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Abstract

Relational lattices are obtained by interpreting lattice connectives as natural join and inner union between
database relations. Our study of their equational theory reveals that the variety generated by relational
lattices has not been discussed in the existing literature. Furthermore, we show that addition of just the
header constant to the lattice signature leads to undecidability of the quasiequational theory. Nevertheless,
we also demonstrate that relational lattices are not as intangible as one may fear: for example, they do
form a pseudoelementary class. We also apply the tools of Formal Concept Analysis and investigate the
structure of relational lattices via their standard contexts. Furthermore, we show that the addition of typing
rules and singleton constants allows a direct comparison with monotonic relational expressions of Sagiv and
Yannakakis.

Keywords: relational lattices, relational algebra, database theory, algebraic logic, lattice theory

1. Introduction

We study a class of lattices with a natural database interpretation proposed by Vadim Tropashko [34, 29,
33]. It does not seem to have attracted the attention of algebraists, even those investigating the connections
between algebraic logic and relational databases (see, e.g., Imieliriski and Lipski [13] or Duntsch and Mikulds
6))-

The connective natural join (which we will interpret as lattice meet!) is one of the basic operations of
Codd’s (named) relational algebra [1, 4]. Incidentally, it is also one of its total operations—i.e., defined
for all arguments. In general, Codd’s “algebra” is only a partial algebra: some operations are defined
only between relations with suitable headers, e.g., the (set) union or the difference operator. Apart from
the issues of mathematical elegance and generality, this partial nature of operations has also unpleasant
practical consequences. For example, queries which do not observe constraints on headers can crash [35].

It turns out, however, that it is possible to generalize the union operation to inner union defined on
all elements of the algebra and lattice-dual to natural join. This approach appears more natural and has
several advantages over the embedding of relational “algebras” in cylindric algebras proposed in [13]. For
example, we avoid an artificial uniformization of headers and hence queries formed with the use of proposed
connectives enjoy the domain independence property [36], [1, Ch. 5]. We discuss d.i.p. and related properties
formally in Section 2.1 below.

We focus here on the (quasi)equational theory of natural join and inner union. Apart from an obvi-
ous mathematical interest, Birkhoff-style equational inference is the basis for certain query optimization
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techniques where algebraic expressions represent query evaluation plans and are rewritten by the optimizer
into equivalent but more efficient expressions. As for quasiequations, i.e., definite Horn clauses over equali-
ties, reasoning over many database constraints such as key constraints and foreign keys can be reduced to
quasiequational reasoning. Note that an optimizer can consider more equivalent alternatives for the original
expression if it can take the specified database constraints into account.

Strikingly, it turned out that relational lattices does not seem to fit anywhere into the rather well-
investigated landscape of equational theories of lattices [15, 16]; we will discuss this in detail in Section
3 below. Nevertheless, there were some indications that the considered choice of connectives may lead to
positive results concerning decidability /axiomatizability.

On the database side, expressions of our formalisms are closely related to (unions) of conjunctive queries
[1, Ch. 4], [3] and even more so to monotonic relational expressions of Sagiv and Yannakakis [28]; the
relationship with these classes will be discussed in more detail in Section 6 below. Such classes of queries enjoy
decision procedures for problems of containment and equivalence based on so-called Homomorphism Theorem
[3, 28], [1, Ch. 6]. In fact, Johnson and Klug [17] show that even in presence of inclusion dependencies, the
containment problem for conjunctive queries remains in NP when infinite database instances are allowed—
and presence of inclusion dependencies gives the containment problem distinctly quasi-equational character.

Another reason for our initial optimism came from algebraic logic itself: a somewhat (unjustly!) forgotten
book of Craig [5] showed that the finitization problem of algebraic logic allows a positive solution when
relations are allowed to contain tuples of varying arity. Note that Craig’s setting was even more liberal than
our present one: while we do happily allow relations with differing headers, we assume that all tuples within
one relation are defined on a fixed set of attributes.

To our surprise, however, it turned out that — at least when it comes to decidability — expansions
of relational lattices share the curse of “untamed” structures from algebraic logic such as Tarski’s relation
algebras or cylindric algebras. As soon as an additional header constant H is added to the language, one
can encode the word problem for semigroups in the quasiequational theory using a technique introduced
by Maddux [21]. This means that decidability of query equivalence under constraints for restricted positive
database languages does not translate into decidability of corresponding quasiequational theories. How-
ever, our Theorem 4.7 and Corollary 4.8 do not rule out possible finite axiomatization results (except for
quasiequational theory of finite structures) or decidability of equational theory.! And with H removed, i.e.,
in the pure lattice signature, the picture is completely open. Of course, such a language would be rather
weak from a database point of view, but natural for an algebraist.

In the final analysis, the difference between (expansions of) relational lattices and settings allowing
positive results bolis down to typed vs. untyped (which should not be confused with named vs unnamed!)
and also possibly equational vs. quasiequational. Regarding the first of those distinctions, see Section 6 and
in particular Section 6.2: the addition of typing discipline to an expansion of our signature allows a direct
comparison with monotonic relational expressions of Sagiv and Yannakakis [28, Sec. 2.2], a class of queries
with perfectly tractable containment and equivalence problems.

We also obtained a number of positive results. First of all, concrete relational lattices are pseudoelemen-
tary and hence their closure under subalgebras and products is a quasivariety—Theorem 4.1 and Corollary
4.3. The proof yields an encoding into a sufficiently rich (many-sorted) first-order theory with finitely
many axioms. This opens up the possibility of using generic proof assistants like Isabelle or Coq in
future investigations—so far, we have only used Prover9/Maced to study interderivability of interesting
(quasi)equations.? We have also used the tools of Formal Concept Analysis (Theorem 5.3) to investigate the
dual structure of full concrete relational lattices and establish, e.g., their subdirect irreducibility (Corollary
5.4). Theorem 5.3 is likely to have further applications—see the discussion of Problem 7.1.

The structure of the paper is as follows. In Section 2.1, we provide basic definitions, including the
notion of domain independence and its natural strengthening strict indendependence (which does not seem

INote, however, that an extension of our signature to a language with EDPC or a discriminator term would result in an
undecidable equational theory.

21t is worth mentioning that the database inventor of relational lattices has in the meantime developed a dedicated tool
[34].



to have been explicitly defined before). In Section 2.2, we establish that relational lattices are indeed lattices
and in Section 2.3, we note in passing a potential connection with category theory. Section 3 reports our
findings about the (quasi)equational theory of relational lattices: the failure of most standard properties
such as weakening of distributivity (Theorem 3.2), those surprising equations and properties that still hold
(Theorem 3.5) and dependencies between them (Theorem 3.4). In Section 4, we focus on quasiequations and
prove some of most interesting results discussed above, both positive (Theorem 4.1 and Corollaries 4.2—4.4)
and negative ones (Theorem 4.7 and Corollaries 4.8-4.9). Section 5 analyzes standard contexts, incidence
and arrow relations [8] of relational lattices. Section 6 discusses possible extensions of the signature leading
towards expressive completeness and addition of typing information, which in turn allows a direct comparison
with the setting of (monotonic) relational expressions. Section 7 concludes and discusses future work.

This paper is a significantly extended and rewritten version of an earlier conference version [20]. Some
of numerous changes introduced are:

e A new version of Section 6, including in particular new Subsection 6.2, providing a direction with
fragments of relational algebra, in particular with monotonic relational expressions of Sagiv and Yan-
nakakis [28, Sec. 2.2].

e Theorem 3.5, whose lack was in fact a significant omission.

e Rewritten and extended Theorem 3.4, including derivations of new (quasi-)equations and some depen-
dencies we failed to realize in the new version.

e All the missing proofs, for some clauses of Theorem 3.4 including long Prover9 derivations in the
appendix.

e An explicit discussion of domain independence in Section 2.1 (again, its lack in the previous version
was an omission) including a new, natural notion strict independence which for some reason did not
seem to appear in the existing literature, yet for us provides an important criterion by which to judge
possible extensions of the language.

e Completely rewritten Section 2.3.

e Added discussion of relationship with numerous references (scattered throughout the text), resulting
in a much more extensive bibliography.

2. Basic Definitions
2.1. Domains, Relations and Independence

Let A be a set of attribute names and D be a set of domain values. For H C A, a H-sequence from D or
an H-tuple over D is a function « : H — D, i.e., an element of “D. H is called the header of x and denoted
as h(z). The restriction of x to H' is defined as z[H'] := {(a,v) € z | a € H'}, in particular z[H'] = (
if H Nh(x) = (0. We generalize this to the projection of a set of H-sequences X to a header H' which is
X[H'| :={z[H] |z € X}.

A relation is a pair r = (H,, B,.), where H, C A is the header of r and B, C D the body of r. The
collection of all relations over D whose headers are contained in A will be denoted as R(D,.A). Define the
proper class F := {R(D,A) | D, A € Set}. For a fixed A € Set, it is also convenient to isolate the subclass

of F determined by it, i.e., F4 := {R(D,A) | D € Set}; we have thus F = |J Fa. A (n-ary) relational
A€Set
query is a n-ary operation ¢ defined on all members of F:

R(D, A" 3 (ri,...,rp) = ¢PA(r1,...,mm) € R(D, A).

We say that a query ¢ is domain independent [36], [1, Ch. 5] if for all D, D', A, it holds that ¢PA(ry,...,7,) =
P A(ry,...,rn) whenever r; € R(D;, A) N R(D}, A) (i € {1,...,n}).
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Figure 1: Natural join and inner union. In this example, A = {a,b,c}, D = {1, 2, 3,4}.

For the purpose of the discussion in Section 6, it is also convenient to define explicitly a stronger prop-
erty, which appears to be taken for granted in references like [1, Ch. 5]. Namely, say that a query ¢
is strictly independent if for all D, D', A, A’ it holds that ¢PA(ry,...,r,) = pP" A (ri,...,7,) whenever
r; € R(D;, A)NR(D;, A") (i € {1,...,n}). That is, the outcome of ¢ is not only independent of irrelevant
domain elements, but also of irrelevant attributes. In most of the paper, the operations under consideration
are strictly independent (Lemma 2.2 below); only in Section 6.3 we will see examples of domain independent
queries which are not strictly independent.

Examples of queries which do not have even the weaker property of domain independence abound in
any references discussing explicitly the difference between first-order calculus and relational algebra (which
is domain-independent by design), see Abiteboul et al. [1, Ch. 5] for references. Typical examples involve
unrestricted negation or universal quantification. This is not a trivial property from the point of view of
first-order logic: Vardi [36] shows that for first-order queries, the property of being domain-independent is
undecidable.

2.2. Introducing Relational Lattices
For the relations r, s, we define the natural join rxs, and inner union r @ s:

rus = (H,UH, {x €YD |z[H,] € B, and z[H,] € B,})

res = (H.NH,{xec™":D|zc B,[H| or =€ Bs[H,]})
In our notation, » always binds stronger than @. The header constant H := (0, ) plays a special role: for
any r, (H., B;)xH = (H,,0) and hence r; and 7, have the same headers iff Hxr; = Hxry. Note also that
the projection of r; to H,, can be defined as r1 & (Hxrs2). In fact, we can identify Hxr and H,. We denote
(R(D, A), =, ,H) as RH(D, A), with Ly denoting the corresponding algebraic signature. R(D,A) is its
reduct to the signature £ := {x, @ }.

Lemma 2.1. For any D and A, R(D, A) is a lattice.

Proof.. This result is due to Tropashko [34, 29, 33], but let us provide an alternative proof. Define Dom :=
AUAD and for any X C Dom set

Cl(X):=XU{ze?D|Iyec (XNAD).z[A - X] =y[A - X]}.

In other words, C1(X) is the sum of X NA (the set of attributes contained in X) with the cylindrification of
X NAD along the axes in X N A. Tt is straightforward to verify Cl is a closure operator and hence Cl-closed
sets form a lattice, with the order being obviously C inherited from the powerset of Dom. It remains to
observe R(D, A) is isomorphic to this lattice and the isomorphism is given by

(H,B) — (A—H)U{x € *D| z[H] € B}. O

We call R(D, A) the (full) relational lattice over (D,A). We also use the alternative name Tropashko
lattices to honor the inventor of these structures. The lattice order given by = and ¢ is

(H.,B,) C (H,, B,) iff H, C H, and B,[H,] C B,.
4



For classes of algebras, we use H, S, P to denote closures under, respectively, homomorphisms, (isomorphic
copies of) subalgebras and products. Let

RE = S{RN(D, A) | D, A finite}, R .= S{W"(D, A) | D, A unrestricted}

unr
and let Rg, and Ry, denote the lattice reducts of respective classes.
Lemma 2.2. All the operations in the signature Ly are strictly independent.

Proof. Straightforward. O

2.3. Relational Lattices, (Op-)Fibrations and the Grothendieck Construction

The reader disinterested in category theory can skip this section without loss of continuity. Given D
and A, a category theorist may note that H., i.e., the mapping sending every relation r = (H,, B;) to its
header H, is a (Grothendieck) opfibration from R(D,.A) ordered by C to P2(A), the latter being of course
the poset with reverse inclusion order. As we are talking posets here, the action of H(.) on arrows and its
functoriality are obvious. However, as most standard references in category theory (see in particular Jacobs
[14, Ch. 1]) introduce opfibrations well after fibrations, it is easier to pattern-match all results and notions
without having to reverse arrows all the time. So we recall that opfibration £ — D is just a fibration
E°P — D°P and therefore our observation can be reformulated as H(.y being a (Grothendieck) fibration of
R<(D, A) over P<(A), where R=(D, A) is R(D, A), but ordered by J rather than C. The crucial thing to
note is that an arrow r’ J r is “cartesian” [14, Def. 1.1.3] iff B,» = B.[H,/], i.e., if r' is the projection of r
to the header of 7'. With this, one can note that H(.y is in fact a split fibration [14, Def. 1.4.3].

It is thus most natural to view relational lattices themselves as obtained via the so-called Grothendieck
construction [14, Def. 1.10] associated with this particular fibration. This construction is obtained via the
quasifunctor or pseudo-functor [14, Def. 1.4.4] defined as follows

F3: P2(A) > H— P2("D) € Pos
FAHCH'):= ('D2Bw~ B[H']C D)

We get then that = (D, A) is the Grothendieck completion fPQ(A) F3.

Curiously enough, a number of recent references mentioned (op-)fibrations and the Grothendieck con-
struction in the database context [19, 18, 30]. The focus and the use seems somehow different: that con-
nection arose in the study of queries, views and RDF triples, but it would be interesting to connect it with
the Grothendieck perspective on relational lattices sketched above. Our personal belief is there is even
closer relationship with a categorical approach to relational databases proposed recently by Abramsky [2],
which moreover yields a surprising connection with Bell’s Theorem from theoretical physics. Our belief is
motivated by the central role played by = in Abramsky’s work [2, Sec. 2.2] and other similarities. It is worth
noting that Abramsky [2, Sec. 3] suggests that this categorical approach may yield a natural connection
with (and unifying perspective on) probabilistic databases and provenance semirings.

3. Towards the Equational Theory of Relational Lattices

Let us begin the section with

Open Problem 3.1. Are SP(R ) = HSP(R!

unr

) and S]P)(Rum«> = HSP(Runr) ?

If the answer is “no”, it would mean that relational lattices should be considered a quasiequational rather
than equational class (cf. Corollary 4.3 below). Note also that the decidability of equational theories seems
of less importance from a database point of view than decidability of quasiequational theories. Nevertheless,
relating to already investigated varieties of lattices seems a good first step. It turns out that weak forms of
distributivity and similar properties studied in standard references [15, 16, 32] tend to fail dramatically:

5



Theorem 3.2. Ry, (and hence Rynr) does not have any of the following properties (see the above references
or the proof below for definitions):

1. upper- and lower-semidistributivity,

almost distributivity and neardistributivity,

upper- or lower-semimodularity (and hence also modularity),
local distributivity/local modularity,

the Jordan—Dedekind chain condition,

A e

supersolvability.

Proof. For most clauses, it is enough to observe that 23({0,1},{0})) is isomorphic to L4, one of the covers
of the non-modular lattice N5 [23, 16]: a routine counterexample in such cases. In more detail:
Clause 1:  Recall that semidistributivity is the property:
aeb=aecimplies aeb = aq (bxc).
Now take a to be H and b and ¢ to be the atoms with the header {0}.
Clause 2:  This is a corollary of Clause 1 [15, Th 4.2 and Sec 4.3].
Clause 3:  Recall that semimodularity is the property:
if axb covers a and b, then a®b is covered by a and b.
Again, take a to be H and b to be either of the atoms with the header {0}.
Clause 4:  This is a corollary of Clause 3 [22].
Clause 5: Recall that the Jordan-Dedekind chain condition is the property that the cardinalities of two
maximal chains between common end points are equal. This obviously fails in Ns.
Clause 6: Recall that for finite lattices, supersolvability [31] boils down to the existence of a maximal
chain generating a distributive lattice with any other chain. Again, this fails in Ns. O

Remark 3.3. Theorem 3.2 has an additional consequence regarding the notion called rather misleadingly
boundedness in most standard references (see e.g., Jipsen and Rose [15, p. 27]): being an image of a freely
generated lattice by a bounded morphism. We use the term McKenzie-bounded, as McKenzie showed that
for finite subdirectly irreducible lattices, this property amounts to splitting the lattice of varieties of lattices
[15, Theorem 2.25]. Finite Tropashko lattices are subdirectly irreducible (Corollary 5.4 below) but Clause 1
of Theorem 3.2 entails they are not McKenzie-bounded [15, Lemma 2.50).

Nevertheless, Tropashko lattices do not generate the variety of all lattices. The results of our investiga-
tions so far on valid (quasi)equations are summarized in the remainder of this section. First, let us note the
following dependencies between equations and quasiequations in Table 1:

Theorem 3.4. Assuming all lattice axioms, the following statements hold:

1. Azioms of R™ in Table 1 are mutually independent. Similarly, azioms of R are mutually independent.

AzRL1 forces Qul [25].

Eq1 implies Eq2 and EqS3.

Qu2 together with Eql imply both AzRL1 and AzRL2.

Eq1 is implied by AxRH1. The converse implication does not hold even in presence of AzRLI.

AxzRH1 and AzRH2 jointly imply Qu2, although each of the two equations separately is too weak to

entail Qu2. In the converse direction, Qu2 implies AxRH2 but not AxRH]1.

7. AzRHI1 and AzRH2 jointly imply Qu3, although each of the two equations separately is too weak to
entail Qus (in the case of AxRH2 even in presence of Eql).

8. AxzRHI implies Fq4.

A e

Proof. Clause 1: For mutual independence of the two axioms of R, counterexamples can be obtained
by appropriate choices of the interpretation of H in the pentagon lattice. As for R, the example showing
that the validity of AxRL2 does not imply the validity of AxRL1 is the non-distributive diamond lattice
M3, while the reverse implication can be disproved with an eight-element model:

6



Table 1: (Quasi)equations Valid in Tropashko Lattices

Class EH in the signature Ly:
all lattice axioms

AXRHl HNIN(yEBZ)EByNZ:(wawy@z)w(HNgjwzgy)
AxRH2 zx(yoz) = zx(z 0 Hwy) @ zx(y o Hxz)

Class R in the signature £ (without H):

all lattice axioms

AxXRL1 axyorez = zx(y=(x@2)ozx(zoy))
AxRL2 tx((zoy)x(zez)e (uow)x(usev)) =
=tx((zoy)(zez)ousww)atx((uew)x(uev)droyxz)

(in Ly, AxRL1 and AxRL2 are derivable from AxRH1 and AxRH2, see Theorem 3.4)

Additional (quasi)equations derivable in R" and R:

Qul roy=cez = ax(yez)=axyorxz
Qu2 Hx(zoy) =Hx(zoz2) = zx(yez) =zxyerxz
Qu3 Hx(zey) =Hx(zez) =Hx(yez) = zeyxz= (zey)x(zez)
Eql mem(y@z) = memy@HMxMz

Eq2 Hu(yoz) = HxyeoHxz

Eq3 Hxix(zoy)x(xez) = HxtxzeHxtxyxz

Eq4 Hxxoxxy = xw(y@HMx)




Clause 3: Eq2 is obvious by lattice laws: substitute y e z for z and use absorption. For Eq3, we reason
as follows:

Hxtx(z @ y)x(x @ z) = (Hxtxz @ Hxtxy)x (Hxtxz @ Hxtxz)
= Hx(twz @ twy)=(txx @ tx2)
= Hx(twz @ twy)ntxx @ Hx(tnz @ txy)ntxz
= Hxtnx @ Hx(txx o txy)xtxz
= Hxixx @ Hxtnrxz @ Hxtwyxz
= Hxtwxr @ Huixyxz

Clause 4:  Direct computation. In more detail: for AxRL1, substitute yx(x e z) for y and zx(zey) for 2
in the antecendent of Qu2. We get then the consequent of Qu2, as Hx(z @ yx(x @ 2)) = Hxx o Hxyx(z @ 2) =
Hxz @ Heynz @ Hxyxz = Hxx @ Hxyxz = Hxz o Hxoxz o Heyxz = Hx(z o 2zx(zoy)) (we are obviously using
Eql here). Thus, the right side of AxRL1 is equal to zxyx(x @ 2) @ xxzx(zey). But this, by the absorption
law, is equal to zxy @ xxz, i.e., the left side of AxRL1.

For the seemingly monstrous AxRIL2, the trick is similar. Consider

Hx((zey)x(zez)euewxv) = Hx(zoy)x(x e 2) @ Hxu e Hxwxv
= HNQ:@HNZJMZ@HN(U@U})N(U@U)
=Hx(zgyxz) e Hx(uaw)x(uev)

This allows us to use Qu2 to rewrite the right side of AxRL2:

tx((zay)x(zez)ouswxw)atx(uew)x(uev)droyxz)
=tx((zoy)(zez)suewwe (uow)x(uev) e T o y=2)
=tx((zey)=(zez)e (vow)x(uav))

(the second equality obtaining by lattice laws).

Clause 5: The first part has been proved with the help of Prover9 (66 lines of proof—see Appendix).
The counterexample for the converse has been found by Mace4: it is obtained by choosing H to be the top
element of the pentagon lattice.

Clause 6:  Prover9 was able to prove the first statement both in presence and in absence of AxRL1, although
there was a significant difference in the length of both proofs (38 lines vs. 195 lines—see Appendix). The
implication from Qu2 to AxRH2 is straightforward. All the necessary counterexamples have been found by
Mace4 by appropriate choices of the interpretation of H in the pentagon lattice.

Clause T: The positive statement was proved by Prover9 (mere 196 lines—see Appendix). Again,
counterexamples for all the negative statements can be found using 5-element models.
Clause 8:  Substitue x for z and use the absorption law. O

AxRL1 comes from Padmanabhan et al. [25] as an example of an equation which forces the Huntington
property (distributivity under unique complementation). Qul is a form of weak distributivity, denoted as
CD\/ [25] or WD/\ [16]

Theorem 3.5.



AzRH1 and AzRH2 are valid in RY,, (and consequently in RY ).

AzRH1, AzRH2 and Eql are valid in RY,, (and consequently in RY ).

Agioms of R are valid in R, (and consequently in RY ). Similarly, axioms of R are valid in Run,
(and consequently Rean ).

All formulas in Table 1 are valid in RY. (and consequently in RY ). Those not involving H are valid
in Runr (and consequently in Ry ).

Proof. Theorem 3.4 implies that all clauses are equivalent, so we can choose whichever we want to prove.
Perhaps the most convenient is the second one. Validity of Eql is immediate, as the sublattice of relations
with empty body (we can call it the header sublattice) is obviously distributive. In presence of Eql, we
obtain automatically

Huzn(y e z) o ynz < (Heaxy o 2)«(Huaxzoy),

so to establish AxRH1, it is enough to establish the other inequality. Denote Hyx, NH . as H; and Hywx,NH,
as Ha; note that both Hy N Hy = H, N H,. A tuple ¢ belongs to the body of (Hxaxxy e z)=(Hxzxzey) iff
there exists 1 € B,[H1] and to € B,[Hs] s.t. t1[Hy N Ha] = to[Hy N Hs| and ¢ is the concatenation of ¢; and
to. This is in turn is equivalent to the existence of ¢ € B, and t), € By s.t. t1[Hy N Hy| = th[H1 N Ha)] (t1
being ¢ [H1] and ty = t4[Hs)); by our earlier observation, H; N Ha is precisely the set of attributes on which
headers of ] and t}, overlap, so we can see t as restriction of concatenation of | and t, to H; U Hy. But
this means that ¢ belongs to the body of Hxxx(y @ 2) @ y=z.

Finally, let us consider AxRH2. Lattice laws yield that

zx(yez) > wx(zeHxy) o wx(y o Hxz),

so we only need to establish the opposite inequality. Pick any ¢ in the body of zx(yez). Clearly, there
exist t, € By and t3 € By g, overlapping on H, N H, N H, and t is their concatenation. Now, ¢ is either a
restriction of some ¢, € By or of some t, € B,. Assume the first case; we get then that ¢5 belongs to the body
of yeHwz and consequently ¢ € xx(y e Hxz). Similarly, in the other case we get that ¢ € xx(z e Hxy). O

Open Problem 3.6. Are the equational theories of RY . (Run) and RY (Ran) equal? How about
quasiequational ones?

Open Problem 3.7. Is the equational theory of R = (Run:) equal to RY (R, respectively)? If not, is it
finitely axiomatizable at all?

If the answer to the last question is in the negative, one can perhaps attempt a rainbow-style argument
from algebraic logic [12].

4. Relational Lattices as a Quasiequational Class

In the introduction, we discussed why an axiomatization of valid quasiequations is desirable from a DB
point of view. There is also an algebraic reason: the class of representable Tropashko lattices (i.e., the
SP-closure of concrete ones) is a quasivariety. This is a corollary of a more powerful result; recall that being
pseudoelementary means being a reduct of an elementary class in a richer (possibly multi-sorted) language
and that this notion plays a central role in algebraic study of axiomatizability and representability [12]:

Theorem 4.1. ’Rl'fn and Ryny are pseudoelementary classes.

r

Proof. (sketch) Assume a language with sorts A, F';, D and R. The connectives of Ly live in R, we also have
a relation symbol inR : (FU A) x R and a function symbol assign : (F x A) — D. The interpretation is
suggested by the closure system used in the proof of Lemma 2.1. That is, A denotes A, F denotes D, D
denotes D and R denotes the family of Cl-closed subsets of Dom. Moreover, assign(f,a) denotes the value
of the A-sequence denoted by f on the attribute a and inR(z, r)—the membership of an attribute/sequence
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in the closed subset of Dom denoted by r. One needs to postulate the following axioms: “F and R are
extensional” (the first via axioms of assign, the second via axioms on inR); “each element of R is Cl-closed”;
“x and @ are genuine infimum /supremum on R”. For RY  we add an axiom “inR assigns no elements of

F and all elements of A (the latter means all attributes are irrelevant for the element under consideration!)
to H”. O

Corollary 4.2. RH

une 0nd Runr are closed under ultraproducts.

Corollary 4.3. The SP-closures of RY = and Run: are quasiequational classes.

Corollary 4.4. The quasiequational, universal and elementary theories of RN, and Run: are recursively
enumerable.
Proof. The proof of Theorem 4.1 uses finitely many axioms. O

Note that postulating that headers are finite subsets of A would break the proof of Theorem 4.1: such
conditions are not first-order. However, concrete database instances always belong to Rgn and we will show
now that the decidability status of the quasiequational theory of RY —and RY is the same. Moreover, an
undecidability result also obtains for the corresponding abstract class, much like for relation algebras and
cylindric algebras—in fact, we build on a proof of Maddux [21] for C As—and we do not even need all the
azioms of R" to show this! Let RH1 be the variety of Ly-algebras axiomatized by the lattice axioms and
AxRH1. Let us list some basic observations:

Proposition 4.5.
1. RE cRH

2. Fq4 holds in RH1.
3. AzRH1 holds whenever H is interpreted as the bottom of a bounded lattice.

4. AzRH1 holds for an arbitrary choice of H in a distributive lattice.

C SP(R"

unr

) C R" c RH1.

Proof. Clause 2 holds by clause 8 of Theorem 3.4. The remaining ones are straightforward to verify. O

Note, e.g., that interpreting H as L in AxRH2 would only work if the lattice is distributive, so Clause 3
would not hold in general for AxRH2. In order to state our undecidability result, we need first

Definition 4.6. Let € = (ug, u1,us,eq,e1) be an arbitrary 5-tuple of variables. We abbreviate ugxuixus as
w. For arbitrary L-terms s,t define

c§ (t) := ux(Hwuyxug @ uxt),
c (t) := uxn(Hwxugxuy & uxt),
5 (t) = un(Hwxugxuy & uxt),
50°t = c§ {cf (egnc§ (s) ) xc§ (e1xc§ (s))).

Let T, (x1,...,x,) be the collection of all semigroup terms in n variables. Whenever € = (Tpy1, ..., Tnis)
define the translation 7° of semigroup terms as follows: T7¢(x;) := z; for i <n and 7¢(sot) := s0°t for any
syt € Tp(x1,y ..., Zn).

Whenever € is clear from the context, we will drop it to ensure readability. Now we can formulate
Theorem 4.7. For any po,...,DmsT0y--«sTm, Syt € Tp(x1,...,2y,), the following conditions are equivalent
(1) The quasiequation
(Qui) Vri,...,2n.-(po=r0& ... &P =T = s=1)
holds in all semigroups (finite semigroups).
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(IT) For € = (Tp41,-..,%nts) as in Definition 4.6, the quasiequation
V2o, 71, s (TE(p0) = 76(r0) & .. T8 (pm) = T¢(1n) &
(Qud) &nia = €§ (Tnra) & Tnis = f (Tnys)) =
= 7%(s) o° €f (wo) = 7°(t) o° € (20)))
holds in every member of RY. . (every member of RY ).

(III) Qus above holds in every member of RH1 (finite member of RH1).

Proof. (I) = (III). By contraposition:
Take any 2 € RH1 and arbitrarily chosen elements ug, u1,us € . In order to use Maddux’s technique,
we have to prove that for any a,b € 2 and k,[ < 3

(b) ek (ex {a)) = cx {a),
(c) ek (axcy (b)) = cx (a) xck (b),
(d) ek {ei(a)) = ci{ck (a))
(we deliberately keep the same labels as in the quoted paper), where ¢y, (a) is defined in the same way as
in Definition 4.6 above. We will denote by u; the product of u;’s such that i € {0,1,2} — {k}. For example,

Uy = UpUs.
For (b):
L = ux(Heuy @ ux(Heuy @ uxa))

= wx(Hwugx(ue Houy @ una) & ux(Hxuy & uxa)) by lattice laws
= wx(Hwupou e Huug @ uxa)w(Heug=(Heug o uxa) o u) by AxRH1
= ux(Hxuj @ uxa)x(Hxu; ou) by lattice laws
= ux(Hwuj @ uxa) by lattice laws
=R.

(c) is proved using a similar trick:

Houy @ uxax(Hwxuy @ uxb))

Hoowg 0 (uxa @ Heug @ uxb) @ uxax(Hxuy o uxb)) by lattice laws

Hoouj xuxa & Heowuy & uxb)x(Hxug = (Houg o uxb) & uxa) by AxRH1

Houy @ uxb)x(Hwu; & uxa) by lattice laws

X
—~ —~ —~

(d) is obviously true for k = [, hence we can restrict attention to k # [. Let j be the remaining element
of {0,1,2}. Thus,

L = ux(Houwu; o ux(Hougxu; @ uxa))

= ux(Hxunu; @ upx(Hxugxu; e uxa)) by Eq4
= ux(Hxuou;x(u & Hougxu; e uxa) @ ux (Hxugxu; e uxa)) by lattice laws
= un(Hxuyu; @ Howugou; o uxa)x(Hxugeouw; o (Hxugou; o uxa) o u) by AxRH1
= ux(Hxu;u; @ Hougwuj o uxa)xu, by lattice laws
= ux(Hxuxu; o Heugxu; o uxa) by lattice laws

11



and in the last term, u; and ux may be permuted by commutativity. We then obtain the right side of
the equation via an analogous sequence of transformations in the reverse direction, with the roles of u; and
u; replaced.

The rest of the proof mimics the one by Maddux [21]. In some detail: assume there is€ = (ug, u1, u2, €g,€1) €
2 such that

(a) c§(eo) = eo, cf (e1) =1
holds. Using (a)—(d) we prove that for every a,b € 2 the following hold:
(1) ¢ (a o b) = a.oF < (B),
(ii) @o®cf (b) = cf (c§ (a) =c§ <7c§7<eowelmc§ (c5(0))))),
(iii) (ao®b)o®c§ (c) =ao® (bo®cS(c)),
(iv) ((a o) of ¢) o° cf (d) = (a o° (b o° ¢)) o cf (d).

Now pick 2 witnessing the failure of Qub together with € = (ug,u1,us, €g, €1) such that elements of €
interpret variables (541, ..., Zn+s) in Qub. This means (a) is satisfied, hence (i)—(iv) hold for every element
of 2. We define an equivalence relation = on 2:

a=biff for all c € A, a o c (c) = bo°c§ (c).

We take o to be the semigroup operation on 2/ =. Following Maddux [21], we use (i)—(iv) to prove that this
operation is well-defined (i.e., independent of the choice of representatives) and satisfies semigroup axioms.
It follows from the assumptions that the semigroup thus defined fails Qu4.

(ITT) = (IT). Tmmediate.

(I1) = (I). In analogy to Maddux [21], given a semigroup B = (B, o,u) failing Qu4 and a valuation v
witnessing this failure, consider (B, {0, 1,2}) with a valuation w defined as follows:

w(zo) := ({0, 1,2}, {{(0,v(r)), (1, a), (2,0)} | a,b € B}),

w(x;) :=({0,1,2},{{(0,a), (1,a o v(x;)),(2,b)} | a,b € B}), i<m,
wlansi) = ({ih ({0, B)} | b € BY), 0<i<3),
w(znta) = ({0,1,2}, {{(0,0), (1,5), (2,D)} | a,b € BY),
w(@nys) = ({0,1,2}, {{(0,0), (1, a),(2,0)} | a,b € B}).

It is proved by induction that
w(r?(t)) = ({0, 1,2}, {{(0,0), (1,a 0 v(t)),(2,b)} | a,b € B})

(where e = (Zp41,...,Zn15)) for every t € T(xq,...x,) and also
w(Té(s) o® Cf <w0>) :({07 1, 2}7 {{(Ov a)’ (17 b)v (2, C)} | a,b,ce %77}(71) ca= U(S)}),
’w(TE(T) of c§ (z0)) =({0,1,2},{{(0,a), (1,b),(2,¢)} | a,b,c € B,v(r) oa =v(r)}).

Any tuple whose value for attribute 0 is u belongs to the first relation, but not to the second. Thus w is a
valuation refuting Qub. O

Corollary 4.8. The quasiequational theory of any class of algebras between RY ~and RH1 is undecidable.

Proof. Follows from Theorem 4.7 and theorems of Gurevi¢ [9, 10] and Post [26] (for finite and arbitrary
semigroups, respectively). O

Corollary 4.9. The quasiequational theory of RY is not finitely aziomatizable.

Proof. Follows from Theorem 4.7 and the Harrop criterion [11]. O
Open Problem 4.10. Are the quasiequational theories of Runy and Ran (i.e., of lattice reducts) decidable?
12



5. The Concept Structure of Tropashko Lattices

Given a finite lattice £ with J(£) and 9(L) being the sets of its, respectively, join- and meet-irreducibles,
let us follow Formal Concept Analysis [8] and investigate the structure of £ via its standard context con(L) :=
(J(L),M(L), <), where I< :=<N(J(L) x M(L)). Set

g m: gis <-minimal in {h € J(£) | not hl< m},
g/ *m: mis <-maximal in {n € M(L) | not gl<n},

g/ m: gy m&g /m.
Let also ¢ be the smallest relation containing  and satisfying the condition
gw m, h /~mand h . nimply g o n;

in a more compact notation, o o/ C . We have the following
Proposition 5.1. [8, Theorem 17] A finite lattice is

o subdirectly irreducible iff there is m € M(L) such that ' 2 J(L) x {m},

o simple iff /'=J(L) x M(L).

Let us describe J(R(D,.A)) and M(R(D, .A)) for finite D and A. Set

ADomp 4 :={adom(z) |z € *D}  where adom(z) :=(A,{z}),
AAttp 4 :={aatt(a) | a € A} where aatt(a) = (A —{a},0),
CoDomp g = {codom® () | z € "D} where codom® (z):=(H, "D — {z}),
CoAttp 4 :={coatt(a) | a € A} where coatt(a) :=({a}, D),
N = ADomp 4 U AAttp A,
Mp 4 = CoAttp 4 U |J CoDomop g.

HCA

It is worth noting that 2(D,.A) naturally divides into what we may call boolean H-fibres—i.e., the
powerset algebras of D for each H C A. Furthermore, the projection mapping from H-fibre to H'-fibre
where H' C H is a join-homomorphism. Lastly, note that the bottom elements of H-fibres—i.e., elements
of the form (H,))—and top elements of the form (H,#D) form two additional boolean slices, which we may
call the lower attribute slice and the upper attribute slice, respectively. Both are obviously isomorphic copies
of the powerset algebra of A. The intention of our definition should be clear then:

e The join-irreducibles are only the atoms of the A-fibre (i.e., the fibre with the longest tuples) plus the
atoms of the lower attribute slice.

e The set of meet-irreducibles is much richer: it consists of the coatoms of all H-fibres (note Mp 4
includes H as the sole element of CoDomyp ) plus all coatoms of the upper attribute slice.

Let us formalize these two itemized points as

Theorem 5.2. For any finite A and D such that |D| > 2, we have

Ip,a =I(R(D,A)), (join-irreducibles)
Mp A =MR(D, A)). (meet-irreducibles)
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Proof.. (join-irreducibles): To prove the C-direction, simply observe that the elements of Jp 4 are exactly
the atoms of :(D, A). For the converse, note that

e cvery element in a H-fibre is a join of the atoms of this fibre, as each H-fibre has a boolean structure
and in the boolean case atomic = atomistic,

e the header elements (H, ) are joins of elements of AAtip 4,

e the atoms of H-fibres are joins of header elements with elements of AAttp 4.

Hence, no element of R(D, A) outside AAttp 4 can be join-irreducible.

(meet-irreducibles): This time, the D-direction is easier to show: Mp 4 includes the coatoms of H-
fibres and of the upper attribute slice. Hence, the basic properties of finite boolean algebras imply
all meet-irreducibles must be contained in Mp 4: every element of (D, A) can be obtained as an
intersection of elements of Mp 4. For the C-direction, it is clear that elements of CoAttp 4 are meet-
irreducible, as they are coatoms of the whole R(D, A). This also applies to H € CoDomp 3. Now take
codom® (z) = (H,#D — {x}) for a non-empty H = {1,...,h} and & = (21,...25) € D and assume
codom™ () = rws for 7, s # codom™ (). That is, H = H, U H, and

D {2} ={y e ""D|y[H,] € B, and y[H,] € B,}.

Note that wlog H, C H and r C codom®" () for some z € #D; otherwise, if both r and s were top

=

elements of their respective fibres, their meet would be (H, D). Thus
HD —{z} C{y € "D | y[H,] # =}
and by contraposition
{ye"D|y[H,] =2} C {a}. (1)

This means that z = z[H,]. But now take any i € H — H,., pick any d # x; (here is where we use the
assumption that |D| > 2) and set

A
xr = (:ﬂl,...,xi_l,d,xi+1,...,xh).

Clearly, 2'[H,| = z[H,] = z, contradicting (1). O

Theorem 5.3. Assume D, A are finite sets such that |D| > 2 and A# 0. Then |<, ./, / and o look for
R(D,.A) as follows:

r= adom(z) aatt(a) adom(x) aatt(a)
5= coatt(a) coatt(b) codom(y) codom®(y)
rlcs always a#b x[H] #y ag H
ry's never a="b z[Hl=vy acH
r s never a=1b z[H] =y never
ry s never a=1b always always

Sketch. For the |< -row: this is just spelling out the definition of < on (D, A) as restricted to Jp a4 X Mp 4.
For the ,/-row: the set of join-irreducibles consists of only of the atoms of the whole lattice, hence / is
just the complement of <.
This observation already yields C,” and ,'=_ . The last missing piece of information to define * is
provided by the analysis of restriction of < to Mp 4 x Mp a:
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r = coatt(a), s = coatt(b), never,

for = coatt(a), s = codom® (z:), r<s iff never,
r = codom® (z), s = coatt(a), - a€H,
r = codom (z), s = codom (y), never.

Finally, for / we need to observe that composing , with o " does not allow to reach any new
elements of CoAttp 4. As for elements of Mp 4 of the form codom” (3), note that

3h.(h  coatt(a) & h o/ codom™ (y)) if a € H, (2)
3h.(h 7 codom™* () & b/ codom®™v (y)) if x[H, N H,] = y[H, N H,]. (3)
Furthermore, we have that
e for any z € AD and any H C A, adom(x) / codom®™ (z[H]),
e for any a € A and any = € 4D, aatt(a) ,/ codom? (z).

Using (3), we obtain then that Jp 4 x {H} €/ and using (3) again—that Jp _4 x {codom® (y)} C
for any y € AD and any H C A. O

Corollary 5.4. If D, A are finite sets such that |D| > 2 and A # 0, then R(D, A) is subdirectly irreducible
but not simple.

Proof. Follows immediately from Proposition 5.1 and Theorem 5.3. O

6. Extending the Signature and Adding Typing Information

Clearly, it is possible to define more operations on R than those present in L. Thus, our first proposal

for future study, regardless of the negative result in Corollary 4.8, is a systematic investigation of extensions
of the signature. Let us discuss several natural ones; see also [29, 34].

6.1. Safe Extensions with Constants and Monotonic Relational Ezpressions

Let us begin with most natural additional constants. As we will see, just by adding a family of constants,
we can express monotonic relational expressions of Sagiv and Yannakakis [28, Sec. 2.2].

The only extension we need are thus unary singleton constants introduced below. However, let us also
mention several other safe extensions of the language, which will turn out to be expressible using these
constants:

The top element T := (,{0}). Its inclusion in the signature would be harmless, but at the same time does
not appear to improve expressivity in a significant way. Note, however, that if relations with empty header
are seen as boolean predicates, then H plays the role of false and T is necessary to encode true. Also, in
presence of at least one unary singleton constant and the header constant, it is definable anyway, as noted
above.

Attribute constants a := ({a},0}), for a € A. We touch upon an important difference between our setting
and that of both named SPJR algebra and unnamed SPC algebra in [1, Ch. 4], which are typed: expressions
come with an explicit information about their headers (arities in the unnamed case). Our expressions are
untyped query schemes. On the one hand, Ly allows, e.g., projection of r to the header of s: re (sxH),
which does not correspond to any single SPJR expression. On the other hand, only with attribute constants
we can write the SPJR projection of r to a concrete header {ay,...,a,}: Tay,. a2 (1) :=r@aix...=ay.

Unary singleton constants (a : d) := ({a},{(a : d)}), for a € A, d € D. These are among the base SPJR
queries [1, p. 58]. Note they add more expressivity than attribute constants: whenever the signature
includes (a : d) for some d € D, we have a = (a : d)xH. They also allow defining T as T = (a: d)eH and,
more importantly, the SPJR constant-based selection queries o,=q4(r) :=1=(a : d).

15



Table 2: Equivalence between typed expressions and monotonic relational expressions [28, Sec. 2.2].

Typing system for positive expressions

3 is a supply of relational symbols r together with typing information, i.e., ¥ = {ry : Hy,...,r, : Hy}, where H Cy;,, A
CHex deD,ac A
refes deDac A SHH:0
Skr:H Yk (a:d):{a}
Ykri:Hy XYkFry:Hsg Ykri:Hy XYFry:Hsg
Yk riXxre: Hy U Hy YXkriere: H N Hy

Translation (-) of monotonic relational expressions [28, Sec. 2.2] into our terms

Recall a = (a: d)xH, for an arbitrary choice of d € D

—~
S
o
K
o
3
—
3
=
<
Il

{ryx(a:q)

(ryeoar®...xa, {a=a(r))

(r1>7r2) = (r1)x(rz) (riUrz2) = (ri)e(r2)

Reverse translation ()%

Fix b € A and distinct d,e € D. Observe that only for the atomic expressions and ® the translation is independent from the typing
judgement

r: HeX deD,ac A
(" =r (@:9)"=(a:9)
YkFry:{a1,...,am,b1,...,bn YXtkre:{bi,...,bn,c1,...,ck
(r1r2)® = (1) b4 (12) 1 {as L 1 } | 21 {b1 21 K}
(rier2)” = mpy,. by ((r1)7) Uy, by ((12)7)

(H)® =mp((b:d) > (b e))

6.2. Equivalence with Monotonic Relational Expressions

As it turns out, the mere addition of unary singleton constants brings our language very close to that
of monotonic relational expressions of Sagiv and Yannakakis [28, Sec. 2.2]. To be more precise, we obtain
in this way untyped (but named!) counterparts of these expressions. The typing discipline necessary to
connect these two formalisms is presented in Table 2.

6.3. Other Extensions

The bottom element L = (A,0). Whenever A is infinite, including 1 in the signature would exclude
subalgebras consisting of relations with finite headers—i.e., exactly those arising from concrete database
instances. Another undesirable feature is that the interpretation of I depends on A, i.e., the collection
of all possible attributes, which is not explicitly supplied by a query expression. In other words, it is
domain-independent, but not strictly independent.

The full relation U := (A, D). [34, 29] Its inclusion would destroy even the ordinary domain independence
property (d.i.p.). Note that for non-empty A and D, U is a complement of H.

The equality constant A := (A, {x € D | Va,d'.x(a) = x(a’)}). With it, we can express the equality-based
selection queries: 0,=p(r) := r=(A @axb). But the interpretation of A violates d.i.p., hence we prefer the
inner equality operator:

7= (H,{zre™D|3 €r.3d € H.Va € H,.x(a) = ' (d")}),
which also allows to define o,—(7) as r=(T @ axb).
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The header-narrowing operator r M s := (H,— Hy, {x[H,— Hg| | x € H,}). This one is perhaps more surpris-

ing, but now we can define the attribute renaming operators [1, p. 58] as pab(r) := (r=(rea)x(b:d)) M a,
where d € D is arbitrary. Instead of using M, one could add constants for elements aatt(a) introduced in
Section 5, but this would lead to the same criticism as L above: indeed, such constants would make L
definable as 1 = aatt(a)xa and hence fail strict independence. However, for the purpose of recovering the
full setup of Codd’s relational algebra, all we need are ...

The projecting-away operator(s).

Jor = H, — {a},{x € I D| 3’ € #rD. 2’ = 2[H, — {a}]

Attribute renaming operators can be defined now as pap(r) := ma(rx(rea)x(b: d)), where d € D is arbi-
trary.

The difference operator r—s := (H,,{x € B, | © ¢ Bs}). This is a very natural extension from the DB point
of view [1, Ch. 5], which leads us beyond the SPJRU setting towards the question of relational completeness
[4]. Here again we break with the partial character of Codd’s original operator. Another option would be
(Hyns,{x € B,[Hy] | * ¢ Bs[H,]}), but this one can be defined with the difference operator proposed here
as (res) — (se(rxH)).

While we do not provide details here, it should be clear how to prove equipollence between the typed
version of the formalism with the extensions proposed above and Codd’s relational algebra in the spirit of
Section 6.2 and Table 2.

7. Summary and Future Work

We have seen that relational lattices form an interesting class with rather surprising properties. Unlike
Codd’s relational algebra, all operations are total and in contrast to the encoding of relational algebras
in cylindric algebras, the domain independence property obtains automatically. We believe that with the
extensions of the language proposed in Section 6, one can ultimately obtain most natural algebraic treatment
of SPRJ(U) operators and relational query languages. Besides, given how well investigated the lattice of
varieties of lattices is in general [15], it is intriguing to discover a class of lattices with a natural CS motivation
which does not seem to fit anywhere in the existing picture.

We posed a number of questions and problems in the text, in particular Open Problems 3.1, 3.6, 3.7 and
4.10. Without settling them we cannot claim to have grasped how relational lattices behave as an algebraic
class. None of them seems trivial, even with the rich supply of algebraic logic tools available in existing
literature. Comparison with other settings, like that of Craig [5], Quine [27], other (generalized) algebras of
finite sequences and many-sorted cylindric/polyadic algebras [24, Sec. 7.1-7.4 and references therein] and
possible attempts at transfer of methods and results would be also of interest.

We would also like to mention the natural question of representability:

Open Problem 7.1 (Hirsch). Given a finite algebra in the signature Ly (L), is it decidable whether it
belongs to SP(RY. ), SP(RY ) (SP(Runr), SP(Rin))?

We believe that the analysis of the concept structure of finite relational lattices in Section 5 may lead to an
algorithm recognizing whether the concept lattice of a given context belongs to SP(RH ) (or SP(Rgn)). It also
opens the door to a systematic investigation of a research problem suggested by Yde Venema: duality theory
of relational lattices. Given that relational lattices have much more meet-irreducible than join-irreducible
elements, it is tempting to apply the recent duality of Frittella and Santocanale [7], which is particularly
well-tailored for lattices with non-isomorphic sets of meet-irreducible and join-irreducible elements. See also
Section 2.3 above for other category-theoretical connections: as suggested therein, the relationship with the
work of Abramsky [2] would be of particular interest.
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Appendix A. Theorem 3.4, Clause 5:

formulas (assumptions) .

x Ty =y~ x.

(x ~y) ~z=x" (y ~ 2).
X Vy =93V X.

(x vy)vz=xv (yvz).
x v (x ° y) = x.

x " (xvy)=x.

UpMe (x,y,2) = x (y v z).
LoMe(x,y,z) = (x ~ y) v (x ~ z).

UpJo(x,y,z) = (x v y)
LoJo(x,y,2z)

(x v z).
x v (y © 2z).

end_of_list.

for

mulas (goals) .

(all x1 all y1 all w UpMe(a ~ xl,yl,w) v (y1 -~ w) = (((a = x1) ~ y1) v w)

UpMe(a = z1,2z2,2z3)

S (((a "t x1) T ow) v oyl)) >

LoMe(a =~ z1,z2,z3).
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end_of_list.

% Proof 1 at 45.03 (+ 0.26) seconds.
% Length of proof is 66.

% Level of proof is 14.

% Maximum clause weight is 35.

% Given clauses 464.

1 (all x1 all y1 all w UpMe(a ~ xl,yl,w) v (yl1 = w)
) © (((a ~ x1) ~ w) v y1)) -> UpMe(a "~ z1,z2,z3)
label(non_clause) # label(goal). [goal].

(((a = x1) = y1) v w
LoMe(a =~ z1,z2,z3) #

2 x ~y =y " x. [assumption].

3 (x "y) ~z=x"(y " z). [assumption].

4 x vy=yvx. [assumption].

5 (xvy)vz=zxv (yvz). [assumption].

6 x v (x - y) = x. [assumption].

7 x "~ (xvy)=x. [assumption].

8 UpMe(x,y,z) = x ~ (y v z). [assumption].

9 LoMe(x,y,z) = (x ~ y) v (x ~ z). [assumption].

12 UpMe(a ~ x,y,z) v (y =~ z) = (((a =~ x) "~ y) vz~ (((a” x) " 2)vy).

[deny (1))’

13 (x " y) v (a” (z " (xvy)))=«(Wa"(z"x))vy)  ((a” (z"y))v
x). [copy(12),rewrite([8(3),5(4),4(6),3(9),5(13)])].

14 LoMe(a ~ c1,c2,c3) != UpMe(a ~ c1,c2,c3). [deny(1)].

16 (c2 =~ (a " c1)) v (c3 ~ (a "~ c1)) '= a ~ (c1 =~ (c2 v c3)). [copy(14),
rewrite ([9(6),2(5),2(10) ,8(17) ,3(18)])].

16 x ~ (y ~z) =z ~ (x ~y). [para(8(a,1),2(a,1))].

17 x - (y ~z) =y (x ~ z). [para(2(a,1),3(a,1,1)),rewrite([3(2)])].

18 (a =~ (c1 "~ ¢c2)) v (a ~ (c1l " ¢3)) '=a ~ (c1l ~ (c2 v c3)). [
back_rewrite (15),rewrite([16(5),2(4),17(5),16(10) ,2(9),17(10)])].

20 x v (y v 2z) y v (xvz). [para(4(a,1),5(a,1,1)),rewrite([5(2)])].

21 x v (y ~ x) x. [para(2(a,1),6(a,1,2))].

22 (x ~y) v (x " (y "~ =z)) =x "~ y. [para(3(a,1),6(a,1,2))].

23 x v ((x ~y) vz)=xvz. [para(6(a,1),5(a,1,1)),flip(a)].

26 x ~ (y ~ ((x ~y)vz))=x"y. [para(T(a,1),3(a,1)),flip(a)].

27 x ~ (y v x) = x. [para(4(a,1),7(a,1,2))].

28 (x vy) " (xv (yvz)s=xvy. [para(bla,l1),7(a,1,2))].

29 x v x = [para(7(a,1),6(a,1,2))].

30 x ~ x =x. [para(6(a,l),7(a,1,2))].

38 (x " (y " 2))v(a" (u" ((x"y)vz))= ((a" (u"~ (x"~y))) vz "~

((a = (u "~ 2)) v (x "~ y)). [para(3(a,1),18(a,1,1))].

63 x - (y - (x v z)) y - x. [para(7(a,1),17(a,1,2)),flip(a)].

76 x v (y vx)=yv [para (29(a,1) ,5(a,2,2)),rewrite([4(2)])].

79 x 7 (x T y) x [para (30(a,1),8(a,1,1)),flip(a)].

81 x ~ (y =~ x) y [para (30(a,1),3(a,2,2)),rewrite([2(2)])].

82 (x "~ y) v (a " (xvy))=((a " x)vy) " ((a"y)vzx). [para(30(a,l)
18(a,1,2,2)) rewrite ([2(8),7(8).2(11) ,27(11)])].
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88 x v (y = (z ~ x))

89 x v ((y = x) v z)

95 x = ((y v x) " z)

97 x - (y v (z v x))

111 x v (y v (z ~ x))

132 x v (y v (z v x))
5(5)])]-

141 (x ~y) v ((x -~ (y " 2z)) vu = (x "~ y)vou. [para(22(a,1),5(a,1,1)),
flip(a)].

150 x ~ (y -~ (z "~ x)) =y ~ (z ~ x). [para(8(a,1),81(a,1,2)),rewrite(/
3(5)])]-

155 (x ~y) v (y ~ x) =x ~y. [para(81(a,1),22(a,1,2))].

158 x v ((y ~ (z ~ x)) vu) =xvou. [para(88(a,l),5(a,1,1)),flip(a)].

176 a =~ (x - ((y v.z) = (uv (((a ™ (x " y)) vz)" ((a” (x "~ 2z))vy))
) =a "~ (x - (yv2z)). [para(l3(a,1),97(a,1,2,2)),rewrite([3(15),3(14)
J)]-

195 (x v y) ~ ((x ~2) vy)=(x"2)vy. [para(23(a,1),27(a,1,2)),
rewrite([2(4)])]-

197 (x ~y) v (z v x) = z vV [para (76(a,1),23(a,2)),rewrite([132(4)])].

220 (x ~y) v (x ~ (y v =2z)) =x " (yvz). [para(63(a,1),21(a,1,2)),
rewrite ([4(4)])]-

228 (x v y) =~ ((z = x) v y)
rewrite([2(4)])]-

244 (x vy) -~ (z ~y) =12z "y. [para(81(a,1),95(a,2)),rewrite([150(4)])].

321 (a " x) v (((a = x) vy) "~ z)=((a "~ x) vz " ((a”x)vy). [para
(26(a,1),13(a,2,1,1)),rewrite([5(9),26(11) ,4(7),20(17),141(17)])].

336 (x ~y) v (zv (y " x)) =2zv (y x). [para(155(a,1),5(a,2,2)),
rewrite ([4(4)])].

341 (x ~ (y ~ z)) v (y =~ %) x "~ y. [para(155(a,1),28(a,2)),rewrite(/[
3(3),336(6)])].

398 (x vy) " (yvzx)=xvV [para (76(a,1) ,28(a,1,2))].

565 (x v (y v 2)) "~ (z v y) =2zvy. [para(8398(a,1),24/(a,1,2)), rewrite(]
398(7)])].

1281 (x v y) -~ ((z -~ (u " x)) vy)=(z"(u"x))vy. [para(158(a,l)
,27(a,1,2)) , rewrite([2(5)])].

3918 (x v y) =~ ((z = y) v x) =

6421 x ~ ((x =~ y) v (x = z))
)]

6979 (x =~ (y ~ z)) v (x ~ (u v y))
,1,2,2)),rewrite([197(8)])].
7074 x © ((y ~z) v (y - x)) =x "~ y. [para(841(a,l),228(a,1,2)),rewrite(

[2(5).3(5).6421(4),341(8)])].

7542 x ~ ((y ~z) v (x - y)) =x ~y. [para(2(a,1),707/(a,1,2,2))].

7744 x © ((y ~z) v (x © (u v 2))) x " (uv z). [para(244(a,1),7542(a
717271))/

8021 (a ~ x) v (a ~y) =a ~ (x v y). [para(82(a,2),38(a,1,2,2)),rewrite(
[T744(10) ,6979(7) ,2(10) ,3(10) ,27(9) ,79(7) ,2(11) ,26(12) ,8918(12)]),flip(
a)].

8518 a ~ ((cl ~ ¢c2) v (c1 ~ ¢c3)) !'=a =~ (c1 ~ (c2 v ¢3)). [back_rewrite
(18),rewrite ([8021(11)])].

9294 a ~ ((a "~ x) vy) =a " (xvy). [para(79(a,1),8021(a,1,1)),rewrite(
[8021(5)]),flip(a)].

[para(3(a,1),21(a,1,2))].
v z. [para(21(a,1),5(a,1,1)),flip(a)].
~z. [para(27(a,1),3(a,1,1)),flip(a)].
[para(5(a,1),27(a,1,2))].
y v x. [para(21(a,1),20(a,1,2)),flip(a)].
yv (zv x). [para(5(a,1),76(a,1,2)),rewrite(]

™

(z ~ x) vy. [para(89(a,1),27(a,1,2)),

<

(z ~y) v x. [para(111(a,1),565(a,1,1))].
(x ~y) v (x -~ z). [para(6(a,1),195(a,1,1)

x " (uvy). [para(197(a,1),220(a

<
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10727 a ~ (x ~ ((a =~ y) v z)) ~(a " (y v z)). [para(9294(a,1),17(a
1,2)), flip (a)).

15426 x ~ (a ~ ((x ~y) v.z)) =a "~ (x ~ (y v 2)). [para(6(a,1),176(a
,1,2,2,2)) , rewrite ([1281(7),10727(7)])].

365669 a = ((x ~y) v (x "~ z)) =a " (x ~ (y v z)). [para(341(a,1),321(a
1,2,1)), rewrite ([3(6),8021(7),341(15).2(12) ,3(12),10727(12) ,15426(10)]
).

36560 $F. [resolve (86559,a,8518,a)].

I
o]
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THEOREM PROVED

Appendix B. Theorem 3.4, Clause 6:

formulas (assumptions) .

X y =y X.

(x ~y) ~z=x " (y ~ z).
X Vy =y V X.

(x vy)vzs=xv(yvz).
xv (x 7 y) = x.

x T (x v y) X

UpMe (x,y,2z) = x (y v z).
LoMe(x,y,z) = (x "~ y) v (x ~ 2z).
UpJo(x,y,z) = (x v y) =~ (x v z).
LoJo(x,y,2z) = x v (y ~ z).
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UpMe(a ~ x1,yl,z1) v (y1 =~ z1) = (((a " x1) = y1) v z1) =~ (((a ~ x1) = z1)
v y1).

UpMe (x,y,2z) = UpMe(x,y,a ~ z) v UpMe(x,z,a "~ y).

end_of_list.

formulas (goals) .

(all x2 all y2 all z2 (UpMe(a,x2,y2) = UpMe(a,x2,z2) -> UpMe(x2,y2,2z2) =
LoMe (x2,y2,22))).

end_of_list.

\% Proof 1 at 222.55 (+ 1.51) seconds.
\% Length of proof is 195.

\% Level of proof is 24.

\% Maximum clause weight is 47.

\% Given clauses 1611.

1 (all x2 all y2 all z2 (UpMe(a,x2,y2) = UpMe(a,x2,z2) -> UpMe(x2,y2,22) =
LoMe (x2,y2,2z2))) # label(non_clause) # label(goal). [goal].

2 x " y=y " x. [assumption].

3 (x ~y) ~z=x"(y " z). [assumption].

4 x vy=yvx. [assumption].

5 (xvy)vzz=xv (yvz). [assumption].

6 x v (x " y) = x. [assumption].

7 x ~ (xvy)=x. [assumption].

8 UpMe(x,y,z) = x ~ (y v z). [assumption].

9 LoMe(x,y,z) = (x ~ y) v (x ~ z). [assumption].

12 UpMe(a ~ x,y,2z) v (y = 2z) = (((a =~ x) "~ y) vz)" (((a” x) " 2)vy).

[assumption].

13 (x " y) v (a™ (z" (xvwy)))= (=" (z"x))vy)  ((a” (z"y))v
x). [copy(12),rewrite([8(3).,53(4),4(6),3(9),53(13)])].

14 UpMe(x,y,z) = UpMe(x,y,a ~ z) v UpMe(x,z,a ~ y). [assumption].

15 (x ~(yv(a ™~ 2)))vix "~ (zv(a~y)))=2x" (yvz). [copy(ls),
rewrite ([8(1),8(5),8(9)]),flip(a)].

16 UpMe(a,cl,c3) = UpMe(a,cl,c2). [deny (1)].

17 a ~ (c1 v ¢3) = a ~ (cl v c2). [copy(16),rewrite([8(4),8(9)])].

18 LoMe(cl,c2,c3) != UpMe(cl,c2,c3). [deny(1)].

19 (c1 =~ ¢2) v (¢l ~ ¢3) '= ¢l ~ (c2 v ¢3). [copy(18),rewrite([9(4),8(11)
/)]

21 x ~ (y ~z) =y ~ (x " z). [para(2(a,1),3(a,1,1)),rewrite([53(2)])].

23 x v (yvz)=yv (xvz). [para(4(a,1),5(a,1,1)),rewrite([5(2)])].

24 x v (y ~ x) = x. [para(2(a,1),6(a,1,2))].

26 (x ~y) v (x ° (y ~ z)) x " y. [para(8(a,1),6(a,1,2))].

26 x v ((x " y) vz)=xvz [para(6(a,1),5(a,1,1)),flip(a)].

27 x v (y v ((x v y) z)) =xvy. [para(6(a,1),5(a,1)),flip(a)].
28 x ((x vy) ~2z)=x"2z. [para(7(a,1),3(a,1,1)),flip(a)].

29 x ~ (y ~ ((x "~ y) v z))=x"y. [para(7(a,1),3(a,1)),flip(a)].
30 x ~ (y v x) =x. [para(4(a,1),7(a,1,2))].
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31
32
33
36

37

41

44

55

58

68

83

90
91
92

108
112
114
115

132
133
140
141
142
143
146

149
152
153
159
160
163
170

171
174

185

196

(xvy) " (xv(yvz)=xvy. [para(b(a,1),7(a,1,2))].
x vx = x. [para(7(a,1),6(a,1,2))]
x ~ x = x. [para(6(a,1),7(a,1,2))].
(x ~y) v(a~ ((xvy)  z))= ((a
x). [para(2(a,1),13(a,1,2,2))].

(x “y) v (a” (z" (xvy)))= (=" (x"2)) vy ((a” (z " y))v
x). [para(2(a,1),13(a,2,1,1,2))].

(x " (y ~z)) v (a” (u” ((x " y)vz))) =(a" (u"~ (x
((a = (u "~ 2)) v (x "~ y)). [para(3(a,1),18(a,1,1))].

(x " y) v (a” (z" (xvy)))=«(yv(ad”(z " x))) " ((a” (z"~y))v
x). [para(4(a,1),13(a,2,1))].

((a " x) vy " (xv ((a" (x " y))vz)=1"(a""x)v ((xvz)"y) |
para(7(a,1),18(a,2,1,1,2)),rewrite([5(5),7(6) ,4(5),28(13)]),flip(a)].
((a " (x ~y))vz) " wv ((((a” (x~y))vz)" ((a” (x~2)) vy
=(y "~ z)v ((a” (x " (yvz)))v (((a” (x~y))vz " uw) [para
(13(a,2) ,9(a,2,2)),rewrite ([9(9),28(27),4(26)])].

(x ~(yv(a~"2z)))v ((zv (a~y)) ~x)=x"(yvz). [para(2a,l)
,15(a,1,2))].

a ” ((cl v c3) ~ x) =a "~ ((cl v c2) ~ x). [para(17(a,1),3(a,1,1)),
rewrite ([3(6)]),flip(a)].

x v (y ~ (x " 2z)) =x. [para(21(a,l),6(a,1,2))].

x ~ (y © (x v z)) y ~ x. [para(7(a,1),21(a,1,2)),flip(a)].

(x =~ (y = 2)) v (a (u " (yv (x 7 2)))) = ((a ™ (u "~ y))v(x "~ 2z)) ~
(Ca " (u -~ (x ~ 2))) vy). [para(2i(a,1),13(a,1,1))].

) =y v x. [para(32(a,l1),5(a,2,2)),rewrite([4(2)])].

X (x ~y) =x "~ y. [para(33(a,1),3(a,1,1)),flip(a)].

X (y x) =y "~ x. [para(38(a,1),3(a,2,2)),rewrite([2(2)])].

(x "~ y) v (a (x vy)) = ((a "~ x) vy ((a"y)vzx). [para(33(a
,1),13(a,1,2,2)), rewrlte([2(8) 7(8) ,2(11) ,30(11)])].

xv (y - (z ~ x)) [para(8(a,1) ,24(a,1,2))].

x v ((y ~ x) v z) X v [para(24(a,1), 5((11 1)), flip(a)].

(x ~y) v (x ° (z y)) x " y. [para(?](a 1),24(a,1,2))].

x ((y v x) = 2) x " [para(S’O(a 1),3(a,1,1)),flip(a)].

x " (y ~(zv (x " )N X y. [para(30(a,1),3(a,1)),flip(a)].

x "~ (yv (zvzx))=x. [para(5(a,1),30(a,1,2))].

((a " x) vy~ ((a”" (x"y))v(zvzx))=1~( "x)v (y " (zvx)).
[para(30(a,1) ,15(a,2,2,1,2) ), rewrite ([143(6) 4(5) . 2(14)]), flip (a)].

x ~ (y © (z v x)) y ~ x. [para(80(a,1),21(a,1,2)),flip(a)].

x v (y v (x "~ 2)) y v x. [para(6(a,1),23(a,1,2)),flip(a)].

S (z T x)) vy) T ((a”(z T y)) v

)

y))) v z) °

N

o

N

x ~ (yv (xvz))=x. [para(23(a,1),7(a,1,2))].
x v (yv(z"x))=yvzx. [para(24{(a,1),23(a,1,2)),flip(a)].
(x vy  (xv (zvy)) x vy. [para(23(a,1),30(a,1,2))].

x v ((y (x z)) vu =xvu. [para(90(a,1),5(a,1,1)),flip(a)].
x " (y ~ (x " 2)) =y " (x "~ z). [para(90(a,1),30(a,1,2)),rewrite(]
2(3)])]-

x v (yv(z~ (x~ w))
(a " x) v ((xvy) " z)
rewrite ([168(8)]),flip (a)].

]

y v [para(90(a,1),23(a,1,2)),flip(a)].
(Ca = x) v z) ~ (xvy). [back_rewrite(55),

x v (yv(zvzx))=yv (zvzx). [para(s(a,1),108(a,1,2)),rewrite(]
5(5)])]-

(x ~y) v ((x "~ (y ~2)) vu) = (x "~ y) vu. [para(25(a,1),5(a,1,1)),
flip(a)].

24



207 x ~ (y -~ (z =~ x)) =y ~ (z ~ x). [para(8(a,1),114(a,1,2)), ,rewrite(/

3(5)1)]-
213 (x ~y) v (y ~ x) =x "~ y. [para(114(a,1),25(a,1,2))].

215 x v (y ~ (z = (u " x))) x. [para(3(a,1),132(a,1,2,2))].

216 x v ((y =~ (z ~ x)) v w) x v u. [para(132(a,1),5(a,1,1)),flip(a)].

217 x v (y v (z = (u ~ (x v y)))) = x v y. [para(182(a,1),5(a,1)),flip(a)
/-

231 x "~ (y ~(zv (wv (x - y)))) =x "~ y. [para(143(a,1),3(a,1)),flip(a)
/-

232 x ~ (yv (zv (uvx))) =x. [para(5(a,1),148(a,1,2,2))].
236 a - (x - ((y vz " (uv (((a” (x " y))vz" ((a” (x "~ 2))vy))
(y v z)). [para(18(a,1),143(a,1,2,2)),rewrite([3(15)

) = a (x
3(14)])].

269 x v (((a = (y " x)) vz) " ((a”" (y " 2)) v)) =xv (a” (y " (xvz
))). [para(13(a,1),26(a,1,2))].

261 (x vy)~ ((x " z)vy)=(x"2z)vy. [para(26(a,1),30(a,1,2)),
rewrite([2(4)])]-

262 x v (y v ((x " z) vu)=yv (xvu. [para(26(a,1),23(a,1,2)),flip(
a)l.

263 (x "~ y) v (z v x)

z v x. [para(108(a,1),26(a,2)),rewrite([185(4)])]

267 (x ~y) v (a ~ (z - (xv ((xvuw ~y))))=(xv(ad" (z"~ ((xvuw ~
y)I)) ~ ((a ~ (z ~ x)) v ((xvw ~y)). [para(28(a,l),18(a,1,1)),
rewrite ([4(20),2(21)])].

276 (x ~ y) v ((x v z) "~ y)

(x v.z) ~y. [para(28(a,1),24(a,1,2)),

rewrite ([4(4)])].

277 (x v y) - (z "~ x) =z ~ x. [para(l14(a,1),28(a,2)),rewrite([207(4)])]

280 x " (y " (z ~ (xvw)) =y~ (z "~ x). [para(8(a,1),91(a,1,2)),
rewrite ([3(6)])].

292 (x ~y) v (x ~ (y v =2z))=x " (yvz). [para(91(a,1),24(a,1,2)),
rewrite ([4(4)])]-

297 x v (((a = (y = 2)) vx)~ ((a”" (y "x))vz)=xv(a"~ (y " (zvx
))). [para(13(a,1),1383(a,1,2))].
301 (x ~y) v ((x ~ (z ~y)) vu) = (x ~y) vu. [para(2i(a,1),133(a

,1,2,1))].
302 (x vy~ ((z "~ x)vy)=1(z"x)vy. [para(133(a,1),30(a,1,2)),
rewrite ([2(4)])]-

304 (x ~y) v (zvy)=2zvy. [para(108(a,1),133(a,2)),rewrite([185(4)])

/-

321 (x vy) -~ (z ~y) =12z ~y. [para(114(a,1),141(a,2)),rewrite([207(4)])
/-

3388 x v (y v (((x "~ z) vy~ w)=xvy. [para(27(a,l1),26(a,1,2)),
rewrite ([26(3)]),flip(a)].

362 a ~ (c3 ~ (¢l v ¢c2)) = a ~ c3. [para(17(a,1),149(a,1,2)),rewrite(]

21(7)])]-

363 (x " y) v (x ~ (z v y)) =x " (zvy). [para(149(a,1),24(a,1,2)),
rewrite ([{(4)])].

380 (x vy) " (xv (z"~y))=xv (z "~ y). [para(159(a,1),30(a,1,2)),
rewrite ([2(4)])].

403 x ~ (y ~ ((y = x) v z)) x ~y. [para(2(a,1),29(a,1,2,2,1))].
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407 (a "~ x) v (((a "~ x) vy~ z)=((a""x)vz)" ((a”x)vy) [para
(29(a,1).,13(a,2,1,1)), rewrite([5(9),29(11) ,4(7).,23(17),196(17)])].

424 (x ~y) v (z v (y =~ x)) =z v (y x). [para(213(a,1),5(a,2,2)),
rewrite ([4(4)])].

428 x ~ (y ~ (z v (y ~ x))) x " y. [para(213(a,1),143(a,1,2,2)),rewrite
([3(4)])]-

429 (x ~ (y ~ z)) v (y - x) x "~ y. [para(213(a,1),26(a,2)),rewrite(/[
3(3) ,424(6)])].

431 x v ((y - (z =~ (u " x))) v w)
a)l.

458 a - (x © ((yvz) " (uv (wv (((a ™ (x " y))vz)" ((a” (x"~2))v
yIINI)) =a =~ (x ~ (y v z)). [para(18(a,1),282(a,1,2,2,2)),rewrite(]/
3(16),3(15)])]-

461 x ~ ((y v (a " 2)) ~ (uv (wv (x " (zvy))))=x"(yv (a " z)).
[para(15(a,1) ,232(a,1,2,2,2)),rewrite([8(9)])].

483 (x vy) ~ (yv (xvz2z))=yvzx. [para({(a,1),31(a,1,1))].

493 (x v y) ~ (y vx) =xv [para (108(a,1),31(a,1,2))].

495 (x ~ (y -~ 2)) v (u v (x y)) = u v (x y). [para(3(a,1),268(a,1,1))
/-

503 (x ~ (y =~ 2z)) v (u v y) uvy. [para(21(a,1),263(a,1,1))].

512 (a ~ x) v (y ~ (z v x)) (a = x) vy) ~ (zvzx). [back_.rewrite(146)
,rewrite ([503(8)]),flip(a)].

514 (x v y) -~ (z ~ (u "~ x)) =z "~ (u ~ x). [para(3(a,1),277(a,1,2)),
rewrite ([3(6)])].

516 (x ~y) v (a " (z " (uvy))) =(yvu -~ ((a” (z~ (yvw) v (x
y)). [para(277(a,1),13(a,1,1)),rewrite([5(5),159(5),23(18) ,431(18)
72(14)/)]'

534 (x ~ (y -~ 2)) v (uv z) =uv z. [para(8(a,1),804(a,1,1))].

566 ((a =~ (x " y)) vz) = (((a~ (x " 2)) vy)  (u” (a” (x"~ (yv2))))

(x =~ (y v 2))). [para(13(a,1),321(a,1,1)),rewrite([3(15)]

x v w. [para(215(a,1),5(a,1,1)),flip{(

y<g |

) = u (a
)1

582 (x vy) ~(z -~ (xv (u "~ y))) =2z " (xv (u "~ y)). [para(159(a,l)
,321(@,1,]))/

674 c1 v (c2 v (a "~ ¢3)) = cl v c2. [para(352(a,1),132(a,1,2)),rewrite(]

4(7).23(7) . 4(6)])]-
695 x v (y v (z -~ (y v x))) =xvy. [para(4{93(a,1),182(a,1,2,2)),rewrite

([5(4)])]-

698 (x v (y v 2z)) "~ (z vy)=2zvy. [para(493(a,1),321(a,1,2)),rewrite(]
493(7)]) ]

712 a ~ (¢3 ~ (x v (¢l v ¢2))) = a ~ ¢c3. [para(674{(a,1),252(a,1,2,2)),
rewrite ([3(8)])].

847 x -~ (y -~ (z -~ (uv (x - 2)))) =x ~ (y ~ z). [para(140(a,1),148(a
1,2.2)) rewrite ([3(5) ,3(4)])].

861 (x ~(y ~2)) v (x ~ (y " (zvw)) =x " (y " (zvuw). [para(91(a
,1),140(a,1,2,2)),rewrite([4(6)])].

870 (a "~ x) v (y ~(z v (a ~ x))) = (zv (a "~ x)) ~ ((a ™ x) vy). [para
(142(a,1) ,13(a,2,2,1)), rewrite ([231(11) ,4(7) . 495(14)])].

904 (x vy) ~(xv (z "~ (u "~ y))) =xv (z "~ (au "~ y)). [para(132(a,l)
,160(a,1,2,2)), rewrite([2(5)])].

1373 (x ~y) vz=2zv (((a~ (x "~ 2)) vy~ ((a” (z " y))vzx). [para
(37(a,1) ,171(a,1,2)),flip(a)].
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1688 (x v y) =~ ((z = (u " x)) v y) (z -~ (u "~ x)) vy. [para(216(a,l)
,30(a,1,2)), rewrite([2(5)])].

2786 (a ~ x) v (y "~ (z -~ (x v w)) = (xvu) -~ ((a " x)v (y "~ 2z)). [para
(7(a,1) ,41(a,2,2,1,2)),rewrite([153(8) ,4(6),28(12) ,163(12)])].

4300 (x "~ y) v (a =~ (z =~ (xvy)))=(yv(a" (z " x))) "~ (xv (a "™ (z°~
0. [para(4(a1),44(a.2,2))].

4305 (x ~y) v (a "~ x) =x "~ (y v (a "~ x)). [para(7(a,1),44(a,1,2,2)),
rewrite ([33(6) ,4(11),90(11) ,2(8)])].

4488 x ~ ((a " y) v (a - x)) = a ~ x. [para(403(a,1),44(a,1,2)), rewrite(]
3(3) ,4805(6) ,112(10) ,114(10) ,429(15) ,2(12) ,3(12) ,428(12)])].

4553 x v ((x v (a = (y =~ 2))) ~(zv (a " (y “x)))) =xv (a " (y "~ z)).

[para(44(a,2) ,695(a,1,2,2)), rewrite([4300(9),870(13),23(12),216(12)])]

5121 (x v y) - ((z "~ y) vx) = (z "~ y) v x. [para(159(a,1),698(a,1,1))].
5163 a ~ (c3 ~ (c1l v (x v ¢c2))) = a ~ c3. [para(23(a,l),712(a,1,2,2))].
5929 x ~ ((a ~ x) v (a ~ y)) = a ~ x. [para(4(a,1),4488(a,1,2))].

6005 a ~ (x ~ (3 "~ (cl v (y v ¢2)))) =x =~ (a ~ ¢c3). [para(5163(a,1),21(
a,1,2)),flip(a)].

6223 x v (a ~ (y -~ (x v 2))) =x v (a "~ (y -~ 2)). [para(483(a,1),58(a
1,1)), rewrite([5(14),407(13),534(8),259(10) ,483(20) ,23(15) ,4(14)
851(14).,23(12) ,4300(11) ,4553(15)])].

6337 (a ~ x) v (a~ ((xv (a "~ y)) " z))=((a " x) v (a~y))  (xv (a

(z ~ ((a =~ x) v (a =~ y))))). [para(5929(a,1),36(a,1,1)),rewrite(]
138(9) ,23(18) ,301(18) ,4(23)])].

6572 c1 v (c3 v (a =~ ((c1l v ¢2) "~ x))) = c1 v c3. [para(83(a,1),90(a,1,2)
), rewrite([5(10)])].

6603 (cl v ¢c3) ~ (x ~ a) = (cl v c2) ~ (x ~ a). [para(83(a,1),207(a,1)),
rewrite ([207(8)]),flip(a)].

7269 (x vy) " (xv(z~ (u" (xvy)))=xv(z" (u" (xvy))). [para
(217(a,1) ,160(a,1,2)),rewrite([2(6)])].

7441 (x ~ ((a ~y) v (a "~ 2))) v ((zv (a "~ y)) ~x) =x "~ ((a "~ y) v z).

[para(112(a,1) ,68(a,1,2,1,2))].

8638 x ~ ((x "~ y) v (x ~ 2)) = (x ~y) v (x ~ z). [para(6(a,l),261(a,1,1)
).

8763 x v ((x vy) "~ (xvz))=(xvy)  (xvz). [para(T7(a,1),276(a,1,1)
)]

91561 (x ~ (y ~ (z v w)) v ((w = (x = (y "~ 2))) vvh) = (x "~ (y ~ (z v u))
) v v6. [para(280(a,1),216(a,1,2,1,2))].

9174 (x ~ (y -~ (z ~ w)) v (wv (y -~ (z =~ (uv vb))))
v6))). [para(280(a,1),53{(a,1,1,2))].

9221 (x ~ (y ~z)) v (x ~ (uvy)) =x " (uvy) [para(263(a,1),292(a
,1,2,2)),rewrite([263(8)])].

9343 x ~ ((y ~z) v (y ~ x)) =x ~y. [para(429(a,1),802(a,1,2)),rewrite(
[2(5).3(5),8538(4),429(8)])].

9373 x v (a ~ (y ~ (z v x))) =x v (a "~ (y ~ z)). [para(302(a,1),58(a
1,1)), rewrite([5(15),297(14),9174(10),302(20) ,9151(16) ,4(11),23(12)
4800(11) ,4553(15)])].

9434 x - ((y =~ z) v (z ~ x)) x " z. [para(2(a,1),9348(a,1,2,1))].

94356 x - ((y = z) v (x = y)) x " [para(2(a,1),9343(a,1,2,2))].

9874 x ~ ((y =~ z) v (x = (u v 2))) x " (uv z). [para(321(a,1),9435(a
717271))/

wv (y " (z~ (uv

I < N
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11144 x v (((x ~ y) v (x ~ 2)) "~ u) = x. [para(838(a,1),26(a,1)),rewrite(
[6(2)]), flip (a)].

112056 x v (y v (((x ~ z) v (y -~ w) ~w)) =xvy. [para(388(a,1),262(a
,1,2)),rewrite([152(3)]),flip (a)].

11222 x v (y - ((x ~ z) v (x ~ w)) = x. [para(2(a,1),11144(a,1,2))].

11735 x ~ (y ~ ((x " z) v (x ~w))) =y ~ ((x "~ z) v (x ~uw)). [para
(11222(a,1) ,30(a,1,2)), rewrite([2(5)])].

11820 (a = x) v (a - ((x v (a "~ y)) =~ 2)) = ((a "~ x) v (a " y)) = (x v (z
~((a "~ x) v (a " y)))). [back_rewrite (6837),rewrite([11785(22)])].
12718 x v ((y v x) ~ (y v z)) = x v y. [para(483(a,1),353(a,1,2)),rewrite

([23(5) 4(4) ,8763(4) ,483(8)])].

12799 x v ((y v z2) = (y v x)) = x V

12819 x v (((y =~ 2) v x) =~ (u v 2))
1,2,2))].

12946 x v ((y v. 2) = ((u = 2) v x))
7]¢271))]

13031 (a " x) v (y - ((xvz) " w)=(~a"x) vy " w) " (xvz). [
para(7(a,1),92(a,2,1,1,2)), rewrite([5(7),7(8) .4(6).,23(16),163(16)])].

13409 ((a =~ x) v (a " y)) -~ (xv (a ~ 2)) = ((a "~ x) v (a "~ 2)) "~ (xv (y
~ ((a " x) v (a "~ 2)))). [back_rewrite(11820),rewrite([13031(9)])].

16801 x v (a ~ (x v y)) = x v (a "~ y). [para(115(a,1),26(a,1,2)),rewrite(
[12946(8)]), flip (a)].

16811 x v (a ~ (y v x)) = x v (a ~ y). [para(115(a,1),1353(a,1,2)),rewrite
([12819(8)]), flip(a)].

16931 (a "~ x) v (a "~ y) = a "~ (x v y). [para(115(a,2),41(a,1,2,2)),
rewrite ([9874(10),9221(7) ,2(10) ,3(10) ,30(9) ,112(7) ,2(11) ,29(12)
,5121(12)]), flip (a)].

17283 a "~ (x v (y ~(a " (x v 2)))) =a "~ ((xvy)  (xv(a"~2))). [
back_rewrite (13409) , rewrite ([16931(5) ,3(7) ,16931(12) ,16931(15) ,3(16)
,7269(15)]), flip(a)].

17360 (x ~ (a ~ (y v 2))) v ((z v (a - y)) ~ x) =x "~ ((a "~ y) vz). [
back_rewrite (7441),rewrite ([16981(5)])].

17661 c1 v (a ~ ¢c3) = c1 v (a "~ ¢2). [para(17(a,1),16801(a,1,2)),rewrite(
[16801(7)]), flip (a)].

17662 a ~ (x v (a ~ y)) = a ~ (x v y). [para(16801(a,l),30(a,1,2)),
rewrite ([3(7),380(6)])].

17667 x v (a -~ ((y -~ x) v z)) =x v (a ~ z). [para(16801(a,1),133(a,1,2))
,rewrite ([183(5)]),flip (a)].

17670 a ~ (x "~ (y v (a ~ 2))) =x ~ (a ~ (y v z)). [para(16801(a,1),149(a
,1,2,2)),rewrite([3(8),582(7)])].

17727 (x ~ a) v (a ~y) = a "~ ((x ~ a) vy). [para(16801(a,1),9434(a,1,2)
), rewrite ([880(9) ,2(10)])].

17951 a ~ (x v (y ~ (a " (x v z)))) =a "~ ((xvy)  (xvaz)). [
back_rewrite (17283),rewrite ([17670(14) ,21(12)])].

18506 a ~ (cl v (c2 v ¢c3)) = a ~ (c1l v ¢2). [para(17661(a,1),16811(a
,1,2,2)),rewrite ([17662(10) ,16931(9) ,23(6) ,4(5) ,4(14),16931(14) ,17(12)]

[para(2(a,1),12718(a,1,2))].
x v (y -~ 2). [para(304(a,1),12718(a

<

x v (u~ z). [para(304(a,1),12799(a

)]
18675 a = ((x ~ a) vy)=a" (xvy). [para(2(a,l1),169581(a,1,1)),rewrite
([17727(5)])].

18680 (a ~ x) v (y ~ (a "~ z)) =a "~ (xv (y ~ 2)). [para(21(a,1),16931(a
71;2))/'
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18682 a ~ ((a ~ x) vy) =a " (xvy). [para(l112(a,1),16931(a,1,1)),
rewrite ([16931(5)]), flip(a)].

18698 a ~ (x v (y ~ (a "~ 2))) =a "~ (x v (y ~ 2)). [para(170(a,1),16931(a
,1,2)),rewrite ([18680(6)]), flip(a)].

18803 (x "~ a) v (a " y) = a ~ (x v y). [back_.rewrite(17727),rewrite(]
18675(10)])].

19197 a ~ (x v (y =~ (x v 2))) = a ~ ((x v y) "~ (x v z)). [back_rewrite
(17951) ,rewrite ([18698(7)])].

19661 a = ((c1 v (c2 v ¢c3)) ~ x) = a ~ ((c1l v ¢c2) ~ x). [para(18506(a,l)
,3(a,1,1)),rewrite([3(6)]),flip(a)].

19740 a ~ (x ~ ((a "~ y) vz)) =a "~ (x ~ (yv z)). [para(68(a,1),18675(a
,2.2)) rewrite ([2(7),17670(7),17360(10)])].

19911 a =~ (((a =~ x) vy) ~z) =a " ((xvy) ~ z). [para(18682(a,1),3(a
,1,1)),rewrite([3(4)]),flip(a)].

21622 (a "~ x) v (x ~y) =x ~ ((a "~ x) vy). [para(6(a,1),174(a,1,2,1)),
rewrite([6(9),2(8)])].

23068 (x -~ (y "~ z)) v (x " (zvw) = (zvuw "~ x. [para(dl4(a,1),429(a
71)1))/‘

26633 a "~ (x ~ ((x ~y) vz))=a" (x " (yvz)). [para(6(a,l),236(a
,1,2,2.2)) , rewrite ([1688(7),19740(7)])].

30690 c1 v (a - (c3 v ((cl v ¢2) ~ x))) = cl v (a ~ ¢c2). [para(6572(a,1)
16801(a,1,2,2)), rewrite([17(6),16801(7),17662(16)]), flip (a)].

30792 a ~ (x v ((cl v ¢c2) "~ y)) = a ~ ((xv (cl v c2)) =~ (x v y)). [para
(6603(a,1),267(a,2,1,2,2)) rewrite([2(9),16801(10),17670(11) ,21(9)
,83(9) ,18803(10) ,19197(8) ,2(15) ,21(16) ,112(17) ,6223(16) ,83(21) ,2(24)
,23068(25) ,2(18) ,2(19) ,3(19) ,904(18) ,17662(17)]), flip (a)].

30797 c1 v (a ~ ((cl v ¢2) =~ (c3 v x))) = cl v (a =~ ¢c2). [back_rewrite
(30690) , rewrite ([30792(9) ,23(7) ,4(6),19661(11)])].

50699 x v (a -~ ((x vy) ~2)) =xv (a "~ (y "~ z)). [para(512(a,1),17667(a
1,2.,2)) rewrite ([19911(7),9373(6),9373(10)])].

50705 c1 v (a =~ (c2 ~ (c3 v x))) = cl v (a ~ ¢c2). [back_rewrite(30797),
rewrite ([50699(10)])].

50709 c1 v (a = (c2 =~ ¢3)) = cl v (a ~ ¢c2). [para(6(a,l),50705(a,1,2,2,2)
).

50727 c1 v (c2 ~ (c3 v (a "~ ¢2))) = cl v (c2 ~ c3). [para(50709(a,1),159(
a,1,2)),rewrite([23(9),4(8),21622(8) ,4(7)])].

50801 a ~ (x v (y ~ 2)) =a "~ ((xvz)  (xvy)). [para(516(a,1),18682(a
1,2)), rewrite ([4(9),2786(9) ,16931(8) ,21(7),21(8) ,112(7) ,112(7)
,9873(11) ,17662(11)] ), flip (a)].

50871 a ~ (c2 " (x v (cl v (c2 ~ ¢3)))) = a "~ c2. [para(50727(a,1),461(a
. 1,2,2.2)), rewrite ([16931(8),3(13),21(14),28(13) ,16931(18) ,21(17) ,7(16)
1.

50874 a ~ (c2 " (el v ((c2 ~ ¢3) v x))) = a ~ c2. [para(4(a,1),50871(a
,1,2,2)) , rewrite([5(8)])].

50901 a ~ (c2 =~ (e3 v (x v ¢cl1))) = a ~ c2. [para(185(a,1),50874(a,1,2,2))
,rewrite ([25533(10)])].

53798 a ~ (3 ~ ((cl ~ ¢3) v (x v ¢c2))) = a ~ c3. [para(6005(a,1),566(a
1.,2.2)) rewrite ([2(4) . 4(16),112(21) ,2(20) ,3(20) ,17670(20) ,50801(17)
,2(18) ,83(19) ,160(18) ,21(15) ,352(15) ,2(12) ,3(12) ,19740(12) ,5163(19)
112(15)])].

53820 a ~ (c3 " (c2 v (cl "~ ¢3))) = a ~ c3. [para(32(a,1),53798(a
,1,2,2,2)), rewrite([4(7)])].
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54317 c3 v (a = (c2 =~ (x v ¢c1))) = c3 v (a =~ ¢2). [para(50901(a,1),6223(a
1.2)), flip (a)].

54322 c2 v (a - (c1 ~ ¢3)) = c2 v (a ~ ¢3). [para(53820(a,1),6223(a,1,2))
,rewrite([114(12)]),flip (a)].

54473 c3 v (a - (c1 ~ ¢2)) = c3 v (a ~ c2). [para(32(a,1),54317(a
,1,2,2,2)) , rewrite([2(5)])].

60183 a ~ (x ~ (y v (z ~w))) =x ~ (a "~ ((y vu =~ (yvz))). [para
(11205(a,1) ,458(a,1,2,2,2)),rewrite([280(8),2(4),50801(4)]),flip(a)].

73833 (c1 ~ ¢3) v (c1l ~ (c2 v (a =~ ¢3))) !'= c1l ~ (c2 v c3). [para(1373(a
,1),19(a, 1)), rewrite ([112(9) ,4(10) ,54822(10) ,2(14) ,21(14) ,4(17),90(17)
72(10)/)]'

73856 $F. [para(1373(a,1),73833(a,1)), rewrite([112(17),60183(16) ,4(15)
L 2(16) ,28(17) ,21(14) ,4(16) ,9373(16) ,54473(14) .2(22) ,21(22) ,847(23)
A(19),90(19) ,2(14) ,15(15)]) ,zz(a)].

—============================= STATISTICS ============================

Given=1611. Generated=4107893. Kept=73850. proofs=1.

Usable=1438. S0s=19999. Demods=19736. Limbo=0, Disabled=52427. Hints=0.

Kept_by_rule=0, Deleted_by_rule=5024.

Forward_subsumed=2472886. Back_subsumed=870.

Sos_limit_deleted=1556132. Sos_displaced=38067. Sos_removed=0.

New_demodulators=64146 (6 lex), Back_demodulated=13474. Back_unit_deleted
=0.

Demod_attempts=108087980. Demod_rewrites=13862951.

Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0.

Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0.

Megabytes=107.30.

User_CPU=222.55, System_CPU=1.51, Wall_clock=391.

=== ========================== end of statistics =S====================
============================== end of search =========================

THEOREM PROVED
Just for comparison, see how much simpler the proof gets when AxRL1 is assumed:

formulas (assumptions) .

X y =y X.

(x ~y) ~z=x " (y ~ z).
X Vy=yVX.

(x vy)vzs=xv (yvz.
xv (x 7 y) = x.

x ~ (x v y) X

UpMe (x,y,2z) = x (y v z).

LoMe(x,y,z) = (x "~ y) v (x ~ z).

UpJo(x,y,z) = (x vy) = (x v z).

LoJo(x,y,2z) x v (y © 2z).

UpMe(a ~ x1,y1,z1) v (y1 -~ z1) = (((a "~ x1) ~ y1) v z1) - (((a "~ x1) ~ z1)
v yl).
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Lo
Up

Me(x,y,z) = UpMe(x,UpMe(y,x,z),UpMe(z,x,y)).
Me(x,y,2) UpMe(x,y,a ~ z) v UpMe(x,z,a ~ y).

end_of_list.

fo

rmulas (goals) .

(all x2 all y2 all z2 (UpMe(a,x2,y2) = UpMe(a,x2,z2) -> UpMe(x2,y2,2z2) =

LoMe (x2,y2,22))) .

end_of_list.

= O 00 N O O WwN

14
15

16
17

18
19
20
21

23
28
30
32
34
67

Proof 1 at 88.76 (+ 0.59) seconds.
Length of proof is 38.

Level of proof is 8.

Maximum clause weight is 29.

Given clauses 936.

(all x2 all y2 all z2 (UpMe(a,x2,y2) = UpMe(a,x2,z2) -> UpMe(x2,y2,z2) =
LoMe (x2,y2,2z2))) # label(non_clause) # label(goal). [goal].

X Ty =y x. [assumption].

(x ~y) ~z=x " (y ~ z). [assumption].
XVy=yVX [assumption].

(x vy)vzs=xv (yvz). [assumption].
x v (x ~y) = x. [assumption].

x ~ (x v y)=x. [assumption].
UpMe(x,y,z) = x ~ (y v z). [assumption].

LoMe(x,y,z) = (x " y) v (x "~ z). [assumption].

UpMe(a ~ x,y,z) v (y = 2z) = (((a = x) "~ y) vz " (((a” x) "~ z)vy).

[assumption].

(x " y) v(a " (z " (xvy))) =" (z"x))vy  ((a” (z"y))v
x). [copy(12).rewrite([8(3).3(4) . 4(6).3(9).3(13)])].

LoMe(x,y,z) = UpMe(x,UpMe(y,x,z),UpMe(z,x,y)). [assumption].

(x ~y) vix "~ z)=x" ((y "~ (xvz)vI(z" (xvy))). [copy(ls4),
rewrite ([9(1),8(4),8(6),8(8)])].

UpMe (x,y,z) = UpMe(x,y,a ~ z) v UpMe(x,z,a ~ y). [assumption].

(x " (yv(a~"2))) v (x "~ (zv(a"7y))) =x" (yvz). [copy(l6),
rewrite ([8(1),8(5),8(9)]),flip(a)].

UpMe (a,cl,c3) = UpMe(a,cl,c2). [deny(1)].

a ” (cl v c3) =a "~ (c1l v c2). [copy(18),rewrite([8(4).8(9)])]-

LoMe(cl,¢c2,c3) != UpMe(cl,c2,c3). [deny(1)].

(cl ~ ¢c2) v (¢l =~ ¢3) '= cl =~ (c2 v c3). [copy(20),rewrite([9(4),8(11)
/)]

x ~(y ~2z) =y " (x "~ z). [para(2(a,1),3(a,1,1)),rewrite([3(2)])].
xv ((x ~y) vz)=xvz. [para(6(a,1),5(a,1,1)),flip(a)].

x ~ ((xvy) "~ z)=x"2z. |[para(7(a,1),3(a,1,1)),flip(a)].

x " (y v x)=x. [para(4(a,1),7(a,1,2))].

x v x=x. [para(7(a,1),6(a,1,2))].

x " ((y " (xvz)v(z "~ (xvy)))=( " x)v (x " 2z). [para(2(a,l)

,15(a,1,1)), flip(a)].
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132 a ~ (x ~ (cl v ¢c3)) = x ~ (a ~ (cl v c2)). [para(19(a,1),23(a,1,2)),
flip(a)].

143 x v (y v x) =y v x. [para(84(a,1),5(a,2,2)),rewrite([4(2)])].

183 x ~ (y v (z v x)) = x. [para(5(a,1),32(a,1,2))].

186 ((a =~ x) vy) =~ ((a” (x " y))v (zvzx))=1"(a""x)v (y " (zvx)).
[para(32(a,1),18(a,2,2,1,2)),rewrite([183(6) ,4(5),2(14)]),flip(a)].

189 x ~ (y ~ (z v x)) =y "~ x. [para(32(a,1),23(a,1,2)),flip(a)].

231 x v (y v (z v x)) =y v (zv x). [para(5(a,1),14{3(a,1,2)),rewrite(]/
5(5)])]-

312 (x "~ y) v (z v x) = z v x. [para(143(a,1),28(a,2)),rewrite([231(4)])]

401 a ~ (c3 ~ (c1l v ¢c2)) = a ~ c3. [para(19(a,1),189(a,1,2)),rewrite(/[
23(7)])]-

553 (x ~(y "~ z)) v (wvy)=uvy. [para(28(a,1),312(a,1,1))].

562 (a ~ x) v (y ~ (z v x)) = ((a "~ x) vy) ~ (zvzx). [back_rewrite(186)
,rewrite ([558(8)]), flip(a)].

721 (x = (y v (a =~ c3))) v (x 7 ((c3 ~ (c1 v c2)) v (a "~ y))) =x ~ (y v (
c3 ~ (c1l v ¢2))). [para(401(a,1),17(a,1,1,2,2))].

51633 (c1 =~ ¢2) v (cl "~ ¢3) = c1 ~ (c2 v ¢3). [para(67(a,1),721(a,2)),
rewrite ([4(10).,562(10) ,4(6),2(10) ,30(11) ,132(20) ,23(20) ,32(19) ,4(17)
562(17) ,4(13) ,2(17) ,30(18) ,17(15) ,2(8)]), flip (a)].

51634 $F. [resolve (51683,a,21,a)].

============================== end of proof ==========================

Given=936. Generated=1315923. Kept=51627. proofs=1.

Usable=861. S0s=19999. Demods=18987. Limbo=1, Disabled=30780. Hints=0.

Kept_by_rule=0, Deleted_by_rule=3409.

Forward_subsumed=884193. Back_subsumed=793.

Sos_limit_deleted=376694. Sos_displaced=18619. Sos_removed=0.

New_demodulators=43355 (6 lex), Back_demodulated=11351. Back_unit_deleted
=0.

Demod_attempts=32232244. Demod_rewrites=4313279.

Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0.

Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0.

Megabytes=87.32.

User_CPU=88.76, System_CPU=0.59, Wall_clock=143.

============================== end of statistics =====================

THEOREM PROVED
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Appendix C. Theorem 3.4, Clause 7:

formulas (assumptions) .

x Ty =y~ x.

(x ~y) ~z=x " (y ~ z).
X Vy=yv
(x vy)vz
x v (x 7 y)

X (x v y)
UpMe (x,y,2)

[

x v (y v 2).

X.

X.

x ° (y v z).

LoMe (x,y,2) (x ~y) v (x ° z).

UpJo(x,y,2z) (x vy  (xv z).

LoJo(x,y,z) = x v (y ~ z).

UpMe(a = x1,yl,z1) v (y1 =~ z1) = (((a = x1) ~ y1) v z1) = (((a = x1) ~ z1)
v yl).

UpMe(x,y,z) = UpMe(x,y,a ~ z) v UpMe(x,z,a ~ y).

end_of_list.

formulas (goals) .
(all x2 all y2 all z2 (UpMe(a,x2,y2) = UpMe(a,x2,z2) -> (UpMe(a,x2,y2) =
UpMe (a,y2,2z2) ->

UpJo(x2,y2,2z2) = LoJo(x2,y2,22)))).
end_of_list.

% Proof 1 at 963.33 (+ 15.06) seconds.
% Length of proof is 196.

% Level of proof is 20.

% Maximum clause weight is 47.000.

% Given clauses 4826.

1 (all x2 all y2 all z2 (UpMe(a,x2,y2) = UpMe(a,x2,z2) -> (UpMe(a,x2,y2) =
UpMe (a,y2,z2) -> UpJo(x2,y2,z2) = LoJo(x2,y2,2z2)))) # label(non_clause
) # label(goal). [goal].

2 x ~y =1y " x. [assumption].

3 (x " y) ~z=x"(y " z). [assumption].

4 x vy=yvx. [assumption].

5 (xvy)vz=xv (yvz). [assumption].

6 x v (x - y) = x. [assumption].

7 x " (xvy)=x. [assumption].

8 UpMe(x,y,z) = x ~ (y v z). [assumption].

9 LoMe(x,y,z) = (x ~ y) v (x ~ z). [assumption].

10 UpJo(x,y,z) = (x v y) ~ (x v z). [assumption].
11 LoJo(x,y,z) = x v (y ~ z). [assumption].
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12

13

14
15

16
17
18
19
20
21

23
25
26
27
28
29
30
31
32
33
34
35
38
39
43
46
57

60

67

86

91

93

98

99

UpMe(a ~ x,y,z) v (y ~ z) = (((a =~ x) "~ y) v z) =~ (((a ~ x)
[assumption].
x " y)v(a~ (z" (xvy))==~UW"(z"x)) vy  (a-~

x). [copy(12),rewrite([8(3),3(4),4(6),3(9),3(13)])].

T z) voy).

(z

y)) v

UpMe(x,y,z) = UpMe(x,y,a ~ z) v UpMe(x,z,a ~ y). [assumption].
(x " (yv(a~"2))) vx "~ (zv(a"7y))) =x" (yvz). [copy(ls4),

rewrite ([8(1),8(5),8(9)]),flip(a)].

UpMe (a,c1,c3) UpMe(a,cl,c2). [deny(1)].
a ~ (cl v c3)
UpMe (a,c2,c3)
a ~ (c2 v c3)
LoJo(cl,c2,c3) !
cl v (¢c2 ~ c3) !

10(9)])]-

UpMe (a,cl,c2). [deny(1)].

UpJo(cl,c2,c3). [deny(1)].

X (y
x v (y v 2)
x v (y = x) [para(Q(a 1),6(a,1,2))].

(x "~ y)v (x "~ (y ~ 2)) x " y. [para(f)’(a 1) ,6(a,1,2))].

o on
<<
<

v X

x ~ x = x. [para(6(a,1),7(a,1,2))].

(x ~y) va™ (xvy) " z))=(a” (z " x)) vy  ((a~

x). [para(2(a,1),13(a,1,2,2))].

(x ~y) v(a” (z~ (xvy)))=1(a" (x"~2) vy  (((a-~

x). [para(2(a,1),18(a,2,1,1,2))].

(x ~ (y ~2)) v (a” (u” ((x " y)vz)) = (a” (u"” (x~
(a =~ (u "~ 2z)) v (x ~y)). [para(8(a,1),13(a,1,1))].

(x ~y) v(a~(z " (xvy))) =(Gvad~(z"x))) ~ ((ar~

x). [para(4(a,1),13(a,2,1))].

((a " x) vy (xv ((a” (x~y))vz)=("x)v (xv

(z
(z
y)
(z

z)

a ~ (cl v c2). [copy(16),rewrite([8(4),8(9)])].
a = (cl v c2). [copy(18),rewrite([8(4),8(9)])].

(c1 v c2) ~ (cl v c3). [copy(20),rewrite([11(4)

coz) ~(x "~ z). [para(2(a,1),83(a,1,1)),rewrite([3(2)])].
(x v z). [para({(a,1),5(a,1,1)),rewrite([5(2)])].

xv ((x " y) vz)=3xvVvz [para(6(a,1),5(a,1,1)), fllp(a)/.
xv (y v ((xvy)"~ z)) =xvy. [para(6(a,1),5(a,1)),flip(a)].
x © ((xvy) "~ z)=x z [para(7(a,1),3(a,1,1)),flip(a)].

x " (y - ((x " y)vz)) = ~y. [para(7(a,1),3(a,1)),flip(a)].
x ~ (y v x) = x. [para(4(a 1),7(a,1,2))].

(xvy) " (xv(yvz) =xvy. [para(5(a,1),7(a,1,2))/.

b = x. [para(7(a,1),6(a,1,2))].

y)) v
y)) v
)) v oz) °

y)) v

Sy

para(7(a,1),13(a,2,1,1,2)), rewrite ([5(5),7(6) ,4(5).25(13)]), flip (a)].
((ta = (x ~y)) vz)  uwv (((a” (x~y))vz " ((a” (x°~

= (y " z)v ((a " (x " (yvaz)))v ((a™ (x"y))vaz"
(13(a,2),9(a,2,2)),rewrite([9(9),25(27) ,4(26)])].

u)).

z)) v y))
[para

(x " (yv(z "~ a))vix "~ (zv(a"~y))) =x" (yvz). [para(2(a,1l)

715(a717172’2))]'

(a ~ (cl v c2)) v (a~ (x - (av (c1 v c3)))) =a "~ (c1 v (c3 v (a ~ (x
~a)))). [para(17(a,1),13(a,1,1)),rewrite([25(22),4(21),4(30),6(30)

(x 7 (cl v (c3 v (a " y)))) v (x - (yv (a "~ (cl v c2)))) =

X

~ (c1 v (

c3 v y)). [para(17(a,1),15(a,1,2,2,2)),rewrite([5(6),5(19)])].
(a ” (cl1 vc2)) v (a” (x " (av (c2vc3)))) =a " (c2 v (c3 v (a "~ (x
~a)))). [para(19(a,1),13(a,1,1)),rewrite([25(22),4(21) ,4(30) ,6(30)

2(24)]1)]-
(x 7 (c2 v (c3 v (a "~ y)))) v (x = (y v (a "~ (cl v c2)))) =

X

~ (c2 v (

c3 v y)). [para(19(a,1),15(a,1,2,2,2)),rewrite([5(6),5(19)])].

x v (y - (x " 2z)) =x. [para(23(a,1),6(a,1,2))].
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100 x ~ (y "~ (x v 2)) =y "~ x. [para(7(a,1),23(a,1,2)),flip(a)].

110 a = (x ~ (c1 v c3)) x " (a " (el v c2)). [para(17(a,1),23(a,1,2)),
flip(a)].

111 a =~ (x =~ (c2 v c3)) x ~ (a " (¢l v c2)). [para(19(a,1),23(a,1,2)),
flip(a)].

113 (a =~ (cl v ¢c2)) v (x ~a) = a ~ (c2 v (c3 v (a =~ (x ~ a)))). /[
back_rewrite (93),rewrite([100(13)])].

114 a =~ (c2 v (c3 v (a =~ (x ~ a)))) =a ~ (c1 v (c3 v (a ~ (x "~ a)))). /[
back_rewrite (86),rewrite ([100(18),113(8)])].

117 (a =~ (cl v ¢c2)) v (x "~ a) = a ~ (c1 v (c3 v (a ~ (x =~ a)))). /[
back_rewrite (113),rewrite([114(18)])].

118 x v (x v y) = x vy. [para(84(a,1),5(a,1,1)),flip(a)].
120 x v (y v x) =y v x. [para(84(a,1),5(a,2,2)), ,rewrite([4(2)])].
124 x ~ (x ~y) =x ~y. [para(85(a,1),3(a,1,1)),flip(a)].
126 x ~ (y ~ x) =y "~ x. [para(385(a,1),3(a,2,2)),rewrite([2(2)])].

127 (x "~ y) v (a ~ (x v y)) = ((a "~ x) vy)  ((a” y)vzx). [para(35(a
1) ,13(a,1,2,2)), rewrite([2(8),7(8).2(11),32(11)])].

128 (x ~y) v (a ~y) =y "~ ((a "~ y) v x). [para(85(a,1),13(a,2,2,1,2)),
rewrite ([32(4) ,4(8),99(8)])].

144 (a =~ (cl v c2)) v (x -~ a) = a ~ (c1 v (c3 v (x ~ a))). [back_rewrite
(117) ,rewrite ([126(15)])].

148 x v (y =~ (z "~ x)) = x. [para(3(a,1),26(a,1,2))].

149 x v ((y ~ x) v .z) = x v [para(26(a,1),5(a,1,1)),flip(a)].

150 x v (y v (z ~ (x v y))) =x vy. [para(26(a,1),5(a,1)),flip(a)].

157 (x ~y) v (x = (z " y)) x " y. [para(23(a,1),26(a,1,2))].

N

168 x ~ ((y v x) = z) = x z. [para(32(a,1),3(a,1,1)),flip(a)].
159 x ~ (y ~ (z v (x ~y))) =x "~ y. [para(82(a,1),3(a,1)),flip(a)].
160 x ~ (y v (z v x)) = x. [para(5(a,1),532(a,1,2))].

166 x ~ (y ~ (z v x)) =y ~ x [para (32(a,1),28(a,1,2)),flip(a)].
169 x v (y v. (x ~ 2)) =y v x [para(6(a,1) ,25(a,1,2)),flip(a)].

170 x ~ (y v (x v z)) = x. [para(25(a,1),7(a,1,2))].

176 x v (y v (z -~ x)) =y v x [para(26(a,1),25(a,1,2)),flip(a)].
177 (x v y) " (xv (zvy)) =xvy. [para(25(a,1),32(a,1,2))].

180 x v ((y =~ (x = 2)) v uw) x v u. [para(99(a,1),5(a,1,1)),flip(a)].
191 (a - x) v ((x vy) "~ z)=((a "~ x) vz (xvy). [back.rewrite(57),

rewrite ([180(8)]),flip(a)].
202 x v (y v (zvzx))=yv (zvx). [para(bla,1),120(a,1,2)),rewrite(]

5(5)])]-

213 (x ~y) v ((x ~ (y -~ 2)) vu) = (x ~y) vu. [para(27(a,1),5(a,1,1)),
flip(a)].

224 x ~ (y ~ (z - x)) =y -~ (z "~ x). [para(8(a,1),126(a,1,2)),rewrite(/
3(5)])]-

230 (x ~y) v (y ~ x) =x "~ y. [para(126(a,1),27(a,1,2))].

232 x v (y =~ (z = (u "~ x))) x. [para(8(a,1),148(a,1,2,2))].

233 x v ((y =~ (z ~ x)) v u) x v u. [para(148(a,1),5(a,1,1)),flip(a)].

239 ¢l v (c3 v (x ~ (a ~ (cl v ¢c2)))) = cl v c3. [para(17(a,1),148(a
,1,2,2)),rewrite([5(10)])].

249 x " (y ~(zv (uv (x - y)))) =x "~ y. [para(160(a,1),3(a,1)),flip(a)
/-

250 x ~ (y v (z v (wvx))) =x. [para(5(a,1),160(a,1,2,2))].

267 (a "~ x) v (y " (xv 2))=(xvz)" ((a”x)vy). [para(170(a,1),153(
a,1,2,2)),rewrite([4(5),25(10),180(10),7(9)])].
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277 x v (((a = (y " x)) vz) " ((a”" (y " 2))vx)) =xv(a " (y " (xvz
))). [para(13(a,1),28(a,1,2))].

279 (x v y) -~ ((x "~ z) vy)=(x"2)vy. [para(28(a,1),32(a,1,2)),
rewrite ([2(4)])].

280 x v (y v ((x -~ z) vu)) =y v (xvu). [para(28(a,1),25(a,1,2)),flip(
a)].

281 (x ~y) v (z v x)=2zvx. [para(120(a,1),28(a,2)),rewrite([202(4)])]

293 x ~ (y ©~ ((x v z) " u)) y - (x - uw). [para(30(a,1),23(a,1,2)),flip(

a)l.

294 (x ~y) v ((x v z) ~y)=(xvz)"y. [para(30(a,l1),26(a,1,2)),
rewrite ([4(4)])].

295 (x vy) -~ (z "~ x) =2z ~ x. [para(126(a,1),530(a,2)),rewrite([224(4)])]

296 ((x vy) ~z)v (u"”~ (x " 2))=(xvy) "z [para(80(a,1),14{8(a
7]7272))]'

298 x " (y " (z " (xvw)) =y " (z " x). [para(3(a,1),100(a,1,2)),
rewrite ([3(6)])].

310 (x ~y) v (x " (y v z2z)) =x " (yvz). [para(100(a,1),26(a,1,2)),
rewrite ([4(4)])]-

316 x v (((a = (y =~ 2)) vx)~ ((a” (y "x))vz)) =xv(a”~ (y " (zvx
Y)). [para(13(a,1),149(a,1,2))].
321 (x vy) - ((z "~ x)vy)=1(z"x)vy. [para(149(a,1),32(a,1,2)),

rewrite([2(4)])]-

322 x v (y v ((z "~ x) vu) =y v (xvu. [para(149(a,1),25(a,1,2)),flip
(a)].

323 (x ~y) v(zvy)=2zvy. [para(120(a,1),149(a,2)),rewrite([202(4)])
/-

338 (x ~y) v ((z v x) ~y)=(zvzx)"~y. [para(158(a,1),26(a,1,2)),
rewrite ([4(4)])].

340 (x v y) ~ (z "~ y) =2z "~ y. [para(126(a,1),158(a,2)),rewrite([224(4)])
/

357 x v (y v (({(x "~ z) vy w)=xvy. [para(29(a,1),28(a,1,2)),
rewrite ([28(3)]),flip (a)].

372 (x ~y) v (x ~ (z v y)) =x " (zvy). [para(l66(a,1),26(a,1,2)),
rewrite ([4(4)])].

390 x v (y v (z v (u ~ (xvy)))) =zv (xvy). [para(l176(a,1),5(a,1)),
flip(a)].

391 x v (y v (zv (uw " x))) =y v (zvx). [para(5(a,1),176(a,1,2)),
rewrite ([5(6)])].

400 (x v y) ~(xv (z ~y)) =xv (z "~ y). [para(176(a,1),32(a,1,2)),
rewrite([2(4)])].

427 (a "~ x) v (((a "~ x) vy) "~ z)=(((a"x)vz)" ((a”x)vy). [para
(31(a.1),13(a.2,1,1)), rewrite([5(9),31(11) ,4(7).25(17),213(17)])].

444 (x ~y) v (z v (y -~ x)) =z v (y ~ x). [para(280(a,1),5(a,2,2)),
rewrite ([4(4)])].

449 (x ~ (y ~2z)) v (y ~ x) =x "~ y. [para(230(a,1),28(a,2)),rewrite(/
3(3),444(6)])]-

451 x v ((y = (z =~ (u = x))) v w)
a)l.

479 a " (x © ((y vz) -~ (uv (wv (((a " (x "~ y))vz)" ((a” (x"2))v
y)IIN)) =a "~ (x ~ (y v z)). [para(13(a,l),250(a,1,2,2,2)),rewrite(]
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3(16),3(15)])].

504 (x v y) -~ (y v (x v z)) y v x. [para(4(a,1),83(a,1,1))].

514 (x v y) - (y v x) =x vV [para (120(a,1) ,33(a,1,2))].

516 (x ~ (y =~ z)) v (u v (x y)) =uv (x ~y). [para(3(a,1),281(a,1,1))
/.

y< |l

537 (x ~y) v (a " (z -~ (uvy)))=+(yvuw =~ ((a” (z~ (yvuw)) v (x"~
v)). [para(295(a,1),13(a,1,1)), rewrite([5(5),176(5),25(18) ,451(18)

556 (x -~ (y =~ 2z)) v (u v z)

557 (x ~y) v (z v (u v y))
rewrite([5(6)])].

606 (x v.y) ~ (z ~ (xv (u ~ y))) z " (xv (uw "~ y)). [para(176(a,l)
2400, 1.1))].

719 x v (y v (z ~ (y v x)))
(15(4)7)]-

722 (x v (y v 2)) ~ (zvy)=2zvy. [para(bl4(a,1),340(a,1,2)),rewrite(]
514(7)])].

745 (x vy) “(yv (z "~ (xvy))) =yv (z "~ (xvy)). [para(150(a,1),32(
a,1,2)),rewrite([2(5)])].

890 (x ~ (y " z)) v (x -~ (y =~ (z v w)) x ~ (y - (zvw). [para(100(a
(1) ,157(a,1,2,2))  rewrite ([4(6)])].

898 (x " (y v z)) v (x "~ (yv (zv w)) x ~ (yv (zvuw). [para(33(a
,1),157(a,1,2,2)),rewrite([4(6)])].

909 (a " x) v (y "~ (zv (a "~ x))) = (zv (a "~ x)) "~ ((a %) vy). [para
(159(a,1),18(a,2,2.,1)), rewrite ([249(11) ,4(7).516(14)])].

921 (x " y) v(zv (y ~(uv (x ~y)))) =2zv (y " (uv (x " y))). [para
(159(a,1),323(a,1,1))].

941 (a ~ ((x vy) ~z))v ((a~ (z " x)) vy)=2C(a" (z ")) vy. [para
(38(a,2),6(a,1,2)),rewrite([25(11),4(10),557(11)])].

964 (a ~ (cl v c2)) v (a "~ x) = a ~ (cl v (3 v (x ~ a))). [para(17(a,l)
88(a,1,1)), rewrite([30(13),126(12) ,25(14) ,4(13),110(20) ,4(22),99(22)

1108 (x v y) ~ (xv ((xvy) ~2))=xv ((xvy) "~ z). [para(29(a,l)
,177(a,1,2) ), rewrite ([2(5)])].

1243 a ~ (c2 v (c3 v (a "~ x))) = a ~ (c1 v (¢3 v (x ~ a))). [para(19(a,l)
,39(a,1,1)), rewrite([100(13),144(8) ., 124(12) ,25(14) ,4(13) ,111(20) ,4(22)
199(22) .2(16)]) , flip (a)].

2810 (a ~ x) v (y ~ (z -~ (xvw)) = (xvu) -~ ((a "~ x)v (y "~ z)). [para
(7(a,1) ,48(a,2,2,1,2)), rewrite ([170(8) ,4(6),25(12) ,180(12)])].

4331 (x " y) v (a " (z " (xvy)))=(yv(ad~ (z " x)))~ (xv (a” (z°
y))). [para(4(a,1),46(a,2,2))].

4337 (a "~ x) v (y ~a) =a "~ (xv (y - a)). [para(46(a,1),9(a,2)),rewrite
([9(5),100(7),126(9) ,4(13).6(13),2(10)])].

4352 a ~ (cl v (c3 v (x "~ a))) =a ~ (c1 v (c2 v (x "~ a))). [para(17(a,l)
46(a.1,1)), rewrite([100(13),4337(8).,5(7),126(15),5(14),110(20) .4(22)
,99(22) ,2(16)]), flip (a)].

4586 x v ((x v (a = (y =~ 2))) ~(zv (a " (y " x)))) =xv (a " (y " z)).

[para(46(a,2),719(a,1,2,2)),rewrite ([4831(9),909(13) ,25(12) ,2383(12)])]

uvz. [para(3(a,1),323(a,1,1))].
zv (uvy). [para(b(a,l),328(a,1,2)),

x vy. [para(b514(a,1),148(a,1,2,2)),rewrite

SOSé a ” (c2 v (¢3 v (a " x))) =a " (c1 v (c2 v (x ~ a))). [back_rewrite
(1243) ,rewrite ([4352(16)])].
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5089 (a ~ (cl v c2)) v (a "~ x) = a ~ (c1 v (c2 v (x ~ a))). [back_rewrite
(964) ,rewrite ([4352(16)])].

5201 (x v y) -~ ((z ~ y) vx)=(z " y)vzx. [para(176(a,1),722(a,1,1))].

6279 x v (a -~ (y ~ (x v 2z))) =x v (a " (y -~ 2z)). [para(504(a,1),60(a
1.,1)), rewrite([5(14) ,427(13) ,556(8) ,277(10) ,504(20) ,25(15) ,4(14)
,890(14) ,25(12) ,4331(11) ,4586(15)])].

6495 ((x v (y ~a)) ~z) v (z ~ (y v (a "~ x))) =2z "~ (xvy). [para(2a
,1),67(a,1,1))].

6508 (x ~ (y v (z ~ a))) v (uv (x - (zv (a " y))))=uv (x "~ (yvz)).

[para (67(a,1),25(a,1,2)),flip(a)].

7094 (a "~ x) v (y ~ x) =x "~ ((a "~ x) vy). [para(128(a,1),4(a,1)),flip(a
).

7695 c1 v (c3 v (a ~ ¢2)) = cl v ¢3. [para(166(a,1),239(a,1,2,2))].

7732 (c1 v ¢3) ~ (cl v (a ~ ¢c2)) = cl v (a ~ c2). [para(7695(a,1),177(a
,1,2)) ,rewrite([2(9)])].

9660 x ~ ((x "~ y) v (x =~ 2)) = (x ~y) v (x ~ z). [para(6(a,l),279(a,1,1)
)]

10028 x v ((x v y) ~ (x v z)) = (xvy)  (xvz). [para(7(a,1),294(a
71?1))/'

10127 (x = (y ~ (z v w)) v ((w ~ (x =~ (y - 2z))) vvd) = (x "~ (y " (zvu
)) v vb. [para(298(a,1) ,233(a,1,2,1,2))].

10150 (x =~ (y = (z -~ w))) v (wv (y =~ (z =~ (uv vb))))
v v8))). [para(298(a,1),556(a,1,1,2))].

10193 a =~ (cl v (c2 v (a ~ (c2 v (c3 v x))))) = a ~ (c2 v (c3 v x)). [
para(19(a,1),310(a,1,1)),rewrite([5(10),5089(12),2(9),5(17)])].

10202 (x -~ (y ~2)) v (x ~ (uvy)) =x" (uvy). [para(281(a,1),310(a
,1,2,2)) , rewrite ([281(8)])].

10210 (x = (y = 2)) v (z - ((x -~ (y =~ 2)) vuw) =2 " ((x "~ (y ~ 2)) v u.

[para (224(a,1),310(a,1,1))].

10338 x -~ ((y ~ z) v (y ~ x)) =x ~y. [para(449(a,1),321(a,1,2)),rewrite
([2(5),3(5),9660(4),449(8)])]-

10367 x v (a ~ (y ~ (z v x))) =xv (a "~ (y ~ 2)). [para(821(a,l1),60(a
1.1)) . rewrite([5(15),315(14),10150(10),321(20) ,10127(16) ,4(11) ,25(12)
4881(11) ,4586(15)])].

10914 x -~ ((y ~ 2z) v (z "~ x)) =x "~ z. [para(2(a,1),10338(a,1,2,1))].

109156 x = ((y ~ z) v (x "~ y)) x ° [para(2(a,1),10338(a,1,2,2))].

10940 x ~ ((y =~ (z ~ w)) v (u " x)) x " u. [para(224(a,1),10338(a
717271))]'

11021 x =~ ((y ~ z) v (x "~ z)) =x "~ z. [para(2(a,l),10914(a,1,2,2))].

11183 x - ((y ~2) v (x ~ (uv 2))) =x " (uv z). [para(340(a,1),10915(a
1,2,1))].

11568 x -~ (y v (x =~ (z v (u v y)))) ~(zv (uvy)). [para(160(a,l)
11021(a,1,2,1))].

12001 x v (y v (z v (uv (w ~ x)))) =y v (zv (uv x)). [para(202(a,1)
,322(a,1,2,2)), rewrite ([391(9)])].

12204 x v ((y v x) =~ (x v z)) = (y vzx)~ (xvz). [para(7(a,1),338(a
1))

12396 x v (y v (((x ~ 2z) v (y ~w) ~w)) =xvy. [para(357(a,1),280(a
,1,2)), rewrite ([169(3)]),flip(a)].

13792 x v ((y v x) ~ (y v z)) = x v y. [para(50f(a,1),372(a,1,2)),rewrite
(125(5),4(4) ,10028(4) ,504(8)])].

13882 x v ((y v z) ~ (y v x)) =x v y. [para(2(a,1),18792(a,1,2))].
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13902 x v (((y =~ 2) vx) "~ (uvz))=xv (y "~ z). [para(828(a,l1),18792(a
}17272))/

14400 x v ((y v z) =~ (z v x)) = x v [para(4(a,1),13882(a,1,2,1))].

14415 x v ((y v z) - ((u "~ 2z) vx)) =xv (u "~ z). [para(8323(a,l1),13882(a
71:271))]

14736 x v ((y v z) =~ (z v (u ~ x))) = x v z. [para(14400(a,1),149(a,1,2))
,rewrite ([149(38)]),flip(a)].

17603 x v (a -~ (x v y)) = x v (a ~ y). [para(127(a,1),28(a,1,2)),rewrite(
[14415(8)]), flip (a)].

17613 x v (a -~ (y v x)) = x v (a "~ y). [para(127(a,1),149(a,1,2)),rewrite
([13902(8)]), flip (a)].

17730 (a ~ x) v (a ~ y) = a ~ (x v y). [para(127(a,2),43(a,1,2,2)),
rewrite ([11183(10),10202(7) ,2(10),3(10) ,82(9) ,124(7) ,2(11) ,31(12)
5201(12)]), flip (a)].

18007 a =~ (cl v (c2 v (a =~ (c3 v x)))) = a ~ (c2 v (c3 v x)). [
back_rewrite (10193) ,rewrite ([17603(10)])].

18151 a =~ (cl v (c2 v (x ~ a))) = a ~ (cl v (c2 v x)). [back_rewrite
(5089), rewrite ([17730(8),5(5)]), flip (a)].

182561 a = (c2 v (c3 v (a "~ x))) = a ~ (ct v (c2 v x)). [back_rewrite
(5088) ,rewrite ([18151(16)])].

18578 c1 v (a ~ ¢c3) = c1 v (a "~ ¢c2). [para(17(a,1),17603(a,1,2)),rewrite(
[17603(7)] ), flip (a)].

18580 a ~ (x v (a ~ y)) = a ~ (x v y). [para(176083(a,l1),32(a,1,2)),
rewrite ([3(7),400(6)])].

18588 a "~ (x "~ (y v (a "~ 2))) =x "~ (a ~ (y v z)). [para(17603(a,1),166(a
,1,2,2)),rewrite([3(8),606(7)])].

18658 a ~ (cl v (c2 v (c3 v x))) =a ~ (c1 v (¢3 v x)). [para(91(a,1)

L 17603(a,2) ), rewrite ([25(24) .4(23) ,17730(23) ,25(20) ,25(19) ,5(18) ,25(19)
L 25(18) ,118(20) ,18580(21) ,12001(18) ,4(17) ,17730(17) ,25(14),25(13) ,4(12)
25(12) ,25(11),25(10) ,4(9) ,26(9) ,25(10) ,25(9) ,118(8) ,118(9)])].

18661 a "~ (c2 v (c3 v x)) = a ~ (c1 v (c2 v x)). [para(98(a,1),17603(a,2)
), rewrite ([18251(8) ,18251(15),25(20) ,4(19).898(19) ,11568(15) ,34(13)]) .
flip(a)].

19033 a "~ (c1 v (c2 v (a ~ x))) =a ~ (cl v (c2 v x)). [back_rewrite
(18251) ,rewrite ([18661(8)])].

19034 a =~ (cl v (c3 v x)) = a ~ (cl v (c2 v x)). [back_rewrite(18007),
rewrite ([19033(10),18658(8) ,18661(12)])].

19518 ¢c3 v (a ~ (¢l v ¢2)) = c3 v (a ~ c1). [para(17(a,1),17613(a,1,2))].

19519 ¢3 v (a ~ ¢c2) = c3 v (a ~ cl). [para(19(a,1),17613(a,1,2)),rewrite(
[19518(7)]), flip(a)].

19765 a - ((a ~ x) vy) =a "~ (xvy). [para(12f(a,1),17730(a,1,1)),
rewrite ([17730(5)]), flip (a)].

22049 (a ~ x) v (x ~y) =x ~ ((a "~ x) vy). [para(6(a,1),191(a,1,2,1)),
rewrite([6(9),2(8)])].

30100 (x ~ y) v ((x v z) "~ (uvy))=(xvz)" (uvy). [para(l66(a,l)
,296(a,1,2) ), rewrite([4(5)])].

40090 c2 v ((x v ¢c3) - (c3 v (a "~ ¢c1))) = c2 v c3. [para(19519(a,l)

L 14736(a,1,2,2))].

44335 c1 v (a ~ (c3 v x)) =cl v (a ~ (c2 v x)). [para(19034(a,1),17603(a
,1,2)), rewrite ([17603(8)]), flip(a)].

46202 (a ~ (x "~ y)) v (y ~z) =y~ ((a "~ (x "~ y)) vz). [para(10940(a,l)
A427(a,2) ), rewrite ([10210(12) ,2(9) ,166(9) ,2(10)])].
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48249 c1 v (a ~ (c2 =~ (x v ¢3))) = cl v (a ~ c2). [para(40090(a,1) ,44335(
0,2,2,2)) rewrite ([12204(12) ,18588(11) ,4(7),17(8),23(9),6279(10) ,2(6)
,19(14),17603(15)])].

49221 c1 v (a - (c2 ~ ¢3)) = cl v (a ~ ¢c2). [para(34(a,1),48249(a
1,2,2,2))].

49233 c1 v (c2 ~ (3 v (a ~ ¢c1))) = cl v (c2 ~ ¢3). [para(49221(a,1),176(
a,1,2)), rewrite ([25(9) ,4(8).22049(8) . 4(7).19519(7)])].

52023 a "~ (x v (y ~2)) =a "~ ((xvz)" (xvy)). [para(537(a,1),19765(a
1,2)), rewrite ([4(9),2810(9) ,17730(8) ,23(7) ,23(8) ,124(7) ,124(7)

L 10367(11) ,18580(11)]), flip (a)].

63667 a ~ (x ~ (y v (z ~w))) =x ~ (a "~ ((yvuw "~ (yv=z))). [para
(12396(a,1) ,479(a,1,2,2,2)), rewrite ([298(8) .2(4).52023(4)]), flip (a)].

63754 x v (y v (z ~ (x v (u " 2)))) =y v (xv (uw ™~ 2)). [para(921(a,l)
,390(a,1,2))].

64469 x v (a -~ ((y v x) ~ 2)) =x v (a "~ (y ~ z)). [para(745(a,1),941(a
1.1,2)) rewrite ([52023(5),120(3),2(10),63667(11) ,120(8) ,293(11) ,4(10)
L6279(10) ,25(10) ,4(9) ,17730(9) ,80100(6) ,6279(6) ,2(10) ,63667(11) ,120(8)
,298(11) ,4(10) ,6279(10)])].

69039 x v ((x vy) "~ (zv (a~x)))=xv ((xvy) "~ z). [para(1108(a,l)
7094 (a,1,2)) rewrite ([52023(5) ,118(4) ,25(9) ,46202(8) ,4(7) ,64469(7)
T(4),52023(14) ,118(13) ,4(16) ,148(16) ,2(11),1108(11)])].

104056 c1 v (c2 =~ (cl v ¢3)) = (cl v ¢c2) = (cl v c3). [para(7732(a,l)
6495(a,1,2)) rewrite([2(4).2(9) .4(15).,5(15) ,267(14),25(13) ,4(12)

L 19519(12) ,176(13) ,4(9) ,2(10) ,69089(11) ,2(6) .4(13).2(14)])].

104095 c1 v (c2 "~ ¢c3) = (cl v ¢2) ~ (c1l v ¢3). [para(49233(a,1),6508(a
1.,2)), rewrite([2(5),18578(6) ,25(13) ,4(12) ,63754(13) ,25(9) ,4(8)
22049(8) ,4(7).,19519(7) .49233(9) ,104056(12)])].

104096 $F. [resolve (104095,a,21,a)].
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Kept_by_rule=0, Deleted_by_rule=26712.

Forward_subsumed=19936868. Back_subsumed=810.

Sos_limit_deleted=18978430. Sos_displaced=63145. Sos_removed=0.

New_demodulators=92229 (6 lex), Back_demodulated=15878. Back_unit_deleted
=0.

Demod_attempts=1136610097. Demod_rewrites=133339635.

Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0.

Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0.

Megabytes=136.64.

User_CPU=963.34, System_CPU=15.07, Wall_clock=979.

=== =S====S============= end of Statistics === ================
=== ========================= end of search === ====================
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