these are the only ones we shall be interested in in this paper, as far as full
abstraction is concerned.

Definition 10.1 (Weak Topology). For any space Y of previsions on X,
define the weak topology on Y as the topology generated by the subsets [h >
b] = {F ∈ Y | F (h) > b}, where h ∈ [X → I] and b ∈ R+. When Y = PS(X),
we write [h > b]S for [h > b], and when Y = P1

S(X), we write [h > b]1S for
[h > b] in case there is any need to make the ambient space clear.

We write PS wk(X), resp., P1
S wk(X) for the space PS(X), resp., P1

S(X)
with its weak topology.

We first explore the purely probabilistic case. The weak topology on PP(X)
transports through the isomorphism between PP(X) and V≤1(X) to a topol-
ogy on V≤1(X) that we call the weak topology on V≤1(X), following Alvarez-
Manilla et al. [3]. This is defined from the subbasic opens [h > b] = {ν ∈
V≤1(X) |

∫
x∈X h(x)dν > b}, h ∈ [X → I], b ∈ R+. The following lemma

is due to the above authors, who note that the weak topology on V≤1(X)
coincides with the so-called product topology, whose subbasic open subsets
are {ν ∈ V≤1(X) | ν(U) > b}. Since it is short, we give a direct argument.

Lemma 10.2 (Alvarez-Manilla, Jung and Keimel). Let X be any topo-
logical space. A subbase of the weak topology on PP(X) is given by the subsets
of the form [χU > b], U open in X, b ∈ R+.
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Proof. Every continuous map h is the sup of a directed family of step
functions hm =

∑m
i=1 aimχUim

(e.g., taking Uim = h−1(i/m, 1], and aim =
1/m), so that [h > b] =

⋃+∞
m=1[hm > b], while [

∑m
i=1 aimχUim

> b] =⋃
b0,b1,...,bm∈I∑m

i=1 aimbi≥b

⋂m
i=1[χUim

> bi], using the fact that PP(X) is a space of lin-

ear maps and that no ai is equal to zero. 2

The Kirch-Tix Theorem states that the weak topology on V≤1(X) coin-
cides with the Scott topology when X is a continuous dcpo. See [3], who
attribute it to Tix [43, Satz 4.10], who in turn attributes it to Kirch [25,
Satz 8.6]; the latter two prove it for unbounded continuous valuations, not
subprobability valuations, but the argument is unchanged in our case. Again
up to the isomorphism between PP(X) and V≤1(X), we obtain our first result
on coincidence of topologies.

Proposition 10.3 (Kirch, Tix). Let X be a continuous dcpo. The Scott
and the weak topologies coincide on PP(X).

The purely angelic case is even simpler.

Lemma 10.4. Let X be a topological space. A subbase of the weak topology
on PA(X), resp. P1

A(X), is given by the subsets [χU > 0], U open in X.

Proof. Let h ∈ [X → I], and write h as the sup of a directed family of step
functions hm = supmi=1 aimχUim

, where Uim = h−1(i/m, 1], and aim = i/m.
Then [h > b] equals

⋃+∞
m=1[hm > b]. Now, given any F in PA(X), resp. P1

A(X),
there is a closed subset C of X (resp., a non-empty closed subset C of X)
such that F = (h 7→ supx∈C h(x)), see Remark 4.9. F belongs to [hm > b] if
and only if there is an x ∈ C and an i, 1 ≤ i ≤ m, such that aim > b and
x ∈ Uim. Moreover, F belongs to [χUim

> 0] if and only if there is an x ∈ C
such that x ∈ Uim. So [hm > b] =

⋃
1≤i≤m
aim>b

[χUim
> 0]. 2

This leads us to our second result on coincidence of topologies. Up to a
few inessential details, this is due to Schalk [41, Section 6.3.3].

Proposition 10.5 (Schalk). Let X be a continuous dcpo. The Scott and
the weak topologies coincide on PA(X), and also on P1

A(X).

49



Proof. Up to the isomorphism between H(X) (resp., H⊥(X)) and P1
A(X)

(resp., PA(X)) that maps C to (h 7→ supx∈C h(x)) (see Remark 4.9), the weak
topology on the latter transports to a topology on the former, whose subbasic
open sets are of the form 3U = {C | supx∈C χU(x) > 0} = {C | C ∩ U 6= ∅},
U open in X. This topology is known as the lower Vietoris topology onH(X)
(resp., H⊥(X)). When X is a continuous dcpo, the lower Vietoris topology
coincides with the Scott topology. Indeed, clearly 3U is Scott-open, and
conversely, a subbase of the Scott topology on H(X) (resp., H⊥(X)) is given
by the subsets of the form ↑↑(↓E), E finite and non-empty (resp., E finite).
For every C ∈ H(X), ↓E � C if and only if ↓E ⊆ ↓↓C, as a consequence
of [10, Corollary IV-8.7], and it is easy to see that a similar result holds in
H⊥(X). So ↑↑(↓E) =

⋂
x∈E 3(↑↑x). 2

We shall also need the following later.

Lemma 10.6. Let X be a topological space. In PA(X) or in P1
A(X), [χ > 0]A

commutes with unions: if U is a union of a family of opens Ui of X, then
[χU > 0]A =

⋃
i∈I [χUi

> 0]A;

Proof. Up to the aforementioned isomorphisms, this amounts to checking
that 3(

⋃
i∈I Ui) =

⋃
i∈I 3Ui, i.e., that a closed subset C intersects

⋃
i∈I Ui if

and only if it intersects some Ui. 2

We turn to the case S = AP. Our third, and final theorem on coincidence
of topologies, is the following. A topological space is coherent if and only
if the intersection of any two compact saturated subsets is again compact.
For example, every bc-domain (and more generally, every FS-domain, see [2,
Theorem 4.2.18]) is not only continuous, but also coherent.

Proposition 10.7 ([15], Proposition 3.42). Let X be a continuous, co-
herent dcpo. The Scott topology coincides with the weak topology on PAP(X);
also on P1

AP(X) if X is additionally assumed to be pointed.

For the sake of completeness, here is an idea of the proof, for PAP(X). Write
HV(Y ) for H(Y ) with its lower Vietoris topology. We show that PAP wk(X) is
a retract of P1

A wk(PP wk(X)) ∼= HV(PP wk(X)), through rAP : F 7→ (h ∈ [X →
I] 7→ supG∈F G(h)) [15, Proposition 3.11]. The same map defines a retract of
H(PP(X)) onto PAP(X), that is, with respect to the Scott topologies instead
of the weak topologies. Using the Kirch-Tix Theorem (Proposition 10.3)
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and Schalk’s Theorem (Proposition 10.5), H(PP(X)) = HV(PP wk(X)) (mean-
ing that not only the underlying sets, but also the topologies, coincide), so
PAP(X) = PAP wk(X).

We also cite the following, which will come in handy later.

Proposition 10.8 ([15], Proposition 3.41). Let X be a continuous, co-
herent dcpo. Then PAP(X) is a continuous dcpo, with basis given by the finite
non-empty sups of simple linear previsions:

h 7→ m
max
i=1

ni∑
j=1

aijh(xij)

where m ≥ 1 and
∑ni

j=1 aij ≤ 1 for every i.

If X is a pointed continuous, coherent dcpo, then P1
AP(X) is a pointed

continuous dcpo, with basis given by the finite sups of simple normalized
previsions (i.e.,

∑ni

j=1 aij = 1 for every i). The least element is h 7→ h(⊥),
where ⊥ is the least element of X.

11. Full Abstraction

Redefine -mσ (Definition 8.1) on PCFS +© terms in the obvious way,
by M -mσ N if and only if for every closed PCFS +© term P : σ → Unit,
Pr( · PM↓m) ≤ Pr( · PN↓m).

Given any two closed PCFS +© terms M , N of type σ, if JMKS ≤ JNKS,
necessarily JPMKS ≤ JPNKS for every closed term P : σ → Unit, as can
be checked from the Definition (Figure 7), and the fact that all functions
involved are monotonic. By computational adequacy (Proposition 9.1), Pr( ·
PM↓m) ≤ Pr( ·PN↓m) for any of the relevant modes m. Since P is arbitrary,
M -mσ N . So JMKS ≤ JNKS implies M -mσ N . We embark on showing the
converse implication.

The key idea is that, since ≤ is the specialization preorder of JσKS, if
JMKS 6≤ JNKS, then there is an open subset U that contains JMKS but that
does not contain JNKS. We can even take U from a well-chosen subbase of
the Scott topology on JσKS. We shall choose this subbase so that each of its
elements can be defined in PCFS +©, in a suitable sense.

In doing so, we shall also need to define a basis of the continuous dcpo
JσKS. The following easy and well-known lemma will help us.

51



Lemma 11.1. Let X be a continuous poset, with a basis B0. Let B be a
subset of X such that every element of B0 is the sup of a directed family of
elements of B. Then B is also a basis of X.

Proof. For every x ∈ X, x = supi∈I xi where (xi)i∈I is the directed family
of all elements of B0 way-below x, and xi � x for every i ∈ I. Let us write
xi as the sup of some directed family (xij)j∈Ji of elements of B. So x is the
sup of the family (xij)i∈I,j∈Ji . Also, xij ≤ xi � x for all i ∈ I, j ∈ Ji. It
remains to show that this family is directed. Pick two elements xi1j1 , xi2j2
from it. Since xi1 , xi2 � x, by interpolation, there is an element in B0 way-
below x (hence of the form xi for some i ∈ I) such that xi1 , xi2 � xi. Since
xi = supj∈Ji xij, and the family (xij)j∈Ji is directed, there is a j ∈ Ji such
that xi1 , xi2 ≤ xij. In particular xi1j1 , xi2j2 ≤ xij. 2

To start with, here is the subbase S[X→Y ] we choose for function spaces—
the careful reader will notice that this implies that the Scott topology on
[X → Y ] coincides with the topology of pointwise convergence on [X → Y ].

Proposition 11.2. Let X and Y be bc-domains. Let BX be a basis of X,
SX be a subbase of the Scott topology on X. Let BY be a basis of Y , and SY
be a subbase of the Scott topology on Y . Then:

• The following set B[X→Y ] is a basis of [X → Y ]: B[X→Y ] is the set of
all functions that can be written as the pointwise sup supmi=1 Ui ↘ yi,
where each Ui is an intersection of finitely many elements from SX ,
yi ∈ BY , and U ↘ y denotes the map that sends each x ∈ U to y and
each x 6∈ U to the bottom element ⊥ of Y .

• The set S[X→Y ] of all opens [x ∈ V ], x ∈ BX , V ∈ SY , is a subbase of
the Scott topology on [X → Y ]. We write [x ∈ V ] for the open subset
{f ∈ [X → Y ] | f(x) ∈ V }.

Proof. [X → Y ] has a basis B0 consisting of all step functions, which are
by definition the finite pointwise sups (that exist) of step functions U ↘ y,
U open in X, y ∈ Y [10, Proposition II-4.20]. Let BX be the base consisting
of all finite intersections of opens from SX . To establish the first claim,
using Lemma 11.1, it is enough to show that U ↘ y is the sup of a directed
family of elements from B[X→Y ]. By definition, U is the union of a family
of elements Ui, i ∈ I, of BX , so U is also the union of the directed family
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of opens
⋃
i∈J Ui, where J ranges over the finite subsets of I. Also, y is the

union of a directed family of elements yk, k ∈ K, of BY . So U ↘ y is the sup
of the directed family of maps

(⋃
i∈J Ui

)
↘ yk, J finite subset of I, k ∈ K.

Now
(⋃

i∈J Ui
)
↘ yk = supi∈J Ui ↘ yk is in B[X→Y ].

For the second part, we use Lemma 5.16 of [13], which states that the
subsets [x ∈ V ], x ∈ X, V open in Y , form a subbase of the topology
of [X → Y ], as soon as X is a continuous poset and Y is a bc-domain.
Write x as the sup of the directed family (xk)k∈K of elements of BX . Then
[x ∈ V ] =

⋃
k∈K [xk ∈ V ]: since f is Scott-continuous and V is open, f(x) ∈ V

is equivalent to the existence of k ∈ K such that f(xk) ∈ V . Write V as⋃
i∈I
⋂
j∈Ji Vij, where Vij is in BY and each Ji is finite. Then [x ∈ V ] =⋃

k∈K
⋃
i∈I
⋂
j∈Ji [xk ∈ Vij], showing that S[X→Y ] is indeed a subbase. 2

In the cases of the base types Unit and Nat, we define the following. We
take the opportunity to define a basis and a base of the topology of I. This
will serve in Proposition 11.4.

Definition 11.3. A basis of {∗} is B{∗} = {∗}, a subbase of its topology is
S{∗} = {{∗}}.

A basis of N is BN = N, a subbase of its topology is SN = {{n} | n ∈ N}.
A basis of I is BI, the set of dyadic numbers in [0, 1). A dyadic number

is one of the form k/2N , k,N ∈ N. A subbase of the Scott topology on I is
SI = {(b, 1] | b ∈ Q ∩ (0, 1)}.

In the latter cases, we might take the elements of BI rational, or take a
subbase of opens of the form (b, I] with b dyadic instead. Choosing the
elements of BI dyadic will be needed for purposes of definability.

Proposition 11.4. Let X be a continuous dcpo, BX be a basis of X, and
SX be a subbase of the Scott topology on X. Then, for each of the following
subsets S of {A, D, P}, BPS(X) is a basis of PS(X):

(S = A) BPA(X) is the set of discrete previsions of the form (h ∈ [X → I] 7→
max(h(x1), . . . , h(xn))), n ≥ 0, x1, . . . , xn ∈ BX (if n = 0, this is the
constant zero map);

(S = P) BPP(X) is the set of linear previsions of the form (h ∈ [X → I] 7→∑m
i=1 aih(xi)), where xi ∈ BX , ai is dyadic, and

∑m
i=1 ai ≤ 1;

(S = AP) BPAP(X) is the set of sublinear previsions of the form (h ∈ [X →
I] 7→ maxmi=1Gi(h)), where m ≥ 1 and each Gi is in BPP(X).
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In the case S = A, SPA(X), defined as the family of all opens of the form
[χU > 0], where U ranges over the finite intersections of elements of SX , is
a subbase of the Scott topology on PS(X).

In the last two (probabilistic) cases, SPS(X), defined as the family of all
opens of the form [h > b]S = {F ∈ PS(X) | F (h) > b}, h ∈ B[X→I],
b ∈ Q ∩ (0, 1), is a subbase of the Scott topology on PS(X).

Moreover, PA(X) and PAP(X) are continuous lattices.

Proof. (S = A) We first observe that if Y is a continuous dcpo, with basis
BY , then H(Y ) has a basis given by the elements of the form ↓E, E ⊆ Y
finite and non-empty [10, Corollary IV-8.7]. One can even take E ⊆ BY [17,
Theorem 18.6.1], a fact that we may also derive using Lemma 11.1.

Now Y = X⊥ is a continuous dcpo, so, using the isomorphism between
H⊥(Y ) and H(Y⊥) (which maps C ∈ H(Y⊥) to C ∩ Y ∈ H⊥(Y )), we deduce
that H⊥(X) has a basis of elements of the form ↓E, E ⊆ X finite and
possibly empty.

Recall from Proposition 4.8 that PA(X) is isomorphic to the lifted Hoare
powerdomain H⊥(X). The isomorphism maps each C ∈ H⊥(X) to the dis-
crete sublinear prevision (h ∈ [X → I] 7→ supx∈C h(x)). Through this iso-
morphism, the image of ↓{x1, . . . , xn} (n ≥ 0) is (h ∈ [X → I] 7→ max(h(x1),
. . . , h(xn))), so BPA(X) is a basis.

Let us look at the topology. By Proposition 10.5 and Lemma 10.4, the
subsets [χU > 0], U open in X, form a subbase of the topology of PA(X).
Write U as a union

⋃
i∈I Ui where each Ui is a finite intersection of elements of

SX . Then [χU > 0] =
⋃
i∈I [χUi

> 0] by Lemma 10.6. So SPA(X) is a subbase.
Finally, if X is a continuous dcpo, then PA(X) ∼= H⊥(X) is not just a

continuous dcpo, but a continuous lattice, because every finite union of closed
sets is again a closed set.

(S = P) Recall that PP(X) is isomorphic to V≤1(X), with the isomor-
phism mapping F ∈ PP(X) to ν ∈ V≤1(X) such that ν(U) = F (χU), and
conversely, maps ν to F = (h 7→

∫
x∈X h(x)dν). By the argument in the proof

of Corollary 5.5 of [20], a basis of V≤1(X) is given by the valuations of the
form

∑m
i=1 aiδxi , where each ai is in [0, 1], xi ∈ BX , and

∑m
i=1 ai ≤ 1. (δx

is the Dirac mass at x: δx(U) equals 1 if x ∈ U , 0 otherwise; the isomor-
phism maps it to the linear prevision h 7→ h(x).) So the elements of the
form (h 7→

∑m
i=1 aih(xi)), xi ∈ BX , ai ∈ [0, 1],

∑m
i=1 ai ≤ 1, also form a basis

of PP(X). (For future reference, call such elements simple linear previsions.)
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Now (h 7→
∑m

i=1 2nb ai
2n
ch(xi))n∈N forms a chain of elements of BPP(X) whose

sup is h 7→
∑m

i=1 aih(xi). So BPP(X) is also a basis, using Lemma 11.1.
By Proposition 10.3 and Lemma 10.2, a subbase of PP(X) is given by

the subsets [h > b], h ∈ [X → I], b ∈ R+. We can restrict to b ∈ (0, 1),
since [h > b] is empty for b ≥ 1, to the whole of PP(X) for b < 0, and to⋃
n≥1[h > 1/n] for b = 0. Since h is the sup of a directed family (hi)i∈I in

B[X→I], and b is the infimum of a family of rational numbers (bj)j∈J in (0, 1),
[h > b] =

⋃
i∈I,j∈J [hi > bj], so SPP(X) is a subbase of the topology of PP(X).

(S = AP) By Proposition 10.8, a basis of PAP(X) is given by the previsions
of the form maxmi=1

∑ni

j=1 aijh(xij), where m ≥ 1 and
∑ni

j=1 aij ≤ 1 for every i.
As in the S = P case, using Lemma 11.1, we also obtain a basis by requiring
that each aij is dyadic and xij ∈ BX . The resulting basic elements are exactly
those of BPAP(X).

By Proposition 10.7, the topology of PAP(X) is the weak topology. As in
the S = P case, we can restrict b to (0, 1) in taking subbasic open subsets
[h > b], h ∈ [X → I]. Since h is the sup of a directed family (hi)i∈I in
B[X→I], and b is the infimum of a family of rational numbers (bj)j∈J in [0, 1),
[h > b] =

⋃
i∈I,j∈J [hi > bj], so SPAP(X) is a subbase of the topology of PAP(X).

Finally, PAP(X) is also a continuous lattice, not just a continuous dcpo,
because the pointwise supremum of any family of sublinear previsions is again
a sublinear prevision, as one checks easily. 2

Recall that an nbc-domain is a not necessarily pointed continuous dcpo
in which every pair of elements that has an upper bound has a least upper
bound.

Corollary 11.5. Let S = A or S = AP. For every type τ : (i) JτK◦S is an
nbc-domain; (ii) JτKS is a continuous lattice.

Proof. By structural induction on τ , using the fact that {∗} and N are nbc-
domains, that PS(X) is a continuous lattice whenever X is an nbc-domain
(Proposition 11.4, last part), and that [X → Y ] is an nbc-domain, whenever
X and Y are continuous lattices. The latter follows from [8, Proposition 2],
which shows in particular that [X → L] is a bc-domain for every locally
compact space X and every bc-domain L. 2

The values are defined in PCFS +© as in PCFS: ∗ is the only value of type
Unit, the terms n, n ∈ N, are the values of type Nat, and the values of type
σ → τ are the PCFS +© terms of the form λxσ . M , where M : τ .
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Lemma 11.6 (Definability, Case S = AP). For every type τ ,

1. Every element v of BJτK◦AP is definable by a value: there is a closed value
V : τ such that JV K◦AP = v.

2. Every open subset U in SJτK◦AP is definable by a value: there is a closed
value V : τ → Unit such that, for every v ∈ JτK◦AP, JV K◦AP (valAP v) is
equal to valAP ∗ if v ∈ U , and to 0 otherwise.

3. Every element F of BJτKAP is definable: there is a closed PCFAP +©
term M : τ such that JMKAP = F .

4. Every open subset U in SJτKAP is definable by a value: there is a closed
value V : τ → Unit such that, for every F ∈ JτKAP, JV K◦AP (F ) is equal
to valAP ∗ if F ∈ U , and to 0 otherwise.

Proof. Using Corollary 11.5, JτK◦AP and JτKAP are continuous dcpos for every
type τ , so that Proposition 11.4 applies to these spaces, a fact we shall use
several times.

We note that 3 and 4 follow from 1 and 2.
1 ⇒ 3. Let F ∈ BJτKAP , and recall that JτKAP = PAP(JτK

◦
AP). By Proposi-

tion 11.4 (case S = AP), F is of the form (h ∈ [X → I] 7→ maxmi=1Gi(h)),
where m ≥ 1 and each Gi is of the form (h ∈ [X → I] 7→

∑mi

j=1 aijh(vij)),
mj ≥ 0, vij ∈ BJτK◦AP ,

∑mi

j=1 aij ≤ 1, and each aij is dyadic. Write aij as kij/2
n,

with the same n for all i, j, and where kij ∈ N. By 1, there is a value Vij
such that JVijK

◦
AP

= vij.
Call n-sum any term of the form M1⊕M2⊕ . . .⊕M2n . Let Ni be the n-

sum of ki1 times the term Vi1, ki2 times the term Vi2, . . . , kimi
times the term

Vimi
, and 2n−

∑mi

j=1 kij times the term Ωτ = Y(λxτ .x). Since JΩτKAP = 0, and

JVijKAP = valAP vij = (h 7→ h(vij)), JNiKAP = (h 7→ 1
2n

∑mi

j=1 kijh(vij)) = Gi.
Let now M be N1 >N2 > . . .>Nm. Then JMKAP = F , as desired.

2 ⇒ 4. Let U ∈ SJτKAP . By Proposition 11.4 (case S = AP), U is of the
form [h > b], where h ∈ B[JτK◦AP→I] and b is in Q∩ (0, 1). By Proposition 11.2,
h can be written as supmi=1 Ui ↘ bi, where Ui is a finite intersection

⋂mi

j=1 Uij
of elements Uij of SJτK◦AP , and bi is a dyadic number in [0, 1). Write each bi as
ki/2

n, with the same n, and with k1, . . . , km ∈ N.
By 2, there is a closed value Vij = λx . Mij of type τ → Unit such that

for every v ∈ JτK◦AP, JVijK
◦
AP

(valAP v) is equal to valAP ∗ if v ∈ Uij, and to 0
otherwise.

We implement intersection by sequential composition. I.e., for terms M ,
N of type Unit, define M ∧ N as let y ⇐M in N , where y is a dummy
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variable, not free in M or N . Notice that if JMKAP ρ = a valAP ∗ and JNKAP ρ =
b valAP ∗, then JM ∧NKAP ρ = ab valAP ∗. In particular, if a, b ∈ {0, 1}, then
ab is the logical and of a and b.

Let Mi = Mi1 ∧Mi2 ∧ . . . ∧Mimi
∧Ni, where Ni is the n-sum of ki times

∗ and 2n − ki times ΩUnit. For every v ∈ JτK◦AP, JMiKAP [x := valAP v] � is
equal to ki/2

n = bi if v ∈ Ui, to 0 otherwise. In other words, Mi implements
Ui ↘ bi.

Let M = M1>. . .>Mm. Since the semantics of > is a sup, M implements
h in the sense that for every v ∈ JτK◦AP, JMKAP [x := valAP v] � = h(v).

We now define the value V = λz .©>b letx⇐ z inM , where z is a fresh
variable of type τ , different from x and not free in M . (This is the unique
place where we need the ©>b operator.) For every F ∈ JτKAP, JV K◦AP (F ) =
J©>b letx⇐ z inMKAP [z := F ] is equal to valAP ∗ if Jletx⇐ z inMKAP [z :=
F ] � > b, and to 0 otherwise. However:

Jletx⇐ z inMKAP [z := F ] � = (letAP v ⇐ F in JMKAP [x := valAP v]) (�)

= F (v 7→ JMKAP [x := valAP v] �) = F (h).

So JV K◦AP (F ) is equal to valAP ∗ if F ∈ [h > b], and to 0 otherwise.

We now prove 1 and 2 by induction on τ . When τ = Unit: 1. v = ∗, so
we take V = ∗; 2. U = {∗}, so we take V equal to λxUnit . ∗. When τ = Nat:
1. v = n for some n ∈ N, and we take V = n; 2. by Definition 11.3, U = {n}
for some n ∈ N, and we take V = λxNat . ifz predn x ∗ ΩUnit, where predn

is defined by pred0M = M , predn+1M = pred (prednM).
On function types σ → τ :
1. Every element of BJσ→τK◦AP is of the form supmi=1 Ui ↘ yi, where each Ui is

an intersection of finitely many elements Ui1, . . . , Uimi
from SJσKS , yi ∈ BJτKS

(Proposition 11.2). We proceed as in the construction of a term denoting h in
the proof of 4 above. By induction hypothesis, each Uij is defined by a closed
value λx . Mij : σ → Unit, and yi is defined by a closed value Vi : τ . Let
Mi = let y ⇐Mi1 ∧ . . . ∧Mimi

in Vi, where y is a dummy variable (Mi = Vi
if mi = 0). For every v ∈ JσK◦AP, JMiK [x := valAP v] is equal to yi if v ∈ Ui,
and to the zero prevision otherwise. So M = M1 > . . . > Mm implements
supmi=1 Ui ↘ yi, in the sense that for every v ∈ JσK◦AP, JMK [x := valAP v] is
equal to (supmi=1 Ui ↘ yi)(v). Finally, we take V = λx . M .

2. Let U be an open subset, in SJσ→τK◦AP . By Proposition 11.2, U is of the
form [G ∈ W ], where G ∈ BJσKAP and W ∈ SJτKAP . By induction hypothesis,
there is a closed term M : σ such that JMKAP = G, and there is a closed value
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V : τ → Unit such that for every F ∈ JτKAP, JV K◦AP (F ) is equal to valAP ∗ if
F ∈ W , to 0 otherwise. Consider the value λxσ→τ .V (xM), where x is a fresh
variable. We claim this is the desired value. Indeed, for every f ∈ Jσ → τK◦AP,

Jλxσ→τ . V (xM)K◦AP (valAP f) = JV (xM)KAP [x := valAP f ]
= letAP h⇐ JV KAP in h(JxMKAP [x := valAP f ])
= JV K◦AP (JxMKAP [x := valAP f ])
= JV K◦AP (letAP h⇐ valAP f in h(JMKAP))
= JV K◦AP (f(JMKAP)) = JV K◦AP (f(G))

and this is equal to valAP ∗ if f(G) is in W , i.e., if f ∈ [G ∈ W ] = U , and to
0 otherwise. 2

Theorem 11.7 (Full Abstraction, Case S = AP). For all closed PCFAP+
© terms M and N of type σ, M -may

σ N if and only if JMKAP ≤ JNKAP.

Proof. We have already seen that JMKAP ≤ JNKAP implies M -may
σ N . Con-

versely, if JMKAP 6≤ JNKAP, there there is an open subset U , taken from SJσK,
such that M is in U but N is not. By definability (Lemma 11.6, Item 4), there
is a closed value V : σ → Unit such that for every F ∈ JσKAP, JV KAP (F ) is
equal to valAP ∗ if F ∈ U , to 0 otherwise. Then JVMKAP = letAP f ⇐ JV KAP in
f(JMKAP) = JV K◦AP (JMKAP) = valAP ∗, while JV NKAP = JV K◦AP (JNKAP) =
0. By computational adequacy (Proposition 9.1), Pr( · VM↓may) = 1,
Pr( · V N↓may) = 0, so it is certainly not the case that M -may

σ N . 2

The non-probabilistic case S = A is simpler, and yields a stronger result.
A hint is that termination testers©>b are definable in PCFA, by©>bM = M
(recall that we are dealing with discrete previsions here, which can only take
the values 0 or 1 when evaluated on a {0, 1}-valued function, such as �).

Lemma 11.8 (Definability, Case S = A). For every type τ ,

1. Every element v of BJτK◦A is definable by a value: there is a closed value
V : τ such that JV K◦A = v.

2. Every open subset U in SJτK◦A is definable by a value: there is a closed
value V : τ → Unit such that, for every v ∈ JτK◦A, JV K◦A (valA v) is equal
to valA ∗ if v ∈ U , and to 0 otherwise.

3. Every element F of BJτKA is definable: there is a closed PCFA term
M : τ such that JMKA = F .
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4. Every open subset U in SJτKA is definable by a value: there is a closed
value V : τ → Unit such that, for every F ∈ JτKA, JV K◦A (F ) is equal to
valA ∗ if F ∈ U , and to 0 otherwise.

Proof. The proof is as for Lemma 11.6. Only the proof of 4, knowing 2,
changes. This was the case where we required the operator©>b, and we will
not need it any longer. Let U ∈ SJτKA . By Proposition 11.4 (case S = A),
U is of the form [χW > 0], where W is a finite intersection W1 ∩ . . . ∩Wm,
with Wi ∈ SJτK◦A . By 2, there is a value λxτ . Mi such that for every v ∈ JτK◦A,
Jλx . MiK

◦
A (valA v) is equal to valA ∗ if v ∈ Wi, and to 0 otherwise. W is

then definable as λxτ . M , where M = M1 ∧ · · · ∧Mm (or ∗ when m = 0),
where ∧ is defined as sequential composition at type Unit, as in the proof
of Lemma 11.6. That is, JMKA [x := valA v] is equal to valA ∗ if v ∈ W ,
and to 0 otherwise, or in other words, JMKA [x := valA v] = χW (v). valA ∗.
The desired value, defining U , is then V = λz . letA x⇐ z in M . Indeed,
JV K◦A (F ) = JletA x⇐ z in MKA [z := F ] = letA v ⇐ F in JMKA [x := valA v] =
letA v ⇐ F in χW (v). valA ∗ = (h ∈ [{∗} → I] 7→ F (v 7→ χW (v). valA ∗ (h)) =
(h ∈ [{∗} → I] 7→ F (h(∗).χW )) = F (χW ). valA ∗. If F ∈ U , then F (χW ) >
0, which entails F (χW ) = 1 (see comments after Definition 4.3), hence
JV K◦A (F ) = valA ∗; otherwise, F (χW ) = 0, so JV K◦A (F ) = 0. 2

It follows that PCFA is fully abstract (even without ©>b):

Theorem 11.9 (Full Abstraction, Case S = A). For all closed PCFA terms
M and N of type σ, M -may

σ N if and only if JMKA ≤ JNKA.

Proof. The proof is as for Theorem 11.7, using Lemma 11.8 (and Theo-
rem 7.4 for computational adequacy in PCFA). 2

We should also note that, through the isomorphism of Proposition 4.8 (i),
PCFA has an equivalent semantics where JτKA is now defined as H⊥(JτK◦A),
the dcpo of closed subsets of JτK◦A; this semantics is given in Figure 8, and
is the usual semantics one would expect for a variant of PCF with (angelic)
non-deterministic choice. (The supremum of a family of closed subsets, which
occurs several times there, is the closure of the union, not the union.) It fol-
lows that PCFA is also sound, adequate, and fully abstract for this semantics.

59



J∗K◦A ρ = ∗ JnK◦A ρ = n Jλxσ . MK◦A ρ = (C ∈ JσKA 7→ JMKS (ρ[x := C]))
JxKA ρ = ρ(x) JV KS ρ = ↓ JV K◦S ρ (V a value)

JMNKA ρ = supf∈JMKAρ
v∈JNKAρ

f(v)

JYNKA ρ = supn∈N f
n(∅)

where f(C) = supg∈JNKAρ
g(C)

JpredMKA ρ = {n− 1 | n ∈ JMKA ρ, n 6= 0}
JsuccMKA ρ = {n+ 1 | n ∈ JMKA ρ}

JifzM N P KA ρ =


∅ if JMKA ρ = ∅
JNKA ρ if JMKA ρ = {0}
JP KA ρ if JMKA ρ 6= ∅ and 0 6∈ JMKA ρ
JNKA ρ ∪ JP KA ρ otherwise

Jletx⇐M in NKA ρ = supv∈JMKAρ
JNKA (ρ[x := ↓ v])

JM >NKA ρ = JMKA ρ ∪ JNKA ρ

Figure 8: Standard semantics for PCFA

12. Concluding Remarks

In the purely non-deterministic, angelic case, Theorem 11.9 is rather re-
markable: the domain-theoretic semantics of PCFA is fully abstract. No extra
primitive (parallel or, statistical termination testers) is needed for that.

With both angelic non-determinism and probabilistic choice, a situation
similar to that of PCF occurs: PCFAP is not fully abstract, but PCFAP plus a
simple, natural operation—statistical termination testers ©>b—is fully ab-
stract (Theorem 11.7).

The other PCFS languages are on our agenda. Their all enjoy soundness
and adequacy, as we have seen, and some of the results seem to be at hand.
Notably, full abstraction for PCFDP +© (resp., PCFD) seems to be entirely
analogous to PCFAP +© (resp., PCFA), since the Scott and weak topologies
also coincide on PDP(X) (resp., PD(X)) for every continuous dcpo X [15,
Proposition 3.44]; but the definability of weak opens is harder to realize.
Once this is done, the erratic cases S = ADP and S = AD are low-hanging
fruit. The case S = P is hardest: we do not even know a suitable Cartesian-
closed category of continuous dcpos to interpret PCFP in [23], and continuity
on X is needed to equate the Scott and weak topologies on PP(X).
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and again in the proof of definability, and which is essentially used to force
sequential execution. This is not needed in Plotkin’s original PCF, which
does not have choice, and where sequential execution is hidden in calls to
ifz.

One might also wonder whether one really needs higher-order lets, namely
let expressions of the form letx⇐M in N where M is of non-ground type,
for definability and full abstraction. Indeed, the only higher-order let we ever
need in our proofs of the latter results is the term V = λz .©>b letx⇐ z in
M , with z of arbitrary type τ (see Lemma 11.6). This is also the only
place were we need the©>b operator. This suggests an alternative language,
where:

• letx⇐M in N would only be available for M of type Unit; this
would be synonymous with Escardó’s unary conditional ifM then N
[9, Section 3.1], a very undemanding construct, available in usual pro-
gramming languages as sequential composition M ;N ,

• and ©>b would be absent. Instead, we would have an extra construc-
tion Pr[x⇐ N inM↓]>b, of type Unit (for x, N of type τ , M of type
Unit), meant to terminate if and only if the probability that M termi-
nates when x is sampled according to N is greater than b. This is the
semantics of ©>b letx⇐ N inM in our language PCFS +©.

Formally, the denotational semantics would need to be modified by letting:

JPr[x⇐ N inM↓]>bKS ρ

=

{
valS ∗ if (letS v ⇐ JNKS ρ in JMKS (ρ[x := valS v])) � > b

0 otherwise.

and the operational rules for let and©>b should be replaced by the following
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two:
C · Pr[x⇐ N inM↓]>b → C[Pr[x⇐ inM↓]>b] ·N

C ·M [x := V ] ↓m b C · ∗ ↓m a
(V a value)

C[Pr[x⇐ inM↓]>b] · V ↓m a
For S = AP or S = A, proofs similar to those we have given in this paper
should establish that the resulting language is again sound, adequate and
fully abstract.
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[4] G. Berry, Modèles Complètement Adéquats et Stables des Lambda-
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