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Why mathematics needs engineering
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Abstract

Engineering needs mathematics, but the converse is also increasingly evident.
Indeed, mathematics is still recovering from the drawbacks of several “reforms”.
Encouraging is the revived interest in proofs indicated by various recent intro-
duction to proof-type textbooks. Yet, many of these texts defeat their own
purpose by self-conflicting definitions. Most affected are fundamental concepts
such as relations and functions, despite flawless accounts 50 years ago. We take
the viewpoint that definitions and theorems are tools for capturing, analyzing
and understanding mathematical concepts and hence, like any tools, require
diligent engineering. This is illustrated for relations and functions, their alge-
braic properties and their relation to category theory, with the Halmos principle
for definitions and the Arnold principle for axiomatization as design guidelines.

Keywords: algebra, analysis, calculus, category theory, codomain, definition,
design, domain, engineering, function, logic, mathematics, relation, soundness

1. Introduction: Mathematics and Engineering

Mathematics has been intertwined with engineering since antiquity [12, 52].
Kline notes that “More than anything else mathematics is a method” [32].

Arguably, the primary purpose of this method is effective reasoning. This view
best explains what Wigner calls the unreasonable effectiveness of mathemat-
ics [64], in particular its practical usefulness far beyond the originally intended
application areas. From this perspective, the dichotomy between Platonism
and formalism dissolves: mathematical objects do exist, albeit in an abstract
universe. Formalism, definitions and theorems are the tools to study them.

Tools, being artifacts, deserve careful design, borrowing criteria and guide-
lines from engineering. Some of these also been discussed by José Oliveira [43] in
another context. Here we focus on using engineering principles in mathematics.

Foremost is enhancing the effectiveness in reasoning. Symbolic notation
properly designed and used yields extra guidance via the shape of the expres-
sions. It should function like well-meshed gears in a Swiss precision clockwork.

Aptness and economy in capturing the abstract objects of interest ensures
conceptual malleability, generality and practical usefulness. Human factors are
influential here, and it is often overlooked that this is a highly individual matter
of temperament and background. Even so, everyone benefits from clear con-
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ceptualization and reasoning. For instance, separation of concerns avoids the
common misconceptions caused by intellectual noise and conceptual tangling.

In classical mathematics, methods and notations were often thought-out
carefully. In algebra, for instance, symbolic notation started with Diophantus
and evolved into its current form via Viète and Descartes [6, 12], rarely violat-
ing good design practices, thus making symbolic calculation today’s norm. In
comparison, notations from “modern mathematics” as used in everyday practice
are substandard, hampering symbolic reasoning and thus making it unpopular.

The cause of this stagnation is largely historical. When introducing so-called
“modern mathematics”, forgetting its roots caused serious educational mistakes,
denounced in rather strong terms by Arnold [3]. In a severe overreaction, the
view of mathematics as a method was sacrificed in favor of mathematics as a bag
of tricks and attempting to elicit motivation by so-called “real-life” examples no
more realistic than the farmer-sells-potatoes-type problems in grade school —
and in PISA tests! The well-proven structure definition-examples-theorems was
frowned upon, and mathematical exposition had to become a “narrative”.

As a result, classics like Rudin’s Principles of Mathematical Analysis [51] are,
as Krantz observes, “often no longer suitable, or appear to be inaccessible, to
the present crop of students” [34]. Here the blame does not fall on the students.

Narratives lack the punctuation provided by headings like “Definition” and
“Theorem”, which help novices to distinguish between, say, statements that can
be deduced from earlier ones and statements introducing new elements.

If definition-examples-theorems expositions often deserve criticism, it is not
for the usual reasons (take your pick), but because definitions are usually pre-
sented as “given”, or as arbitrary points of departure for a game of logic. In
fact, definitions are the result of design decisions. They also determine the
flavor of the theorems (and proofs) derived from them. Hence it is crucial for
understanding that these decisions are explained and justified.

In mathematics texts, this is all too rarely done. One of the few exceptions
is Halmos’s Naive Set Theory [26] which, if only for this reason (yet also for
other reasons!), should be required reading for all beginning students — and
many mathematicians as well. Halmos not only explains the design decisions
and their shortcomings for most conventions, but also does not shrink back from
calling some poor practices “unacceptable but generally accepted”. Quine [47]
even designates lesser offenses as “glaring perversity”, which seems an apt char-
acterization of mathematicians acting against better judgment.

Indeed, perceived “general acceptance” is often taken as a licence to perpet-
uate junk conventions. Users of inept designs typically defend them by feigning
confusion at proper alternatives, calling them “nonstandard” even if they have
been around for a long time and are routinely used by plenty of other authors.

If an engineer is sloppy, his design may fail, even catastrophically. Math-
ematicians often condone sloppiness, even if it sets bad examples and abuses
confidence. Discerning students will be dissatisfied by the discrepancy between
the reputation of mathematics as being precise and actual practice. Others may
even get confused if insecure teachers insist on “doing things as in the book”.

Yet, the engineering literature is not blameless either. Years ago Lee and
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Varaiya [39] corrected many inept mathematical practices in signal processing.
Playing down such issues as “just a matter of notation” is misleading. Poor

notation prevents the shape of expressions from giving guidance in reasoning. It
also reflects poor understanding, according to Boileau’s aphorism “Ce que l’on
conçoit bien s’énonce clairement – Et les mots pour le dire arrivent aisément”.
If authors misunderstand their own definitions, what about their students?

“If it ain’t broke, don’t fix it” is another engineering maxim. Yet, as we shall
see, even basic concepts that worked fine 50 years ago somehow got “broke”.

This paper addresses the issue in the title by presenting a design view on
various concepts from the literature, but it is not some linear, complete proposal.

Often references include page numbers to make them truly useful for the
reader. For brevity, co-authors are omitted when mentioning names in the text.

2. Case study A – Relations: two logically equivalent definitions

2.1. Simple and safe formulations

The simplest “modern” definition of a relation is typical in older texts such as
Bourbaki [9, p. 71], Suppes [60, p. 57], Tarski [61, p. 3], but only in a few current
books, such as Jech [31, p. 10], Scheinerman [53, p. 73] and Zakon [65, p. 8].

Definition 1 (Relation). A relation is a set of ordered pairs.
Equivalently, in symbols [9, 60]: R isrel ≡ ∀z . z ∈ R ⇒ ∃x . ∃y . z = (x, y) .

Taking set and ordered pair colloquially, and with ‘nonmathematical’ examples,
the word statement of Definition 1 is even accessible at grade school level.

In this paper, when saying just “pair”, we always mean “ordered pair”.
Some notational design issues arise here. First, an ordered pair is commonly

written (x, y). Some authors use 〈x, y〉, a waste of symbols. In fact, one can
even write x, y and reserve parentheses for emphasis or disambiguation, which
also covers n-tuples like (x, y, z) and trees like ((x, y), z). Identifying (x, y, z)
with ((x, y), z) as in Bourbaki [9, p. 70] is clearly a bad design decision.

Second, the literature diverges about writing (x, y) or (y, x) and xR y or
y R x. Quine [47, p. 24] offers many good reasons for following Peano and Gödel
in using the natural order from spoken language, writing “a is the father of b”
as aF b, and “a is smaller than b” as a < b. Similar reasons would favor writing,
for instance, “velocity versus time” as (v, t). However, mathematicians used to
writing the “independent variable” first might feel disoriented—unlike novices!
Tradition can be reconciled with reason by writing (x, y) ∈ R iff y Rx. For
human engineering reasons, such conventions should be stated conspicuously.

Intermezzo: Quine, the angry notational engineer. In an uncharacteristic dia-
tribe of nearly two pages [47, p. 24–26], Quine deplores the “sorry business” and
“glaring perversity” of ill-designed notations. He concludes (a) “I have given
much space to a logically trivial point of convention because in practice it is so
vexatious.”; (b) “[Whoever] switched a seemingly minor point of usage out of
willfulness or carelessness cannot have suspected what a burden he created.”.
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These remarks reflect typical engineering concerns. Indeed, (a) reminds us
that avoiding flaws during the design phase is easy compared with repair after-
wards (one line versus lengthy arguments), and (b) emphasizes the importance
of taking into account the interests of the users, namely, the future generations.

Auxiliary notions. Most authors using Definition 1 add Definitions 2, 3 and 4.

Definition 2 (Domain, range).
The domain of a relation R is the set of first members of the pairs in R. The
range of a relation R is the set of second members of the pairs in R.
Notation: the literature mentions various self-explanatory notations such as DR
or Dom(R) for the domain of R and RR or Ran(R) for the range of R.

Definition 3 (Relation from X to Y ). A relation from X to Y is a relation
whose domain is a subset of X and whose range is a subset of Y .
Equivalently, in symbols: R isrel (X,Y ) ≡ R isrel ∧DR ⊆ X ∧RR ⊆ Y .
Notation: Writing R : X↔→Y or R : X ↔ Y introduces a relation from X to Y .

Aside As in Meyer [42, p. 23], X↔→Y denotes the set of relations from X to Y .
Also, the symbol : clearly distinguishes bindings from statements. A binding
i : S, read “i in S”, introduces an identifier i for an object in a set S, whereas
i ∈ S, read “i is in S” (or similar) is a statement in which i is used. Proper
symbolism passes the prose test: transliterating formulas into words must yield
sentences with correct grammar. The RHS of S ⊆ T ≡ ∀x : S . x ∈ T is read “for
all x in S, x is in T ” or “every x in S is in T ”. Lamport [36, p. 289] notes that
the common forms {x ∈ S | p} and {e |x ∈ T }, where p is a boolean expression
and e is any expression, are ambiguous if p is x ∈ T and e is x ∈ S. Writing
{x : S | p} and {e |x : T } yields {x : S |x ∈ T } = S ∩ T and {x ∈ S |x : T } ⊆ B.

Finally, S in i : S is called a type and expresses a range for i, not an attribute
of i. Hence the X and Y figuring in R : X↔→Y are attributes of the type X↔→Y ,
not of R. This concludes the aside.

The following formulation is independent of the (x, y) versus (y, x) issue.

Definition 4 (Composition, converse). The composition S ◦R of relations
S and R is the relation such that z(S ◦R)x ≡ ∃y.z S y ∧ y Rx.
The converse R⌣ of a relation R is the relation defined by xR⌣ y ≡ y Rx.

Composition is called relative product by Suppes [60, p. 63] and Tarski [61, p. 3],
and resultant by Quine [47, p. 22]. Suppes writes S/R, the others S|R.

2.2. Entering murky waters: misconceptions, unsoundness and poor judgement

All books in our introduction to proof sample [8, p. 172], [14, p. 101] , [15, p. 93],
[19, p. 155], [20, p. 86], [23, p. 51], [24, p. 267], [27, p. 192], [49, p. 176], [55,
p. 135], [62, p. 171] except [53, p. 73] combine Definitions 1 and 3 as follows.

Definition 5 (Relation from X to Y ). A relation from X to Y is a subset
of X × Y . Equivalently, in symbols: R isrel′ (X,Y ) ≡ R ⊆ X × Y .
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This forces defining relation backwards, as a relation fromX to Y for someX,Y .
Also, using Cartesian products at this stage may be an educational burden [54].

A more serious problem is that disregarding separation of concerns carries a
heavy price in understanding, apparently even for the authors. Most fail to rec-
ognize that Definitions 3 and 5 are equivalent: R isrel (X,Y ) ≡ R isrel′ (X,Y ).

Indeed, many textbooks strongly suggest that Definition 5 somehow “glues”
X and Y to the relation, and that one cannot even define just relation without
adding “from X and Y ”. Some texts remain vague here, but the litmus test for
one’s understanding of a mathematical concept is the view on equality, in this
case: when is a relation R from X to Y equal to a relation S from U to V ?

The answer was evident 50 years ago: with relations defined as sets, R = S
iff both contain the same elements, regardless of X , Y , U , V . Defining equality
anew often causes unsoundness, typically by stating that R = S also requires
X = U and Y = V [49, p. 179]. Indeed, if R ⊆ X × Y , X 6= ∅ and Y ⊂ V , then
R ⊆ X × V and Y 6= V , so R = R would require Y = V , a contradiction.

Many texts [49, p. 180], [55, p. 141], [62, p. 236], [63, p. 94] define S ◦R for a
relation R from X to Y and a relation S from U to V only for the case U = Y .
Since R ⊆ X × Y ⊆ X × (Y ∪ U) and S ⊆ U × V ⊆ (Y ∪ U) × V , this is not
restrictive, unless one accepts the aforementioned unsound view on equality.

Aside As a restrictive variant of a relation from X to Y , Bourbaki [9, p. 72]
defines a correspondence from X to Y as a triple (R,X, Y ) where R ⊆ X × Y ,
and restricts composition of (R,X, Y ) and (S,U, V ) to the case U = Y .

3. Case study B – Functions

Poor design decisions for relations reappear for functions with a vengeance.
This is especially unfortunate since, as Herstein puts it, Without exaggeration
this [namely, a mapping or function] is probably the single most important and
universal notion that runs through all of mathematics. [29].

The “modern” definition of function was issue-free 50 years ago, and still is in
analysis/calculus books [1, 5, 17, 33, 34, 38, 50, 51, 58, 59, 65], but unsoundness
appears since 2005 in transition to proof texts [8, 13, 14, 15, 19, 20, 27, 49, 55].

In passing, we mention some harmful myths that can be read between the
lines in textbooks but surface explicitly in oral and written conversations. Myth
#0 (a meta-myth actually) holds that divergences in definitions just reflect dif-
ferent needs in various disciplines [54]. However, our samples come from algebra,
analysis/calculus, discrete math, logic, set theory, and reveal that nearly all of
them use the same function concept, differing only in the care devoted to design
and formulation. Myth #0 is harmful in trying to divert closer scrutiny.

Recurrent points of interests are: (i) defining function, (ii) function equality,
(iii) function from X to Y , (iv) onto-ness, (v) function composition and inverse.

3.1. Once again: simple and safe formulations

(i) A relation R is called functional [9, 42] iff no two pairs in R have the same
first member. Hence the following phrasings are equivalent; the choice depends
on whether relations are skipped, as in analysis/calculus texts, or defined first.
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Definition 6 (Function). (A) Apostol [1, p. 53]: A function f is a set of
ordered pairs (x, y) no two of which have the same first member.
(B) Bourbaki [9, p. 77]: A function is a functional relation.

Definition 6 is also found in Dasgupta [16, p. 10], Flett [17, p. 4], Jech [31, p. 11],
Mendelson [41, p. 6], Scheinerman [53, p. 167], Suppes [60, p. 86], Tarski [61,
p. 3], Zakon [65, p. 10]. Functionality justifies writing y = f(x) iff (x, y) ∈ f .
As in [40, p. 1], one may write f x instead of f(x) when no ambiguity results.
Authors using Definition 6 introduce the domain and range as in Definition 2.

(ii) This results in the following theorem, quoted from Apostol [1, p. 54].

Theorem 1 (Equality). Functions f and g are equal iff (a) f and g have the
same domain, and (b) f(x) = g(x) for every x in the domain of f .

(iii) Authors starting from Definition 6, including Apostol [1, p. 578], Das-
gupta [16, p. 10], Flett [17, p. 5], Jech [31, p. 11], Scheinerman [53, p. 169] and
Zakon [65, p. 10], use the following common notions for classifying functions.

Definition 7 (Function from X to Y ). A function from X (in)to Y is a
function with domain X and range included in Y .
Notation: writing f : X → Y introduces a function f from X to Y .

This is the ISO standard [30, p. 15], where a function is defined in broader
terms, mentioned later. Divergent views on f : X → Y are nonstandard.

It is convenient reading X → Y as the set of functions from X to Y and
X→/ Y as the set of functional relations fromX to Y [42, pp. 25–26]. Such types
serve as partial specifications for functions. Tighter types are defined later.

(iv) Next, we consider onto-ness as defined by authors using Definitions 6
and 7, for instance, Flett [17, p. 5], Jech [31, p. 11], Mendelson [41, p. 6],
Scheinerman [53, p. 172], Tarski [61, p. 3] and Zakon [65, p. 11].

Definition 8 (Onto Y ). For any set Y , a function is said to be onto Y , or
surjective on Y , iff its range is Y .

Note that onto is a preposition, and appears as such in Definition 8, which is
also used by many authors (listed later) who do not start from Definition 6.

The dual notion of “f is onto Y ” (Rf = Y ) is “f is total on X (Df = X).
The dual notion of “f is into Y ” (Rf ⊆ Y ) is “f is partial on X” (Df ⊆ X).
A function f : X →/ Y is often called a partial function, but is {(0, 1), (2, 3)} a
partial function? Grammatically correct is: a function from part of X to Y .

(v) For composition, we mention two equivalent formulations. Formulation
(A) skips relations, as in Apostol [1, p. 140], Flett [17, p. 11], Mendelson [41,
p. 7] and many others, listed later. Formulation (B) is based on relations.

Definition 9 (Function composition g ◦ f). (for any functions g and f)
(A) g ◦ f is the function whose domain consists of all x in Df that satisfy
f(x) ∈ Dg and whose value (g ◦ f)(x) for arbitrary x in that domain is g(f(x)).
(B) g ◦ f follows Definition 4 assuming natural order as in Quine [47, p. 24];
otherwise f and g must be swapped, e.g., g ◦ f = f/g in Suppes [60, p. 87],
g◦f = f |g in Tarski [61, p. 3]. Proof obligation: showing that g◦f is functional.
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3.2. Wearing the ice thin: convoluted formulations

(i–iii) Definitions 6 and 7 are sometimes crammed together, starting as early
as Halmos [26, p. 30] and Herstein [29, p. 10], and more often in current texts
including Krantz [34, p. 20], Velleman [62, p. 226] and others, listed later.

Definition 10 (Function from X to Y ). Let X and Y be sets.
(a) A function f from X to Y , written f : X → Y , is a relation f ⊆ X × Y

satisfying the property that for each x in X the relation f contains exactly one
ordered pair of the form (x, y).

(b) The set X is called the domain of f .

As a warning against uncritical copying, we reproduced the widespread but
unacceptable phrasing, which suggests that the function is written f : X → Y
(in fact, the function is written just f), and that f ⊆ X × Y is a relation (in
fact, it is a statement about the relation f). Proper phrasings are evident.

All authors using Definition 10 overlook that part (b) requires proving that
X is fully determined by f as defined in (a). This is easy; the result is X = Df .

More importantly, users of Definition 10 fail to realize its logical equivalence
to Definition 6 (proof: exercise), including the standard meaning of f : X → Y .
Still, the different formulation has a huge impact on clarity. By disregarding
separation of concerns, Definition 10 has given rise to Myth #1, which holds
that one cannot define function by itself, but only function from X to Y .

The common pitfalls are exposed by the litmus test: equality. Surprisingly
few present-day texts using Definition 10 mention Theorem 1, found only in
Daepp [14, p. 152], Gerstein [20, p. 113] and Smith et al. [55, p. 189]. Instead,
many define equality anew, all too often unsoundly, as demonstrated later.

(iv) “Classical” authors using Definition 10 (or similar), including Bartle [5,
p. 13], Halmos [26, p. 31], Herstein [29, p. 12], Kolmogorov [33, p. 5], say that f
is onto Y iff Rf = Y , as in Definition 8, using “onto” as a preposition. Some of
the few “modern” users of Definition 10 who write “onto Y ” are Gerstein [20,
p. 118] and Smith [55, pp. xvii, 205], but their formulation lacks generality.

(v) Most “classical” authors using Definition 10 (or similar), including Bar-
tle [26, p. 40] and Halmos [26, p. 40], define g ◦f for arbitrary functions f and g,
as in Definition 9. Only a few classical texts [29, p. 13][50, p. 9] restrict coverage
of g ◦ f for functions f : X → Y and g : U → V to the special case U = Y .

Most “modern” texts succumb to this restriction, including Bloch [8, p. 146],
Roberts [49, p. 226], Scheinerman [53, p. 183], Smith [55, p. 197], Velleman [62,
p. 231]. An intermediate form requiring Rf ⊆ Dg appears in Daepp (2003) [14,
p. 175], Daepp (2011) [15, p. 167], Jech [31, p. 11] and Krantz [34, p. 22]. The
general form appears in Larson [38, p. 25] and Stewart [58, p. 40] which, not
surpringly, are calculus texts, since restricted composition is impractical.

3.3. Falling through the ice: common yet unsound additions to Definition 10

(i–iii) Definition 10 is the sound part of definitions in transition to proof texts,
but Bloch [8, p. 131], Chartrand [13, p. 216], Daepp [14, p. 147][15, p. 143],
Garnier [19, p. 224] Gersting [20, p. 383], Hammack [27, p. 195], Roberts [49,
p. 220], Smith [55, p. 185], Gilbert [22, p.13] and Wallis [63, p. 106], add
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Definition 11 (Codomain). Definition 10(c) Y is called the codomain of f .

However, just like Definition 10(b), adding 10(c) entails a proof obligation.
Recognizing this clearly reveals a logical contradiction. Indeed, the definiendum
is codomain of f , the definiens is Y , but Y is not uniquely determined by f . As
for relations, letting f ⊆ X × Y ⊂ X × Y ′ reveals a contradiction.

Still, some authors uphold Myth #2: writing f : X → Y makes Y an
attribute of f by specifying f ⊆ X × Y . Yet, all this says about Y is Rf ⊆ Y .

Myth #3 maintains that Definition 10 contains ambiguities allowing multiple
views, making logical contradictions just a matter of interpretation. Yet, in
Definition 10(a), the definiendum and the definiens are clear (except as written
in [8, p. 131]), using the unambiguous concepts subset and Cartesian product.

Also, insofar as Definition 11 makes the perceptive reader wonder if the
authors really mean “codomain of f”, further context indicates they mostly do.

Again equality is most revealing. Apart from three exceptions mentioned,
all transition to proof texts using Definition 11 overlook Theorem 1 and define
equality anew. Roberts [49, p. 223] avoids conflict with Definition 10 by using
the statement of Theorem 1. Others, e.g., Bloch [8, p. 136], Garnier [19, p. 224],
Hammack [27, p. 198] extend this statement with cod f = cod g, indirectly
contradicting Definition 10. Interestingly, Smith [55, p. 189] explicitly states
that function equality does not require equal codomains!

(iv) Unsoundness also results from improper use of “onto” as an adjective,
as in Bloch [8, p. 155], Daepp [14, p. 163][15, p. 157], Gries [24, 282], Hammack
[27, p. 199], Krantz [34, p. 22], Roberts [49, p. 231] and Velleman [62, p. 236].

Definition 12 (Onto). A function f : X → Y is onto (surjective) iff Rf = Y .

With Definition 12, the same function can be both onto and not onto depending
on whether or not the set Y appearing in f : X → Y happens to be Rf .

(v) All texts adding Definition 11 require for g ◦ f that Dg = Cf and for the
inverse f− that Rf = Cf . This is impractical for applications, e.g., in calculus.

3.4. Design considerations, variant concepts, and evaluation

Many textbooks and countless blogs use the term codomain, typically in the
unsound way described. Even though most authors using Definition 10/11 seem
to sense the problems with squeezing in codomains, they somehow feel obliged to
try. Of course, they needn’t! Clearly, a proper account for codomain is overdue.

In view of the earlier analysis, the term codomain is best (i) simply discarded,
or (ii) used as the symmetric counterpart of domain, thus far called range, or
(iii) recognized as an attribute of a type likeX → Y orX→/ Y , not of a function.

A quite different approach is defining a variant of the function concept such
that the set Y in f : X → Y is truly part of f , safely called the codomain of f .

For instance, Bourbaki initially defines a function [9, p. 76] as a triple
(F,A,B) where F is a functional relation with domain A and range included
in B. Such a triple is subsequently called an application from A into B [9, p. 76],
which avoids confusion with using function for a functional relation [9, p. 77].
The term codomain is not mentioned in [9] — so let’s not blame Bourbaki!
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The engineering question is: what purpose might such a variant serve?
For the sake of generality, this issue is best disassociated from the set of

pairs view, whose predominance in the discussion thus far just reflects random
literature samples from diverse areas of mathematics. Many authors, including
Lang [37, p. 38], Lee [39, p. 48], Royden [50, p. 8] and Spivey [56, p. 29], note
that a set of pairs is really a representation of a function, called its graph. Hence
let’s broaden the representational Definition 6 to a conceptual one, inspired by
the Goursat/Courant style, but generalized to arbitrary domains and properly
distinguishing f from f(x). For instance, the ISO standard [30, p. 15] just says
that a function f assigns to each x in its domain a unique value f(x). Here
“assigns” can be made precise by an assertion of the form A(x, f(x)), called
relation by Bourbaki [9, p. 47], but not to be confused with a set of pairs.

Equality is pivotal for mathematical objects. Distinguishing functions on the
basis of possible assignments outside their domain would be an useless compli-
cation, hence these values are best declared irrelevant for a function.

(A) The minimalist, “no frills” design reflecting this view is the following.

Definition 13 (The function concept: minimalist design).
i. A function f is an object fully specified by (a) a set Df , called the domain

of f , and (b) for each x in Df a unique value, written f(x) or f x.
ii. The stipulation “fully specified” means that f = g if (a) Df = Dg and

(b) f(x) = g(x) for all x in Df . (Note: “only if” by Leibniz’s principle [24])
iii. A function f from X to Y is a function such that (a) Df = X and

(b) f(x) ∈ Y for all x in X. Such a function is introduced by writing f : X → Y .

Definition 13.iii simply follows the ISO standard: Df = X and Rf ⊆ Y , where
Rf = {f(x) |x : Df}. Types of the form X → Y are partial specifications. An
illustration is defining sqrt : R≥0 → R≥0 with (sqrtx)2 = x. Composition is
unrestricted: D (g ◦ f) = {x : Df | f(x) ∈ Dg} and (g ◦ f)x = g(f x) as usual.

Composition also supports specification by proxy: specifying g : Y → Z
via f : X _ Y (_ indicating onto) and h : X → Z by g(f x) = hx. Well-
definedness (functionality) of g requires h(x) = h(x′) whenever f(x) = f(x′).

An example is defining the inverse: let g := f−, Y := R f , Z := X and
h := idX . Well-definedness of f− amounts to f being 1-1. In the general scheme,
if f is 1-1, then g is well-defined and g◦f = h is equivalent to g = h◦f−. Pattern
matching is an instance: compare g(cons(a, x)) = h(a, x) and g s = h(cons−s).

The set of pairs view will remain a useful analogy, e.g., in defining f− as the
object represented by the inverse relation, which is functional iff f is 1-1.

(B) A typical non-minimalist design variant of Definition 13 would add:
i.(c) a set Cf , called the codomain of f ; ii.(c) Cf = Cg; iii.(c) Cf = Y .

Logically, composition and inverses could still be defined without restriction
(exercise). However, authors using codomains do restrict g ◦ f by Dg = Cf and
define inverses for 1-1 functions only if the latter are “onto” [their codomain].

So the issue boils down to: what are the costs and the merits of codomains?
Shuard [54] published perhaps the only paper evaluating the function-with-

codomain variant. Her single (!) argument in favor is using onto as an adjective.
Yet, the ability to say that “f is onto Y but not onto Z” is more selective.
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Shuard’s argument against is more solid: simplicity. She states: “Flett’s
definition wins hands down as simplicity in analysis is concerned”. Her next
statement, “In algebra, however, it is more convenient to start by mentioning
the codomain of a function” (resembling Myth #0), is left unsubstantiated.
Excellent algebra texts such as Herstein [29] do fine with the standard variant.

In Shuard’s paper and all other sources consulted, suggestions that attaching
a codomain might be convenient turns out to be fallacious, typically overlooking
that the standard view regarding f : X → Y already implies Rf ⊆ Y . This
view covers all sensible purposes of f : X → Y , “mentioning” Y included,
and without making Y a function attribute. Only for topology further study is
needed to determine whether viewing Y as an attribute of a function f : X → Y
is just some tradition based on similar oversights or has genuine advantages.

Still, what’s the harm in a function-with-codomain, beside complexity?
From a conceptual and practical viewpoint, burdening a function with a

codomain affects all other definitions, complicates equality and impoverishes
the function algebra for inverses, composition, merge, override and so on [42].
Shuard [54, p. 10] notes that the only analysis book that she knows to use
codomains [57] gets into trouble by defining the inverse of a 1-1 function f to
have domain Rf as usual and ignoring that codomain users require surjectivity.
She adds that “the distinction between f : A → R and f1 : A → f(A) is so
tedious that it is clearly better forgotten at this stage”. One might say: “clearly
better avoided from the start”, matching Smith’s view on equality [55, p. 189].

Aside: programming versus mathematics Types and signatures of “func-
tions” in programming [19, Section 3.8] and some proof assistants typically are
unique attributes by design. They are easier to implement than general sym-
bolic computation of, say, D (g ◦ f), but remain rather crude approximations
of types as partial specifications following the ISO standard. Indeed, the gen-
erality provided free of charge by the minimalist/standard view (illustrated for
g ◦ f and f−) is common fare in mainstream mathematics, by which we mean:
the mathematics routinely applied by the large majority of users, ranging from
mathematicians active in analysis/calculus, linear algebra, discrete math etc.
to engineers active in signals and systems. Such users would be justified in dis-
missing as impractical any definition that infringes on these “acquired rights”.

Similar considerations in the context of specification languages are found
in [35]. In the specification language TLA+ [36, p. 48], the notation [X → Y ]
has the meaning of X → Y as defined by the ISO standard.

Not surprisingly, nearly all calculus/analysis texts avoid codomains and sim-
ply proceed from Definition 6 or 13 or equivalent, the most complete picture
being presented by Flett [17, pp. 4–6]. In this manner, calculus/analysis books
succeed in giving a proper account in about one page, without being too terse,
and often before page 10. Functions are too important to postpone their intro-
duction beyond page 100, only to get them bogged down in unsoundness.

Conclusion For mainstream mathematics, attaching a codomain onto a
function has no verified merits but increases complexity and reduces generality.
Hence any definition that accepts such drawbacks entails a heavy obligation of
justifying the design, even if it concerns only some niche area.
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4. Engineering mathematical abstraction

Abstraction is a very useful intellectual tool in science, especially engineering. It
allows reasoning about the essentials, without sidetracking by elements causing
unnecessary complications. Of course, unnecessary is the operative word.

Being a tool, abstraction requires engineering. Criteria include not just
soundness, but also effectiveness in reasoning. Parnas [45] deplored 25 years
ago that “Those working in theoretical computing science lack an appreciation
for the simplicity and elegance of mature mathematics”. Little has changed. The
context in [45] makes clear that mature refers to mainstream mathematics as
characterized earlier. Symbolic reasoning has been kept from reaching maturity
by decades of stifling in favor of “narrative” prose [62], but that is another story.

Engineering mathematical abstraction involves balance. Abstraction easily
degenerates into obfuscation, making it ineffective as a tool for general use.

5. Illustration A: functions and the Halmos principle

The function concept is the result of a long evolution. Its “modern” formulation
as in Definition 6 is a one-liner in the most positive sense: a degree of simplicity
and clarity that is unlikely to be surpassed. This is typical for a final design.
Arguably, non-equivalent variants need a different name to avoid confusion1.

Yet even when using the set-of-pairs definition as a reference basis, in practice
one rarely thinks about functions as sets, and set theory serves only as a handy
framework, as noted by Halmos [26, p. 31], and illustrated by Definition 13.

Reducing concepts to a set-theoretic representation is conceptually chafing
and causes “freak properties” or “accidental facts” [26, pp. 25, 45]. Two exam-
ples: defining a function as a set (of pairs) yields (x, y) ∈ f , and defining an
ordered pair (a, b) as {{a}, {a, b}} yields {a, b} ∈ (a, b). Halmos considers such
effects “a small price to pay for conceptual economy” and offers two solutions.

One solution is axiomatization. Bourbaki [9, p. 68] characterizes pairs by the
equality axiom (x, y) = (x′, y′) ⇒ x = x′ ∧ y = y′. Definition 13 characterizes
functions by the equality axiom f = g ⇐ Df = Dg ∧ ∀x : Df . f(x) = g(x). In
both examples, the converse is trivial by Leibniz’s principle [24, p. 60].

The other solution consists in using overly concrete definitions only to derive
theorems that capture the essence of a concept, and then declaring “the defi-
nition has served its purpose by now and will never be used again” [26, p. 25].
Although many others tacitly follow this approach as well, we name it the Hal-
mos principle after the author who made it explicit as a design strategy.

According to Halmos, “The mathematician’s choice is between having to
remember a few more axioms and forgetting a few accidental facts; the choice is
pretty clearly a matter of taste”. Still, expressiveness and support for reasoning
are more reliable criteria. The choice also depends on each specific concept.

1Halmos [25] is quite amused by Bourbaki’s habit of abandoning their “innovations” in
favor of common terminology. Still, Bourbaki’s term application for the “triples” variant [9,
p. 76] at least avoids confusion with using function for the common variant [9, p. 77].
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For instance, distinguishing functions from sets as in Definition 13 helps
disambiguating common expressions such as fn and Sn. This is secondary.

For reasoning, the “set of pairs” view remains a powerful simplifying analogy,
as shown for composition and inverses. It is linked to Definition 13 as the graph
of a function: Gf = {(x, f x) |x : Df}. Clearly, f = g ⇒ Gf = Gg by Leibniz’s
principle. By Definition 13.ii, Gf = Gg ⇒ f = g. Hence G is invertible and can
be omitted (left implicit) when using the “set of pairs” view as an analogy.

6. Illustration B: Preparing category theory for engineering

6.1. Categories and the Arnold Principle

The practical potential of category theory has been demonstrated in [7]. This
book, as well as [2], are among the best introductions to the subject.

Still, an engineer would ask: why use category theory? A non-evasive answer
is: to support the algebraic elegance and practical benefits of the point-free
style, which has proven useful throughout engineering. For instance, in systems
modeling, this style has helped making common notations more general [11] and
free of errors that “undermine the students’ confidence in mathematics” [39].

Why category theory? Because it is ready-made and seems plug-and-play.
Yet, the literature based on this view reveals grave mismatches. Category

theory is about arrows. In the strict (i.e., textbook) variant, each arrow a has a
unique source srca and target tgt a. Composition b ◦ a requires src b = tgt a. In
this setup, a function f corresponds to many arrows (one for each triple f,A,B),
as noted by Bird [7, p. 26] and Pierce [46, p. 2]. The target attribute inherits
all burdens of the codomain. Hence, in strict category theory, arrows do not fit
relations and functions but correspondences and applications instead.

Pierce [46, p. 3] adds that arrows fit functions in their “ordinary mathemati-
cal meaning” only in variants of category theory where one cannot always tell for
an arrow what its source and target are. But uniqueness of source and target is
precisely why users of strict category theory feel forced to restrict composition!

Such design decisions bring to mind the following familiar parable.
The Suit A man buys a new suit. When he finds it too tight at some places

and too loose at others, the tailor shows him how twisting his arms, turning his
feet and bending backwards brings relief. When the customer proudly hobbles
along in his new suit, a passerby observes “How sad, this man must have had
a terrible accident”. Says his companion, “Yes, but he is lucky to have found a
true master tailor who can make such a perfectly fitting suit”.

The moral is that well-designed axiomatization is fitted to existing con-
cepts, not the other way around like a straitjacket. Typical examplary designs
are group, ring and field theory [29]: they capture commonalities of existing
concepts of quite different nature, without distorting them to fit the axioms.

Arnold [3], one of the greatest 20th century mathematicians, denounces im-
proper use of abstraction by “the criminal algebraists-axiomatisators”. Despite
this hyperbole, one can hardly deny his observation that often “the so-called
‘axioms’ are in fact just (obvious) properties [of the concepts of interest]”. This
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suggests an apt guideline, here called the Arnold Principle: unless an axiomati-
zation is applied regularly to objects more abstract than those of primary inter-
est, it is obfuscation. Arnold mentions Whitney’s theorem to warn that more
abstract objects may not always exist. Even if they do exist, proper axiomati-
zation unifies them with the objects of primary interest, but never constrains
the latter, which would amount to upside-down design. Inability to adequately
capture functions, “the single most important and universal notion that runs
through all of mathematics” [29], inhibits the practicality of category theory.

Rather than going for extremes such as dismissing either category theory or
its flaws, we show how categorical concepts can suit mainstream mathematics.

6.2. Reaping the benefits of category theory without the constraints
Flawed axiomatization by upside-down design is most effectively avoided by
starting from the objects of interest and deriving theorems reflecting abstract
properties [3, 10]. When appropriate (by Arnold’s principle), such theorems
can be recast as axioms afterwards. The proofs then become evidence that the
objects of interest do satisfy these axioms. Thus, no effort is wasted.

Proper design avoids misleading terminology by using relation and function
only in their ordinary mathematical meaning. For the concepts captured by
strict category theory, safe terms are correspondence and application (or alter-
natives). Abstractions of correspondences are often called allegories [7, 18].

The relevant benefits of category theory are point-free expression and reason-
ing. Still, good design should not cause a rift between point-free and point-wise
styles, since practical applicability requires safe and smooth mixing of styles.

One approach along these design guidelines is concrete category theory, which
starts from the primary objects of interest (relations and functions as usual, with
the standard view on f : X → Y ), and hence is “ordinary mathematics”.

(i) We assume a relation R is defined conceptually in the style of Defini-
tion 13 (exercise), with the set of pairs view as an analogy: y R x ≡ (x, y) ∈ GR
and R = S ≡ GR = GS. The domain DR and the range RR, defined via Defi-
nition 2, are proper attributes of R. Bringing them into the picture often yields
sharper results (= instead of ⊆). Composition S ◦R (or R ;S) and converse R⌣

follow Definition 4. The identity relation idA on A with idA = {(a, a) | a : A}.
Predicate calculus yields the usual collection point-free formulas.

(ii) A relation R is functional iff R◦R⌣ = idRR (equivalently, R◦R⌣ ⊆ idY

for R : X↔→Y ). Such a relation is called a function, typically written f , g, . . ..
Symbolism can be augmented by diagrams of arrows labeled by relation or

function expressions, e.g.,
f

−→
g

−→ =
f ;g
−→. Optionally, types can be specified by

labels at endpoints of arrows and shaping the latter like the type arrows ↔→, →
and →/ , more conveniently drawn as ...≻. Here are some illustrations:

X Voo
R;S

// //

Y U

X

?? ??

R

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧
Y U

V

__

S

�� ��❄
❄❄

❄❄
❄❄

❄❄
❄❄

V Xoo
g◦f

U Y

V

g

��

U Y

X

__

f

X V
f ;g

//

Y U

X

??

f

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧
Y U

V

g

��❄
❄❄

❄❄
❄❄

❄❄
❄❄
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Recall that types are partial specifications for, not attributes of, the arrows.
Normally, extra structure naturally merges endpoint labels at a common vertex.
Then diagrams look exactly as in strict category theory, but without constraints.
In the following examples, it will become evident that attaching a target or
codomain to a function or relation would only provide negative added value.

6.3. Some illustrations of concrete category theory — selected topics

Convention In some contexts, family is a graphic synonym for function [9, p. 77]
[26, p. 34]. An I-family is a function with domain I, called index set.

Product. The first topic has significant fundamental and practical interest.

Definition 14 (Product). The Cartesian product ΠT of a family T of sets
is the set of functions f such that Df = D T and f(x) ∈ T (x) for all x in Df .

Products support dependent types and tolerances on functions [11] that can be
tight, e.g., if T is a family of singletons, declaring f : ΠT fully specifies f . Hence
types as partial specifications can be arbitrarily fine, and ΠT ⊆ D T → ∪T .

Another example is T := (X,Y ). An n-tuple is a function whose domain
consists of the first n natural numbers [26, p. 45][34, p. 75][50, p. 9]. For an
n-tuple T of sets, one can use infix notation, e.g., Π(X,Y ) = X ×Y . This view
also resolves the “terminological friction” discussed by Halmos [26, p. 36].

To obtain the usual point-free characterization of ΠT , we let I := D T and
define an I-family π of projection functions by πi ∈ ΠT → Ti and πit = ti.
Note: an illustrative equivalent declaration is π : Πi:I(ΠT → Ti).

Theorem 2. Let T be an I-family of sets, all nonempty (to avoid ΠT = ∅).
(i) For any set S and I-family f of functions with fi ∈ S → Ti, there exists a
unique g : S → ΠT satisfying fi = πi ◦ g. Specifically, g = fT (transpose).
(ii) Let γ be an I-family of functions with γi ∈ C → Ti and the property that,
for any set S and I-family f of functions with fi ∈ S → Ti, there exists a unique
h : S → C satisfying fi = γi ◦ h. Then there is a bijection between C and ΠT .
Proof (i) Solving fi = πi ◦ g for g: for any i in I and s in S, fis = (πi ◦ g) s =
πi(g s) = (g s) i. By definition, (fTs)i = fis, so g = fT. Example: let f := π,
so πi = πi ◦ πT. Note that (πTt)i = πit = ti = (idΠT t)i. In fact, πT = idΠT .
(ii) Letting f := γ in (i), γi = πi ◦ γT. Letting f := π in (ii), πi = γi ◦ h.
Hence γi = γi ◦ h ◦ γT and πi = πi ◦ γT ◦ h. By uniqueness, h ◦ γT = idC and
γT ◦ h = idΠT . So γT is a bijection from C to ΠT and h is its inverse.

This compact yet detailed proof was made possible by the generic operator T

for transposition [11], defined by (fTs)i = fis, as recalled inside the proof.
Dependencies may be easier to trace by writing gf for g in part (i) and hγ,f for
h in part (ii) of the statement. Thus, f := π makes hγ,π the inverse of γT.

Part (i) is depicted in Figure 1. Dashed lines reflect multiple instances, one
for each i in I, forming a 3D cone. The proof of (ii) shows that every I-family γ
with the stated property is isomorphic to π, hence “unique up to isomorphism”.
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⑧
⑧
⑧

Figure 1: Concrete Categorical Cartesian Product and Disjoint Union

This theorem faithfully reflects the definition of products in category theory
[46, p. 19], while avoiding “unacceptable but generally accepted” notations like
(Ti)i∈I for just T and, worse, 〈fi〉i∈I for just 〈f〉, which was proven to be fT.

Aside Clearly, γ : Πi:I(C → Ti) depends on C and T . Similarly, π depends
on T , which is why some authors write πT . One can also see the πi as operators
(Lamport [36, p. 69]) which, unlike functions, do not have a domain. A third
view is offered by theories allowing for the set (or class) of all pairs, such as
the algebra of relations in Tarski [61] or set theory with a universal set U in
Holmes, where axioms [28, p. 30] assert the existence of the equality relation
{(x, x) |x : U} and projection relations such as {((x, y), x) |x : U ; y : U}.

Sum. This topic illustrates how objects with quite different point-wise defini-
tions resemble each other in point-free form, more specifically as duals.

Definition 15 (Disjoint union). The disjoint union ΣT of a family T of sets
is the set of (ordered) pairs such that (i, x) ∈ ΣT iff i ∈ D T and x ∈ Ti.

This concept is used to express choice in formal language semantics [42, p. 74].
To obtain the usual point-free characterization of ΣT , we let I := D T and

define an I-family λ of labeling functions by λi ∈ Ti → ΣT and λix = (i, x).

Theorem 3. Let T be an I-family of sets.
(i) For any set S and I-family f of functions with fi ∈ Ti → S, there exists a
unique g : ΣT → S satisfying fi = g ◦ λi. Specifically, g = f C(uncurry).
(ii) Let δ be an I-family of functions with δi ∈ Ti → D and the property that,
for any set S and I-family f of functions with fi ∈ Ti → S, there exists a unique
h : D → S satisfying fi = h ◦ δi. Then there is a bijection between D and ΣT .
Proof (i) Solving fi = g ◦ λi for g: for any i in I and s in S, fis = (g ◦ λi) s =
g(λis) = g(i, s). By definition, f C(i, s) = fis, so g = f C. Example: let f := λ, so
λi = λ

C◦ λi. Note that λ C(i, x) = λix = (i, x) = idΣT (i, x). In fact, λ C= idΣT .
(ii) Letting f := δ in (i), δi = δ

C◦ λi. Letting f := λ in (ii), λi = h ◦ δi.
Hence δi = δ

C◦ h ◦ δi and λi = h ◦ δ C◦ λi. By uniqueness, δ C◦ h = idD and
h ◦ δ C= idΣT . So δ

Cis a bijection from D to ΣT and h is its inverse.

Relations, point-free style. Relational properties of the Cartesian product can
be similarly expressed and explored in point-free style. For instance, given an
I-family R of relations Ri from S to Ti, let us aim for a relation G from S to
ΠT such that πi ◦ G = Ri. This requires π

⌣

i ◦ πi ◦ G = π
⌣

i ◦ Ri and, since
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idΠT ⊆ π
⌣

i ◦πi, also G ⊆ π
⌣

i ◦Ri (for all i in I), hence G ⊆ ∩ i : I .π⌣

i ◦Ri. Let
us define 〈R〉 as ∩ i : I .π⌣

i ◦Ri, so t〈R〉s ≡ I = ∅ ∨ (t ∈ ΠT ∧ ∀ i : I . tiRi s).
In general, this only yields πi ◦ 〈R〉 ⊆ Ri, as in category theory. Still, if all

Ri share a common domain, a sharper result is πi ◦ 〈R〉 = Ri, the design goal.
Even sharper is the pointwise form y (πi ◦ 〈R〉) s ≡ y Ri s ∧ s ∈ ∩ i : I .DRi.

Assuming I 6= ∅, let T and T ′ be I-families of sets and R an I-family of
relations Ri from Ti to T ′

i . Define ||R from ΠT to ΠT ′ by ||R = 〈i : I . Ri ◦πi〉,
generalizing [7, p. 114]. Now t′(||R)t ≡ t′ ∈ ΠT ′ ∧ t ∈ ΠT ∧ ∀ i : I . t′i Ri ti.

Functors. A functor in category theory maps objects to objects and arrows to
arrows. Often one uses the same symbol for both maps, e.g., writing× for || , but
that is not necessary [7, p. 30]. Although notational economy is commendable,
in “working mathematics” one prefers combining various concepts as convenient,
yet still avoid notational confusion. Hence, if one views relations as sets, the
need to distinguish between R ||S and R × S is evident. The operator || is
called shuffle in some functional languages and parallel by Meyer [42, p. 36].

Tabulations. Tabulations are helpful in point-free reasoning [7]. Let R : X↔→Y .
Now f : R → X with f(x, y) = x and g : R → Y with g(x, y) = y satisfy both
R = g ◦ f⌣ and (f⌣ ◦ f) ∩ (g⌣ ◦ g) = idR.

In category theory, a tabulation of a correspondence arrow r from X to Y is
a pair of application arrows f from Z to X and g from Z to Y jointly satisfying
r = g ◦ f⌣ and (f⌣ ◦ f) ∩ (g⌣ ◦ g) = idZ . Similar concepts in a more general
setting are discussed in Tarski [61, p. 96].

Currying. In its most basic form, Currying transforms a function f : X×Y → Z
into a function fC of type X → (Y → Z) such that fCx y = f(x, y). For a point-
free characterization [7, p. 72][46, p. 33], one uses an evaluation or application
function αY,Z : (Y → Z)× Y → Z defined by αY,Z(g, y) = g(y). One can verify
that f = αY,Z ◦ (fC || idY ); in fact, h = fC ≡ αY,Z ◦ (h || idY ) = f (uniqueness).

X × Y Zf //

(Y → Z)× Y

fC || idY

��

αY,Z

⑧⑧⑧⑧

??⑧⑧⑧⑧

The categorical view is that the object X → Y (often written Y X) is fully
characterized by the existence of an arrow αY,Z : (Y → Z)× Y → Z such that
there is a unique arrow fC satisfying f = αY,Z ◦ (fC || idY ).

In the wider setting of common mathematics, fC is defined for any function f
whose domain is a set R of pairs as follows: DfC = DR and, for any x in DfC,
fCx ∈ {y : RR | (x, y) ∈ R} → Rf with fCx y = f(x, y). Example: if Df =
{(0, 5), (3, 1), (3, 2)} then DfC = {0, 3}, D (fC3) = {1, 2} and fC3 2 = f(3, 2).

Conversely, uncurrying F Cis defined for any family of functions F as follows:
F C∈ {(x, y) : DF ×∪ (D◦F ) | y ∈ D (F x)} → ∪ (R◦F ) with F C(x, y) = F xy.

Note that (fC) C= f , but (F C)C = F only if RF contains no empty function.
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7. Concluding remarks

The first part of this paper argued that mathematical definitions and notations
are the result of design and hence benefit from engineering principles.

This was illustrated for some very basic concepts that have fallen into disre-
pair, apparently due to habits that noted mathematicians consider “unaccept-
able” or evidence of “glaring perversity”. Indeed, only perversity explains the
neglect for so many impeccable accounts that have been around since decades.

Simple design guidelines go a long way. In particular, definitions require dili-
gent engineering. The discipline of always explicitly justifying design decisions
incites more thoughtfulness. Halmos [26] provides an unsurpassed example.

Judicious use of symbolism is another invaluable tool for sanity checking.
Defining concepts not just in prose but also by very simple formulas, as in
Suppes [60, p. 57, 86], arguably would have avoided the codomain blunder.

One empirical engineering principle that does not hold in mathematics is
that performance requires complexity. A “crystal radio” needs just one (passive)
semiconductor; a software-defined radio (SDR) performs better but uses billions
of transistors. For relations and functions, the standard variant is the simplest,
yet was found more versatile and general than variants with codomains. Clearly
a very onerous burden of justification rests on such variant definitions!

The second part focused on making category theory practical. Historically,
practical use was not a concern, so the need for re-engineering is no surprise.

Appreciating this fact took a scholar like José Oliveira, supported by his
background in electrical engineering. One of his recent papers [44] points out
how relation algebra requires adequate preparation to suit the intended purpose.

Whereas [44] is more advanced, we have shown how liberating category the-
ory from unjustified constraints (similar to codomains) extends its practical ap-
plicability while preserving its essential ideas, and how full compatibility with
“ordinary mathematics” makes the style of expression and reasoning accessible
to anyone with a high school background and a taste for algebraic elegance.

In this way, the basic ideas may become useful and appealing to a wider
scientific community rather than remain jargon for a small group of aficionados.

Acknowledgement. I like to thank Jeremy Gibbons and an anonymous reviewer
for many useful comments during the many revisions of this paper and their
exemplary patience in discussing critical issues.
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Descartes”, The American Mathematical Monthly 106, 3, pp. 260–263 (Mar. 1999)

[7] Richard Bird and Oege De Moor, Algebra of Programming. Prentice Hall (1997)

[8] Ethan Bloch, Proofs and Fundamentals. Springer (2011)
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Birkhäuser (2012)

[64] Eugene Wigner, “The unreasonable effectiveness of mathematics in the natural
sciences”, Communications on Pure and Applied Mathematics 13, 1, pp. 1–14 (Feb.
1960)

[65] Elias Zakon, Mathematical Analysis, Vol. I. Trillia (2004)

20


	1 Introduction: Mathematics and Engineering
	2 Case study A – Relations: two logically equivalent definitions
	2.1 Simple and safe formulations
	2.2 Entering murky waters: misconceptions, unsoundness and poor judgement

	3 Case study B – Functions
	3.1 Once again: simple and safe formulations
	3.2 Wearing the ice thin: convoluted formulations
	3.3 Falling through the ice: common yet unsound additions to Definition 10
	3.4 Design considerations, variant concepts, and evaluation

	4 Engineering mathematical abstraction
	5 Illustration A: functions and the Halmos principle
	6 Illustration B: Preparing category theory for engineering
	6.1 Categories and the Arnold Principle
	6.2 Reaping the benefits of category theory without the constraints
	6.3 Some illustrations of concrete category theory — selected topics

	7 Concluding remarks

