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We investigate the relations between two automata-based models for describing and 
studying distributed services, called contract automata and communicating machines. 
In the first model, distributed services are abstracted away as automata – oblivious of 
their partners – that coordinate with each other through an orchestrator. The second 
one is concerned with the interactions occurring between distributed services, that 
are represented by channel-based asynchronous communications; then services are 
coordinated through choreography.
We define a notion of strong agreement on contract automata; exhibit a natural mapping 
from this model to communicating machines with a synchronous semantics; and give 
conditions to ensure that strong agreement corresponds to well-formed choreography. 
Then these results are extended to a more liberal notion of agreement and to a fully 
asynchronous semantics of communicating machines.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Among the most popular approaches to the design of distributed coordination, orchestration and choreography aim to de-
scribe the distributed workflow (in other words, how control and data exchanges are coordinated in distributed applications 
or systems). Intuitively, orchestration yields the description of a distributed workflow from “one party’s perspective” [1], 
whereas choreography describes the behaviour of involved parties from a “global viewpoint” [2]. In an orchestrated model, 
the distributed computational components coordinate with each other by interacting with a special component, the orches-
trator, which at run time dictates how the computation evolves. In a choreographed model, the distributed components 
autonomously execute and interact with each other on the basis of a local control flow expected to comply with their role 
as specified in the “global viewpoint”. Here we investigate the relations between two models of distributed coordination: 
contract automata [3] and communicating machines [4].

The first model has been recently introduced as a contract-based coordination framework where contracts specify the 
expected behaviour of distributed components oblivious of their communicating partners. The underlying coordination 
mechanism of contract automata is orchestration. In this model a component, or principal, is assumed to communicate 
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messages on some ports according to an automaton specifying its behavioural contract. These messages have to be thought 
of as directed to an orchestrator synthesised out of the components; the orchestrator directs the interactions in such a way 
that only executions that “are in agreement” actually happen. In this way, it is possible to transfer the approach of [5,6] to 
contract automata so to identify misbehaviour of components that do not realise their contract.

We illustrate this with the following simple example. Alice is willing to lend her aeroplane toy, Bob offers a bike toy 
in order to play with an aeroplane toy, while Carol wants to play with an aeroplane or a bike toy. Let a and b denote 
respectively the actions of offering an aeroplane or a bike toy and, dually, a and b denote the corresponding request actions. 
The contract automata for the principals Alice, Bob, and Carol correspond to the following regular expressions, used for 
conciseness from here onwards:

Alice= a Bob= b.a + a.b Carol= a + b

If Alice exchanges her toy with Bob, then all contracts are fulfilled. Instead, if not coordinated, Alice, Bob, and Carol may 
share their toys in a way that does not fulfil their contracts. Indeed, Alice can give her aeroplane to Bob or Carol, while 
Carol can receive the bike from Alice or Bob. Now, if Alice gives her aeroplane to Carol the contracts of Alice and Carol 
are fulfilled, while Bob’s is not. In the model of contract automata the coordinator acts as the mother of the three kids 
who takes their desires and suggests how to satisfy them (and reproaches those who do not act according to their declared 
contract).

The other model we consider here are communicating machines, a sort of automata that can exchange messages through 
asynchronous (FIFO) buffers. A set of machines constitutes a communicating system. This model has been introduced to 
study distributed communication protocols and to ensure the correctness of distributed components. Unlike contract au-
tomata, communicating machines require no orchestrator since they directly interact with each other through the buffers. 
Recently, a relation between communicating machines and distributed choreographies has been proved in [7].

We show that the above two models are related, in spite of the different problems they address and the different 
mechanisms they use for coordination. For this purpose, we first introduce the notion of strong agreement on contract 
automata, that requires the fulfilment of all offers and requests, differently than previously introduced notions [3], that we 
will deal with later on. We then introduce strongly safe contract automata, that only accept computations that are in strong 
agreement.

We consider convergent communicating systems, that is those exhibiting successfully terminating computations only. The 
machines of convergent systems respect their contracts, namely they accomplish their tasks and receive what they look 
for. Safety and convergence are key notions for semantically linking contract automata and communicating machines. We 
proceed as follows. We first define a mapping for translating (each principal of) a contract automaton in the corresponding 
(machine composing a) communication system, and we prove that the computations of the two correspond in a precise way. 
In the beginning we endow communicating systems with a synchronous semantics, while the general case is considered in 
Section 6.2.

Then, if a contract automaton is strongly safe the corresponding communicating system is convergent, and vice versa. It 
should be noted that a given contract automaton can always be transformed into one that is strongly safe, called its (most 
permissive) controller, by adapting standard constructions from the supervisory control theory for discrete event systems [8], 
as done in [3].

To be more precise, we first establish the above semantic connection by requiring the buffers of communicating machines 
to contain at most one message and contract automata to well-behave on branching constructs (a notion made precise 
below).

Later on, we recall the notion of agreement on contract automata [3], that only requires the fulfilment of all requests. 
In a sense, this notion allows a contract automaton to be compositionally placed in an unknown environment that may 
accept the unmatched offers of the automaton. Again, contract automata in agreement and well-behaving on branches are 
in bijection with the corresponding convergent communicating systems.

Finally, we consider the fully asynchronous semantics of communicating machines, and we prove a weaker result: a 
strongly safe contract automaton satisfying tighter constraints on branches represents a convergent communicating system.

This paper extends our contribution in [9]. Besides Section 2 on related work, the main new parts concern the notion 
of agreement just mentioned above, and the new correspondence results for communicating machines with the general 
semantics, both included in Section 6. Although most of the technicalities on contract automata are inherited from [3], the 
notion of strong agreement has been introduced here. Finally, we have also revised and simplified some proofs.

Structure of the paper. Section 2 briefly surveys the related work closer to ours. We recall contract automata and communi-
cating finite-state machines in Section 3. Section 4 introduces our new notion of strong agreement on contract automata 
and the way their controllers are derived. The translation of contract automata into communicating machines is given in 
Section 5, where we also prove our main theorem of correspondence. In Section 6 we extend our results by relaxing the 
constraints put on both kinds of automata, i.e. we consider agreement on contract automata and the fully asynchronous 
semantics for communicating machines. Section 7 works out in full detail an example. Finally, Section 8 concludes, and 
discusses possible extensions of our results.
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2. On choreography and orchestration: related work

To better cast our results within the literature, we first clarify what we mean by choreography and orchestration since, 
to the best of our knowledge, precise definitions of those concepts are still missing and only intuitive descriptions have 
been given so far.

There is common consensus that the distinguishing element of a choreographic model is the specification of a so-called 
global viewpoint detailing the interactions among distributed participants and offering a “contract” about their expected 
communication behaviour in terms of message exchanges. This intuition is best described in W3C words [2]:

Using the Web Services Choreography specification, a contract containing a global definition of the common ordering conditions 
and constraints under which messages are exchanged, is produced that describes, from a global viewpoint [...] observable behaviour 
[...]. Each party can then use the global definition to build and test solutions that conform to it. The global specification is in turn 
realised by combination of the resulting local systems [...]

Noteworthy, the excerpt above points out that local behaviour should then be realised by conforming to the global view-
point in a “top-down” fashion. Hence, the relations among the global and local specifications are paramount. These aspects 
are addressed in [10] through an analysis of the relations between the interaction-oriented choreographies (i.e., global spec-
ifications expressed as interactions) and the process-oriented ones (i.e., the local specifications expressed as process algebra 
terms). A different “bottom-up” approach has been recently introduced in [11] that synthesise choreographies from local 
specifications. This makes choreography models more flexible (for instance, choreographies have been exploited in [12] as a 
contract model for service composition). Note that – adapting the terminology of [10] – we use communicating machines 
as automata-oriented choreography, as in [11].

The concept of orchestration is more controversial. In this paper we adopt a widely accepted notion of orchestra-
tion [13–15] envisaging the distributed coordination of services as mediated by a distinguished participant that – besides 
acting as provider of some functionalities – regulates the control flow by exchanging messages with partner services ac-
cording to their exposed communication interface. In Peltz’s words [1]:

Orchestration refers to an executable business process that can interact with both internal and external Web services. The in-
teractions occur at the message level. They include business logic and task execution order, and they can span applications and 
organisations to define a long-lived, transactional, multi-step process model. [...] Orchestration always represents control from one 
party’s perspective.

The “executable process” mentioned by Peltz is called orchestrator and specifies the workflow from the “one party’s perspec-
tive” describing the interactions with other available services, so to yield a new composed service. This description accounts 
for a composition model enabling developers to combine existing and independently developed services. The orchestrator 
then “glues” them together in order to realise a new service, as done for instance in Orc [16]. This is a remarkable aspect 
since the services combined by an orchestrator are not supposed to have been specifically designed for the service pro-
vided by the orchestrator and can in fact be (re)used by other orchestrators for realising different services. Notice that this 
approach differs from the “bottom-up” one of [11], because synthesised choreographies do not correspond to executable 
orchestrators.

Other authors consider orchestration as the description of message exchanges among participants from the single par-
ticipants’ viewpoint without assuming the presence of an orchestrator. For instance, in [17,18] the local specifications of a 
choreography are considered the orchestration model of the choreography itself. We believe that this acceptation is too 
lax because any distributed application consists of parties that exchange information at will (no matter if realised with 
channel communication, remote method invocation, etc.). Considering each local specification of a choreography as an or-
chestration may obscure the matter; rather local specifications are tailored to (and dependent of) the corresponding party 
of the choreography instead of begin independently designed. In other words, for us such local specifications correspond to 
automata-oriented choreography adopted here and in [11], as well as to the process-oriented choreography of [10]. Instead, 
in an orchestration model, each participant defines and exposes its own communication pattern which is then (somehow) 
assembled in an orchestration. We model orchestrators as contract automata and, abstracting from technological aspects, we 
can describe our approach using Ross-Talbot’s words [19]:

In the case of orchestration we use a service to broker the interactions between the services including the human agents and in the 
case of choreography we define the expected observable interactions between the services as peers as opposed to mandating any 
form of brokering.

The dichotomy orchestration–choreography has been discussed in several papers (see e.g., [1]). The only formal results 
we are aware of that tightly link a choreography to an orchestration framework are in [20]; this paper uses a bisimulation 
to establish a conformance relation (or its absence) between choreographed and orchestrated computations. We note that 
the orchestration model of [20] – unlike ours – envisages systems as the parallel composition of orchestrators.
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We instead devise conditions to correlate orchestrated computations with local specifications of choreographies so to 
ensure that the former well-behave and correspond to communication-safe choreographies. (We remark that the “liberal” 
execution of orchestrated computations not enjoying our conditions would in general be non-compliant with the corre-
sponding choreographic model.) A practical outcome of our results is that contract automata enjoying (strong) agreement 
can execute without controller, if they are trusted. This yields the further advantage that contract automata are translated 
into communicating machines that run without any central control: disposing the orchestrator reduces the communication 
overhead.

The idea behind our notions of agreement is to require, in a composition of participants, the existence of possible 
“good” executions together with “bad” computations, that the orchestrator eventually cuts off, while the literature has also 
notions that require composition of participants to have “good” computations, only. Further research problems have been 
identified and investigated for distributed choreographies, for instance realizability [21,22,17,23], conformance [24–27], or 
enforcement [28]. Our work departs from the existing literature in that we does not require to start from a global description 
of the interactions. In fact, we simply assume that each service specifies the interactions it is involved in (oblivious of other 
partners). Then, we identify (i) the conditions to allow the coordination of a set of services to satisfy each local requirement, 
and (ii) the conditions for removing the central orchestrator.

3. Background

This section summarises the automata models we use in the paper. Both models envisage distributed computations as 
enacted by components that interact by exchanging messages. As we will see, in both cases components, abstracted away 
as automata, yield systems also formalised as automata.

3.1. Contract automata

Before recalling contract automata [3], we fix our notations and preliminary definitions.

Given a set X , as usual, X∗ def= ⋃
n≥0 Xn is the set of finite words on X (ε is the empty word, w w ′ is the concatenation 

of words w, w ′ ∈ X∗ , w(i) denotes the i-th symbol of w , and |w| is the length of w); write xn for the word obtained by n
concatenations of x ∈ X and x∗ for a finite and arbitrarily long repetition of x ∈ X . It will also be useful to consider Xn as a 
set of tuples and let �x to range over it. Sometimes, overloading notation (and terminology), we confound tuples on X with 
words on X (e.g., if �w ∈ Xn , then | �w| = n is the length of w and �w(i) denotes the i-th element of w).

A contract automaton (cf. Definition 2 below) represents the behaviour of a set of principals (possibly a singleton) 
capable of performing some actions; more precisely, as formalised in Definition 1, the actions of contract automata allow 
them to “advertise” offers, “make” requests, or “handshake” on simultaneous offer/request actions. Consequently, transitions 
of contract automata will be labelled with tuples of elements in the set L def= R ∪O ∪ {�} where

• requests of principals will be built out of R while their offers will be built out of O,
• R ∩O = ∅, and
• � /∈ R ∪O is a distinguished label to represent components that stay idle.

We let a, b, c, . . . range over L and fix an involution · : L → L such that

R⊆O, O⊆R, ∀a ∈R∪O : a = a, and � = �

Definition 1 (Actions). A tuple �a on L is

• a request (action) on b if and only if �a is of the form �∗b�∗ with b ∈R

• an offer (action) on b if and only if �a is of the form �∗b�∗ with b ∈ O

• a match (action) on b if and only if �a is of the form �∗b�∗b�∗ with b ∈R ∪O.

We define the relation 
�⊆ L
∗ ×L

∗ as the symmetric closure of 
·
�⊆ L

∗ ×L
∗ where �a1

·
� �a2 if and only if

• �a1 and �a2 are actions of the same length and
• ∃b ∈R ∪O : �a1 is an offer on b �⇒ �a2 is a request on b and
• ∃b ∈R ∪O : �a1 is a request on b �⇒ �a2 is a offer on b.

We write �a1 
�b �a2 when there is b ∈ R ∪O such that �a1 and �a2 are actions on b and �a1 
� �a2.

We are ready to introduce the notion of a contract automaton made of n principal, each of which represents an entity 
involved in the service.
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Fig. 1. The contract automata of Alice, Bob and Carol.

Definition 2 (Contract Automata). Let Q (ranged over by q1, q2, . . .) be a finite set of states. A contract automaton of rank n is 
a (finite-state) automaton A = 〈Qn, �q0,L

n, T , F 〉, where

• �q0 ∈Qn is the initial state
• F ⊆Qn is the set of accepting states
• T ⊆Qn ×L

n ×Qn is the set of transitions such that (�q, �a, �q′) ∈ T if and only if
– if �a(i) = � then �q(i) = �q′

(i) (i.e., the i-th principal stays idle) and
– �a is either a request, or an offer, or else a match action

A principal is a contract automaton A of rank 1 such that, for any two transitions (q1, a1, q′
1) and (q2, a2, q′

2) in A, it is not 
the case that a1 
� a2.

Note that a principal is not allowed to require what it offers.

Example 1. Consider again the simple example of the Introduction. The principal automata of Alice, Bob, and Carol are in 
Fig. 1, with the usual graphical conventions.

Given a contract automaton of rank n A = 〈Qn, �q0,L
n, T , F 〉, the standard definitions and constructions of finite-state 

automata apply. In particular,

• the configurations of A are pairs in Qn × (Ln)∗ of strings of n-tuples of labels and states of A;
• A moves from (�q, w) to ( �q′, w ′), written (�q, w)

�a−→( �q′, w ′), if and only if w = �aw ′ and (�q, �a, �q′) ∈ T ; we write (�q, w) →
( �q′, w ′) when �a is immaterial and �q �a−→�q′ when w is immaterial (note that transitions are triples, instead);

• the language of A is L (A) = {w 
∣∣ ( �q0, w) →∗ (�q, ε), �q ∈ F } where →∗ is the reflexive and transitive closure of →. As 

usual, �q1
�a1···�am−−−−→�qm+1 shortens �q1

�a1−−→�q2 · · · �qm
�am−−→�qm+1 (for some �q2, . . . , �qm) and we say that �q1 is reachable in A if 

�q0
w−−→�q1; finally �q �→ if and only if for no �q′ it is the case that �q → �q′ .

We now borrow from [3] the product operation of contract automata, that is similar to the one introduced in [29]. 
Given a finite set of contract automata, this operation basically yields the contract automaton that interleaves all their 
transitions while forcing synchronisations when two contract automata are in states ready to “handshake” (i.e., they can fire 
complementary request/offer actions).

Definition 3 (Product). For i ∈ {1, . . . , h}, let Ai = 〈Qni , �q0 i,L
ni , Ti, Fi〉 be a contract automaton of rank ni . The product of 

A1, . . . , Ah , denoted as 
⊗

i∈{1,...,h} Ai , is the contract automaton 〈Qn, �q0,L
n, T , F 〉 of rank n = n1 + . . . + nh where:

• �q0 = �q01 . . . �q0h
• F = F1 × . . . × Fh
• T is the smallest subset of Qn × L

n × Qn such that (�q, �c, �q′) ∈ T if and only if, letting �q = �q1 . . . �qh ∈ Qn , 
�c = �c1, . . . ,�ch ∈ L

n ,

either there are 1 ≤ i < j ≤ h such that (�qi, �ai, �q′
i) ∈ Ti , (�q j, �a j, �q′

j) ∈ T j , �ai 
� �a j , and
⎧⎨
⎩

�ci = �ai, �c j = �a j, and �cl = �nl for l ∈ {1, . . . ,h} \ {i, j}
and
�q′ = �q1 . . . �qi−1 �q′

i �qi+1 . . . �q j−1 �q′
j �q j+1 . . . �qh

or for each l �= i ∈ {1, . . . , h}, if (�qi, �ai, �q′
i) ∈ Ti then

�ci = �ai, �cl = �nl , and �q′ = �q1 . . . �qi−1 �q′
i�qi+1 . . . �qh

also, for all j �= i and (�q j, �a j, �q′ ) ∈ T j it does not hold that �ai 
� �a j .
j
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Fig. 2. Alice ⊗ Bob ⊗ Carol.

Example 2. The contract automaton in Fig. 2 is the product of the contract automata in Fig. 1. Notice that only match actions 
leave the states �q0 and �q3, indeed principals can handshake and so there are no outgoing offer and request transitions.

Remark 1. The product in Definition 3 is not associative: consider again Example 1. Then the composition the automaton 
for Carol with the product of those for Alice and Bob is different from the composition of the automaton of Alice with 
the product of the other two. An alternative definition of associative product is given in [3]. Briefly, before computing the 
product, all its arguments are projected to their principals. Aiming at a simpler presentation, we opted here for the non-
associative product, but we stress that our results hold also with the associative one, because we are composing principals 
only.

Hereafter, we assume that all contract automata of rank n > 1 are the product of n principals. Also, we consider deter-
ministic contract automata only. These assumptions can be relaxed at the cost of adding some technical intricacies.

3.2. Communicating machines

Communicating machines [4] are a simple automata-based model introduced to specify and analyse systems made of 
agents interacting via asynchronous message passing. We adapt the original definitions and notation from [4] and [30] to 
our needs; in particular, the only relevant difference with the original model is that we add the set of final states. Let P be 
a finite set of participants (ranged over by p, q, r, s, etc.) and C

def= {pq ∣∣ p,q ∈P and p �= q} be the set of channels.

The set of actions is Act
def= C × (R ∪ O) and it is ranged over by �; we abbreviate (sr,a) with a@sr when a ∈ O, 

representing the action of sending a from machine s to r. Similarly, we shorten (sr, a) with a@sr when a ∈R, representing 
the reception of a by r.

Definition 4 (CFSM). Given a finite set of states Q , a communicating finite state machine is an automaton M = (Q , q0, Act, δ, F )

where

• q0 ∈ Q is the initial state,
• δ ⊆ Q × Act × Q is the set of transitions,
• F ⊆ Q is the set of final, accepting states.

We say that M is deterministic if and only if for all states q ∈ Q and all actions � ∈ Act, if (q, �, q′), (q, �, q′′) ∈ δ then q′ = q′′ .
Finally, we write L(M) ⊆ Act∗ for the language on Act accepted by the automaton, i.e. the machine M .

The notion of deterministic communicating finite state machines adopted here differs from the standard one (e.g., the 
one in [30]) which requires that, for any state q, if (q, a@sr, q′) ∈ δ and (q, b@sr, q′′) ∈ δ then a = b and q′ = q′′ . We use our 
variant because it reflects the semantics of contract automata better. Indeed, hereafter, we will only consider deterministic 
communicating finite state machines.

The communication model of communicating finite state machines (cf. Definitions 5 and 6) is based on (unbounded) FIFO 
buffers, that actually are the elements in C . They are to be intended as the channels that the participants use to exchange 
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Fig. 3. Three communicating machines.

messages. To spare another syntactic category and cumbersome definitions, we draw the messages appearing in the buffers 
of communicating finite state machines from the set of requests R. Recall that the set of participants P is finite.

Definition 5 (Communicating systems). Given a communicating finite state machine Mp = (Qp, q0p, Act, δp, Fp) for each p ∈P, 
the tuple S = (Mp)p∈P is a communicating system, belonging to the set CS.

A configuration of S is a pair s = (�q; �u) where �q = (qp)p∈P with qp ∈ Qp and where �u = (upq)pq∈C with upq ∈ R
∗; the 

component �q is the control state and qp ∈ Qp is the local state of machine Mp , while �u represents the contents of the (FIFO 
buffers of the) channels.

The initial configuration of S is s0 = ( �q0; �ε) with �q0 = (q0p)p∈P and �ε is the vector of empty channels.

Hereafter, we fix a machine Mp = (Qp, q0p, Act, δp, Fp) for each participant p ∈P and we let S = (Mp)p∈P be the corre-
sponding system. The definition below formalises a computation step of a communicating system: if a machine Ms sends 
a message a to a machine Mr then a is inserted on (the FIFO buffer of) the channel sr connecting the two, rendered by 
sr · a (condition 1 below). The element is then read from the channel, if this is in the form a · sr being a the top of the 
channel (condition 2 below). In both cases, no other machine is affected in the step.

Definition 6 (Reachable state). A configuration s′ = ( �q′; �u′) is reachable from another configuration s = (�q; �u) by firing � ∈ Act, 
written s �−→s′ , if there exists a ∈R such that:

1. if � = a@sr then (�q(s), �, �q′
(s)) ∈ δs and for all p �= s, �q′

(p) = �q(p) ∧ �u′
(sr) = �u(sr) · a;

2. if � = a@sr then (�q(r), �, �q′
(r)) ∈ δr and for all p �= r, �q′

(p) = �q(p) ∧ �u(sr) = a · �u′
(sr);

3. and, in both (1) and (2) above, for all pq �= sr, �u′
(pq) = �u(pq) .

As usual, the computation s1
�1···�m−−−−→sm+1 shortens s1

�1−−→s2 · · · sm
�m−−→sm+1 (for some s2, . . . , sm).

The set of reachable configurations of S is RS(S) = {s
∣∣ s0 →∗ s}.

Example 3. Fig. 3 shows a graphical representation of a communicating system made of three communicating machines, 
used later on to illustrate the mapping from contract automata to communicating machines.

Similarly to finite state automata, communicating machines have one initial state and a set of final states. A transition 
has a channel as label, e.g. c@BC, indicating that the action c is sent by participant B to the buffer of the participant C; 
similarly for a receive action. Note that channels of communicating machines specify for each action the sender and the 
receiver, which is not the case for contract automata.

3.3. Notational synopsis

To avoid cumbersome repetitions, through the paper we assume fixed a contract automaton A = 〈Qn, �q0,L
n, T , F 〉 of 

rank n. For readability, we summarise the notations introduced so far in Table 1.
Finally, we assume that the states of any automaton/machine are built out of a fixed universe Q (of states).

4. Enforcing agreement

This section introduces the original notion of strong agreement on contract automata, that elaborates the notions of agree-
ment and weak agreement introduced in [3]. The three notions differ on the conditions for the fulfilment of an interaction 
between different principals, and share the basic requirement that all the requests of principals are satisfied. Briefly, an 
agreement exists if all the requests, but not necessarily all the offers, are satisfied synchronously. Intuitively, this means 
that the orchestrator guarantees two principals that their requests are synchronously matched by complementary actions. 
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Table 1
Notational synopsis.

X∗ set of finite words w on an alphabet X;
ε is the empty word;
juxtaposition of words is denoted by _ · _

|w|, w(i) the length of w and its i-th symbol, respectively
wn (w∗ , resp.) w concatenated n-times

(arbitrarily many, resp.) with itself
�z or (zi)1≤i≤n indexed tuples of states, labels, channel contents, . . .
L labels
R request labels, ranged over by a,b, . . .
O offer labels, ranged over by a, b, . . .
� /∈ R∪O idle label
A a contract automaton of rank n the language of which is L (A)

P set of participants
(ranged over by p, q, i, j, A, B, C, etc.)

C set of channels, i.e. pairs of participants;
(ranged over by pq)

u ∈ R
∗ the FIFO buffer of a channel

(top on left, bottom on right)
Mp communicating machine of participant p
S a system of communicating machines
Act = C × (R∪O) actions �, either a@pq (sending offer �a)

or a@pq (receiving request a)
s = (�q; �u) a configuration
RS(S) the set of the reachable configurations of S

Instead, a weak agreement exists when request actions can be performed “on credit”. In other words, a computation yields 
weak agreement when the fulfilment of a request action can happen after the action has been taken. Intuitively, this cor-
responds to an asynchronous communication admitting inputs taken on credit, provided that obligations will be honoured 
later on.

Here, we focus on strongly safe contract automata, i.e. those enjoying the property of strong agreement. This notion is a 
tighter version of the ones sketched above: it requires synchronous fulfilment of all offers and requests. In Section 5 we will 
show how this condition corresponds to interactions between communicating machines that always succeed.

Definition 7 (Strong Agreement and Strong Safety). A strong agreement on L is a finite sequence of match actions. We let Z
denote the set of all strong agreements on L.

A contract automaton A is strongly safe if L (A) ⊆ Z. We say that A admits strong agreement when L (A) ∩ Z �= ∅.

We can compose a set of principals so to obtain a strongly safe contract automaton adopting an approach borrowed from 
the supervisory control theory for discrete event systems [8]. In this theory, discrete event systems are basically automata 
where accepting states represent successful termination. Instead, forbidden states are those that may lead to failures, and 
thus should not be traversed in “good” computations. The purpose is then to synthesise a controller that enforces a given 
system to never pass through a forbidden state. The supervisory control theory distinguishes between controllable events 
(those events that the controller can disable) and uncontrollable events (those that are always enabled). Moreover, the theory 
partitions events in observable and unobservable; the latter being a subset of uncontrollable events. It is known that if all 
events are observable then a maximally permissive controller exists that never blocks a good computation [8].

We assume that the orchestrator can prescribe any kind of action to be forbidden, so all the events will be controllable. 
Since the behaviours that we want to enforce in A are exactly those traces labelled by words in Z ∩ L (A), we then 
specialise the notions of supervisory control theory by defining

• observable events to be all offer, request, and match actions;
• forbidden events to be non-match actions.

Definition 8 (Controller). A (strong) controller of A is a contract automaton KSA such that L (KSA) ⊆ Z ∩ L (A).
The most permissive (strong) controller of A is the controller KSA such that L (KS′

A) ⊆ L (KSA) for all KS′
A controllers 

of A.

It is immediate that the most permissive controller is unique up-to language equivalence.

Example 4. The most permissive controller of the contract automaton in Fig. 2 has of the states �q0, �q1, �q3, and �q4 with 
transitions (�q0, (a, a, �), �q1), (�q3, (a, a, �), �q4), (�q0, (�,b, b), �q3), and (�q1, (�,b, b), �q4). Such controller is easily obtained by 
applying the construction of Lemma 1 below.
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Fig. 4. The controlled system of the contract automaton in Fig. 2.

Proposition 1. If KSA is the most permissive controller of A then L (KSA) = Z ∩ L (A).

Proof. By contradiction, assume L (KSA) ⊂ Z ∩ L (A). Since Z ∩ L (A) is the intersection of two regular languages and all 
actions are controllable, there exists a contract automaton KS′

A accepting it (cf. [8]). By definition, KS′
A is a controller of A

strictly containing L (KSA), contradicting the hypothesis that L (KSA) is the most permissive controller. �
It is convenient to introduce the following definition.

Definition 9. A state �q is redundant in the contract automaton A if, and only if, no accepting state of A can be reached 
from �q.

Lemma 1 (MPC). A contract automaton is the most permissive controller of A if and only if it is language-equivalent to

KSA
def= 〈Qn, �q0,L

n, T K \ {(�q,a, �q′)
∣∣ �q or �q′ is redundant in K }, F 〉

where K = 〈Qn, �q0,L
n, T K = {t ∈ T

∣∣ t is a match transition}, F 〉 is the sub-automaton of A the transition relation of which consists 
of the match transitions of A only.

Proof. By definition K is a sub-automaton of A and, by construction, the transitions of KSA are a subset of the transitions 
of A and K contains only match transition, hence L (KSA) ⊆ Z ∩ L (A). Therefore KSA is a controller of A and we have 
just to prove that L (KSA) = Z ∩ L (A). We proceed by contradiction.

Let w ∈ (Z ∩ L (A)) \ L (KSA). Since if ε ∈ L (A) then ε ∈ L (KSA), we have w �= ε and there must be a transition 
t = (�q, �a, �q′) of A not in KSA in the accepting path of w (which is unique since we consider deterministic contract automata 
only), otherwise w ∈ L (KSA). We know that �a is a match action because w ∈ Z, and �q, �q′ are not redundant states of A
because the transition belongs to an accepting path. Hence there must be t ∈ KSA , since by construction match transitions 
between non-redundant states are in KSA . �

From now onwards, we consider as most permissive controller the one obtained by the construction of Lemma 1. We 
then define the controlled system of a contract automaton A, using such controller. The purpose of this new automaton is 
to identify the match transitions of A together with those that lead “outside” of the controller; in its definition we use the 
distinguished state ⊥ /∈ Qn (for any n).

Definition 10 (Controlled system). Let KSA = 〈Qn, �q0,L
n, T ′ ⊆ T , F 〉 be the most permissive controller of A. The controlled 

system of A under KSA is the automaton

KSA/A = 〈Qn ∪ {⊥}, �q0,L
n, T ′′, F 〉

such that

T ′′ = T ′ ∪ {(�q, �a,⊥)
∣∣ �q reachable in KSA and ∃ �q′ ∈ Qn : (�q, �a, �q′) ∈ T \ T ′}

Example 5. The controlled system of the contract automaton in Fig. 2 is obtained by adding the transitions (�q1, (�, �, a), ⊥),

(�q0, (a, �, a), ⊥) to the most permissive controller of Example 4. It is displayed in Fig. 4.

It is worth remarking that the transitions reaching ⊥ in the controlled system of A identify the start of the computations 
in A which lead to violations of strong agreement.

In the next definition, we introduce a notion of strong liability, to single out the principals that are potentially responsible 
of the divergence from the expected behaviour.
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Definition 11 (Strong Liability). Given a controlled system KSA/A of rank n, the set of liable principals on a trace w ∈ L (A)

is given by:

Liable(KSA/A, w) = {i≤ n | ( �q0, w) →∗ (�q, �aw ′) → (⊥, w ′′) in KSA/A, �a(i) �= �}
The potentially liable principals in KSA/A are:

Liable(KSA/A)
def=

⋃
w∈L (A)

Liable(KSA/A, w)

Finally, let TLiable(KSA/A) denote the set of transitions of A that make principals liable:

TLiable(KSA/A)
def= {(�q, �a,⊥) ∈ TKSA/A | �q ∈ Qn, �a ∈ (L∗)n}

Note that the transition labelled by �a in Definition 11 is the first which diverges from the expected path (since, by 
Definition 10, state ⊥ has no outgoing transitions). Indeed a liable principal may fire an action taking the computation away 
from agreement.

Example 6. The liable indexes of the contract automaton in Fig. 4 are 1 and 3, corresponding to Alice and Carol respectively; 
the transitions that make them liable are respectively 

(�q0, (a, �, a), ⊥) and 
(�q1, (�, �, a), ⊥). The former liable transition 

is a match that leads to a non-match transition. So, by inspecting the labels, we easily identify (the indexes of) the liable 
principals.

5. From contract automata to communicating machines

The translation of a principal into a communicating machine is conceptually straightforward as the two automata are 
almost isomorphic, apart from their labels. Recall that the principals in a contract automaton can fire transitions not 
matched by other principals. To account for this kind of “openness,” the Definition 12 below uses the new “−” symbol 
to represent a special, “anonymous” participant, distinguished from those composing the contract automaton in hand, and 
playing the role of the environment. For this reason, we will assume from now onwards that actions in Act are built on 
C

def= {pq ∣∣ p,q ∈P∪ {−} and p �= q}.

Definition 12 (Translation). For a participant p ∈P, let �_�p : Ln → Act be defined as:

��a�p =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a@ij if �a is a match action and i and j are such that
�a(i) ∈O and �a(j) ∈ R and p= i

a@ij if �a is a match action and i and j are such that
�a(i) ∈O and �a( j) ∈R and p= j

a@i− if �a is an offer action and i is such that �a(i) ∈O and p= i
a@−j if �a is a request action and j is such that �a(j) ∈R and p= j
ε otherwise

The translation of A to a communicating finite state machine is given by the map

�A�p
def= 〈Q, �q0(p),Act, {(�q(p), ��a�p, �q′

(p))
∣∣ (�q, �a, �q′) ∈ T and ��a�p �= ε}, F 〉

The communicating system corresponding to the contract automaton A is S(A) = (�A�p)p∈{1,...,n} .

The following example illustrates the composition of three contract automata, its most permissive controller, and its 
translation into a system of three communicating machines.

Example 7. Fig. 5 shows three contract automata A, B, and C (top), their product A ⊗ B ⊗ C (middle), with initial state 
�q0 = 〈q01, q02, q03〉, and the corresponding most permissive controller KSA⊗B⊗C (bottom). The translations �KSA⊗B⊗C�A , 

�KSA⊗B⊗C�B , and �KSA⊗B⊗C�C as per Definition 12 yields the three communicating machines in Fig. 3.

We constrain the behaviour of communicating machines, so to make it easier reflecting in this model the notion of 
strong agreement defined on contract automata. Intuitively, the new semantics, called 1-buffer semantics, only allows a 
machine Mp to send a message a to a partner Mq if in the communicating system S all the channels are empty. To specify 
the 1-buffer semantics, it suffices to constrain the component �u(pq) of the reachable configurations R S(S) of S , and only 
keeping the transitions between the selected configurations. We also define convergent communicating systems that always 
reach a final configuration and so they are deadlock-free.



D. Basile et al. / Journal of Logical and Algebraic Methods in Programming 85 (2016) 425–446 435
Fig. 5. From left to right, top line: the contract automata A, B, C; second line: the contract automaton A ⊗B ⊗C, the controlled automaton of which KSA⊗B⊗C
is in the third line; the communicating machines �KSA⊗B⊗C�A, �KSA⊗B⊗C�B, �KSA⊗B⊗C�C corresponding to the contract automata in the first line are shown 
in Fig. 3.

Definition 13 (1-buffer, convergence, deadlock). Let S = (Mp)p∈P be a communicating system. A configuration s = (�q; �u) of S
is stable if and only if �u = �ε; additionally, s is final if it is stable and �q ∈ (Fp)p∈P.

The transition relation of the 1-buffer semantics of S is the following

� def= → ∩(RS≤1(S) × Act × RS≤1(S))

where → is the relation introduced in Definition 6 and

RS≤1(S)
def= {(�q; �u) ∈ RS(S)

∣∣ (�q; �u) is stable or

∃pq ∈ C : ∃a ∈R : �u(pq) = a ∧ ∀sr �= pq.�u(sr) = ε}
We say that the system S is convergent (with the 1-buffer semantics) if and only if for every reachable configuration 
(�q; �u) ∈ RS≤1(S), there exists a final configuration s such that

(�q; �u) �∗ s.

Moreover a configuration (�q; �u) is a deadlock if and only if it is not final and (�q; �u) ��.

In order to relate the computations of contract automata and those of communicating systems, it is convenient to define 
a translation from the first to the second ones, as follows.
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Definition 14. Given a sequence of n-tuples of actions ϕ ∈ (
L

n
)∗

, we define

�ϕ�
def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a@ij a@ij�ϕ′� if ϕ = �aϕ′ and �a is a match action on a
with �a(i) ∈O and �a(j) ∈R

a@i−�ϕ′� if ϕ = �aϕ′ and �a is an offer action on a
with �a(i) ∈O

a@−j�ϕ′� if ϕ = �aϕ′ and �a is a request action on a
with �a(j) ∈R

ε if ϕ = ε
undefined otherwise

Now we are ready to establish a first property showing how a sequence of actions labelling a computation of the 
corresponding communicating system, is mapped into a trace in strong agreement, i.e. a string of matches.

Property 2. Let S(KSA) be the communicating system corresponding to KSA , and let s0 be its initial configuration. If s0
f

� s, then

• f ∈ Act∗ is a sequence of pairs (a@ij a@ij) possibly followed by a′@i′j′ , for some a, a′, i, j, i′, j′ , and
• there exists a strong agreement ϕ such that either f = �ϕ� or f = �ϕ�a′@i′j′ .

Proof. The first item follows from Definition 13, and the second is then immediate by Definition 14. �
Before establishing our main results, we introduce a notion of well-formedness of contract automata. We require that 

if an output of a principal i is enabled in two different states, it can be taken in both, giving raise to the same match, 
regardless of the (projection of these) states on the other principals j �= i in the product automaton.

In what follows, it is convenient to highlight the principal of a contract automaton that makes an offer or a request. For 
that, we define snd(�a) def= i when �a is a match action or an offer action and �a(i) ∈ O; similarly, let rcv(�a) def= j when �a is 
a match or a request action and �a(j) ∈ R. Also, we will omit the target configuration of a transition when immaterial, and 
simply write, e.g. �q �a−→ or s �−→.

Definition 15 (Branching Condition). A contract automaton A has the branching condition if and only if the following holds 
for each �q1, �q2 reachable in A

∀�a match actions .(�q1
�a−→ ∧ snd(�a) = i∧ �q1(i) = �q2(i)) implies �q2

�a−→

Example 8. The product automaton A ⊗ B ⊗ C of Example 7 enjoys the branching condition. Indeed, consider the match 
action (a, a, �) and the transition �q0

(a,a,�)−−−−→. We have that �q0(1) = �q3(1) = q01 and there also exists the transition �q3
(a,a,�)−−−−→. 

The same happens for:

�q1
(a,a,�)−−−→ , �q4

(a,a,�)−−−→ �q2
(a,a,�)−−−→ , �q5

(a,a,�)−−−→ �q6
(a,a,�)−−−→ , �q5

(a,a,�)−−−→
�q7

(a,a,�)−−−→ �q9
(a,a,�)−−−→ �q7

(a,a,�)−−−→, �q8
(a,a,�)−−−→ �q9

(a,a,�)−−−→, �q10
(a,a,�)−−−→

�q8
(a,a,�)−−−→, �q10

(a,a,�)−−−→ �q0
(b,�,b)−−−−→, �q3

(b,�,b)−−−−→ �q0
(�,c,c)−−−→, �q1

(�,c,c)−−−→
Instead, the most permissive controller of A ⊗ B ⊗ C does not enjoy the branching condition. Consider again the match 
action (a, a, �): while �q0(1) = �q3(1) = q01 and �q3

(a,a,�)−−−−→, no transition labelled by (a, a, �) exits from �q0.

Theorem 1 characterises the relations between a contract automaton A, its most permissive controller KSA and the 
corresponding communicating system S(KSA). It states that S(KSA) is capable of performing all the moves of the controller 
(item 1), while A, but possibly not KSA , can perform all the traces of S(KSA) in strong agreement (item 2a). Moreover 
the runs of S(KSA) leading to a configuration from which no final configuration is reachable correspond to runs in A
that traverse liable transitions (item 2b). The following example illustrates the relations between convergence and deadlock 
freedom discussed above on the automata in Fig. 5.

Example 9. Consider the contract automata and communicating machines of Fig. 5. A trace of the system S(KSA⊗B⊗C) is:

((q01,q02,q03); (ε, ε, ε))
a@AB−−−→

((q11,q02,q03); (a, ε, ε))
a@AB−−−→

((q11,q12,q03); (ε, ε, ε)) = s



D. Basile et al. / Journal of Logical and Algebraic Methods in Programming 85 (2016) 425–446 437
We have �(a,a, �)� = a@AB a@AB, and the contract automaton A ⊗ B ⊗ C is capable of performing the transition 
(�q0, (a, a, �), �q7), while this is not true for the controller KSA⊗B⊗C .

Note that from the configuration s it is not possible to reach a final configuration, since the participant C is prevented 
from reaching a final state, and thus the transition ( �q0, (a, a, �), �q7) of A ⊗ B ⊗ C is liable.

Moreover s is not a deadlock, indeed it is always possible to perform the loop:

((q11,q12,q03); (ε, ε, ε))
a@AB−−−→

((q11,q12,q03); (a, ε, ε))
a@AB−−−→

((q11,q12,q03); (ε, ε, ε))

As a matter of fact S(KSA⊗B⊗C) is deadlock-free but not convergent.

It is convenient to introduce an equivalence between the states of a contract automaton and those of a configuration of a 
communicating system (assuming them ordered by their indexes).

Definition 16. Let (�q; �u) be a reachable configuration of a communicating system, and let �q′ be a state of a contract automa-
ton A. Then we let �q ∼ �q′ iff |�q| = | �q′| = n and ∀i ∈ 1 . . .n.�q(i) = �q′

(i) .

Theorem 1. Let A be a contract automaton with initial state �q0; let KSA be its most permissive controller with initial state �qmpc; let 
S(KSA) be the corresponding communicating system with initial configuration s0. Then, given a strong agreement ϕ ∈ Z, the following 
hold:

1. if �qmpc
ϕ−→�q′

mpc, then there exists a configuration s such that s0
�ϕ�
� s = ( �qs; �u) and �q′

mpc ∼ �qs.

2. if s0
f

� s = ( �qs; �u), then
(a) if f = �ϕ�, then there exists �q′ such that �q0

ϕ−→�q′ and �qs ∼ �q′

(b) if no final configuration is reachable from s, with either f = �ϕ� or f = �ϕ�a@ij, then the run �q0
ϕ̂−→�q′ has traversed a 

transition in TLiable(KSA/A) with either ϕ̂ = ϕ or ϕ̂ = ϕ�a, where �a is a match on a and snd(�a) = i, rcv(�a) = j.

Proof. Through the proof assume that �q′ , �q′
mpc and s are such that �q0

ϕ−→�q′ , �qmpc
ϕ−→�q′

mpc and s0
�ϕ�
� s = (�qs; �u). Also, let �a

be a match with snd(�a) = i and rcv(�a) = j.

1. By induction on the length of ϕ .
The base case is when �qmpc

�a−→�q′
mpc . Let �qmpc(i) and �qmpc(j) be the initial states of participants i and j in S(KSA). By 

Definition 12, we have that

(�qmpc(i),a@ij, �q′
mpc(i)) and (�qmpc(j),a@ij, �q′

mpc(j))

are transitions of participants i and j, respectively. We have s0
a@ij
�

a@ij
� s since after the first transition participant j

remains in its initial state. Moreover by Definition 12 and Definition 3 we have �q′
mpc(i) = �qs(i) and �q′

mpc(j) = �qs(j) , all 
the other components of the states remain in their initial state, and thus �q′

mpc ∼ �qs .

For the inductive case we have ϕ = �a ϕ′ , and the run �qmpc
�a−→ �q′′

mpc
ϕ−→�q′

mpc for some �q′′
mpc . The same argument used 

above guarantees that there exists s′′ = ( �qs′′ ; �u′′) and �qs′′ ∼ �q′′
mpc , such that s0

a@ij
�

a@ij
� s′′ �ϕ′ �

� s and the induction 
hypothesis suffices.

2. The proof of the statement 2a is by induction on the length of f and the proof of 2b is by contradiction.

(a) The base case is when s0
a@ij
�

a@ij
� s, in other words s0

��a�
� s. Now, in order to obtain S(KSA) through Definition 12

there must exist two automata such that �q(i) = �qs(i) and �q(j) = �qs(j) . Consequently, the product automaton A has 
the transition ( �q0, �a, �q) where ∀k �= i, j. �q0(k)

= �q(k) . Thus �q ∼ �qs .

For the inductive case we have ϕ = �a ϕ′ and the computation s0
��a�
� s′′ �ϕ′ �

� s where s′′ = ( �qs′′ ; �u′′). The same argu-

ment used above guarantees that there exists a transition ( �q0, �a, �q′′) and �q′′ ∼ �qs′′ and we conclude by applying the 
induction hypothesis.

(b) Assume by contradiction that �q0
ϕ̂−→�q′ has traversed no liable transitions. Then by Definition 11 there exists ϕ′

such that �q′ ϕ′−−→ �q′′ and �q′′ is a final configuration. By Lemma 1 we must have �qmpc
ϕ̂ϕ′−−−→�q′

mpc where �q′
mpc is a final 

configuration. Hence by applying the first item of Theorem 1 we have s 
f ′
� s′′ where s′′ is a final configuration and 

f ′ = �ϕ′� or f ′ = a@ij�ϕ′�, obtaining a contradiction. �
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As a side comment to item 2b, we can also prove that if s is a deadlock configuration (and either f = �ϕ� or f =
�ϕ�a@ij for some ϕ ∈ Z) and A enjoys the branching condition, then there exists a run �q0

ϕ̂−→�q′ traversing a transition 
in TLiable(KSA/A) with either ϕ̂ = ϕ or ϕ̂ = ϕ�a, where �a is a match on a and snd(�a) = i, rcv(�a) = j. Note also that, if a 
contract automaton A fires through a liable transition, it can be that S(KSA) never reaches a deadlock configuration, as 
shown by the Example 9.

We are now ready to state a main result of ours: the controller of a contract automaton has the branching condition if 
and only if the corresponding communicating system is convergent.

Theorem 2. Let A be a contract automaton, KSA be its most permissive controller, and S(KSA) be the corresponding communicating 
system. Then

S(KSA) is convergent if and only if KSA satisfies the branching condition.

Proof. Let �q0, �qmpc , and s0 be the initial configurations of A, KSA , and S(KSA), respectively.

(Only if-part) Assume by contradiction that S(KSA) is not convergent, i.e. s0
f

� s = ( �qs; �u) and no final configurations are 
reachable from s. By Property 2, f is either f = �ϕ� or f = �ϕ�a′@i′j′ . Hence by applying item 2b of Theorem 1 we 
have that �q0

ϕ̂−→�q′ has traversed a transition in TLiable(KSA/A) with either ϕ̂ = ϕ or ϕ̂ = ϕ �a′ . Hence ϕ̂ = ϕ1�aϕ′′ for some 
ϕ1, �a, ϕ′′ such that �q0

ϕ1−−→ �q1 is a run of A and ( �q1, �a, �q′
1) ∈ TLiable(KSA/A), with snd(�a) = i, rcv(�a) = j for some i, j ∈P.

There exists then a (sub-)computation s0
�ϕ1 �
� s′ = ( �qs′ ; �u′) 

a@ij
� , and by item 2a of Theorem 1 we have �qs′ ∼ �q1. Since 

we obtained S(KSA) through Definition 12, the transition s′ a@ij
� has been originated by a transition ( �q2, �a, �q3) in KSA , for 

some �q2 such that �q2(i) = �q1(i) . We have that �q1 �= �q2 because ( �q1, �a, �q′
1) ∈ TLiable(KSA/A). Hence there must be ϕ1 = ϕ1

1ϕ2
1

such that �q0
ϕ1

1−−→�q2
ϕ2

1−−→�q1 and the principal (corresponding to participant) i stays idle in each step of ϕ2
1 , since �q2(i) = �q1(i) . 

The transitions of KSA include �q2
�a→, but not �q1

�a→ and since �q2(i) = �q1(i) , KSA violates the branching condition, against our 
hypothesis.

(If-part) By contradiction assume that the branching condition does not hold in KSA , i.e. in KSA �q1
�a−→ �q′′ , �q2 � �a−→ where �a is 

a match on a with snd(�a) = i, rcv(�a) = j for some i, j ∈P and �q1(i) = �q2(i) . Suppose that ϕ and ϕ′ are such that �qmpc
ϕ−→ �q1

and �qmpc
ϕ′−−→ �q2.

By the first item of Theorem 1 we have s0
�ϕ�−−−→s

a@ij−−−−→ŝ
a@ij−−−−→s′′ = ( �qs; �u) with �qs ∼ �q′′ and s0

�ϕ′ �−−−→s′ . Moreover, since 
by hypothesis �q1(i) = �q2(i) , we also have s′ a@ij−−−−→s̄. The computation s̄

a@ij�ϕ2 �−−−−−−−→s f , for any ϕ2 and s f final, is not possible, 

because otherwise by item 2a of Theorem 1 we would have �q2
�aϕ2−−→�q f , with �q f final state of the automaton A, as well of 

KSA . This would be a contradiction, because �q2 � �a−→ by hypothesis. Hence S(KSA) is not convergent, since from s̄ it is not 
possible to reach a final configuration. �

A consequence of Theorem 2 is that a strongly safe contract automaton has the branching condition if and only if its 
corresponding communicating system is convergent.

Corollary 3. Let A be a contract automaton, then

A is strongly safe and satisfies the branching condition if and only if S(A) is convergent.

Proof. The statement follows by applying Theorem 2, because if A is strongly safe then A = KSA , hence KSA has the 
branching condition. �
Example 10. Consider the automaton A = A ⊗ B ⊗ C ⊗ D depicted in Fig. 6. Both principals A and B only offer a and then 
stop, while the others principals B and C only perform the complementary request a.

The contract automaton A is strongly safe, but it does not enjoy the branching condition. As an example of violation, 
notice that the state of B in both �q1, �q3 is the same, i.e. �q1(2) = �q3(2) . But the match transition (�,a, �, a) is possibly from 
state �q1, and not from the state �q3; also from state �q3 we can fire the match transition (�,a, a, �), which is not available in 
state �q1.

The translation of A yields the communicating machines:

�KSA�A = a@AC+ a@AD �KSA�B = a@BC+ a@BD

�KSA�C = a@AC+ a@BC �KSA�D = a@AD+ a@BD

A deadlock configuration is generated by the trace a@AC.a@AC.a@BC.
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Fig. 6. KSA .

6. Extensions: agreement and asynchrony

We now extend our proposal along two lines. First we consider the more permissive notion of agreement on contract 
automata introduced in [3]. Then, we drop the constraints on the number of messages that a buffer can contain, and we 
consider the fully asynchronous semantics of communicating machines of Definition 6.

6.1. Agreement

The notion of agreement of [3] considers as forbidden actions only the non-matching requests while for strong agreement 
(Definition 7) both non-matching requests and offers are forbidden.

Below, we extend Theorem 2 and establish a correspondence between contract automata enjoying the property of agree-
ment [3] and the convergent communicating system with the one buffer semantics. To do that, we introduce a special kind 
of contract automaton, called environment. Then, we extend the branching condition of Definition 15.

We borrow from [3] the definition of agreement and of most permissive controller in this case.

Definition 17 (Agreement and Controller). (See [3].) An agreement on L is a finite sequence of match or offer actions. We let 
A to denote the set of all agreements on L. A contract automaton A is safe if L (A) ⊆ A. We say that A admits agreement
when L (A) ∩A �= ∅.

A controller of A is a contract automaton KA such that L (KA) ⊆ A ∩ L (A). The most permissive controller of A is the 
controller KA such that L (K′

A) ⊆ L (KA) for all K′
A controllers of A.

The construction of the most permissive controller KA is basically the one of Lemma 1 (see for more details [3]), except 
that only request transitions are removed.

The above notion of agreement does not prevent offer actions to occur in isolation, and the following definition accord-
ingly extends the branching condition of Definition 15.

Definition 18 (Extended Branching Condition). A contract automaton A has the extended branching condition if and only if it 
has the branching condition and for each �q1, �q2 reachable in A the following holds

∀�a offer action .(�q1
�a−→ ∧ snd(�a) = i∧ �q1(i) = �q2(i)) implies �q2

�a−→

To easily handle the offer actions that are now admitted, we introduce a special contract automaton, called environment, 
that “captures” them all. In this way we can re-use the notion of strong agreement. The environment has a single state, 
both initial and final and a request loop transition for each possible offer.

Definition 19 (Environment). The environment is the contract automaton

E= 〈{qe},qe,L, {(qe,a,qe) | a ∈R}, {qe}〉

Note that by composing a contract automaton A with the environment E, that is A ⊗ E, all the offer actions of A are 
turned into match actions with the environment.

The next theorem shows how the controller of a contract automaton A and the controller of A ⊗ E are related by the 
two branching conditions of Definition 15 and Definition 18.

Theorem 3. Given the most permissive controller KA for the contract automaton A, then KA has the extended branching condition 
if and only if KA⊗E has the branching condition.
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Fig. 7. From left to right: the contract automaton (with mixed choices) A ⊗ B (where A = a + b and B = b + a), and its corresponding communicating 
machines �KA⊗B�A , �KA⊗B�B .

Proof.
(if) By hypothesis KA has the extended branching condition. By Definition 3 all offers of KA are turned into matches 

with the environment in KA⊗E . By contradiction assume that KA⊗E does not hold the branching condition.

Hence there must be two states �q1, �q2 and a principal p such that �q1
�a−→, �q2 � �a−→ with �q1(p) = �q2(p) where �a is a match 

with snd(�a) = p.
Moreover it must be that rcv(�a) = E (by abuse of notation E is the principal corresponding to the environment); other-

wise the match transition would also be in KA , obtaining a contradiction. By Definition 3 the match �a in KA⊗E is turned 
into an offer action �a′ in KA , and we have that KA does not hold the extended branching condition since �q1

�a′−→, �q2 � �a′−→.
(only if) By hypothesis we have that KA⊗E has the branching condition. By Definition 3 we know that in the contract 

automaton KA⊗E all the matches involving the environment are coupled with offers of KA .
By contradiction assume that KA does not hold the extended branching condition. Hence there must be two states �q1, �q2

and a principal p such that �q1
�a−→, �q2 � �a−→ with �q1(p) = �q2(p) and snd(�a) = p.

We distinguish two cases:

• �a is a match action: then by Definition 3 the match is present also in KA⊗E , obtaining a contradiction since KA⊗E has 
the branching condition.

• �a is an offer action: then by Definition 3 �a is turned into a match �a′ with E in KA⊗E . Since �q1
�a′−→, �q2 � �a′−→ we have that 

KA⊗E does not hold the branching condition, obtaining a contradiction. �
Finally we relate a controller KA of a contract automaton A with the corresponding system S(KA⊗E), obtained from 

the controller composed with the environment. Indeed as a direct consequence of Theorem 2 and Theorem 3 we have that 
KA has the extended branching condition if and only if S(KA⊗E) is convergent.

Corollary 4. Given the most permissive controller KA for the contract automaton A, then
KA has the extended branching condition iff S(KA⊗E) is convergent.

Proof. (if) By hypothesis KA has the extended branching condition, by Theorem 3 we have that KA⊗E has the branching 
condition. Finally by Theorem 2 we have that S(KA⊗E) is convergent.

(only if) By hypothesis S(KA⊗E) is convergent, by applying Theorem 2 we have that KA⊗E has the branching condition. 
Finally by Theorem 3 we have that KA has the extended branching condition. �
6.2. Asynchronous semantics of communicating systems

We now discuss the relations between contract automata and communicating systems, with the semantics of Defini-
tion 6, i.e. when the buffers of the communicating machines can contain more then one message. From now onward, the 
notions of convergence and deadlock introduced in Definition 13 are considered using the semantics of Definition 6. The 
following example shows the difficulties with the unrestricted semantics.

Example 11. Consider the contract automaton A ⊗B and the corresponding communicating machines of Fig. 7. This contract 
automaton is strongly safe and has the branching condition. However the translated system is not convergent. Indeed a 
possible deadlock in S(KA⊗B) occurs if A performs the action a@AB and then B performs the action b@BA. This is because 
participant B can ignore the message received by the participant A and follow the other branch of the contract automaton. 
These behaviours are not permitted by the 1-buffer semantics.

In order to guarantee that a system of communicating machines corresponding to a contract automaton is convergent, 
we constrain the contract automata as follows. Intuitively, we will discard those contract automata that have a request and 
an offer transition of a principal outgoing from the same node, like the automata A and B of Example 11. More precisely:



D. Basile et al. / Journal of Logical and Algebraic Methods in Programming 85 (2016) 425–446 441
Definition 20. Let A be a contract automaton, then A has a mixed choice if and only if there exists a reachable state �q with 
two outgoing transitions �q �a1−−→ , �q �a2−−→ such that snd(�a1) = rcv(�a2).

In the following we will prove that if the strong controller of a contract automaton A has the branching condition and 
no mixed choices then the corresponding system is convergent.

It is convenient to define how to project a trace of a communicating system into its offer actions, and to prove an 
auxiliary property.

Definition 21. Given f ∈ Act∗ , its projection on its offers is defined as follows:

f �Odef=
⎧⎨
⎩

a@ij ( f ′�O) if f = a@ij f ′ for some i,j ∈P,a ∈O

f ′�O if f = a@ij f ′ for some i,j ∈P,a ∈R

ε if f = ε

By abuse of notation, we say that a communicating machine has no mixed choices if it is never the case that both offer 
and request transitions leave one of its states.

Property 5. Let KSA be the most permissive controller of A and S(KSA) be the corresponding communicating system.
If KSA has the branching condition and no mixed choices then all the communicating machines of the participants in S(KSA) have 

no mixed choices.

Proof. By contradiction assume that there is a participant p with two transitions (q1, a@pj, q2), (q1, b@ip, q3).
By Definition 12 there must be two transitions (�q, �a, �q1), ( �q2, �b, �q3) where �q(p) = �q2(p) , and �a, �b are match actions on a

and b, respectively, with snd(�a) = p, rcv(�a) = j, snd(�b) = i, rcv(�b) = p.
There are the following two cases:

• �q = �q2 we obtain a contradiction since we have a mixed choice;
• �q �= �q2 then since �q(p) = �q2(p) by the branching condition there are also two transitions ( �q2, �a, �q4), (�q, �b, �q5), hence both 

�q, �q2 are mixed choices, obtaining a contradiction. �

The following theorem relates the traces of a communicating system with the ones of the strong controller KSA it 
comes from, provided that KSA has the branching condition and no mixed choices. Under the above conditions a trace of a 
communicating system only differs from the corresponding trace of the KSA in the order in which the request actions are 
fired in the system. Indeed by considering only offer actions the two traces are equal.

Theorem 4. Let KSA be the most permissive controller of A, with the branching condition and no mixed choices, and let � be the set 
of its non-empty traces; let S(KSA) be the communicating system obtained from KSA and let F be the set of its non-empty traces. Then

∀ f ∈ F there exists ϕ ∈ � such that f �O= �ϕ��O .

Proof. Let �qmpc and s be the initial configurations of KSA and S(KSA), respectively. Assume by contradiction that there 
exists a f with s

f−→ such that for all ϕ with �qmpc
ϕ−→ we have f �O �= �ϕ��O .

Since f �= ε, by Definition 6 it must be that f = a1@i1j1 f ′
1 for some i1, j1,a1, f ′

1, and by Definition 12 there must be 
a transition (�qmpc, �a′, �q′

mpc) in KSA , and therefore there is a ϕ = �a′ ϕ′
1, for some �q′

mpc and ϕ′
1, where �a′ is a match on a1

with snd( �a′) = i1, rcv( �a′) = j1. Moreover by hypothesis it must be that f ′
1�O �= �ϕ′��O .

Now split f as f1 f2, and select a trace ϕ = ϕ1ϕ2 such that f1 is the longest prefix of f with �ϕ1 ��O= f1�O ( �= ε

because of the above). Then we have f2 = a@ij f3 for some i, j,a, and �qmpc
ϕ1−−→�q1mpc � �a−→ where �a is a match with snd(�a) =

i, rcv(�a) = j. Then, there must exist a transition (�q2mpc , �a, �q2′
mpc

), for some �q2mpc , �q2′
mpc

. Assuming s
f1−−→(�qr, �u), we have then 

that �qr (i) = �q2mpc(i)
.

Since the branching condition holds, it turns out that �q1mpc(i)
�= �q2mpc(i)

. If the principal (corresponding to participant) i
stays idle in ϕ1 then it must be �qmpc(i)

= �q1mpc(i)
= �q2mpc(i)

obtaining a contradiction. Thus, the principal i has performed 
some steps in ϕ1, more precisely some requests, otherwise we would obtain �q1mpc = �q2mpc , because �ϕ1 ��O= f1�O .
(i) (i)
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Fig. 8. Top: KSA⊗B⊗C . Bottom: �KSA⊗B⊗C�A , �KSA⊗B⊗C�B , �KSA⊗B⊗C�C .

We now introduce an auxiliary notion of projection on the offers of a participant p:

f̂ �O,p
def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a@pj f̂ ′�O,p if f̂ = a@pj f̂ ′ for some
j ∈P,a ∈O

f̂ ′�O,p if f̂ = a@ij f̂ ′ for some
i,j ∈P,a ∈ R

f̂ ′�O,p if f̂ = a@ij f̂ ′ for some
i,j ∈P,i �= p,a ∈O

ε if f̂ = ε

We consider the offers of i, if any.

• �ϕ1 ��O,i= f1�O,i= ε: if all the requests a@ij occurring in (matches of) ϕ1 also occur in f1, then we obtain �q1mpc(i)
=

�q2mpc(i)
, and there is a violation of the branching condition. Hence not all the requests of i in ϕ1 occur in f1, i.e. 

�qmpc
ϕ1

1−−→�q2mpc

ϕ2
1−−→�q1mpc with ϕ1 = ϕ1

1ϕ2
1 and assume that the missing requests occur in ϕ2

1 . Then further split ϕ2
1 as 

ϕ3
1�a2ϕ

4
1 , where rcv(�a2) = i, so that �q2mpc

ϕ3
1−−→�q4mpc

�a2ϕ
4
1−−−→�q1mpc and that principal i stays idle in ϕ3

1 . Then we have that 
�q2mpc(i)

= �q4mpc(i)
and by the branching condition we have the transition (�q4mpc , �a, �q4′

mpc
) showing a mixed choice, because 

the principal i can perform both an offer and a request: contradiction.
• �ϕ1 ��O,i= f1�O,i �= ε: assume that the last offer of i in �ϕ1 � is a5@ij2 , i.e. �ϕ1 ��O,i= �ϕ1

1 ��O,i a5@ij2 , with �ϕ1 � =
�ϕ1

1 � a5@ij2�ϕ′� and �ϕ′��O,i= ε. Also, let �qmpc
ϕ1

1 �a5−−−→�q5mpc where �a5 is a match on a5 with snd(�a5) = i, rcv(�a5) = j2.
Now, we show that any requests of i occurring in �ϕ1

1 � , also occur in f1 before the offer a5@ij2 . Indeed, by Property 5
we have that the communicating machine of the participant i has no mixed choices (so it cannot choose between 
offering or requesting) and is therefore forced to read from its buffer the received offers before firing a5@ij2 , because 
these were coupled (with corresponding requests of i) in matches occurring in �ϕ1

1 � .
We conclude the proof by applying the argument of the previous case with �q5mpc as the initial state, given that 
�ϕ′��O,i= ε. �

Note in passing that for simulating a step in non-empty trace ϕ of a most permissive controller, the corresponding 
communicating system can pass through several possible configurations, in order to execute a sequence of actions f such 
that f �O= �ϕ��O .

As a matter of fact, a participant can fire many requests, not registered in �ϕ��O , after its last offer registered therein. 
Indeed the trace ϕ is formed by match actions, hence all the requests are fired, while in the trace f there could be some 
participant which has fired all the offers but not yet all its requests.

Example 12. Consider the automata depicted in Fig. 8. The controller KSA⊗B⊗C has the branching condition and no mixed 
choices. Three possible traces of S(KSA⊗B⊗C) are:

f = a@AB b@CB a@AB b@CB c@BC d@BA f1 = f c@BC f2 = f1 d@BA

Consider the trace of KSA⊗B⊗C:

ϕ = (a,a, �)(�,b,b)(�, c, c)(d,d, �)
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Fig. 9. From left to right: the contract automaton (with mixed choices) A ⊗B (where A = a.b + b.a and B = b.a +a.b), and its corresponding communicating 
machines �KA⊗B�A , �KA⊗B�B .

We have f �O= f1�O= f2�O= �ϕ��O . Note that in order to fire the offer c@BC the participant C needs to fire all the previous 
requests. Moreover in the trace f2 each participant has fired all its requests, indeed we have: �qmpc

ϕ−→�q′
mpc , s f2−−→(�qr; �u) and 

�q′
mpc ∼ �qr , where �qmpc and s are the starting configurations of KSA⊗B⊗C and S(KSA⊗B⊗C).

The main result of this sub-section follows. If the strong controller of a contract automaton A has the branching condi-
tion and no mixed choices, then its corresponding system is convergent with unrestricted semantics.

Theorem 5. Let S(KSA) be the communicating system corresponding to the most permissive controller KSA . Then

KSA has the branching condition and no mixed choices implies S(KSA) is convergent.

Proof. Let s be the initial configuration of S(KSA) and �qmpc be the initial state of KSA . By contradiction assume that KSA
has the branching condition and no mixed choices but S(KSA) is not convergent, i.e. there exists a non-empty run f such 
that s

f−→(�qr; �u) and no final configurations are reachable from (�qr; �u). By Theorem 4 there exists a non-empty trace of the 
controller ϕ such that �qmpc

ϕ−→�q′
mpc and f �O= �ϕ��O . Since all the offers are matched in ϕ , by Definitions 6 and 12 there 

exists a trace where all the request actions occur, and let it be our f . Since both KSA and S(KSA) are deterministic, and 
since f drives each communicating machine to execute all and only the actions occurring in the matches of ϕ , we have 
that �qr ∼ �q′

mpc .

Finally since KSA is a controller, there must be a trace ϕ′ and a final state �q f such that �q′
mpc

ϕ′−−→�q f . By applying 

Theorem 1.1 we obtain (�qr; �u)
�ϕ′ �−−−→s f where s f is a final configuration, because the transition relation of the 1-buffer 

semantics is included in that of the semantics of Definition 6: contradiction. �
Note that the above theorem does not fully generalise Corollary 3, as shown by the following example.

Example 13. Consider the contract automaton of Fig. 9 that is strongly safe (so it is also its most permissive controller) and 
has the branching condition. Its corresponding system consists of the communicating machines in Fig. 9 and it is convergent. 
However, a mixed choice is possible from �q0 = (q01, q02).

7. An example

We show our proposal at work on the two buyers protocol (2BP for short) presented in [31]. There are two buyers B1 and 
B2 that collaborate in purchasing an item from a seller S. Buyer B1 starts the protocol by asking S the price of the desired 
item (price); the seller S replies with the quote for the requested item by sending the quotation message quote to both 
buyers. Once received its quote, buyer B1 sends to B2 its contribution for purchasing the item (contrib).

Buyer B2 waits for the quote from S and the contribution from B1. Then, it decides whether to terminate by issuing the 
nop message to S, or to proceed by sending an acknowledgement to S.

Upon receiving the acknowledgement, the seller sends the item to B2 (delivery), while if it receives nop it terminates 
with no further action.

The contract automata B1, B2 and S admit strong agreement, and they are shown in Fig. 10, together with their most 
permissive controller.

We now analyse the translation of the orchestration into a choreography of communicating finite state machines. The 
most permissive controller does not enjoy the branching condition because, for example:

• in �q2 and �q4, buyer B1 is in state qB12,

• �q4
(contrib,contrib,�)−−−−−−−−−−→, but

• there is no transition from �q2 such that �q2
(contrib,contrib,�)−−−−−−−−−−−→,
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Fig. 10. The contract automata for 2BP and their most permissive controller.

as required by Definition 15. This happens because B1 could send the contribution to B2 before this has received quote
from S, so blocking the system. An easy recover would be forcing the seller to first send the quotation to buyer B2, so 
reducing the nondeterminism. A convergent choreography of communicating machines, both for the synchronous and the 
asynchronous case is then derivable as specified above.

The most permissive controller has no states with mixed choices. However, this case may arise if B2 could additionally 
withdraw before accepting the contribution from B1, because the quotation is too high. It is out of the scope of this paper 
discussing the ways to recover from this situation, and we only note that our proposal clearly detects why and where it 
shows up, making the corresponding choreography not convergent.

8. Concluding remarks

We have established a formal correspondence between contract automata, an orchestration model, and communicating 
systems, i.e. sets of communicating machines, that is a model of choreography. More precisely, we introduced the notion of 
strong agreement on contract automata, stating that all the traces accepted by the automata are made by requests matched 
by corresponding offers; on the second model we considered convergence, i.e. successful termination of computations. We 
proved that strong agreement corresponds to convergence (cf. Theorem 2) when communicating systems are endowed with 
the 1-buffer semantics, according to which the execution of the machines is basically synchronous. We note in passing that 
this has some advantages since communicating systems with the 1-buffer semantics are computationally more tractable 
than in the general case [30]. We then generalised the above result by adopting a more relaxed notion of agreement that 
admits computations where offer actions can go unmatched (cf. Corollary 4). We also proved a slightly weaker result for 
communicating systems with the unrestricted semantics (cf. Theorem 5). Currently, we are developing a verification toolkit 
based on the results presented here and in [3]; a prototype is available at https :/ /github .com /davidebasile /workspace.

The constructions to obtain contract automata from principals (e.g., products of contract automata, controllers, controlled 
systems) could be complemented with the recent results on the synthesis of choreographies for communicating finite state 
machines proposed by [11]. We conjecture that the conditions guaranteeing well-behaviour identified here imply the gen-
eralised multiparty compatibility condition identified in [11]. For a given communicating system satisfying this property, a 
choreography always exists and can be synthesised effectively.

https://github.com/davidebasile/workspace
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In [32] progress is attained under assumptions allowing a process P to expose unmatched actions as long as the closed 
system made of P and a catalyser process (derived from P ) results to be lock-free. We can give an interesting analogy with 
this work: our environments resemble their catalysers and the extended branching condition (cf. Definition 13) is similar to 
their relaxed notion of safety. As far as we can see, our notion of convergence is stronger than the above notion of safety, 
in that we also guarantee that a final state is reached, possibly infinitely often. Additionally, only dyadic session types are 
dealt with in [32], while here we can cope with multiparty scenarios.

A possible application of the results in [11] is to use the projections obtained from the communicating system cor-
responding to the controller. Through them, we can identify the principals that could be liable. Indeed, each principal 
univocally corresponds to one of those projections. Hence, this would allow to flag the components that may lead to com-
munication mismatches so to refine them and guarantee that the refined principals execute without the intervention of an 
orchestrator. In general, the suggested approach would give a more efficient and more distributed execution. This is because 
one can remove the overhead due to the communication with the orchestrator, and avoid the centralisation point of the 
orchestrator, respectively. Additionally, one could find that only few principals, and more importantly which of them, spoil 
the conditions for achieving choreographed executions. Hence, by modifying/replacing those principals with the machines 
obtained by projecting the synthesised choreography it would be possible to retrieve a choreographed executions of the 
contract automata.
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