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Abstract

Graphs play an important role in many areas of Computer Science. For this reason, it
is very important to have the means to express and to reason about the properties that a
given graph may satisfy. In particular, our work is motivated by model-driven software
development and by graph data bases. With this aim, in this paper we present a visual
logic that allows us to describe graph properties, including navigational properties, i.e.,
properties about the paths in a graph. The logic is equipped with a deductive tableau
method that we have proved to be sound and complete.
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1. Introduction

Being able to state properties about graphs and to reason about them is important
in many areas of computer science where graphs play a relevant role. For instance, in
software and system modeling, where models are described using different graphical
notations, graph properties may be used to describe properties of the given models, and
reasoning tools may be used for model validation. Similarly, in the context of graph
databases, graph properties could be used to express integrity constraints or just to
express queries to the database. In that context, reasoning tools may allow us to check
these constraints or to validate the search engine to satisfy these queries.

Two kinds of approaches can be used to describe graph properties. The first one
is based on using some standard logic, after encoding some graph concepts into it.
For instance, Courcelle (e.g., [1]) studied a graph logic defined in terms of first-order
(or monadic second-order) logic, extended with a predicate node(n) for stating that
n is a node, and with a predicate edge(n,n′), for stating that there is an edge from
node n to n′. A similar logic, but with some important differences is presented in
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[2] by Cardelli, Gardner and Ghelli whose expressive power is shown to be between
first-order and monadic second-order logic. The second kind of approach is based
on defining a dedicated logic, where graph properties may be expressed in terms of
formulas that directly include graphs or graph concepts. The most important example
in this direction is the Logic of Nested Graph Conditions (LNGC), introduced by Habel
and Pennemann [3], which was proven to be equivalent to the first-order logic of graphs
of Courcelle.

There are two main advantages in working with a logic like LNGC. The first one
is efficiency. Pennemann [4] showed that a specialized prover for their logic outper-
formed some standard provers, like Darwin [5] or Vampire [6], when applied to graph
formulas using Courcelle’s logic. The second advantage is generality, in the sense that
LNGC, being formulated in terms of category theory, can be used for any category of
structures, as long as that category satisfies some general properties, i.e., LNGC can
be used for stating properties and reasoning about many classes of graphs. This is im-
portant because there are many kinds of graphical structures that can be of interest in
different areas of Computer Science. Conversely, using a standard logic, we need a
different encoding for each class of structures. Moreover, specific results for one class
may not be easy to transfer to another.

A main problem of LNGC is that it cannot be used to express navigational proper-
ties, i.e., path properties like “there is a path from node n to n′”, which are important in
many application areas, but are (monadic) second-order properties. In this sense, the
main aim of this paper is the presentation of an extension of LNGC that allows us to
state path properties and to reason about them.

This paper puts together, extends and complements previous work from the authors
on graph logics, most of it on LNGC (i.e., without path properties) or some fragments
of it. In particular, in [7] we presented the first version of our tableau method for rea-
soning in LNGC, showing its soundness and completeness, while in [8, 9] we presented
a method for generating models of LNGC formulas. It is worth pointing out that our
results show that our tool AutoGraph [9] can compete with respect to efficiency with a
general tool like Alloy, thereby computing stronger results in the sense that AutoGraph
generates minimally representable symbolic models (without a predefined scope as in
Alloy). In [10] we dealt with paths for the first time, but in a very restrictive setting:
we considered only Horn clause-like formulas over XML structures, i.e., trees. The
problem was considerably simpler than the one approached in the current paper. First,
because trees are simpler than graphs and, second, because we worked only with a
fragment of LNGC. Finally, [11, 12] can be considered extensions of this paper, even if
they have been published before. In particular, in [11] we described some preliminary
ideas of how our approach could be generalized to arbitrary categories of structures,
and in [12] we showed that that this new logic is an institution [13], providing means
for structuring and modularizing specifications over it [14]. In both cases, the work was
essentially semantical, working at the model level rather than at the deduction level.

The main contributions of this work are:

• The definition of GNL (Graph Navigational Logic), extending LNGC with path
expressions, but using a notion of satisfaction, which is not the standard one,
that considerably simplifies some technical constructions and, most importantly,
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allows us to avoid exponential branching in our tableau proofs, which we would
have if using the standard notion of satisfaction.

• The definition of a tableau method for reasoning in this logic, showing its sound-
ness and completeness. The method uses nested tableaux, as in [7], with new
tableau rules that are needed because of path expressions.

• As a by-product, we have that our new tableau method is also a sound and com-
plete proof method for LNGC (with respect to our notion of satisfaction).

The paper is organized as follows. In Sect. 2 we introduce graphs, patterns and
how they are related, and in Sect. 3 we introduce the syntax and semantics of GNL,
including some basic results that are needed in the rest of the paper. In Sect. 4 we
present our tableau reasoning method, and in Sect. 5 we show that the method is sound
and we present our completeness results. In particular, we show that our method is
complete for a class of graphs including infinite paths. In addition, we show that our
tableau rules, excluding path unfolding, are complete for the class of graphs when
formulas do not include path expressions. This can be seen as a reformulation of the
results presented in [7], where only monomorphisms were used in formulas and in the
satisfaction relation. In that new reformulation two additional tableau rules are needed
but, conversely, the completeness proof is simpler, because of the notion of satisfaction
used. In Sect. 6 we describe related work and in Sect. 7 we present some conclusions
and we discuss how GNL could be used in the areas of Model Driven Development
and as a logical foundation for graph databases. To enhance readability, the proofs of
some technical intermediate results are just sketched, but in Appendix A we include all
the missing details. To conclude, Appendix B shows a slightly more complex example
than the examples used in the main text of our tableau reasoning method.

2. Basic Concepts

In this section, we present the basic concepts required to introduce GNL. In the first
subsection we present a simple motivating example to provide some intuition on our
constructions. Then, in the second subsection, we provide formal definitions for the
main concepts underlying GNL and we show some of their properties.

2.1. An Example
Roughly, the idea of GNL (and of [3, 15]) is that basic properties state if a given

pattern is present in a graph. In our case, patterns are graphs including some special
edges (depicted as thick edges) that represent paths. Moreover, these paths are labelled
with languages1 over the set of edge labels. Then, when a pattern includes a path edge
between two nodes labelled with L, that path edge describes a set of paths, each of
them consisting of a sequence of edges, whose associated sequence of labels belongs
to L. For this reason, this kind of path specifications are called path expressions.

1In practice, we would label these paths with some kind of expressions that denote a language, like regular
expressions.
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Figure 1: A graph of connected airports Figure 2: Three connection patterns

For instance, in Fig. 1 we depict a graph in the category of labelled graphs, in-
cluding labels in nodes, that could be a fragment of a graph database, where nodes
represent airports, edges represent direct flights, and edge labels represent the name of
the company operating the flight.

Then, in Fig. 2, we depict three patterns for our airport network. The first one
represents a connection from BCN to LAX consisting of a non-empty sequence of IB
flights, followed by an AA flight, while the second one represents any connection (in
terms of the three companies considered) from BCN to LAX. Notice that a connection
labelled with {IB,AEA,AA}+ means that every flight may be operated by any of the
companies. The third pattern represents a direct IB flight from BCN to CDG followed
by a connection from CDG to LAX consisting of an IB flight and an AA flight.

Then, formulas or graph conditions in GNL are built over patterns (and pattern
morphisms) using quantifiers and the standard logical connectives. For instance, in
Fig. 3 we present in a semi-formal notation some requirements on the airport network
(in Sect. 3 we introduce the formal notation for graph conditions and Ex. 1 provides its
formalization).

Figure 3: Properties on airport networks

The first graph condition states that there should be a connection from BCN to
LAX consisting of an IB flight from BCN to CDG followed by a connection from
CDG to LAX, in terms of AA flights, or a connection from BCN to JFK using IB
flights followed by an AA flight from JFK to LAX. This condition may also represent
a query of a customer that wants to fly from BCN to LAX and is willing to make a
stopover either in CDG or in JFK such that, in the first case, the customer demands to
fly directly to CDG with the company IB, whereas, in the second case, the requirement
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is that the flight from JFK to LAX must be direct and operated by AA.
The second graph condition states that for every connection from an airport 1 to

an airport 2, there must exist a backward connection from 2 to 1. Notice that 1 and 2
are not real labels, but metalabels used to identify nodes in the first pattern with nodes
in the second pattern of the condition and the long arrow denotes a morphism (here
an inclusion). The third condition is similar to the second one but, in this case, all the
flights must be operated by IB. Finally, the fourth condition in Fig. 3 states that for
each connection from an airport 1 to an airport 3 with a first stopover at an airport 2 by
an IB flight, it must be possible to go back from 3 to 1 with a flight plan that also stops
at 2, but as the last stopover before directly flying back to 1 with IB.

The last three conditions could be integrity constraints for the database. However,
we may notice that our airport network in Fig. 1 does not satisfy the third requirement.
For instance, there is a connection from BCN to JFK operated by IB, but there is no
connection from JFK to BCN only operated by IB. The airport network in Fig. 1 neither
satisfies the fourth requirement. For instance, there is a direct IB flight from BCN to
CDG followed by a connection from CDG to LAX, but there is no connection from
LAX to BCN whose last stopover is CDG.

2.2. Graph Patterns and Pattern Morphisms

In this subsection, we present the notions of graph patterns and graph pattern mor-
phisms built over a category Graph of edge-labelled graphs, showing that they form
the category Pattern that inherits from Graph some algebraic properties required to
obtain the intended results.

Even if the aim of this work focuses on presenting a navigational logic for patterns
based on a class of directed edge-labelled graphs as those used in the examples in the
previous subsection, we believe that the results presented can be generalized to arbi-
trary classes of graphical structures, following ideas presented in [11]. Nevertheless,
in order to be as general as possible, we only assume that categories consist of graphs
equipped at least with a set of nodes and a set of directed labelled edges and, similarly,
morphisms include at least a node mapping and a set mapping between the given sets
of nodes and edges, respectively. This covers not only the category of labelled graphs,
but also the categories of directed graphs (we only need to assume that a directed graph
is a labelled graph where Σ consists of just one label) or of attributed graphs (in addi-
tion to directed labelled edges, we have attributes), but it does not cover the category
of hypergraphs, because hyperedges do not fit in this definition. In addition, we will
ask the categories of graphs to have an initial object (the empty graph) and colimits
that satisfy a given finitary property since it is needed in the completeness proof. The
following definition characterizes the categories Graph satisfying those requirements.

Definition 1 (Categories of Graphs). Consider a set of labels Σ. Let Graph be a cat-
egory of graphs satisfying the following requirements:

1. Every G ∈ Ob jects(Graph) is equipped (at least) with:

• a set of nodes NodeG,

• a set of edges EdgeG,
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• source and target functions sG :EdgeG→ NodeG and tG :EdgeG→ NodeG,
respectively, and

• an edge labelling function LabelG :EdgeG→ Σ.

Moreover, we say that G is finite if NodeG and EdgeG are finite.
2. Graph morphisms f : G1 → G2 in Graph consist (at least) of two functions fN :

NodeG1 → NodeG2 , fE :EdgeG1
→ EdgeG2

such that

• fN ◦ sG1 = sG2 ◦ fE , and fN ◦ tG1 = tG1 ◦ fE ,

• LabelG2 ◦ fE = LabelG1

3. Graph is cocomplete and has an initial object. Moreover, colimits satisfy the
following property called FinCol:
Let {Gi

ai→ Gi+1}i∈N be an infinite sequence of morphisms between finite graphs

and let {Gi
fi→G}i∈N in Graph be their colimit. For any i and any finite graph G′,

if there are two morphisms gi : Gi → G′ and g : G′ → G, satisfying g ◦ gi = fi,
then there is some j ≥ i and a morphism g′j : G′→ G j such that f j ◦g′j = g and
g′j ◦gi = ai j, where ai j denotes the morphism a j−1 ◦ · · · ◦ai.

Gi
ai //

fi

&&
gi

��

. . .
a j−1 // G j

a j //

f j

xx

. . .

G

G′

g

OO g′j

@@

Intuitively, the property FinCol introduced in the above definition, states that if G
can be seen as the union of a sequence of finite graphs, then if some other finite graph
G′ can be embedded in G then it should also be possible to embed G′ in some graph
in the sequence. Therefore, from now on, we will write Graph to denote any category
satisfying the requirements in Def. 1. In particular, this is the case of the specific
category of edge-labelled graphs, ELGraph, whose objects and morphisms are defined
exactly as required in Def. 1:

Definition 2 (The Category of Edge-Labelled Graphs). Given a set of labels Σ, an
edge-labelled graph G over Σ consists (just) of:

• a set of nodes NodeG,

• a set of edges EdgeG,

• source, target, and labelling functions sG :EdgeG→NodeG, tG :EdgeG→NodeG,
and LabelG :EdgeG→ Σ.

Edge-labelled graph morphisms f :G1→G2 consist of two functions fN :NodeG1→
NodeG2 , fE :EdgeG1

→ EdgeG2
such that

• fN ◦ sG1 = sG2 ◦ fE , and fN ◦ tG1 = tG1 ◦ fE ,
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• LabelG2 ◦ fE = LabelG1

Edge-labelled graphs and morphisms form a category ELGraph.

Proposition 1 ELGraph is cocomplete, has an initial object /0, and satisfies the prop-
erty FinCol.

PROOF SKETCH. (See Appendix A.1 for detailed proof) The empty graph is the initial
object in this category and the colimit construction is standard. Given a diagram D, the
colimit object is the disjoint union of all the graphs in D quotiented by the equivalence
induced by the morphisms in D.

Finally, to prove the property FinCol, we have to show that there is a G j such
that for every element (node or edge) x′ ∈ G′, there is a unique x j ∈ G j such that
f j(x j) = g(x′). Then, we just have to show that g′j : G′→ G j, defined g′j(x

′) = x j, for
each x′ ∈ G′, satisfies f j ◦g′j = g and g′j ◦gi = ai j.

It is important to notice that not all categories having the elements (nodes, edges,
etc.) required by Def. 1 may fail to satisfy the properties required in that definition.

In the following, we introduce the notions of path expression, pattern and pattern
morphism, in order to define the category of patterns but, first, we characterize the
properties that a class of languages must satisfy to properly label paths in patterns:

Definition 3 (Path Labelling Languages). Given a set of labels Σ, L(Σ) is a class of
path labelling languages over Σ, if it satisfies the following conditions:

1. If L ∈ L(Σ) then /0⊂ L⊆ Σ+.
2. If L1,L2∈L(Σ), then L1·L2∈L(Σ).
3. If L∈L(Σ) then L=S0∪(

⋃
x∈S1
{x·s| s∈Lx}) for some finite sets of labels S0,S1⊆

Σ, such that,

• {x}∈L(Σ) for every x∈S0, and

• Lx∈L(Σ) and {x}·Lx∈L(Σ) for every x∈S1.

The set dL = {{x}| x∈ S0}∪{{x}·Lx| x∈ S1}⊆L(Σ) is called the finite disjunctive
decomposition of L.

The first condition in the above definition states that a class of graph labelling lan-
guages should not include the empty language, nor any language including the empty
sequence. The reason is that this simplifies path unfolding. The second condition
states that the class is closed under concatenation. The reason is that concatenation is
needed for having path composition. Finally, the third condition is required to define
the unfolding of labelled paths (Def. 10). Having finite disjunctive decomposition of
labels means that every labelled path can be (successively) unfolded as a finite union
of two sets of paths: the first one consists of paths with just one edge labelled with
some symbol x ∈ S0, and the second one consists of paths starting with an edge la-
belled with some symbol x ∈ S1 followed by some path labelled with the language Lx

in L(Σ). For instance, the language L = {a,abbc,acc,c} can be (uniquely) decom-
posed as dL = {{a},{c},{a}·{bbc,cc}} with S0 = {a,c} and S1 = {a}. The idea, as
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we will see later, is that the labeled path •1
L⇒•2 can be unfolded to generate the finite

set of path expressions {•1
a→•2, •1

c→•2, •1
a→• {bbc,cc}

=⇒ •2}.
Notice that the sets S0 and S1 are not necessarily disjoint but the languages in dL

are all disjoint since S0 and S1 are sets and Lx 6= /0 for every x ∈ S1.
If Σ is finite, the class of languages included in Σ+ has disjunctive decompositions.

So has the class of languages defined by regular expressions that do not include the
empty string in their semantics, even if Σ is infinite. However, an arbitrary class of
languages including a language L⊆Σ∗ may not have finite disjunctive decompositions
if, for instance, the set S consisting of all symbols x such that there is a string in L
starting by x, is infinite.

Now, we can define our category of patterns Pattern over Graph:

Definition 4 (Graph Patterns and Path Expressions). Let L(Σ) be a class of path la-
belling languages over Σ. A graph pattern is a pair, P = (GP,⇒P), consisting of a
graph GP ∈Ob jects(Graph) equipped with a relation⇒P ⊆ NodeGP×L(Σ)×NodeGP

whose elements, 〈n,L,n′〉 are called path expressions. Moreover, we say that P is finite
if GP is finite.

Along the paper, we may also write, n L⇒P n′ (or just n L⇒ n′ if P is clear from the
context) to denote 〈n,L,n′〉 ∈ ⇒P. Moreover, from now on we will assume that there
is a fixed set of labels Σ and a fixed class of path labelling languages L(Σ).

Each path expression 〈n,L,n′〉 specifies a set of possible paths between the nodes
n and n′. Intuitively, a graph G contains a path specified by 〈n,L,n′〉, if there is a path
consisting of edges e1, . . . ,ek in G with labels x1, . . . ,xk, such that n is the source of e1,
the source of ei is the target of ei−1 for 1< i≤ k, n′ is the target of ek and the string
x1 · · ·xk is in L. In this sense, a pattern is the description of some requirements that are
satisfied by the graphs matching the pattern. In particular, a graph G matching a pattern
P must include some nodes, edges and paths matching the nodes, edges and paths in P.

To define precisely what it means that G matches P, we will first define the notion of
morphism between two patterns P1 and P2 (see Def. 6). Roughly, a pattern morphism
f : P1→P2 is a graph morphism, f : GP1→GP2 such that for every path expression
〈n,L1,n′〉 in P1 there must be some (derived) paths in P2 matching that path expression.
This means that the paths matching 〈n,L1,n′〉 in P1 may not actually be in⇒P2 but they
may be obtained composing paths in⇒P2 and edges in GP2 . In this sense, prior to the
definition of pattern morphism, we will define the notion of pattern closure, where the
closure, P̂, of P is the pattern having the same underlying graph as P, GP, but including
the path expressions of all the derived paths in P.

At this point we may notice that any graph G can be identified with the pattern
(G, /0), with the empty set of path expressions (see Remark 1). So a morphism from P
to (G, /0) can be considered a morphism from P to G or, in other words, a morphism
matching P to G. In particular, this morphism will map nodes and edges in GP to nodes
and edges in G, such that for every path expression 〈n,L,n′〉 in P there is some derived
paths in G matching it.

Definition 5 (Edge Relation, Closed Patterns). Given a graph G, its edge relation
→G⊆NodeG×L(Σ)×NodeG, is defined as follows: 〈n,{x},n′〉 ∈ →G if there is an
edge e∈EdgeG such that sG(e) = n, tG(e) = n′ and LabelG(e) = x.
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Then, a pattern P = (GP,⇒P) is closed if the following conditions are satisfied:

1. →GP⊆⇒P

2. If 〈n1,L1,n2〉,〈n2,L2,n3〉 ∈⇒P, then 〈n1,L1·L2,n3〉 ∈ ⇒P

The closure of any pattern P, denoted P̂, is the least closed pattern such that GP = GP̂
and⇒P⊆⇒P̂.

Notice that, if P is closed,⇒P includes the specification of every finite path in GP.

Definition 6 (Morphisms of Graph Patterns). A pattern morphism f : P1→P2 is a
graph morphism f : GP1→GP2 such that, for each 〈n,L1,n′〉 ∈ ⇒P1 , there is a path
expression 〈 fN(n),L2, fN(n′)〉∈ ⇒P̂2

, such that /0⊂ L2⊆L1.

Example and Notation. In order to avoid the use of too many figures, we will write
many examples as text. Nodes will be denoted by bullets, •, that may be subindexed
by the name of the node like •BCN , or by an identifier like a number, e.g., •1. Edges
will be denoted by simple arrows, e.g. •BCN

IB→•CDG denotes that there is an edge, with
label IB from node BCN to node CDG. Path expressions are denoted by labelled dou-

ble arrows, like •BCN
IB+

⇒•CDG. Graphs and patterns are surrounded by square brackets.

For instance, [•1
a→•2

b+⇐•3] denotes a pattern with three nodes, one edge labelled a,
and one path expression labelled by the language denoted by b+. Finally, morphisms
are denoted by long arrows. Moreover, unless there is any ambiguity, we assume that
morphisms map nodes to nodes with the same identifier, and edges to edges with the

same label. For example, [•1
a→•2

b+⇐•3]−→ [•1
a→•2

b←•4
b←•3] denotes the morphism

mapping nodes 1, 2, and 3 and the edge labelled a in the first pattern into the corre-
sponding nodes and edge. Moreover, we know that this is a morphism, because in the
closure of the second pattern, which is actually a graph, there is a path, consisting of
the composition of the edges going from 3 to 4 and from 4 to 2, whose label is the set
{bb}, which is included in the language defined by b+.

Proposition 2 (Category of Graph Patterns) Patterns and pattern morphisms form
the category Pattern. Moreover, if Graph has initial objects, is cocomplete and satis-
fies the property FinCol, then so does Pattern.

PROOF SKETCH. (See Appendix A.2 for the detailed proof) As in the case of graphs,
the empty pattern is the initial object in Pattern. Then, if D is a diagram in Pattern

and C = { fP :GP→H}P∈D is the colimit of the corresponding diagram in Graph, then
we just have to prove that CPattern = { fP :P→Q} fP∈C is the colimit of D in Pattern,
where Q = (H,⇒Q) and:

⇒Q = {〈 fP(n),L, fP(n′)〉 | fP ∈C and 〈n,L,n′〉 ∈ ⇒P}

Finally, the property FinCol is a consequence of how colimits are constructed in Pattern
and of the fact that Graph satisfies the property.
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Remark 1 (Graphs and Patterns)

1. As a consequence of the above definitions, we have that every pattern P is iso-
morphic to its closure P̂ in Pattern. The reason is that any two patterns denot-
ing the same graph with the same (derived) paths will be isomorphic.

2. Since most constructions used are defined up to isomorphism, we will not distin-
guish between isomorphic objects in the main algebraic constructions. Techni-
cally, this means that we consider that patterns are closed whenever it is conve-
nient.

3. Technically, a graph G is not a pattern, but the category Graph can be rep-
resented as the full subcategory of Pattern whose objects P are of the form
(G, /0), where G ∈ Graph.

4. Even if it is an abuse of notation, given a graph G and a pattern P, we will write
f :P→ G to denote that there is a pattern morphism f :P→ (G, /0).

3. Graph Properties Expressed in GNL

In Section 2.1 we presented some examples to provide some intuition on Graph
Navigational Logic (GNL). Now, we introduce it formally, studying some of its prop-
erties. More precisely, in the first subsection we define its syntax and semantics, adapt-
ing the nested notation defined in [3], discussing some alternative definitions, and in-
troducing some properties of the logic. Then, in subsection 3.2, we present some con-
structions and results that are used in connection with our tableau method studied in
Sections 4 and 5.

3.1. Graph Properties as Nested Conditions

To understand Habel and Pennemann’s nested notation [3], we have to take into
account the following basic ideas:

• In general, nested conditions do not state properties of graphs, but of morphisms
from a given pattern P to a graph. More precisely, conditions are defined over
a given context P and their models are morphisms h : P→ G. Intuitively, this
means that a condition over P does not state a property of a graph G but of
possible extensions of a given morphism from P to G.

For example, given the context P = [•1
x+⇒•2], then the morphism f : P→ G

matching nodes 1 and 2 to nodes 1′ and 2′ in G, satisfies the condition ∃([•1
x+⇒

•2] −→ [•1
x→•3

x→•2],true) if there exists a node 3′ in G such that 1′ is
connected to 3′ by an x-labelled edge and 3′ is connected to 2′ by another x-
labelled edge.

• Conditions over the empty context can be considered to state conditions over
graphs.
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• Let us suppose that in the previous example, in addition, we want to state that
this node 3′ does not have a loop, then we would state the condition

∃([•1
x+⇒•2] −→ [•1

x→•3
x→•2],¬c)

where c would be a condition over the context [•1
x→•3

x→•2] stating that there
exists a loop on node 3. That is, we use nesting to state properties of the previous
extension.

Then, the syntax and semantics of nested conditions are defined as follows:

Definition 7 (Conditions over Patterns, Nesting Level, Context, Satisfaction). A con-
dition over a finite pattern P is defined inductively as follows:

• true is a condition over P. We say that true has nesting level 0.

• For every morphism a : P→ Q and condition cQ over a finite pattern Q with
nesting level n≥ 0, ∃(a,cQ) is a condition over P with nesting level n+1.

• If cP and c′P are conditions over P with nesting level n and n′, respectively, then
¬cP is a condition over P with nesting level n and cP ∧ c′P is a condition over P
with nesting level max(n,n′).

• As usual, false is an abbreviation for ¬true, cP ∨ c′P is an abbreviation for
¬(¬cP∧¬c′P), and ∀(a,cQ) is an abbreviation for ¬∃(a,¬cQ).

Given a graph G (or, in general, any pattern2 G), we inductively define when a
morphism f :P→ G satisfies a condition cP over P, denoted f |= cP:

• f |= true.

• f |= ∃(a,cQ) if there exists f ′ :Q→ G such that f ′ ◦a = f and f ′ |= cQ.

• f |= ¬cP if f 6|= cP.

P a //

f ��

Q � cQ

f ′|=cQ||
G

• f |= cP∧ c′P if f |= cP and f |= c′P.

If cP is a condition over P, we also say that P is the context of cP.

2In Sections 5.2 and 5.3 , we will work with a special class of patterns as models of GNL.
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Besides path expressions, there are some variations in the definitions of graph con-
dition and satisfaction in the literature. In some approaches (e.g. [7]), morphisms in
conditions are assumed to be monic, but in this paper (as in [3]) we assume that con-
ditions may include arbitrary morphisms. Concerning satisfaction, in [3], Habel and
Pennemann introduced two notions of satisfaction: a-satisfaction and m-satisfaction.
The former notion is exactly what we have defined above. However, in m-satisfaction,
the morphism f ′ in Def. 7 needs to be mono.

In addition, Habel and Pennemann showed that there are back and forth transfor-
mations that make both notions equivalent, in the sense that a morphism f m-satisfies
a condition c if and only if f a-satisfies t(c), for a given transformation t; and vice
versa f a-satisfies c if and only if f m-satisfies t ′(c), for a given transformation t ′. As
a consequence of this equivalence, in general, most work of Habel and Pennemann
has been done in terms of m-satisfaction, which they preferred. Moreover, since they
also proved that every condition including arbitrary morphisms can be transformed into
a condition including only monomorphisms having the same models (with respect to
m-satisfaction), most often they also assume that conditions only include monos.

However, we have preferred to work with a-satisfaction because a-satisfaction pro-
vides some important practical advantages in the context of our work over m-satisfaction,
as we will see in Remark 2.

Nested conditions are more general than needed, since they define properties on
graph morphisms, rather than on graphs. As said above, graph properties are conditions
over the empty pattern, since a morphism /0→ G can be considered equivalent to the
graph G. However, we must notice that if ∃( /0→ P,c) is a graph property, then c is an
arbitrary condition over P.

Definition 8 (GNL Syntax, GNL Semantics). The language of graph navigational prop-
erties, GNL, consists of all conditions over the empty pattern /0. Conditions ∃( /0→
P,cP) may also be denoted by ∃(P,cP). A graph (and, in general, a pattern) G satisfies
a graph property c of GNL, denoted G |= c, if the unique morphism eG : /0→G satisfies
c.

Example 1 (Properties on airport networks in GNL). The graph conditions, which
are depicted in Fig. 3 using a semiformal notation, are formally written in GNL as
follows, where Σ = {IB,AEA,AA} and L = Σ+:

1. ∃( /0 −→ [•BCN
IB→•CDG

L⇒•LAX ], true) ∨ ∃( /0 −→ [•BCN
L⇒•JFK

AA→•LAX ], true)

2. ∀( /0 −→ [•1
L⇒•2], ∃([•1

L⇒•2] −→ [•1
L
⇒
⇐
L
•2], true))

3. ∀( /0 −→ [•1
IB+

⇒ •2], ∃([•1
IB+

⇒ •2] −→ [•1
IB+

⇒
⇐

IB+
•2], true))

4. ∀( /0 −→ [•1
IB→•2

L⇒•3], ∃([•1
IB→•2

L⇒•3] −→ [•1
IB
⇒
⇐
IB
•2

L
⇒
⇐
L
•3], true))

As an example, let us explain the third condition above, to better understand its
relation with the corresponding condition in Fig. 3.

This condition begins stating ∀( /0 −→ [•1
IB+

⇒•2], . . .) this is equivalent to say “For

every morphism h matching the pattern [•1
IB+

⇒ •2]” to a graph G, i.e., “for any two

12



nodes n and n′ in the given graph G, connected by a path formed by a sequence of
edges labelled with IB”.

Then, in the nested condition we have: ∃([•1
IB+

⇒ •2] −→ [•1
IB+

⇒
⇐

IB+
•2], true), that

should be interpreted as “there should exist a morphism h′ from the pattern [•1
IB+

⇒
⇐

IB+
•2]

to G that extends h, i.e., “there should exist a path from n′ to n, formed by a sequence
of edges labelled with IB”.

We will now study some interesting aspects of GNL. First, we will show the exis-
tence of a shift transformation, allowing us to move conditions along morphisms. Then
we will study some questions related to split mono morphisms when used in conditions.

Lemma 1 (Shift of Conditions over Morphisms) For every pattern morphism b : P→
P′ and every condition cp of context P, Shift(b,cP) is a condition of context P′ defined
inductively as follows:

• Shift(b,true) = true.

• Shift(b,∃(a,cQ))=∃(a′,cQ′) with cQ′ = Shift(b′,cQ) such that (1) is a pushout.

P a //

(1)b
��

Q

b′

��
P′

a′
// Q′

• Shift(b,¬cP) = ¬Shift(b,cP)

• Shift(b,cP∧ c′P) = Shift(b,cP)∧Shift(b,c′P).

satisfying:

1. The nesting level of Shift(b,cP) is not greater than the nesting level of cP.
2. For each morphism f :P′→ P′′ we have that f |= Shift(b,cP)⇔ f ◦b |= cP.

For generality, the property has been stated for arbitrary pattern morphisms, but it
obviously applies to the special case when P′ or P′′ are graphs.

PROOF. The proof uses double induction on the structure and the nesting level of con-
ditions. The base case is direct, since the nesting level does not change and every
morphism satisfies true.

Suppose cP = ∃(a,cQ), with nesting level m+1. If there is a morphism f :P′→ P′′

such that f |= Shift(b,∃(a,cQ)), i.e., f |= ∃(a′,Shift(b′,cQ)), according to diagram
(1) below, then, there exists a morphism g : Q′→ P′′ such that g |= Shift(b′,cQ) and
f = g◦a′. Since (1) is a pushout, we have f ◦b = g◦a′ ◦b = g◦b′ ◦a and, by inductive
hypothesis, g◦b′ |= cQ. Therefore, f ◦b |= cP.

13



P

(1)

a //

b
��

Q

b′

��
h

��

P′ a′ //

f
++

Q′

g
  
P′′

Conversely, if f ◦ b |= cP there exists h : Q→ P′′ such that f ◦ b = h ◦ a and h |=
cQ. By the universal property of pushouts, there exists g : Q′ → P′′ such that f =
g ◦ a′ and h = g ◦ b′ and, by inductive hypothesis, g |= Shift(b′,cQ). Hence, f |=
Shift(b,∃(a,cQ)). In addition, ∃(a′,Shift(b′,cQ)) has nesting level smaller or equal
to m+ 1 since, again as a consequence of the inductive hypothesis Shift(b′,cQ) has
nesting level smaller or equal to m.

The rest of the cases easily follow from the inductive hypothesis and the definitions
of satisfaction and nesting level.

Remark 2 When working with m-satisfaction, the transformation needed to Shift a
condition along a morphism, as in the above lemma, is different [3, 16]. More precisely,
in that case, Shift(b,∃(a,cQ)) =

∨
(a′,b′)∃(a′,Shift(b′,q)), such that a′,b′ are jointly

epi and the diagram below commutes.

P a //

b
��

Q

b′

��
P′

a′
// Q′

We may notice that there are as many jointly epi a′,b′ as different ways of overlap-
ping P′ and Q, which means that, in the worst case, the length of this disjunction is
exponential on the size of P′ and Q. Taking into account that Shift is the basis for
two tableau rules (see Def. 12), working with our notion of satisfaction and the corre-
sponding Shift transformation allows us to avoid this kind of exponential branching
in our tableaux.

The following property of Shift is used in some proofs in the paper:

Proposition 3 Given morphisms g :P1→ P2 and h :P2→ P3 and given a condition cP1 ,
we have:

Shift(h,Shift(g,cP1)) = Shift(h◦g,cP1)

PROOF SKETCH. (See Appendix A.3 for the detailed proof) The proof proceeds by
induction on the structure of conditions.
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If morphisms are assumed to be monic, as in [7], sets of negative conditions of the
form ¬∃(a : P→ Q,true) are always satisfiable by the identity, idP : P→ P, provided
that none of these morphisms a is an isomorphism. However, in GNL, sets of negative
conditions may be unsatisfiable, even if a is not an isomorphism. One reason is that
there are morphisms, called split monos, that are not isomorphisms but have a left
inverse. For instance, the following example shows this kind of situation.

Example 2. Consider the negative condition ¬`, with:

`= ∃([•1
x→•2]

a−→ [•3
x←•1

x→•2],true)

where a is the obvious inclusion. This condition is unsatisfiable because the identity
morphism id : [•1

x→•2] −→ [•1
x→•2] satisfies `. The reason is that we can define a

morphism g : [•3
x←•1

x→•2] −→ [•1
x→•2], where g(•1) = •1, g(•2) = •2 = g(•3) and

where the two edges in the source pattern are mapped into the single edge in the target
pattern, so that g◦a = id.

Remark 3 (Split Monomorphisms)

1. A morphism a :P→ Q is split mono if there exists a morphism a−1 :Q→ P such
that a−1 ◦a = idP. That is, if it has a left inverse.

2. If a : P→ Q is split mono, ∃(a : P→ Q,true) is equivalent to true, i.e., it is
a tautology: for any graph (or any pattern) G, and any morphism f : P→ G it
holds that f |= ∃(a,true) since there exists the morphism g = f ◦ a−1 : Q→ G
satisfying g◦a = f ◦a−1 ◦a = f ◦ idP = f , and g |= true.

3. If a : P→ Q is split mono, but not an isomorphism, ∃(a,cQ) is not equivalent to
cQ. In fact, ∃(a,cQ) is a condition over P, while cQ is a condition over Q.

4. We say that a set of conditions is free of split monos, if there are no split monos
in their outer nesting level.

The other situation where a set of negative conditions of the form ¬∃(a:P→Q,cQ)
can be unsatisfiable, even if their morphisms are not split mono, is caused by the pres-
ence of path expressions in patterns and the implicit properties that they satisfy, as the
following example shows.

Example 3. Consider the following two negative conditions:

`1 = ¬∃([•1
x+⇒•2]

b1−→ [•1
x→•2],true) and

`2 = ¬∃([•1
x+⇒•2]

b2−→ [•1
x→• x+⇒•2],true).

Morphisms b1 and b2 are not split mono, but the condition c = `1 ∧ `2 is obviously
unsatisfiable because, for every graph G, if there is a path from node 1 to node 2
satisfying the path expression x+, then either that path consists only of an edge labelled
x or it consists of an edge labelled x followed by a sequence of edges labelled x.

However, a set of conditions over P of the form ¬∃(a : P→ Q,cQ) is satisfiable if
they are free of split monos and path expressions:
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Proposition 4 If a :P→ Q is not split mono and⇒P= /0, then idP satisfies ¬∃(a,cQ),
for any cQ.

PROOF SKETCH. (See Appendix A.4 for the detailed proof) Since P = (GP, /0), it is
enough to show that idP = idGP :P→ GP satisfies ¬∃(a,cQ), for any cQ, when a is not
split mono.

3.2. Nested Conjunctive Normal Form, Lift, and Unfolding
In this section we study constructions that are used in our tableau approach, in

Sections 4 and 5. First we present what is a condition in nested conjunctive normal
form (NCNF). The reason is that our tableau method, presented in Sect. 4, assumes
that conditions are in NCNF. Then, we present lift transformations that allow us to
transform two conditions into another one. Finally, we present the concept of unfolding
that, given a pattern P, allows us to state how to unfold a path expression in P.

Definition 9 (Literals, NCNF-conditions). A positive (resp. negative) literal ` is ei-
ther true (resp. false) or a condition of the form ∃(a,d) (resp. ¬∃(a,d)).

A clause is a disjunction of literals.
A condition c is in nested conjunctive normal form (NCNF) if it is either true,

or false, or a conjunction of clauses c = ∧ j∈Jc j, with c j = ∨k∈K j` jk, where for each
literal ` jk = ∃(a jk,d jk) or ` jk = ¬∃(a jk,d jk), a jk is not an isomorphism and d jk is a
condition in NCNF.

As usual, we will identify the condition in NCNF c = c1∧ c2∧·· ·∧ ck with the set
of clauses {c1,c2, . . . ,ck}. Moreover, we will say that ` is a literal in c if there is some
ci ∈ c, such that ci = `∨ c′i for some (possibly empty) clause c′i.

Any condition cP can be transformed into an equivalent condition |cP| in NCNF.
This transformation is standard, making use of the properties of boolean connectives
(e.g., distributivity, associativity, de Morgan laws, etc), except for the elimination of
isomorphisms which is based on the following equivalence:

∃(a :P→ Q,cQ)≡ a(cQ)

if a is an isomorphism, where a(cQ) denotes the following transformation:

• a(true) = true

• a(∃(b :Q→ Q′,cQ′)) = ∃(b◦a :P→ Q′,cQ′)

• a(¬cQ) = ¬a(cQ)

• a(cQ∧ c′Q) = a(cQ)∧a(c′Q)

Moreover, if cP has nesting level n then |cP| has nesting level not greater than n. More
precisely the transformations associated to boolean connectives do not modify the nest-
ing level of a condition, but isomorphism elimination may reduce it. The proof that
NCNF transformation preserves logical equivalence can be found in [4].

As a direct consequence of the Shifting Lemma 1, we can define a transforma-
tion Lift that, given two literals `1 = ∃(a1,c1) and `2, we obtain a new literal `3 =
Lift(`1, `2) (pushing `2 inside `1) that is equivalent to the conjunction of `1 and `2:
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Lemma 2 (Lift of Literals) Let `1 = ∃(a1,c1) and `2 be literals with morphisms ai :
P→ Qi, for i = 1,2. We define the lift of literals as follows:

Lift(∃(a1,c1), `2) = ∃(a1,c1∧|Shift(a1, `2)|)

Then, for every pattern morphism f , f |= `1∧ `2 if, and only if, f |= Lift(`1, `2).
(See Appendix A.5 for the detailed proof).

For example, if:

`1 = ∃([•1]
a1−→ [•1

x+⇒•2],∃([•1
x+⇒•2]

a2−→ [•1
x+
⇒
⇐
x+
•2],true))

`2 = ∃([•1]
b−→ [•1

y→•3],true)

then Lift(`1, `2) is equal to ∃([•1]
a1−→ [•1

x+⇒•2],c), where c =(
∃([•1

x+⇒•2]
a2−→ [•1

x+
⇒
⇐
x+
•2],true)∧∃([•1

x+⇒•2]−→ [•3
y←•1

x+⇒•2],true)
)

Given a positive literal, `1, and a negative literal, `2, we can define another trans-
formation, partial lift, that can be seen as a general version of resolution. In this case,
the literal resulting from the lifting is just a consequence of the conjunction of `1 and
`2.

Lemma 3 (Partial Lift of Literals) Let `1 = ∃(a1 :P→Q1,c1) and `2 = ¬∃(a2 :P→
Q2,c2) such that there exists a morphism g :Q2→ Q1 satisfying a1 = g◦a2. We define
the partial lift of literals as follows:

PLift(∃(a1,c1), `2) = ∃(a1,c1∧|Shift(g,¬c2)|)

Then, for every pattern morphism f , f |= `1∧ `2 implies f |= PLift(`1, `2).
(See Appendix A.6 for the detailed proof).

For example, given the conditions:

`1 = ∃([•1
x+⇒•2]

b2−→ [•1
x→•2

x+⇒•3],true), `2 = ¬∃([•1
x+⇒•2]

b1−→ [•1
x→•2],true)

if the second condition holds, the first condition can not hold. Then, if g is the obvious

inclusion of [•1
x→•2] in [•1

x→•2
x+⇒•3], the partial lift of `1 and `2 would be:

PLift(`1, `2) = ∃([•1
x+⇒•2]

b2−→ [•1
x→•2

x+⇒•3],true∧¬true)≡ false

But in general if

`1 = ∃([•1
x+⇒•2]

b2−→ [•1
x→•2

x+⇒•3],c1), `2 = ¬∃([•1
x+⇒•2]

b1−→ [•1
x→•2],c2)

then PLift(`1, `2) = ∃([•1
x+⇒•2]

b2−→ [•1
x→•2

x+⇒•3],c1∧|Shift(g,¬c2)|)

Given a pattern P including a path expression, the third kind of operation allows us
to define a condition, actually a tautology, that states the forms in which we can unfold
a path expression in P.
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Definition 10 (Unfolding Morphisms). Consider a pattern P, a path expression 〈n,L,n′〉 ∈
⇒P, such that dL={{x}| x∈S0}∪{{x}·Lx| x∈S1} is the finite disjunctive decomposi-
tion of L (c.f. Def. 3). We define the set of unfolding morphisms of P with respect to
〈n,L,n′〉, written Unfold(P,〈n,L,n′〉), as:
{u : P→ P′ | {x} ∈ dL and u is defined by pushout (1)}∪
{u : P→ P′ | {x}·Lx ∈ dL and u is defined by pushout (2)}

[•n
L⇒•n′ ] //
_�

��
(1)

[•n
x→•n′ ]_�

��
P u // P′

[•n
L⇒•n′ ] //
_�

��
(2)

[•n
x→•m

Lx
⇒•n′ ]_�

��
P u // P′

If the context is clear, we may also say that u in the above definition is the unfolding
associated to the language {x}, respectively to the language {x}·Lx.

For instance, according to Def. 3, the language L denoted by the regular expres-
sion a∪ab+∪ac+∪c has the finite disjunctive decomposition dL = {{a},{c},{a}·La},
with S0 = {a,c}, S1 = {a}, and La being the language denoted by the regular expres-
sion b+∪c+. So, according to the above definition, if, for instance, P = [•n

L⇒•n′ ]

then Unfold(P,〈n,L,n′〉) = {u0 : [•n
L⇒•n′ ] −→ [•n

a→•n′ ], u1 : [•n
L⇒•n′ ] −→ [•n

c→
•n′ ], u2 : [•n

L⇒•n′ ] −→ [•n
a→•m

La
=⇒•n′ ]}.

Path unfolding can be characterized by the following proposition:

Proposition 5 (Unfolding Tautologies) Given a pattern P and a path expression 〈n,L,n′〉 ∈
⇒P, we have that the condition

∨
u∈Unfold(P,〈n,L,n′〉)∃(u,true) is a tautology over P.

PROOF. We have to prove that f |=
∨

u∈Unfold(P,〈n,L,n′〉)∃(u,true) for every f :P→G.
That is, for every f there exists u : P→ P′ ∈ Unfold(P,〈n,L,n′〉) and g : P′→ G such
that g◦u = f .

P u //

f ��

P′

g
��

G

Since f is a pattern morphism and G is a graph, if f (n) = m and f (n′) = m′ there must
be a 〈m,{s},m′〉 ∈→+

G , such that s ∈ L=
⋃

x∈S0
{x} ∪

⋃
x∈S1
{x}·Lx. This means that

s = x for some x ∈ S0, or s = x·s′ for some x ∈ S1 and s′ ∈ Lx. Then, we can define a
morphism h for each case:

• h : [•n
x→ •n′ ] −→ G, with h(n) = m,h(n′) = m′, and h([•n

x→ •n′ ]) = [•m
x→ •m′ ]

since 〈m,{x},m′〉 ∈→G

• h : [•n
x→•n1

Lx
⇒•n′ ] −→ G, with h(n) = m,h(n1) = m1,h(n′) = m′, and h([•n

x→
•n1 ]) = [•m

x→•m1 ] since 〈m,{x},m1〉 ∈→G and 〈m1,{s′},m′〉 ∈→+
G
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Hence, by definition of h, we have the following commuting diagrams, where u is the
unfolding morphism associated to the language {x} or {x}·Lx, respectively:

[•n
L⇒•n′ ] //
_�

��
(1)

[•n
x→•n′ ]_�

��
h

��

P u //

f
--

P′

G

[•n
L⇒•n′ ] //
_�

��
(2)

[•n
x→•n1

Lx
⇒•n′ ]
_�

��
h

��

P u //

f
--

P′

G

and by the universal property of pushouts, there is g :P′→G such that g◦u = f .

4. Tableau Reasoning for GNL

Tableaux are a standard refutation technique for theorem proving that is used in
the context of many logics (see, e.g. [17]). A tableau is a tree that represents the
set of formulas that we want to refute. A branch in a tableau is the representation
of the conjunction of formulas in the branch, and a tableau represents the disjunction
of all the formulas represented by its branches. Tableaux are constructed by some
given rules. These rules allow us to place in the tableau new formulas obtained by
some form of decomposition of the given ones. The goal is to generate enough of
these formulas to find contradictions among them. In our case, we use the standard
tableau rule from Propositional Logic to decompose conjunctions and disjunctions but,
in addition, we use some inference rules whose results are also placed in the tableau,
with the same aim of generating contradictions. When we detect a contradiction in a
branch of a tableau, we close the branch. If at some point all the branches of the tableau
are closed, we consider that the given set of formulas has been refuted. Conversely,
if there are open branches and we have not postponed indefinitely the application of
some inferences, we consider that the given set of formulas is satisfiable. Obviously,
if satisfiability is undecidable, the construction of a tableau may never end. However,
soundness and completeness ensure that a given set of formulas is unsatisfiable if and
only if an associated tableau is closed in finite time.

In our case, the nested structure of conditions makes it very difficult to check satis-
fiability using standard tableaux. For this reason, we use the notion of nested tableaux
[7] that fits adequately in our framework, where the elements of a nested tableau are
standard tableaux that we call basic tableaux. More precisely, in the first subsection of
this section, we introduce basic tableaux, together with the tableau rules to build them,
and in the second subsection, we study our notion of nested tableaux.

4.1. Basic Tableaux for GNL

As usual, the formulas in our tableaux are literals. The construction of a tableau for
a condition cP in NCNF is roughly as follows. We start with a tableau consisting of the
single node true and for every clause `1∨·· ·∨ `n in cP we extend all the leaves in the
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tableau with n branches, one for each literal `i. In addition to the standard extension
rule (ext), the rules that are specific for GNL are the lift rule (L), based on Lemma 2
(following [18, 4]); the partial lift rule (PL), based on Lemma 3; the unfolding rule (U),
based on the construction described in Def. 10 and on Prop. 5; and the split reduction
rule (SR), to be applied on negative literals ¬∃(a,c) where a is split mono, based on
Rem. 3. The literals that we add to a given branch, in the case of the extension rule, are
logical consequences of the given condition cP, while in the case of the lift and partial
lift rules, are logical consequences of literals in that branch. Finally, in the case of the
latter two rules (unfolding and split reduction), they are tautologies.

All rules are depicted in Fig. 4 and they are formally defined below in Def. 12.

(ext)
•
•

`1 `2 . . . `n

(SR)

¬∃(a,c)

...
¬∃(a,c)

...

∃(a,true)

if a split mono

(U)
•
•

∃(u0,true) . . . ∃(uk,true)

if Unfold(P,〈n,L,n′〉) = {u0, . . . ,uk}

(L)

∃(a1,c1)

...

`2

∃(a1,c1)

...

`2

∃(a1,c1∧|Shift(a1, `2)|)

(PL)

∃(a1,c1)

...

¬∃(a2,c2)

∃(a1,c1)

...

¬∃(a2,c2)

∃(a1,c1∧|Shift(g,¬c2)|)

if a1 = g◦a2

Figure 4: Tableau Rules

Definition 11 (BasicTableau and Branch of Context P). Given a finite pattern P, a
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basic tableau of context P (or just a tableau) is a finitely branching tree whose nodes
are literals over P in NCNF. A branch in a tableau T is a maximal path in T .

Definition 12 (Basic Tableau Rules). Given a condition cP = {c1P,c2P, . . . ,ckP} in
NCNF, a basic tableau of context P for cP is constructed using the following rules:

• Initial (init): A tree consisting of the single node true is a tableau.

• Extension rule (ext): If the clause `1∨ . . .∨`n is in cP, we can extend any branch
B with n descendants `1, . . . `n.

• Lift (L): If a given branch B includes the literals `1 = ∃(a1,c1) and `2, then we
can extend B with the literal ∃(a1, c1∧|Shift(a1, `2)|).
• Partial Lift (PL): If a given branch B includes the literals `1 = ∃(a1 :P→Q1,c1)

and `2 = ¬∃(a2 :P→Q2,c2) such that there exists a morphism g :Q2→Q1 satis-
fying a1 = g◦a2, then we can extend B with the literal ∃(a1,c1∧|Shift(g,¬c2)|).
• Split Reduction (SR): If a given branch B includes a negative literal ¬∃(a,c)

with a split mono, then we can extend B with the literal ∃(a,true).
• Unfolding (U): If 〈n,L,n′〉 ∈ ⇒P, then we can extend any branch B with all the

elements in the set {∃(u,true)}u∈Unfold(P,〈n,L,n′〉) as descendants.

Notice that, given a condition cP, if 〈n,L,n′〉 ∈ ⇒P, then using the unfolding rule
(U) is equivalent to extending the original condition cP with the tautology∨

u∈Unfold(P,〈n,L,n′〉)∃(u,true) and, then, applying the rule (ext).

Definition 13 (Open/Closed Branch and Tableau). In a tableau T , a branch B is closed
if B contains ∃(a,false) or false; otherwise, it is open. A tableau is closed if all its
branches are closed.

Example 4. Consider the graph G of flights given in Fig. 1. This graph can be repre-
sented by the condition c= ∃( /0−→P, true), where P= (G, /0). Assume now a property
(or boolean query) expressing that there exists a direct IB flight from BCN to CDG and
a connection from CDG to LAX operated by a sequence of one or more IB flights,
followed by an AA flight. This property is expressed by the condition c1 = ∃( /0 −→
P1, true), where P1 =[•BCN

IB→•CDG
IB+·AA
=⇒ •LAX ]. More precisely, P1 = (G1,⇒P1), with

the graph G1 consisting of nodes BCN, CDG, and LAX, and one IB labelled edge from
BCN to CDG, together with the path expresion 〈CDG, IB+·AA,LAX〉 in⇒P1 . Then we
can see that G satisfies this property by proving that c∧¬c1 is not satisfiable using the
closed tableau for c∧¬c1, depicted in Fig. 5. The construction of this tableau can be
explained as follows: after adding c and ¬c1 by the Extension rule (ext), the Partial Lift
rule (PL) can be applied to c and ¬c1 since there exists a pattern morphism g :P1→P.
This pattern morphism is the inclusion morphism g : G1→G, satisfying that, for the
path expression 〈n,L,m〉 = 〈CDG, IB+·AA,LAX〉 ∈⇒P1 , there exists L′ = {IB·AA} ⊆ L
such that 〈g(n),L′,g(m)〉 = 〈CDG,{IB·AA},LAX〉 belongs to⇒P̂ =→+

G .
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true

c = ∃( /0 −→ P,true)

(ext)

¬c1 = ¬∃( /0 −→ P1,true)

(ext)

∃( /0 −→ P,true∧|Shift(g,false)|) ≡ false

(PL) c,¬c1

Figure 5: Closed tableau for proving a property on the airport graph

Example 5. Consider the condition cP = `1∧ `2 with literals as in Example 3

`1 = ¬∃([•1
x+⇒•2]

b1−→ [•1
x→•2],true) and

`2 = ¬∃([•1
x+⇒•2]

b2−→ [•1
x→• x+⇒•2],true)

and whose context P is the pattern [•1
x+⇒•2]. Then, in Fig. 6 we show a closed tableau

for cP.
Notice that, according to Def. 3, the language 3 L= x+ has the finite disjunctive

decomposition dL = {{x},{x}·x+} so, according to Def. 10, Unfold(P,〈•1,x+,•2〉) =

{u0 : [•1
x+⇒•2] −→ [•1

x→•2], u1 : [•1
x+⇒•2] −→ [•1

x→• x+⇒•2]}

true

`1 =¬∃([•1
x+⇒•2] −→ [•1

x→•2],true)

(ext)

`2 =¬∃([•1
x+⇒•2] −→ [•1

x→• x+⇒•2],true)

(ext)

`3 =∃([•1
x+⇒•2]

u0−→ [•1
x→•2],true) `4 =∃([•1

x+⇒•2]
u1−→ [•1

x→• x+⇒•2],true)

(U) on • x+⇒•

`5 =∃([•1
x+⇒•2]

u0−→ [•1
x→•2],false)

(PL) on `3, `1

`6 =∃([•1
x+⇒•2]

u1−→ [•1
x→• x+⇒•2],false)

(PL) on `4, `2

Figure 6: Closed tableau

The tableau rules may generate contradictions at the outer level of nesting for the
literals in a given condition, as seen in the examples in Fig. 5 and Fig. 6, but this is not

3In an abuse of notation we may write, for instance, x+ for the language L denoted by the regular expres-
sion x+.
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enough, because contradictions may occur at inner levels of nesting. Instead of defining
additional rules that would do something similar at any nesting level, what we do is to
associate additional tableaux for each level. Our procedure can be roughly described as
follows. After applying the extension rule (ext) to all clauses in the given condition, if a
branch has only negative literals free of split monos, and there are no path expressions
in the context P, then we can stop the construction, since Prop. 4 guarantees that this
branch (and, hence, the given condition) has a model. Otherwise, we may apply the
split reduction rule (SR), if there is some negative literal including a split mono, and
a finite number of times the unfolding rule (U), if there are some path expressions
included in the context. Notice that, at this point, we would have some positive literals
in the branch: the positive literals that were in the branch at the beginning, if there
were any, plus the literals added by the split reduction and the unfolding rules. Then,
we have that, for every branch B, either we are able to close it, or we can choose a
given positive literal and use the lifting rule (L) and the partial lifting rule (PL), as
many times as needed, until we produce a literal which is equivalent to the conjunction
of literals in B (see Lemmas 2 and 3).

For instance, if `1, . . . , `n are the literals in the branch, it is enough to choose a
positive literal, say `1 = ∃(a1 :P→ Q1,c1), that we call the hook of the branch, and to
successively apply the lift rule and the partial lift rule (if possible), first to `1 and `2,
next to the result and `3 and so on, until we have applied the rules to all the literals in
the branch.

To ensure that our proof method finds a refutation if the given property is unsat-
isfiable, we must guarantee that we have applied all needed inferences, which means
that the procedure is fair, in the sense that no inference is postponed infinitely. When
working with tableaux, fairness is guaranteed by the notion of saturation. In our case,
since we work at two levels, we use two notions of saturation, one for basic tableaux,
that we call semi-saturation and the other for nested tableaux (see Def. 22). We use
the term semi-saturation because we do not require that all our basic tableaux include
the results of applying all possible tableaux rules. For instance, if a branch B includes
positive literals, we only require that the lift rule has been applied in such a way that
the leaf of B includes, in its inner condition, all the literals in the branch (properly
shifted), except the hook, plus the result of all possible applications of the partial lift
rule to the hook and to any negative literal. For similar reasons, we do not require that
the unfolding rule has been applied to all path expressions of the given context. By
the way, notice that if in the context there are n path expressions, then we can apply
the unfolding rules at most n times. Finally, we only require that a branch includes the
application of a Split Reduction rule if the rest of the literals are negative, because it is
not needed otherwise.

Definition 14 (Semi-saturation, Hook for a Branch). Given a tableau T for a condi-
tion cP over P, we say that T is semi-saturated if no new literals can be added to any
branch in T using the extension rule, and for every branch B in T one of the following
conditions hold:

1. B is closed.
2. All the literals in B are negative, free of split monos and⇒P= /0.
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3. There is a positive literal `= ∃(a :P→ Q,c) in B, called the hook for the branch
B in T , such that the literal in the leaf of B is

`lea f = ∃(a, c ∧
∧

`′∈B\{`}
|Shift(a, `′)| ∧

∧
`′∈BPL

|Shift(g,¬d′)|)

where BPL={¬∃(a′,d′)∈B\{`} | ∃g : a = g◦a′}.

Example 6 (Semi-saturated Tableau). Let `1 and `2 be the literals in Example 3 and
let c /0 be a condition over the empty context consisting of the following conjunction

of literals: ∃( /0
a1−→ [• x+⇒•], `1 ∧ `2)∧∃( /0

a2−→ [•], `3), where `3 = ∃([•1]
b3−→ [•1

x+⇒
•2],true).

Then, the tableau in Fig. 7 is the result of, first, applying the extension rule on c /0,
to obtain c1 and c2, and, then, the lift rule, where the literal c1 = ∃(a1, `1∧`2) has been
chosen as hook. The tableau is open but semi-saturated as it satisfies Def. 14.

We may notice that we have been unable to prove that c1 is unsatisfiable, even
if from Example 5 we know that `1 ∧ `2 is unsatifiable, which means that c1 is also
unsatisfiable. As we will see in the following section, this refutation can be completed
using a nested tableau.

true

c1 = ∃( /0
a1−→ [• x+⇒•], `1∧ `2)  hook

(ext)

c2 = ∃( /0
a2−→ [•], `3)

(ext)

c3 = ∃(a1, `1∧ `2∧|Shift(a1,∃(a2, `3))|)
(L) on c1,c2

Figure 7: Semi-saturated tableau of context /0

Following the procedure described above, we can build a finite semi-saturated
tableau for any condition in NCNF that includes the application of any finite num-
ber of unfolding rules. This is needed because for completeness we will need to ensure
that the unfolding rule has been applied enough times to find possible contradictions.

Lemma 4 (Existence of Finite Semi-saturated Tableaux) For any conditon cP over
P in NCNF and any natural number k, such that k is smaller or equal than the num-
ber of path expressions in ⇒P, there exists a finite semi-saturated tableau T for cP
including k unfolding tautologies.

PROOF SKETCH. (See Appendix A.7 for the detailed proof) To obtain a semisaturated
tableau it is enough to apply the procedure described above, immediately before Def.
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14. Moreover, since we apply a finite number of rules, the resulting tableau will be
finite.

To end this section, we show the soundness of our tableau method.

Definition 15 (Branch and Tableau Satisfiability). A tableau T is satisfiable if it in-
cludes a branch B that is satisfiable, meaning that there is a morphism f :P→ G satis-
fying all the literals in B. In this case, we say that f :P→ G is a model for B, and also
for T , and we write f |= B and f |= T .

Even if the soundness proof is relatively simple, we will first show, as a first lemma,
that the given tableau rules are sound, in the sense that they preserve satisfiability, and
then we will show that if the given tableau rules are sound then the tableau method is
sound. The reason is that, structuring the proof in this manner will allow us to show,
in a very simple way, soundness of the same tableau method for a different class of
models (Theorem 2).

Definition 16 (Soundness of Tableau Rules). A tableau rule that, given a branch B,
extends B with literals `1, . . . , `n, is sound if f |= cP and f |= B imply f |= `1∨·· ·∨ `n,
for any cP in NCNF.

Lemma 5 (Soundness of rules) The tableau rules given in Def. 12 are sound.

PROOF. We consider each rule:

• (init): For every f , f |= true.

• (ext) If `1∨·· ·∨ `n is a clause in cP, obviously, if f |= cP then f |= `1∨·· ·∨ `n.

• (L) If we apply the lift rule on literals `1 and `2 in B, by Lemma 2, we know that
the resulting literal `3 is equivalent to `1∧ `2. Thus f |= `3.

• (PL) If we apply the partial lift rule on literals `1 and `2 in B, by Lemma 3, we
know that the resulting literal `3 is a consequence of `1∧ `2. Thus f |= `3.

• (SR) If a is split mono, according to 2. in Remark 3, `= ∃(a :P→ Q,true), is a
tautology. Hence, f |= `.

• (U) If we apply the unfolding rule, for some path expression 〈n,L,n′〉 ∈ ⇒P,
by Prop. 5, we know that

∨
u∈Unfold(P,〈n,L,n′〉)∃(u,true) is a tautology. Hence

f |=
∨

u∈Unfold(P,〈n,L,n′〉)∃(u,true).

Lemma 6 (Soundness of tableaux) Given a condition cP in NCNF, if we build a basic
tableau T for cP using sound rules, then if cP is satisfiable so is T .

PROOF. Let f :P→ G be a morphism such that f |= cP, we show by induction on the
construction of T that f |= T .

• If T consists only of the node true, f |= T .

25



• For the general case, suppose that f |= T . We have to show that if T ′ is constructed
by applying any basic tableau rule to T , then f |= T ′. By inductive hypothesis,
we may assume that there exists a branch B in T such that f |= B. If this branch is
not extended using some tableau rule when constructing T ′, then it directly holds
that f |= T ′, since B is still a branch in T ′.

• Suppose that the rule applied to construct T ′ extends B with literals `1, . . . , `n, we
can show that there exists a branch B′ in T ′ extending B such that f |= B′ and
therefore f |= T ′. In particular, since the rule is assumed to be sound, according
to Def. 16, we know that f |= `1 ∨ ·· · ∨ `n and, thus, there must be some i, with
1≤ i≤ n, such that f |= `i. But this means that if B′ is the extension of B including
`i, we have that f |= B′.

Finally, the following lemma will be required for proving completeness.

Lemma 7 (Semi-saturation and Satisfiability) If T is a semi-saturated tableau for a
condition cP in NCNF, then we have:

1. f |= T implies f |= cP.
2. For every c′P ⊆ cP and every open branch B, if for every literal ` in B that is also

in c′P f |= `, then f |= c′P.
3. If for every literal ` in B f |= `, then f |= cP.

(See Appendix A.8 for the detailed proof).

4.2. Nested Tableaux for GNL
As discussed above, basic tableaux cannot be used in a simple way as a proof

procedure for properties in NCNF. We use a notion of nested tableaux whose idea is
that, for each open branch of a tableau T whose literal in the leaf is ∃(a : P→ Q,cQ),
we open a new tableau T ′ to try to refute condition cQ. Then, we say that ∃(a,cQ) is
the opener for T ′.

Example 7 (Tableau from an Opener). By using the leaf of the open branch in the
semi-saturated tableau in Fig. 7 as opener,

c3 = ∃(a1 : /0
a1−→ [• x+⇒•], `1∧ `2∧|Shift(a1,∃(a2, `3))|)

we can open a new tableau of context • x+⇒•, for the nested condition of c3, `1 ∧ `2 ∧
|Shift(a1,∃(a2, `3))|, as depicted in Fig. 8. Then this new tableau can be closed, as
shown in Fig. 6, since a contradiction arises from literals `1 and `2.

Nested tableaux have nested branches consisting of sequences of branches of a se-
quence of tableaux. While our basic tableaux are assumed to be finite, nested tableaux
and nested branches may be infinite. For example, this will be the case when the given

condition includes a path expression like •n
a+⇒•n′ . In that case, to generate a contradic-

tion, we may need to unfold this path expression consecutively an unbounded number
of times, that is:
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true

`1

(ext)

`2

(ext)

|Shift(a1,∃(a2, `3))|
(ext)

...

Figure 8: Tableau of context • x+⇒•

•n
a→•1

a+⇒•n′ , •n
a→•1

a→•2
a+⇒•n′ , •n

a→•1
a→•2

a→•3
a+⇒•n′ , . . .

So, if we do the first unfolding at a certain tableau t, we would only be able to apply
the second unfolding at the next tableau, and so on. Since the number of unfoldings
needed is unbounded, in the limit, we will have to unfold that path expression infinitely
many times, which means that the nested tableau will be infinite. Nevertheless, we
must point out that we may also have infinite nested tableaux if the given conditions do
not include path expressions [7].

Figure 9: Nested tableau with nested branch Figure 10: Opener ` j

Definition 17 (Nested Tableau, Opener, Nested Branch, Semi-Saturation). Consider
that (I,≤, i1) is a poset with a least element i1. A nested tableau NT for a condition c
is (Ti1 ,{ti}i∈I\{i1}) where:

1. Ti1 is a tableau for c with empty context, called the initial tableau.
2. For every i ∈ I\{i1}, ti = 〈Ti, j,B j, ` j〉 where

• B j is a branch in some tableau Tj, whose leaf is ` j = ∃(a j :Pj→ Pi,ci), with
j ∈ I and j < i,

• Ti is a tableau for ci with context Pi and ` j is called its opener.

If Ti is the initial tableau in NT (that is, i = i1) or if there is a 4-tuple ti = 〈Ti, j,B j, ` j〉
in NT then we will say that Ti is a tableau in NT .
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A nested branch NB in NT is a maximal sequence of branches Bi1 , . . . ,Bik ,Bik+1 , . . .
from tableaux Ti1 , . . . ,Tik ,Tik+1 , . . . in NT starting with a branch Bi1 in the initial tableau
Ti1 , such that, if Bik and Bik+1 are two consecutive branches, then 〈Tik+1 , ik,Bik , `ik〉 is in
NT .

Finally, NT is semi-saturated if each tableau in NT is semi-saturated.

We may notice, that when we have two consecutive tableaux, Tj and Ti, that is, when
〈Ti, j,B j,∃(a j : Pj → Pi,ci)〉 ∈ NT , we have implicitly defined a morphism between
their contexts. More precisely, the context of Tj is Pj and the context of Ti is Pi, then the
morphism associated to these consecutive tableaux is a j :Pj→Pi. Similarly, we have an
implicit sequence of morphisms defined for any nested branch Bi1 ,Bi2 , . . . ,Bik ,Bik+1 , . . .,

that is, Pi1
ai1−→Pi2

ai2−→Pi3
ai3−→ . . .

aik−1−→ Pik

aik−→Pik+1

aik+1−→ . . ., where Pi1 ,Pi2 . . . ,Pik ,Pik+1 , . . .
are, respectively, the contexts of tableaux Ti1 ,Ti2 . . . ,Tik ,Tik+1 , . . ..

Notation From now on, given a nested branch NB and its associated sequence of con-
texts, we will denote by ai j the composition of morphisms between Pi and Pj, i.e.,

ai j : Pi
ai−→ ◦ . . .◦

a j−1−→ Pj. Moreover, since the context of any initial tableau Ti1 is the
empty pattern, we may just write /0→ Pj to denote the morphism ai1 j : /0→ Pj.

Definition 18 (Nested Tableau Rules). Given a graph property c in NCNF, a nested
tableau for c is constructed with the following rules:

• Initialization (I): If c is a condition over /0 and Ti1 is a tableau constructed for c
following the rules in Def. 12, then {〈Ti1 ,_,_,_〉} is a nested tableau for c.
• Nesting (N): If NT is a nested tableau for c, then NT ′=NT ∪{〈Tk,n,Bn,∃(an,cn)〉}

is a nested tableau for c, if Tk is a tableau for cn, Bn is an open branch in a tableau
Tn in NT whose leaf is ∃(an :Pn→Pn+1,cn), and there is no other 〈Tk′ ,n,Bn,∃(an,cn)〉
in NT .

As in the case of basic tableaux, a closed nested branch represents an inconsis-
tency detected among the literals in the branch, and an open branch represents, under
adequate assumptions, a model of the original condition.

Definition 19 (Open/Closed Nested Branch, Nested Tableau Refutation). A nested
branch NB is closed if it contains ∃(a,false) or false; otherwise, it is open. A nested
tableau is closed if all its nested branches are closed.

A nested tableau refutation for (the unsatisfiability of) a graph property c in NCNF,
is a closed nested tableau NT for c built following the rules given in Def. 18.

Example 8. In Appendix B we show a nested tableau refutation for condition c =

c1 ∧ c2 ∧ c3, with c1 = ∃( /0 −→ [• x+⇒•],true), c2 = ∃( /0 −→ [• y+⇒•],true), and c3 =

¬∃( /0−→
[
• x→•
• y→•

]
,true).

5. Soundness and Completeness of Nested Tableaux

Soundness is the property that ensures that what we can show with a given proof
method is correct. More precisely, in our case, that we only refute properties that are
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unsatisfiable. Conversely, completeness ensures that we can prove all consequences
of any given set of formulas. In our case, that we can refute all properties that are
unsatisfiable. Obviously, soundness and completeness depend on the class of models
considered.

Sometimes no complete proof method exists for the intended class of models. This
is what happens in our case for the class of models considered up to now. However,
showing the method to be complete for a slightly different class of models illustrates
nicely its power.

In this section, we first prove that our tableau method is sound for the class of
models considered up to now. Then, after discussing why no complete method can
exist in this case, we consider different classes of models as possible candidates and
we show that our tableau method is sound and complete for the chosen class.

5.1. Soundness
In this subsection we prove that our tableau method is sound. In particular, sound-

ness means that if we are able to construct a nested tableau where all its branches are
closed then we are sure that our original condition c is unsatisfiable or, conversely, that
if c is satisfiable any nested tableau for c includes an open nested branch. However, our
Soundness Theorem below is more general than what one can expect. Instead of just
proving that our method is sound for our class of models, we show that our method is
sound for any class of models M , provided that our basic tableau rules are sound for
M . This will simplify the proof of Theorem 2.

The proof of soundness uses Lemma 6 stating that, if the given rules used to con-
struct a basic tableau are sound, then the tableau is sound, and Lemma 5 that shows the
soundness of our rules. It also uses the fact that if all branches of the nested tableau are
closed then it is finite. In particular, we prove by induction on the structure of NT that
if c is satisfiable, then it must include an open branch. The base case is a consequence
of Lemma 6. For the general case, assuming that the given nested tableau NTi has an
open nested branch NB, we show that NB can be extended by a branch of the new
tableau using again Lemma 6.

Theorem 1 (Soundness) Given a graph property c in NCNF, if the basic tableau rules
given in Def. 12 are sound for a given class of models M , then if there is a nested
tableau refutation for c then c is unsatisfiable in M .

PROOF. First, notice that if the given basic tableau rules are sound, by Lemma 6, any
basic tableaux is sound. Hence we may assume that all tableaux in NT are sound.
Notice also that, if all nested branches in a nested tableau NT for c are closed, then NT
is finite. The reason is that, on the one hand, closed nested branches are finite, since
we only extend open nested branches; on the other hand, we know that the tableaux in
NT are finite; therefore, by König’s Lemma, NT is finite.

We will prove by induction on the number of tableaux in NT , that if c is satisfi-
able and the basic tableau rules are sound, then there is an open nested branch NB =
Bi1 , . . . ,Bik in NT , contradicting the hypothesis that NT is closed. Moreover, we will
prove that there is a graph G such that, for every positive literal `= ∃(a :Pik → P′,cP′)
in Bik , G |= ∃(b : /0→ P′,cP′), where b = a◦ai1ik .
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• The base case, when NT consists only of the initial tableau Ti1 is a direct conse-
quence of Lemma 6.

• Let us suppose that NT = NT ′ ∪{〈T, in,Bin ,∃(ain : Pin → Pin+1 ,cin+1)〉}. By in-
ductive hypothesis, there is an open nested branch NB = Bi1 , . . . ,Bik in NT ′.
More precisely, Bik must coincide with Bin since, otherwise, the open nested
branch NB would also be in NT contradicting the hypothesis. This means that
there is a graph G that, for every positive literal ` = ∃(bin : Pin → P′,cP′) in Bin ,
G |= ∃(b : /0→ P′,cP′), where b = bin ◦ai1in . Then, in particular, in the case of the
opener, G |= ∃(b : /0→ Pin+1 ,cin+1), where b = ain ◦ai1in , i.e., there exists f , such
that:

/0
b //

��

Pin+1

f |=cin+1}}
G

According to the nesting rule, T is a tableau for cin+1 , and we know that f |= cin+1 ,
thus there must be an open branch B in T such that f satisfies all the literals in the
branch including every positive literal ∃(a : Pin+1 → P′,cP′). Hence, there exists
f ′, such that:

/0
b //

��

Pin+1

f

~~

a // P′

f ′|=cP′
ttG

i.e., G |= ∃(a◦b : /0→ P′,cP′)

5.2. Choosing the Models for Completeness

In general, in most application areas of Computer Science where graphs play an
important role, these graphs are finite. As a consequence, we could think that the
adequate class of models for GNL should be the class of finite graphs. Unfortunately,
as shown by Trakhtenbrot [19], any deduction method is incomplete, because finite
graph satisfiability is not semi-decidable, which means that no complete deduction
method can exist if models are just finite graphs. A similar problem exists when dealing
with paths. Even if the class of models includes infinite graphs, we cannot expect
completeness if we consider that path expressions denote (finite) paths in a given graph.
The reason is that the satisfiability of a condition stating that there is no path between
two given nodes is not semi-decidable. The problem with paths is similar to what
happens in first-order logic (FOL), in the sense that FOL is not complete with respect
to the class of finitely-generated models. However FOL is complete if models may
include additional non finitely generated elements. In our case, finite paths are finitely
generated by the edges of the graph so, to avoid incompleteness, we consider that the
models of GNL are finite or infinite graphs, including some infinite paths, in addition
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to the “standard” paths. More precisely, models are patterns, which we call weak ω-
closed patterns, where every path expression corresponds to some (finite or infinite)
paths in the pattern.

However, there is an additional technical problem. If, for instance, we are using reg-
ular expressions to specify path expressions and, in a given condition, a path expression
between two nodes is labelled with x+, then that path expression could not denote an in-
finite path, because the language specifying the path labels, {x,xx,xxx, . . . ,xn, . . .}, con-
sists only of finite words, which means that the paths specified by that language must
be finite. In other words, if we want to allow that path expressions may denote infinite
paths in the models of GNL, the languages used in these expressions would need to
include infinite words. More precisely, if a path expression is labelled by the language
{x,xx,xxx, . . . ,xn, . . .}, we would need to assume that the language also includes an
infinite sequence of x′s, which is the ω-limit [20] of the sequence x,xx,xxx, . . . ,xn, . . . .

Then, if we want to work with this new class of models, we have to reconsider the
properties that a class of labelling languages over Σ, L(Σ), must satisfy:

Definition 20 (Path Labelling Languages 2). Given a set of labels Σ, L∞(Σ) is a class
of path labelling ∞-languages over Σ, if it satisfies the following conditions:

1. If L ∈ L∞(Σ) then /0⊂ L⊆ Σ+∪Σω.
2. If L1,L2∈L∞(Σ) then L1·L2∈L∞(Σ).
3. If L∈L∞(Σ) then L=S0∪(

⋃
x∈S1
{x·s| s∈Lx}) for some finite sets of labels S0,S1⊆

Σ, such that,
• {x}∈L∞(Σ) for every x∈S0, and
• Lx∈L∞(Σ) and {x}·Lx∈L∞(Σ) for every x∈S1.

4. For each s∈Σω, if L∈L∞(Σ) and Pref(s)∩L is an infinite set, then s∈L, where
Pref(s) is the set of finite prefixes of s.

Notice that condition 3 is the same as in Def. 3, even if languages may include
infinite words. Condition 4 is new and requires the languages of the class to be closed
under ω-limits [20].

Again, as in Def. 3, the set dL = {{x}| x∈ S0}∪{{x}·Lx| x∈ S1}⊆L∞(Σ) is the
unique finite disjunctive decomposition of L.

Definition 21 (Weak ω-Closed Patterns). Let ≺ be the prefix order on path expres-
sions, defined as: for all 〈n,L1,n1〉,〈n,L2,n2〉, 〈n,L1,n1〉≺〈n,L2,n2〉 if there is 〈n1,L′,n2〉
such that L2 = L1 ·L′.

Then, a pattern P is weak ω-closed if for every 〈n,L,n′〉 ∈⇒P there is a string s∈ L
such that one of the following two conditions holds:

• s ∈ Σ+ and 〈n,{s},n′〉 ∈ →+
GP

• s ∈ Σω and there is an infinite set S = {〈n,{si},ni〉}i≥0, such that, S ⊆→+
GP

and,
for each i, 〈n,{si},ni〉 ≺ 〈n,{si+1},ni+1〉 and si ∈ Pref(s).

The intuition of this definition is that, as discussed above, all path expressions in
this pattern correspond to some finite or infinite path. More precisely, we require that
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for every path expression 〈n,L,n′〉 either GP includes a finite path 〈n,{s},n′〉, with
s ∈ L, or GP includes a sequence of increasing paths such that its limit s is in L.

So, from now on, we will consider that the models of a set of conditions are weak
ω-closed patterns, i.e., graphs that may include some infinite paths, as long as they do
not contradict the negative conditions included in the set. In particular, as we can see
in our completeness proof (cf. Sect. 5.3), when we can not refute a set (or, rather, a
conjunction) of conditions it is because we can find some models, perhaps including
some infinite paths required by the given positive conditions, that do also satisfy the
given negative conditions. Specifically, in Lemma 9 we prove that, if we can not refute
a graph property, then we can prove the existence of a model (cf. Def. 21) of the
condition which is a weak ω-closed pattern.

It is straightforward to show that our tableau method is still sound for this new class
of models:

Theorem 2 (Soundness) Given a graph property c in NCNF, if there is a nested tableau
refutation for c, then there is no weak ω-closed pattern satisfying c.

PROOF. According to Theorem 1 we only need to prove that our basic tableau rules
are sound for the new class of models. But this is straightforward:

• (init): For every f , f |= true.

• (ext) As in the proof of Lemma 5 if `1∨ ·· ·∨ `n is a clause in cP, then if f |= cP
implies f |= `1∨·· ·∨ `n.

• (L) and (PL). Lemma 1 was proved for all pattern morphisms, which means that
Lemmas 2 and 3 are also satisfied for all pattern morphisms. Hence, the two rules
are sound.

• (SR) If a is split mono, according to 2. in Remark 3, `= ∃(a :P→ Q,true), is a
tautology for all pattern morphism. Hence, the rule is also sound.

• (U) By Prop. 5,
∨

u∈Unfold(P,〈n,L,n′〉)∃(u,true) is a tautology also for path ex-
pressions including infinite strings and the new class of models, because of the
requirements for path labelling languages including infinite strings (cf. Def. 20),
which implies that this rule is also sound.

5.3. A Completeness Proof
To prove completeness of our tableau method, we need a notion of saturation of

nested tableaux, describing some kind of fairness that ensures that we do not post-
pone indefinitely an inference step. In addition to assuming that all the basic tableaux
included in the given nested tableau are semi-saturated, this implies two issues: the
choice of the hook for each tableau and the exhaustive application of all possible un-
foldings. Roughly, if a (positive) literal is never chosen as a hook we will be unable to
make inferences between the inner condition of that literal and other literals, because
the inner condition will never be disclosed. Similarly, if some possible unfolding is
never performed, we may fail to see a contradiction between some conditions.

Let us see how conditions evolve along a nested branch when all basic tableaux
are semi-saturated. If `i is a literal in a branch Bi, included in the nested branch NB =
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B0, . . . ,Bi, . . . ,B j, . . . in NT , with contexts /0
a0→ . . .Pi

ai→ ···
a j−1→ Pj, . . . , if `i is not cho-

sen as the hook for that branch, it will be transformed, via a lift rule, into the condition
|Shift(ai, `i)| that, by semi-saturation, will be part of the inner condition of the opener
for the next tableau. If Shift(ai, `i) = ∃(bi,di) (resp. Shift(ai, `i) = ¬∃(bi,di)) and
bi is not an isomorphism, |Shift(ai, `i)| will be the literal `i+1 = ∃(bi, |di|) (resp.
`i+1 = ¬∃(bi, |di|)) that will be part of the next branch, Bi+1. Otherwise, if bi is an
isomorphism, |Shift(ai, `i)| will be a condition with nesting level strictly smaller than
the nesting level of `i and, in particular, the inner condition of `i would be disclosed
when computing |Shift(ai, `i)|. Applying this argument several times, we would have
` j = |Shift(a j−1◦· · ·◦ai, `i)|= |Shift(ai j, `i)| in B j, unless Shift(ai j, `i) = ∃(b j,d j)
(resp. Shift(ai, `i) = ¬∃(b j,d j)) and b j is an isomorphism. Moreover, by Lemma 1,
we know that f |= ` j if, and only if, f ◦ai j |= `i.

Definition 22 (Saturation). A nested tableau NT is saturated if all the tableaux in-
cluded in NT are semi-saturated and, for each nested branch NB = B0,B1, . . . ,B j, . . .
in NT either NB is closed or the following conditions hold:

1. For each positive literal ∃(ai,ci) in NB with nesting level k on branch Bi in tableau
Ti one of the following conditions holds:
• ∃(ai,ci) is a hook for Bi and the leaf of Bi is a tableau opener.
• There is some j > i such that if Shift(ai j, `i) = ∃(b j,d j), either b j is an

isomorphism or ∃(b j,d j) is the hook in B j.
2. For each path expression 〈n,L,n′〉 ∈ ⇒Pi in the context Pi of Bi, there is a j ≥ i

such that the corresponding unfolding rule (U) has been applied in B j over a path
expression 〈ai j(n),L,ai j(n′)〉 ∈ ⇒Pj .

Lemma 8 (Existence of Saturated Nested Tableau) Given a graph property c in NCNF,
there exists a saturated nested tableau NT for c.

PROOF. We can build this tableau as follows. First, according to Lemma 4, we build
a semi-saturated finite tableau Ti1 for c. Then, for every open branch in Ti1 we use
its leaf as an opener to build a new semi-saturated tableau. We continue this process
for all open branches of these tableaux, and so on. This process may never end, so in
the limit, we may have an infinite number of tableaux. Then, by construction, all the
tableaux in NT are semi-saturated. To ensure that the other properties are satisfied, on
the one hand, we have to use a fair strategy in the selection of hooks. This can be done
by having, for each nested branch, a queue that includes the literals that are pending to
be chosen as hooks. Similarly, to ensure that all unfoldings are performed, we may also
keep queues of pending unfoldings. So, when opening a new tableau for a given nested
branch, we would choose the hook for that tableau according to the former queue, and
we would perform an unfolding according to the latter queue, which is equivalent to
adding to the opener the corresponding unfolding tautology.

When working with tableaux, the standard way to show completeness is to prove
that open branches in saturated tableaux define models of the given formulas. In our
case, this is shown in the lemma below. In particular, in our case, we prove that, for any
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open nested branch NB in a saturated nested tableau NT , the colimit of the morphisms
associated with NB is a weak ω-closed pattern P that satisfies NT .

Lemma 9 (Models of Open Nested Branches) Let NB be an open nested branch in a
saturated nested tableau NT for a graph property c in NCNF, let /0

a0→ . . .Pi
ai→ ···

a j−1→
Pj, . . . be the corresponding sequence of contexts for NB, and let P be its colimit, then
P is a weak ω-closed pattern and P |= c.

/0 = P0
a0 //

f0

''

. . .
ai−1 // Pi

ai //

fi

xx

. . .

P

PROOF SKETCH. (See Appendix A.9 for the detailed proof) The proof of this lemma
has two parts. In the first part we prove that P is a valid model, i.e., it is a weak ω-
closed pattern. In particular, we show that if P includes a path expression 〈n,L,n′〉, the
successive application of unfolding rules, which is guaranteed by the saturation of the
given nested tableau, will ensure that there is a path in P matching that path expression.

In the second part we prove that P satisfies the given condition c. Specifically, we
show by induction on the nesting level of literals that, for every literal ` in a branch
Bi in NB, fi |= `. In particular, f0 satisfies all the literals in the first branch of NB
implying, by Lemma 7, that P satisfies c. This proof considers three different cases.

In the first case we assume that there is some j > i, where |Shift(ai j, `)| has nesting
level smaller than n+ 1. For example, this happens when Shift(ai j, `) is a condition
of the form ∃(a′j,d j) or ¬∃(a′j,d j) and a′j is an isomorphismm. The proof of this case
is based essentially on the inductive hypothesis.

Secondly, we consider the case where ` is positive and, for every j > i, |Shift(ai j, `)|
has nesting level n + 1. In this case, the proof makes use of the Shifting Lemma
(Lemma 1), the saturation of the nested tableau, the inductive hypothesis and the fact
that if `= ∃(ai : Pi→ Pi+1,cPi+1) is taken as a hook, then the next context will be Pi+1
and fi+1 ◦ai = fi.

Finally, we consider the case where ` is negative, `= ¬∃(a′i : Pi→ Qi,di), and, for
every j > i, |Shift(ai j, `)| has nesting level n+1. In this case, we have to prove that
if there is a morphism f : Qi→ P satisfying f ◦a′i = fi, then f does not satisfy di. The
proof makes use of the FinCol property (see Prop. 2) of Pattern that ensures that
if there is such a morphism f there will be a Pj and a morphism Qi → Pj that allow
us to apply the partial lift rule. Moreover, that rule will be applied because if NT is
saturated, Tj will be semi-saturated, which means that all possible partial lift rules will
be applied to the hook in B j. At this point, the Shifting Lemma, together with the
inductive hypothesis, will ensure that f does not satisfy di.

Finally, we have all the ingredients to prove completeness.

Theorem 3 (Completeness) Given a graph property c in NCNF, if c is unsatisfiable,
then there is a nested tableau refutation for c.
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PROOF. Because of Lemma 8 we know that there exists a saturated nested tableau NT
for c. But if NT is not a tableau refutation for c, there exists at least one open nested
branch NB in NT . Then, by Lemma 9 we know that there is a weak ω-closed pattern
P, such that P |= c.

A direct consequence of this theorem is that, if we restrict GNL to conditions not
including paths in patterns (i.e., patterns are just graphs), the same inference rules, ex-
cluding unfolding, are complete for the class of finite and infinite graphs. The reason
is that, first, if patterns include no paths then unfolding is useless and, second, given
P = (GP,⇒P) and Q = (GQ,⇒Q), if⇒P= /0, we have that f :P→ Q is a pattern mor-
phism if and only if f :GP→ GQ is a graph morphism. As a consequence, considering
the role of morphisms in the definition of satisfaction, we have that for any weak ω-
closed pattern P and any graph condition c including no path expressions in its patterns,
we have that P |= c if and only if (GP, /0) |= c. This result, generalizes the complete-
ness proof in [7] to the case where morphisms in conditions and in the definition of
satisfaction are not necessarily monomorphisms.

Corollary 1 (Completeness) The nested tableau method is complete with respect to
the class of graphs, for graph conditions whose patterns include no path expressions.

6. Related Work

The idea of expressing graph properties by means of graphs and graphs morphisms
has its origins in the notions of graph constraints and application conditions [21, 22,
23]. In [24], Rensink presented a logic for expressing graph properties, closely re-
lated with the Logic of Nested Graph Conditions (LNGC) of Habel and Penneman [3].
Moreover, in [25], Habel and Radke, presented a notion of HR+ conditions with vari-
ables that allowed them to express properties about paths, but no deduction method
was presented. First approaches to provide deductive methods to this kind of logics
were presented in [15] for a fragment of LNGC, and by Pennemann [18, 4] for the
whole logic. Unfortunately, Penneman was unable to show the completeness of his
approach. In [26], Poskitt and Plump propose an extension of nested conditions with
monadic second-order (MSO) properties over nodes and edges. In particular, they can
define path predicates that allow for the direct expression of properties about arbitrary-
length paths between nodes. However, again this formalism lacks a deduction method.
Lambers and Orejas [7] defined the nested tableaux method restricted to LNGC and
were able to show the completeness of a subset of Pennemann’s inference rules. On
the other hand, Navarro, Orejas and Pino [10] presented a complete proof system for
reasoning about XML patterns, including paths. Our work here extends [7, 10], but
this extension, as discussed in the introduction, is far from straightforward.

The work in this paper is also related to foundational work in the area of query
languages for graph databases. An excellent survey has been published recently sum-
marizing most of this work [27]. However, even if conceptually there is a close connec-
tion, the work conducted in this area has little relation to what we present here. On the
one hand, that work concentrates on the logic fragment associated to some classes of
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graph queries. Being precise, in our terms, they essentially work with formulas with at
most one level of nesting. On the other hand, they mainly concentrate on algorithmic,
complexity and decidability issues (see, e.g., [28, 29, 30, 31, 32]).

7. Conclusion and Outlook

In this paper we have presented GNL, an extension of LNGC, including the possi-
bility of specifying navigational properties, and we have presented a sound and com-
plete tableau refutation method for this logic. Moreover, using a-satisfaction [3], in-
stead of m-satisfaction which is the common choice, allows us to avoid exponential
branching in tableau refutations. More precisely, the result of shifting a literal in our
context is just another literal but when using m-satisfaction, the result of shifting a lit-
eral is, in the worst case, an exponential disjunction of literals. In addition, the use of
a-satisfaction simplified considerably our technical constructions, including the com-
pleteness proofs.

GNL is not restricted to a specific class of graphs, but it can be used for any class
that satisfies the conditions stated in the paper. Moreover, in [11] we presented basic
ideas for a general formulation of GNL, applicable to any category of structures sat-
isfying some general requirements, and in [9] we have shown that LNGC can be used
to reason about attributed graphs, and we believe that it would not be difficult to show
that this is also the case for GNL.

As said in the introduction, we think that GNL can be useful in many areas of
Computer Science. However we are specifically interested in the areas of model-driven
development (MDD) and graph databases.

In MDD systems are described by models, typically graphical models, like the
different UML diagrams, Petri Nets or the various kinds of transition diagrams, and
development is expressed by model transformations. More precisely, when modeling
a system, besides the diagrams, we may have to declare some constraints. Most often,
this is done using some textual language, like OCL in the case of UML, or directly
first-order logic. We believe that expressing these constraints in LNGC or in GNL
if navigational properties are required, allows one to express these constraints in a
simpler and more intuitive way, since the logical notation uses directly the elements
of the modeling notation. This is especially the case when the constraints refer to the
structure of the models where, if using a textual language, we would need to encode
that structure.

Moreover, when describing the methods of a model using graph transformation,
which is something quite natural if computation states are modelled by graphs, the use
of a graph logic to specify constraints provides some powerful techniques for verifica-
tion (see, for instance, [3]). A special case, in this sense is the work of Parisi-Presicce,
Koch and Mancini on the specification and analysis of access control policies (see, e.g.
[33]). In particular, they specify access control policies using graph constraints (i.e.,
properties expressed similarly as the conditions in LNGC or GNL) to describe the valid
states of a system, and graph transformation rules to specify operations. Interestingly,
they use some form of ad-hoc deduction on these constraints to check the consistency
of a policy.
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In the area of model transformation, conditions defined using GNL can be used
to state that some related models are synchronized. More precisely, model synchro-
nization is a difficult problem that is relevant to different areas of Computer Science,
i.e., MDD (see, for instance, [34]), programming languages (see, for instance, [35]),
and databases (see, for instance, [36]). This problem can be explained as follows. We
have two (or more) models M1 and M2, where M2 has been obtained from M1 by some
transformation. For some reason, either M1 or M2 have been modified afterwards, how
can we modify the other model so that one model continues being the transformation
of the other? If the given classes of models are represented by some kind of graphs, as
is often the case in MDD, this problem can be formulated as the problem of repairing
a graph that does not satisfy a set of constraints, where these constraints describe what
it means that a model is the transformation of another model. In particular, our work
[37], was partially motivated by this problem.

We also believe that GNL could be used as a logical foundation for graph databases
and their query languages. One could argue that GNL graphs do not include any data
(except labels), but as said above this is not exactly true. GNL is a general logic that
may be used to reason about many classes of graphs, as long as their associated cate-
gories satisfy the requirements stated in Def. 1. Specifically, in [9] LNGC is defined
over the category of symbolic graphs [38], where a symbolic graph is an attributed
graph where, in addition, we can express constraints on its attributes. More precisely, a
symbolic graph, (G,Φ), consists of an attributed graph G whose values are represented
by variables, and of a set of constraints Φ over a given data algebra, specifying the
possible values of these variables4.

In particular, we think that GNL can play a role in connection with queries and with
integrity constraints. With respect to queries, we have checked that all queries in the
LDBC benchmark [39], except counting queries, can be easily expressed in GNL when
defined over symbolic graphs. Actually, in Ex. 4, we present a very simple example
of a boolean query and how it could be solved using our tableau method. In particular,
the database G would be represented by the condition ∃( /0→ G,true) and, to solve a
query q, we would refute q with respect to the database. Then, the completeness of our
tableau method would guarantee some sort of completeness of the answers obtained
from each closed branch of the tableau.

It is clear that, in general, queries belong to a very simple kind of graph conditions
and, therefore, that our results may be considered too powerful. However, besides the
possibility of defining specialized proof methods for the standard class of queries, our
approach would allow us to explore other kind of situations like, for instance, to study
possible ways of defining deductive graph databases.

With respect to integrity constraints, not only we can use our approach to state
them, but we can also use it to check if a given database satisfies them, and to repair
it, in case it does not satisfy the given constraints. In particular, as said above, in [37],
using our tool AutoGraph, we show how we can repair a graph that does not satisfy a
set of graph conditions (without path expressions). It is part of future work to extend

4For instance, these constraints may just be equality constraints, X = v, stating that the value of X should
be v.
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AutoGraph and this automatic repair approach also to GNL.
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modern query languages for graph databases, ACM Comput. Surv. 50 (5) (2017)
68:1–68:40.

39



[28] P. Barceló, L. Libkin, J. L. Reutter, Querying graph patterns, in: Proceedings of
the 30th ACM PODS 2011, 2011, pp. 199–210.

[29] P. T. Wood, Query languages for graph databases, SIGMOD Record 41 (1) (2012)
50–60.

[30] P. Barceló, Querying graph databases, in: Proceedings of the 32nd ACM PODS
2013, 2013, pp. 175–188.

[31] P. Barceló, L. Libkin, J. L. Reutter, Querying regular graph patterns, J. ACM
61 (1) (2014) 8:1–8:54.

[32] P. Barceló, M. Romero, M. Y. Vardi, Semantic acyclicity on graph databases,
SIAM J. Comput. 45 (4) (2016) 1339–1376.

[33] M. Koch, L. V. Mancini, F. Parisi-Presicce, Graph-based specification of access
control policies, J. Comput. Syst. Sci. 71 (1) (2005) 1–33.

[34] H. Giese, R. Wagner, From model transformation to incremental bidirectional
model synchronization, Software and System Modeling 8 (1) (2009) 21–43.

[35] M. Hofmann, B. C. Pierce, D. Wagner, Symmetric lenses, in: POPL 2011, ACM,
2011, pp. 371–384.

[36] C. J. Date, View Updating and Relational Theory, O’Reilly, 2012.

[37] S. Schneider, L. Lambers, F. Orejas, A logic-based incremental approach to graph
repair, in: Fundamental Approaches to Software Engineering, Held as Part of
ETAPS 2019, Vol. 11424 of Lecture Notes in Computer Science, Springer, 2019,
pp. 151–167.

[38] F. Orejas, Symbolic graphs for attributed graph constraints, J. Symb. Comput.
46 (3) (2011) 294–315.

[39] The Linked Data Benchmark Council (LDBC), Social network benchmark, Tech.
rep. (2017).
URL https://github.com/ldbc/ldbc_snb_docs

40

https://github.com/ldbc/ldbc_snb_ docs
https://github.com/ldbc/ldbc_snb_ docs


Appendix A. Detailed proofs

Appendix A.1. Proposition 1.

ELGraph is cocomplete, has an initial object /0 and satisfies the property FinCol.

PROOF. We have to prove that ELGraph is cocomplete, has an initial object /0 and sat-
isfies the property FinCol, i.e., if {Gi

ai→Gi+1}i∈N is an infinite sequence of morphisms

between finite graphs where {Gi
fi→ G}i∈N in Graph is their colimit, for any i and any

finite graph G′, if there are two morphisms gi : Gi → G′ and g : G′ → G, satisfying
g◦gi = fi, then there is some j ≥ i and a morphism g′j : G′→ G j such that f j ◦g′j = g
and g′j ◦gi = ai j, where ai j denotes the morphism a j−1 ◦ · · · ◦ai.

Gi
ai //

fi

&&
gi

��

. . .
a j−1 // G j

a j //

f j

xx

. . .

G

G′

g

OO g′j

@@

The initial object is the empty graph /0, since for every graph G in the category the
empty morphism eG : /0→ G is the unique morphism from /0 to G.

The construction of colimits for set-based categories is quite standard. Let D be a
diagram in the category of labelled graphs. Let≡D be the smallest equivalence relation
over the elements (nodes and edges) of the graphs in D satisfying, for all morphisms
h : H→H ′ in D, and all elements x,x′ in H and H ′, respectively, that x≡D x′ if h(x)= x′.
Then we define G together with the family of morphisms fH : H → G, the colimit of
D, as follows:

• NodeG = ∪H∈DNodeH/≡D.

• EdgeG = ∪H∈DEdgeH/≡D.

• sG(|e|) = sH(e), tG(|e|) = tH(e), LabelG(|e|) = LabelH(e) if e ∈ EdgeH .

• For every H in D and every element (node or edge) x in H, fH(x) = |x|.
It is not difficult to prove that G together with the family of morphisms fH is indeed

a colimit.
To prove FinCol, first notice that according to how colimits are defined, since { fk :

Gk → G}k≥0 is the colimit of the diagram D = {Gk
ak→ Gk+1}k≥0, it means that for

every k ≥ 0 and every xk ∈ Gk, fk(xk) is defined as |xk| for ≡D. Consider the given Gi
in the sequence and the finite graph G′ where gi :Gi→ G′, g :G′→ G, and g◦gi = fi.
Given an element x ∈ G′, since g(x) is an element in the colimit G, by construction
of the colimit and by definition of ≡D, there must exist some k such that there is a
unique xk ∈ Gk with g(x) = |xk| (we only need to go forward in the sequence to obtain
this unicity). The same happens for every other element (node, edge or label) in G′.
Then, as NodeG′ , EdgeG′ and the set of labels that label an edge in G′ are finite sets,
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there must exist a graph G j in the sequence (for instance, j being the maximum of all
considered k) with the property that for every x ∈G′ there is a unique x j ∈G j such that
|x j| = g(x). This means that the graph morphism g′j : G′→ G j defined: for all x ∈ G′,
x j ∈ G j, g′j(x) = x j if g(x) = |x j|, is well-defined and such that f j ◦g′j = g.

To complete the proof, let us see that g′j(gi(xi)) = ai j(xi), holds for every xi ∈ Gi.
By definition of g′j, g′j(gi(xi)) is the unique element in G j such that its class is g(gi(xi)),
therefore g′j(gi(xi)) = ai j(xi) since |ai j(xi)|= f j(ai j(xi)) = fi(xi) = g(gi(xi)).

Appendix A.2. Proposition 2.

Patterns and pattern morphisms form the category Pattern. Moreover, if Graph
has initial objects, is cocomplete and satisfies the property FinCol, then so does Pattern.

PROOF. The existence of identity morphisms and morphism composition in Pattern

is an almost direct consequence of the fact that pattern morphisms are morphisms in
Graph, and the same applies to the associativity of morphism composition.

As in the case of graphs, the empty pattern is the initial object in Pattern, since
for every pattern P the inclusion /0 ↪→ P is the unique morphism from /0 to P.

Let D be a diagram in Pattern and let D|Graph be the corresponding diagram in
Graph (i.e., the diagram consisting of morphisms h : GP → GP′ for every morphism
h : P → P′ in D). Let C = { fP : GP → H}P∈D be the colimit of D|Graph in Graph.
Finally, let Q be the pattern Q = (H,⇒Q), where:

⇒Q = {〈 fP(n),L, fP(n′)〉 | fP ∈C and 〈n,L,n′〉 ∈ ⇒P}

It is easy to see that CPattern = { fP : P→ Q} fP∈C is the colimit of D in Pattern.
On the one hand, by definition, every fP ∈ CPattern is a morphism in Pattern, and
by construction CPattern is a cocone. On the other hand, let us suppose that C′ =
{ f ′P : GP → Q′}P∈D is a cocone in Pattern. Then, C′|Graph is a cocone in Graph

and, hence, there is a unique morphism h : GQ→ GQ′ such that h ◦ fP = f ′P, for every
P ∈ D. But h : Q→ Q′ is also a morphism in Pattern, since if 〈n,L,n′〉 ∈ ⇒Q then,
by definition, there is a P ∈ D such that 〈m,L,m′〉 ∈ ⇒P, n = fP(m) and n′ = fP(m′).
But this means that 〈 f ′P(m),LP, f ′P(m

′)〉 ∈ ⇒Q̂′ , for some non-empty LP⊆L. Hence,
〈h◦ fP(m),LP,h◦ fP(m′)〉 ∈ ⇒Q̂′ , i.e., 〈h(n),LP,h(n′)〉 ∈ ⇒Q̂′

Finally, Pattern satisfies the property FinCol, i.e., given an infinite sequence of
morphisms {Pi

ai→ Pi+1}i≥0 between finite patterns (i.e., their sets of nodes, edges and

their set of path expressions are finite) and given their colimit {Pi
fi→ P}i≥0 in Pattern,

for all morphisms gi :Pi→ P′, g :P′→ P in Graph, such that P′ is finite and g◦gi = fi,
there is some j ≥ i and a morphism g′j :P′→ Pj such that f j ◦g′j = g and g′j ◦gi = ai j,
where ai j denotes the morphism a j−1 ◦ · · · ◦ai.
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Pi
ai //

fi

&&
gi

��

. . .
a j−1 // Pj

a j //
f j

xx

. . .

P

P′

g

OO g′j

@@

On the one hand, according to how colimits in Pattern are defined, { f j : GPj →
GP}i≥0 is a colimit in Graph, hence there must exist a k and a graph morphism g′k :
GP′ → GPk such that fk ◦g′k = g and g′k ◦gi = aik. Notice that this also implies that for
every j > k there is a morphism g′j :GP′ → GPj such that f j ◦g′j = g and g′j ◦gi = ai j.

On the other hand, we also know that

⇒Q = ∪ j≥0{〈 f j(n),L, f j(n′)〉 | 〈n,L,n′〉 ∈ ⇒Pj}

Let R j be, for each j, the relation R j = {〈 f j(n),L, f j(n′)〉 | 〈n,L,n′〉 ∈ ⇒P+
j
}, then we

have that⇒P̂= ∪ j≥0 R j and, for every j, R j⊆R j+1.
Finally, since P′ is a finite pattern, there should be a k′ such that, for every 〈n,L,n′〉 ∈

⇒P′ , 〈g(n),L,g(n′)〉 ∈ Rk′ . Let j = max(k,k′) then we have that the morphism g′j :P
′→

Pj is a pattern morphism satisfying f j ◦g′j = g and g′j ◦gi = ai j

Appendix A.3. Proposition 3.

Given morphisms g :P1→ P2 and h :P2→ P3 and given a condition cP1 , we have:

Shift(h,Shift(g,cP1)) = Shift(h◦g,cP1)

PROOF. By induction on the structure of conditions:

P1

(1)

a1 //

g

��

Q1

g′

��
P2

(2)

a2 //

h
��

Q2

h′

��
P3

a3 // Q3

• Shift(h,Shift(g,true)) = true = Shift(h ◦
g,true)

• Shift(h,Shift(g,∃(a1 :P1→ Q1,cQ1))) =
Shift(h,∃(a2 :P2→ Q2,Shift(g′,cQ1))) =
∃(a3 : P3 → Q3,Shift(h′,Shift(g′,cQ1))), by in-
ductive hypothesis, Shift(h′,Shift(g′,cQ1)) =
Shift(h′ ◦ g′,cQ1). Thus, ∃(a3 : P3 →
Q3,Shift(h′,Shift(g′,cQ1))) =
∃(a3 :P3→ Q3,Shift(h′ ◦g′,cQ1)) =
Shift(h◦g,∃(a1 :P1→ Q1,cQ1))

• The other two cases hold directly by inductive hypoth-
esis.
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Appendix A.4. Proposition 4.
If a :P→ Q is not split mono and⇒P= /0, then idP satisfies ¬∃(a,cQ), for any cQ.

PROOF. First, notice that P = (GP, /0). Then, we can see that idP |= ¬∃(a,cQ) if a
is not split mono. Let us suppose that idP satisfies ∃(a,cQ), then there exists a mor-
phism g : Q→ P such that g◦a = idP and g satisfies cQ. Thus, a would be split mono
contradicting the assumptions.

Appendix A.5. Lemma 2.
Let `1 = ∃(a1,c1) and `2 be literals with morphisms ai : P→ Qi, for i = 1,2. We

define the lift of literals as follows:

Lift(∃(a1,c1), `2) = ∃(a1,c1∧|Shift(a1, `2)|)

Then, f |= `1∧ `2 if, and only if, f |= Lift(`1, `2).

PROOF. Assume f : P→ G such that f |= ∃(a1,c1 ∧ |Shift(a1, `2)|). That is, there
exists a morphism g :Q1→ G such that f = g◦a1 and g |= c1∧|Shift(a1, `2)|. Then,
this is equivalent to f |= `1 and f |= `2, since by Lemma 1 we have that g ◦ a1 |= `2.

Appendix A.6. Lemma 3.
Let `1 = ∃(a1 : P→ Q1,c1) and `2 = ¬∃(a2 : P→ Q2,c2) such that there exists a

morphism g : Q2 → Q1 satisfying a1 = g ◦ a2. We define the partial lift of literals as
follows:

PLift(∃(a1,c1), `2) = ∃(a1,c1∧|Shift(g,¬c2)|)

Then, f |= `1∧ `2 implies f |= PLift(`1, `2).

PROOF. If f |= `1, there is a morphism h1 : Q1 → G such that f = h1 ◦ a1 = h1 ◦
g ◦ a2, and h1 |= c1. And if f |= `2, there is no morphism h2 : Q2 → G with f =
h2 ◦ a2, and h2 |= c2. Then, since f = h1 ◦ g ◦ a2, we have h1 ◦ g |= ¬c2, implying
h1 |= |Shift(g,¬c2)| by Lemma 1. Since h1 |= c1∧ |Shift(g,¬c2)| we conclude that
f |= PLift(`1, `2).

Appendix A.7. Lemma 4.
For any conditon cP over P in NCNF and any natural number k, such that k is

smaller or equal than the number of path expressions in⇒P, there exists a finite semi-
saturated tableau T for cP including k unfolding tautologies.

PROOF. We can obtain finite semi-saturated tableaux as follows:

1. Apply the extension rule (ext) to all clauses in cP (including the unfolding tau-
tologies). Since this condition is a finite conjunction of finite clauses, we can
apply this rule a finite number of times to include in the tableau all the literals in
cP. Then the resulting tableau will be finite.
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2. For each branch B in the tableau:
(a) If B only includes negative literals, there are no literals with split monomor-

phisms and⇒P= /0, then we have finished with this branch. Otherwise, apply
the split reduction rule and the unfolding rule to k different path expressions
in P, so that now B includes a positive literal.

(b) If the branch is not closed, choose a hook, ` = ∃(a : P→ Q,c), and succes-
sively apply the lift rule, first to the hook and the first literal in the branch,
next to the previous result and the second literal and so on, until we have
applied it to all the literals in the branch. This is a finite process producing a
finite branch whose final output is the literal

∃(a, c ∧
∧

`′∈B\{`}
|Shift(a, `′)| )

(c) Successively apply, whenever is possible, the partial lift rule to the literal
obtained previously and to all negative literals. This is also a finite process,
producing the literal:

∃(a, c ∧
∧

`′∈B\{`}
|Shift(a, `′)| ∧

∧
`′∈BPL

|Shift(g,¬d′)|)

with BPL={¬∃(a′,d′)∈B\{`} | ∃g : a = g◦a′}.

By construction, the tableau is semi-saturated.

Appendix A.8. Lemma 7.

If T is a semi-saturated tableau for a condition cP in NCNF, then we have:

1. f |= T implies f |= cP.
2. For every c′P ⊆ cP and every open branch B, if for every literal ` in B that is also

in c′P f |= `, then f |= c′P.
3. If for every literal ` in B f |= `, then f |= cP

PROOF.
(2.) Since T is semi-saturated, B includes a literal for each clause in c′P. Hence, if f
satisfies all the literals in B that are also in c′P, f satisfies each clause in c′P and, so, it
satisfies c′P.
(3.) If condition (2.) holds for every c′P ⊆ cP, in particular, it also holds for cP.
(1.) If f |= T then there is an open branch B such that f |= B, since otherwise all
branches will be unsatisfiable and so will be T . Hence f satisfies all the literals in B.
Thus, by (3.) f |= cP.
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Appendix A.9. Lemma 9.
Let NB be an open nested branch in a saturated nested tableau NT for a graph

property c in NCNF, let /0
a0→ . . .Pi

ai→ ···
a j−1→ Pj, . . . be the corresponding sequence of

contexts for NB, and let P be its colimit, then P is a weak ω-closed pattern and P |= c.

/0 = P0
a0 //

f0

''

. . .
ai−1 // Pi

ai //

fi

xx

. . .

P

PROOF. As described in the sketch, the proof of this lemma has two parts. In the first
part we prove that P is a valid model, i.e., it is a weak ω-closed pattern. In particular,
we show that if P includes a path expression 〈n,L,n′〉, the successive application of
unfolding rules, which is guaranteed by the saturation of the given nested tableau, will
ensure that there is a path in P matching that path expression.

In the second part we prove that P satisfies the given condition c. Specifically, we
show by induction on the nesting level of literals that, for every literal ` in a branch
Bi in NB, fi |= `. In particular, f0 satisfies all the literals in the first branch of NB
implying, by Lemma 7, that P satisfies c. This proof considers three different cases.

In the first case we assume that there is some j > i, where |Shift(ai j, `)| has nesting
level smaller than n+ 1. For example, this happens when Shift(ai j, `) is a condition
of the form ∃(a′j,d j) or ¬∃(a′j,d j) and a′j is an isomorphismm. The proof of this case
is based essentially on the inductive hypothesis.

Secondly, we consider the case where ` is positive and, for every j > i, |Shift(ai j, `)|
has nesting level n + 1. In this case, the proof makes use of the Shifting Lemma
(Lemma 1), the saturation of the nested tableau, the inductive hypothesis and the fact
that if `= ∃(ai : Pi→ Pi+1,cPi+1) is taken as a hook, then the next context will be Pi+1
and fi+1 ◦ai = fi.

Finally, we consider the case where ` is negative, `= ¬∃(a′i : Pi→ Qi,di), and, for
every j > i, |Shift(ai j, `)| has nesting level n+1. In this case, we have to prove that
if there is a morphism f : Qi→ P satisfying f ◦a′i = fi, then f does not satisfy di. The
proof makes use of the FinCol property (see Prop. 2) of Pattern that ensures that
if there is such a morphism f there will be a Pj and a morphism Qi → Pj that allow
us to apply the partial lift rule. Moreover, that rule will be applied because if NT is
saturated, Tj will be semi-saturated, which means that all possible partial lift rules will
be applied to the hook in B j. At this point, the Shifting Lemma, together with the
inductive hypothesis, will ensure that f does not satisfy di.

Let us see now the detailed proof:

1. P is a weak ω-closed pattern: If 〈n,L,n′〉 ∈⇒P then, according to the construction
of colimits in Prop. 2, there exists 〈ni,L,n′i〉 ∈⇒Pi with fi(ni) = n and fi(n′i) = n′,
for some i ≥ 0. Moreover, since the tableau is saturated, the unfolding rule has
been applied in some branch B j1 , j1 ≥ i, in NB with context Pj1 , over the path ex-
pression 〈ai j1(ni),L,ai j1(n

′
i)〉 ∈⇒Pj1

. That is, one literal ∃(u,true) with u:Pj1→
P′j1 ∈ Unfold(Pj1 ,〈ai j1(ni),L,ai j1(n

′
i)〉) will be added to B j1 . Since we assume

that NT is saturated, there will be some k, k ≥ j1, where if |Shi f t(∃(u,true))|=
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∃(u′,true), and u′ is not an isomorphism, it will be chosen as a hook at Bk.
Then, according to Def. 10, the new context Pk+1 will include either a rela-
tion 〈aik+1(ni),{x},aik+1(n′i)〉 or, both relations 〈aik+1(ni),{x1},a j1k+1(m j1)〉 and
〈a j1k+1(m j1),L

x1 ,aik+1(n′i)〉, depending on which language is the one associated
to the unfolding morphism u, that is, if either it is {x}∈dL or x1·Lx1 ∈dL, respec-
tively. In the first case, it means that the colimit P will include the edge expression
〈n,{x}, f j1(m j1)〉 ∈ →GP , thus P satisfies to be a weak ω-closed pattern. In the
second case, it means that the colimit P will include the following edge and path
expression:
• 〈n,{x1}, f j1(m j1)〉 ∈ →GP , and
• 〈 f j1(m j1),L

x1 ,n′〉 ∈ ⇒P

If u′ is an isomorphism, we arrive to the same conclusion, since it would mean
that, depending on which morphism is u,
• either 〈aik(ni),{x},aik(n′i)〉 or
• 〈aik(ni),{x1},a j1k(m j1)〉 and 〈a j1k(m j1),L

x1 ,aik(n′i)〉
would already be in Pk and, as a consequence, either 〈n,{x}, f j1(m j1)〉 ∈ →GP , or
〈n,{x1}, f j1(m j1)〉 ∈ →GP and 〈 f j1(m j1),L

x1 ,n′〉 ∈ ⇒P.
Again, by saturation of NT , at some further branch B j2 , the unfolding rule will
be applied to 〈 f j1(m j1),L

x1 ,n′〉, and so on. In the limit, one of the following
situations should hold: i) either the unfolding rule is applied finitely until some
finite path labelled with s ∈ Σ+ is completely included in→+

GP
, for some s∈L; or

ii) the unfolding is applied infinitely, including in P an infinite number of edges
n

x1→ f j1(m j1)
x2→ f j2(m j2), . . . , f jk(m jk)

xk+1→ f jk+1(m jk+1), . . . , which means that we
have

{〈n,{x1}, f j1(m j1)〉, . . . ,〈n,{x1x2 . . .xk+1}, f jk+1(m jk+1)〉, . . .} ⊆→
+
GP

and {x1, x1x2, . . . , x1x2 . . .xk+1, . . .}⊆Pref(s), with s∈L. In any case, we can
conclude that P is a weak ω-closed pattern.

2. P satisfies c: We will show by induction on the nesting level of literals that for
every literal ` in a branch Bi in NB, fi |= `. In particular, this means that f0
satisfies all the literals in the first branch implying, by Lemma 7, that P satisfies
c.
The base case is direct, since P |= true.
For the general case, if ` is a literal of nesting level n+1 in some branch Bi, we
will first consider the case where there is a j, with j≥ i, where |Shift(ai j, `)| has
nesting level smaller than n+1 and for every k, with i≤ k < j, Shift(aik, `) has
not been chosen as the hook of Bk. Otherwise, we consider two cases, depending
on whether ` is positive or negative.
• Let us assume without loss of generality that j is the smallest index where
|Shift(ai j, `)| has nesting level smaller than n+1, i.e., |Shift(ai j−1, `)| has
nesting level n+ 1 and |Shift(ai j, `)| has nesting level n. Since the nested
tableau is saturated, |Shift(ai j, `)|, will be part of the inner condition of the
opener of Tj and, hence, it will be part of the condition cPj for that tableau.
Moreover, since the nesting level of |Shift(ai j, `)| is at most n, we may
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assume, by inductive hypothesis, that f j |= `′ for all literals `′ in B j that are
in |Shift(ai j, `)|, and by Lemma 7 f j |= |Shift(ai j, `)|. Finally, by Lemma
1, f j ◦ai j |= `, i.e., fi |= `.
• If `= ∃(bi :Pi→ P′i ,di) and, for every j > i, |Shift(ai j, `)| has nesting level

n+1, by saturation, there must exist a j, with j ≥ i, where |Shift(ai j,∃(bi :
Pi → P′i ,di))| is taken as the hook of B j. Moreover, we may assume that if
Shift(ai j,∃(bi,di)) = ∃(b j :Pj→ P′j,Shift(a

′
i j,di)), with P′j and a′i j defined

by the pushout diagram (1) below, then |Shift(ai j,∃(bi,di))| = ∃(b j : Pj →
P′j, |Shift(a′i j,di)|). The reason is that if b j would be an isomorphism then
|Shift(ai j, `)| would have nesting level smaller than n+1.
Now, if ∃(b j : Pj → P′j, |Shift(a′i j,di)|) is the hook for B j, this means that
P′j = Pj+1, b j = a j and the diagram below on the right commutes, since it is
part of the cocone defining P. And it also means that |Shift(a′i j,di)| is part
of the condition for Tj+1. Moreover, since ` has nesting level n+1, we may
assume, by inductive hypothesis, that f j+1 |= `′ for all literals `′ in B j+1 that
are in |Shift(a′i j,di)|, and by Lemma 7 f j+1 |= |Shift(a′i j,di)|. So, f j |=
|Shift(ai j,∃(bi,di))|. Finally, by Lemma 1, this implies that f j ◦ ai j |= `,
but f j ◦ai j = fi, thus fi |= `.

Pi

ai j

��

bi //

(1)

P′i

a′i j
��

Pj
a j //

f j ��

Pj+1

f j+1��
Pj b j

// P′j P

• If ` = ¬∃(a′i : Pi → Qi,di) and, for every j > i, |Shift(ai j, `)| has nesting
level n+1, to prove that fi |= `, we need to show that there does not exist a
morphism f : Qi→ P such that f ◦ a′i = fi and f |= di. Hence, if there is no
morphism f : Qi → P, then fi |= `. Thus, let us assume that this morphism
f :Qi→ P exists and let us show that f does not satisfy di.
Following Prop. 2, there must exist Pj, with j≥ i, and a morphism g:Qi→Pj
with g◦a′i = ai j and f = f j ◦g:

Pi
ai j //

fi

&&
a′i

��

Pj
f j

xxP

Qi

f

OO g

@@

Let ∃(a j : Pj → Pj+1,c j) be the hook in B j, for some condition c j. By the
universal property of pushout diagram (2) below, since a j ◦ ai j = a j ◦ g ◦ a′i,
there must exist a morphism g j : Q j → Pj+1 such that a j ◦ g = g j ◦ b j and
a j = g j ◦a′j.
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Pi

(2)

ai j //

a′i
��

Pj

a′j
��

a j

��

Qi
b j //

a j◦g
,,

Q j

g j

!!
Pj+1

So, we have the following situation:
– ∃(a j :Pj→ Pj+1,c j) is the hook in B j, for some condition c j.
– |Shift(ai j,¬∃(a′i,di))|= ¬∃(a′j :Pj→Q j, |Shift(b j,di)|) is a negative

literal in B j. Otherwise, a′j would be an isomorphism and |Shift(ai j, `)|
would have nesting level smaller than n+1.

– There is a morphism g j :Q j→ Pj+1 such that a j = g j ◦a′j.
This means that we can apply a partial lift rule to these literals. Moreover,
since we assume that the tableau NT is saturated, the partial lift rule had to
be applied in that branch B j, and the condition |¬Shift(g j,Shift(b j,di))|
(which is equal to |¬Shift(g j ◦ b j,di)|) will be part of the inner condition
of the opener and, therefore, of the condition for Tj+1. Since the nesting
level of |¬Shift(a j ◦g,di)| is at most n, by inductive hypothesis, f j+1 |= `′

for every `′ in B j+1 and in |¬Shift(a j ◦g,di)|. Then, by Lemma 7, f j+1 |=
|¬Shift(a j ◦g,di)|, and by Lemma 1, we obtain f |= ¬di since f = f j ◦g =
f j+1 ◦a j ◦g.
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Appendix B. Example of a nested tableau refutation

In this appendix we show a nested tableau refutation for condition c = c1∧ c2∧ c3

with c1 = ∃( /0 −→ [• x+⇒•],true), c2 = ∃( /0 −→ [• y+⇒•],true), and c3 = ¬∃( /0 −→[
• x→•
• y→•

]
,true).

The nested tableau consists of 6 simple tableaux, depicted in Figures B.11, B.12
and B.13.

In Fig. B.11, we start bulding a tableau T0 with true and adding the literals of
condition c by means of the extension rule (ext). Then we choose as hook the positive
literal c1 and apply twice the lift rule (L): first to c1 and c2, obtaining c4, and then to
c4 and c3 obtaining c5. T0 is a semi-saturated tableau with a leaf c5 which is equivalent
to the initial condition c. Although it is not necessary for semi-saturation, note that in
this tableau it is not possible to apply the split reduction rule (since the morphism in
the only negative literal c3 is not split mono) nor the unfolding rule (since /0 context has
no path expressions).

Now c5 = ∃( /0−→ [• x+⇒•],c6∧c7) is an opener, so that we open a new tableau T1 of

context [• x+⇒•] for its inner condition c′1 = c6∧c7. Since there exists a path expression
〈n,x+,n′〉 in the context of T1, it is possible to apply the unfolding rule to obtain the
new literals c8 and c9 with morphisms u0 and u1 respectively. Then we proceed in each
branch of T1 as before, by taking c8 and c9 as hooks, respectively, and applying the lift
rule (L) until obtaining two leaves, c14 and c16, in this semi-saturated tableau T1. These
conditions are the openers for adding two more tableaux (in the nested tableau we are
building) for their inner conditions c′2 and c′3 respectively.

In Fig. B.12, we can see a closed nested tableau for condition c′2 built from tableaux
T2 and T4. Note that in the tableau T4 we have only a negative literal c′4, but positive
literals are added by means of the unfolding rule, since there exists a path expression
〈n,y+,n′〉 in the context of T4. Now, in both branches the partial lift rule (PL) can be
applied to obtain the leaves c22 and c23 which are both equivalent to false. Similarly,
in Fig. B.13 we show a closed nested tableau for condition c′3.
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c = c1∧ c2∧ c3

true T0 of context /0

c1 = ∃( /0−→ [• x+⇒•],true)

(ext)

c2 = ∃( /0−→ [• y+⇒•],true)

(ext)

c3 = ¬∃( /0−→
[
• x→•
• y→•

]
,true)

(ext)

c4 = ∃( /0−→ [• x+⇒•],∃([• x+⇒•]−→
[
•x

+
⇒•
•y

+
⇒•

]
,true))

(L) on c1,c2

c5 = ∃( /0−→ [• x+⇒•],∃([• x+⇒•]−→
[
•x

+
⇒•
•y

+
⇒•

]
,true)∧¬∃([• x+⇒•]−→

[
•x

+
⇒•
• x→•
• y→•

]
,true))

(L) on c4,c3

c′1 = c6∧ c7

true T1 of context [• x+⇒•]

c6 = ∃([•
x+⇒•]−→

[
•x

+
⇒•
•y

+
⇒•

]
,true)

(ext)

c7 = ¬∃([•
x+⇒•]−→

[
•x

+
⇒•
• x→•
• y→•

]
,true)

(ext)

c8 = ∃(u0,true) =

∃([•1
x+⇒•2] −→ [•1

x→•2],true)

c9 = ∃(u1,true) =

∃([•1
x+⇒•2] −→ [•1

x→• x+⇒•2],true)

(U) on • x+⇒•

c10 = ∃(u0,c11) =

∃(u0,∃([•
x→•] −→

[
• x→•
•y

+
⇒•

]
,true))

(L) on c8,c6

c12 = ∃(u1,c13) =

∃(u1,∃([•
x→• x+⇒•] −→

[
• x→•x

+
⇒•

•y
+
⇒•

]
,true))

(L) on c9,c6

c14 = ∃(u0,c11∧ c15) =

∃(u0,c11∧¬∃([•
x→•] −→

[
• x→•
• x→•
• y→•

]
,true))

(L) on c10,c7

c16 = ∃(u1,c13∧ c17) =

∃(u1,c13∧¬∃([•
x→• x+⇒•] −→

[
• x→•x

+
⇒•

• x→•
• y→•

]
,true))

(L) on c12,c7

c′2 = c11∧ c15 c′3 = c13∧ c17

Figure B.11: Part of a nested tableau for condition c
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c′2 = c11∧ c15

true T2 of context [• x→•]

c11 = ∃([•
x→•]−→

[
• x→•
•y

+
⇒•

]
,true)

(ext)

c15 = ¬∃([•
x→•]−→

[
• x→•
• x→•
• y→•

]
,true)

(ext)

c18 = ∃([•
x→•]−→

[
• x→•
•y

+
⇒•

]
,¬∃(

[
• x→•
•y

+
⇒•

]
−→

[• x→•
• x→•
• y→•
•y

+
⇒•

]
,true))

(L) on c11,c15

c′4 = ¬∃(
[
• x→•
•y

+
⇒•

]
−→

[• x→•
• x→•
• y→•
•y

+
⇒•

]
,true)

true T4 of context
[
• x→•
•y

+
⇒•

]

c19 = c′4 = ¬∃(
[
• x→•
•y

+
⇒•

]
−→

[• x→•
• x→•
• y→•
•y

+
⇒•

]
,true)

(ext)

c20 = ∃(
[
• x→•
•1

y+⇒•2

]
−→

[
• x→•
•1

y→•2

]
,true) c21 = ∃(

[
• x→•
•1

y+⇒•2

]
−→

[
• x→•

•1
y→•y

+
⇒•2

]
,true)

(U) on • y+⇒•

c22 = ∃(
[
• x→•
•1

y+⇒•2

]
−→

[
• x→•
•1

y→•2

]
,false)

(PL) on c20,c19

c23 =

[
∃(
[
• x→•
•1

y+⇒•2

]
−→

[
• x→•

•1
y→•y

+
⇒•2

]
,false)

(PL) on c21,c19

Figure B.12: Closed nested tableau for condition c′2
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c′3 = c13∧ c17

true T3 of context [• x→• x+⇒•]

c13 = ∃([•
x→• x+⇒•] −→

[
• x→•x

+
⇒•

•y
+
⇒•

]
,true)

(ext)

c17 = ¬∃([•
x→• x+⇒•] −→

[
• x→•x

+
⇒•

• x→•
• y→•

]
,true)

(ext)

c24 = ∃([•
x→• x+⇒•] −→

[
• x→•x

+
⇒•

•y
+
⇒•

]
,¬∃(

[
• x→•x

+
⇒•

•y
+
⇒•

]
−→

[
• x→•x

+
⇒•

•y
+
⇒•
• x→•
• y→•

]
,true))

(L) on c13,c17

c′5 = ¬∃(
[
• x→•x

+
⇒•

•y
+
⇒•

]
−→

[
• x→•x

+
⇒•

•y
+
⇒•
• x→•
• y→•

]
,true)

true T5 of context
[
• x→•x

+
⇒•

•y
+
⇒•

]

c25 = c′5 = ¬∃(
[
• x→•x

+
⇒•

•y
+
⇒•

]
−→

[
• x→•x

+
⇒•

•y
+
⇒•
• x→•
• y→•

]
,true)

(ext)

c26 = ∃(
[
• x→•x

+
⇒•

•1
y+⇒•2

]
−→

[
• x→•x

+
⇒•

•1
y→•2

]
,true) c27 = ∃(

[
• x→•x

+
⇒•

•1
y+⇒•2

]
−→

[
• x→•x

+
⇒•

•1
y→•y

+
⇒•2

]
,true)

(U) on • y+⇒•

c28 = ∃(
[
• x→•x

+
⇒•

•1
y+⇒•2

]
−→

[
• x→•x

+
⇒•

•1
y→•2

]
,false) c29 = ∃(

[
• x→•x

+
⇒•

•1
y+⇒•2

]
−→

[
• x→•x

+
⇒•

•1
y→•y

+
⇒•2

]
,false)

(PL) on c26,c25 (PL) on c27,c25

Figure B.13: Closed nested tableau for condition c′3
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