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Abstract

Rewriting logic and its implementation Maude are a natural and expressive framework
for the specification of concurrent systems and logics. Its nondeterministic local trans-
formations are described by rewriting rules, which can be controlled at a higher level
using a builtin strategy language added to Maude 3. This specification resource would
not be of much interest without tools to analyze their models, so in a previous work, we
extended the Maude LTL model checker to verify strategy-controlled systems. In this pa-
per, CTL* and µ-calculus are added to the repertoire of supported logics, after discussing
which adaptations are needed for branching-time properties. The new extension relies
on some external model checkers that are exposed the Maude models through general
and efficient connections, profitable for future extensions and further applications. The
performance of these model checkers is compared.
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1. Introduction

Rewriting logic [57, 60] is a natural and expressive framework for the formal spec-
ification and analysis of concurrent systems and logics. Their states are described as
terms modulo equations and structural axioms, and their transitions are expressed using
rewriting rules. Executing a rewrite system consists of the successive application of a rule
in a matching position of the term, both chosen nondeterministically and independently
at each step, yielding potentially many evolutions. The spatial and temporal locality of
rules is the cornerstone of the natural and simple representation of concurrency, but it is
sometimes convenient to tame this nondeterminism and capture the global behavior of
the system or other kinds of restrictions. For example, the terms and deduction rules of
an inference system can be expressed as a rewrite theory and be proven sound, but only
a careful application of these rules will lead to the desired deductions. This idea is enun-
ciated in the Kowalski’s motto Algorithm = Logic + Control [46] and developed in the
Lescanne’s Rule + Control approach [51], which promotes the separation of the concerns
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of rules and their control. This is the purpose of strategies, which have been used in
formal specification languages like ELAN [11], TOM [9], Stratego [15], and more recently
Porgy [35] for graph rewriting. Unlike strategies usually considered for the λ-calculus [10]
and abstract rewriting [5, 77], these are called programmable strategies because they are
represented syntactically as arbitrary complex programs.

Maude [24, 25] is a specification language based on rewriting logic and an interpreter
for executing and analyzing its specifications. Strategies have been used in Maude since
its beginnings [26, 27] using reflection. However, reflective programs are verbose and
difficult to understand for those not used to them, so an object-level strategy language
was proposed, prototyped and tested, and finally implemented in Maude 3 [55]. Based
on that experience and on earlier languages like ELAN and Stratego, its design puts
special emphasis on separating rules from strategies, so that different strategies can be
compositionally specified to control the same rewriting system easily. This new resource
for writing formal specifications would be less attractive to Maude users if there were
fewer means to work with strategy-controlled models than with standard ones. Hence,
we extended the builtin Maude LTL model checker [33] to support them [71]. It has
already been given various applications [4, 74, 73].

In this paper, we address model checking for strategy-controlled systems against
branching-time properties, by first discussing the problem in abstract terms and then
particularizing them to strategy-controlled Maude specifications, as we did for linear-time
properties. In the general setting, a natural notion of satisfaction arises by considering
only the subtree of executions allowed by the strategy when checking branching-time
properties, in the same way we consider only the subset of allowed executions when
checking linear-time properties. As a practical procedure for model checking accord-
ing to this definition, we suggest transforming the model to incorporate the restrictions
imposed by the strategy, which allows checking virtually any logic supported in the un-
controlled system using its standard algorithms. This is similar to our previous approach
for linear-time properties, but this transformation must preserve the branching structure
of the original model, for which a certain bisimilarity relation will be required. In order
to check linear-time formulae on systems controlled by the Maude strategy language, we
provided it with a small-step operational semantics that determines which are exactly the
executions described by a strategy expression and is the base to construct the transformed
model where those properties can be checked. However, we will see that the previous
transformation is not appropriate and consistent for branching-time properties, and some
additional adaptations are required. Following these principles, we now support logics
like CTL, CTL*, and µ-calculus by means of external model checkers. All these logics
are implemented in the language-independent model checker LTSmin [45], for which we
have developed a plugin with on-the-fly access to the models in the C++ implementa-
tion of Maude. Other model checkers are also available as backends like NuSMV [21], the
pyModelChecking library [18], Spot [31], and a custom µ-calculus implementation. All
these backends are accessed uniformly using an extensible model-checking tool umaudemc
implemented using a maude Python library we have developed [69]. The new model
checkers can also be applied to standard Maude specifications for which there was no
relevant support for branching-time properties thus far. Moreover, the connections de-
veloped for this work can be applied for other purposes, like visualization and other types
of analysis.
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Comparison with the workshop paper. This article extends the workshop paper [75],
introducing the extensible architecture of umaudemc and its connection with other model
checkers in addition to LTSmin. The presentation has been improved with further details,
the performance of the model checkers has been compared, and related work is discussed.

Structure of the paper. Section 2 reviews some precedents required to follow the rest of
the paper. Section 3 describes how model checking is understood for strategy-controlled
systems in general. Section 4 explains how strategy-controlled systems are specified and
model checked in Maude, while Section 5 discusses the specific problems that appear
when checking branching-time properties and how they are solved. Section 6 introduces
the connections to external model checkers, which are evaluated in Section 7. Related
work is reviewed in Section 8. All the material, including the LTL and branching-time
model checkers, their documentation and source code, the examples in this paper and
many more, is available online [32].

2. Preliminaries

Let us recall some basic concepts and notation about strategies, rewriting logic and
model checking, which will be extensively used along the paper. Informed readers may
safely skip some sections. The Maude strategy language is also introduced together with
the small-step operational semantics on which our model checker is based.

2.1. Strategies and transition systems

A labeled transition system (LTS) A = (S,A,R) is a set of states S, a set of labels
or actions A, and a labeled binary relation R ⊆ S ×A× S on the states. Sometimes we
consider plain transition systems A = (S,R) without transition labels, where R ⊆ S ×S
is a usual binary relation. They can be seen as a particular case of labeled transition
systems with a single label τ for all transitions, so most claims about these are valid for
those.1 Arrows are often used to denote the transition relation, and we write s →a s′

for (s, a, s′) ∈ R and s → s′ if s →a s′ for some a ∈ A. We call s → s′ an execution
step in A, s′ a successor of s, and an execution in A is a finite or infinite sequence of
states s0 →a1 s1 →a2 · · · →an sn linked by the relation. For convenience, we represent
executions as finite words s0a1s1 · · · ansn ∈ (S ∪ A)∗ or infinite words s0a1s1a2s2 · · · ∈
(S ∪A)ω alternating states and actions. In the unlabeled case, actions are dropped from
the words s0s1 · · · sn or s0s1 · · · . Let Γ∗

A ⊆ S∗, Γω
A ⊆ Sω and ΓA ⊆ S∞ designate the set

of all finite and infinite executions of A, and the union of both. A subscript s ∈ S will
be added to these sets ΓA,s to indicate that only executions starting from this state are
included.

2.1.1. Strategies

In this general context, strategies have been defined in different ways in the litera-
ture [13], from which we consider two simple characterizations that we will use almost
interchangeably:

1Labeled transition systems can also be embedded in plain transition system by pushing the actions
on the states.
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1. Extensional strategies are subsets E ⊆ ΓA of allowed executions of A.

2. Intensional strategies are partial functions λ : (S ∪ A)+ → P(A × S) that select
the possible next steps to continue an execution w ∈ (S ∪A)+ based on its history,
where the states (a, s′) ∈ λ(ws) must always satisfy s →a s′. In the unlabeled case,
this can be simplified to λ : S+ → P(S).

The second definition is widely used in games and other verification logics [61, 1], but
the first one is simpler and more expressive. In fact, there is an extensional strategy
E(λ) := {s0a1s1 · · · ∈ (S ∪ A)∞ : (ak+1, sk+1) ∈ λ(s0 · · · aksk)} for every intensional
strategy λ, but the converse is not true. Even if an intensional strategy λE can be
defined from an extensional one E, λE(w) := {(a, s) ∈ A × S : wasw′ ∈ E,w′ ∈
(S∪A)∞}, some information is lost and the inclusion E ⊆ E(λE) may be strict. While an
extensional strategy can selectively allow finite executions, in intensional strategies all the
prefixes of accepted executions are accepted, because there is no way to indicate that an
execution is complete. However, this will not be a problem for model checking, because
we usually assume that all executions are nonterminating, or otherwise we complete
the finite executions by repeating their last states forever and discard the incomplete
ones. Another limitation is that extensional strategies are not necessarily closed while
intensional strategies are; for example, the first type may allow executions of the form
anbω for all n ≥ 0 but not aω, while the second type cannot achieve that. This means
that fairness restrictions cannot be represented in the strategy, but this is a reasonable
assumption for practical executable strategies, and those restrictions can be treated apart
as we suggest for future work.

In summary, we will represent strategies both intensionally and extensionally, using
the most convenient representation in each occasion.

2.1.2. Execution trees

Since this work is focused on branching-time properties, we should see the executions
of a transition system as a tree instead of as a collection of unrelated execution paths.
The execution tree of A from a given state i ∈ S is the tree whose root is i and whose
nodes are states with all their successors as children. From the graph-theoretic point of
view, this can be formalized as the graph (Γ∗

A,i, {(ws,wsas′) : s →a s′, w ∈ (S ∪ A)∗}),
which is acyclic and connected. Each vertex ws consists of the current execution state s
and its history w down to the root, whose purpose is disambiguating repeated states that
may appear at different branches or depths. However, when tree diagrams are drawn,
the history is omitted as it can be inferred from the context. Notice that a strategy λ
determines a subtree of that execution tree, namely (Γ∗

A,i, {(w,was) : (a, s) ∈ λ(w)}). In
the unlabeled case, vertices are only words on states, as usual.

2.2. Rewriting logic

Rewriting logic models change by means of rewriting rules operating on the algebraic
terms of an equational logic. These terms are built out of an order-sorted signature given
by a set of sorts S and an S∗×S-indexed collection Σ of function symbols f : s1 · · · sn → s.
Sorts are related by a partial order s1 < s2 that means subsort inclusion. Given an S-
sorted family of variables X, we consider the set of all terms TΣ(X) on these variables,
and substitutions σ : X → TΣ(X) as sort-preserving assignments from variables to
terms. A substitution can be recursively extended to a function σ : TΣ(X) → TΣ(X)
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that replaces all occurrences of the variables in a term, and the composition σ2 ◦ σ1 of
two substitutions is defined (σ2 ◦σ1)(x) := σ2(σ1(x)). It satisfies σ2 ◦ σ1 = σ2 ◦σ1 in the
usual functional sense.2 The line over the extension is usually omitted. Terms without
variables TΣ := TΣ(∅) are called ground terms.

In a membership equational logic [12] (Σ, E) there are two classes of atomic sentences,
conditional equations and sort membership axioms. Their optional conditions are in turn
equations and sort membership formulas that yield Horn clauses of the form:

t = t′ if
∧
i

ui = u′
i ∧

∧
j

vj : sj t : s if
∧
i

ui = u′
i ∧

∧
j

vj : sj

where t : s states that t has sort s. These statements induce an equality relation =E that
identifies different terms up to provable equality by E. The initial term algebra TΣ/E is
the quotient of the ground terms TΣ modulo this relation. Although its elements [t] are
equivalence classes, we will usually write simply t when no confusion is possible.

A rewrite theory R = (Σ, E,R) is a membership equational logic theory (Σ, E) with
a set R of rewriting rules. Possibly conditional rewriting rules have the form:

l ⇒ r if
∧
i

ui = u′
i ∧

∧
j

vj : sj ∧
∧
k

wk ⇒ w′
k

The application of a rule to a term t is the replacement of an instance of l in some
subterm of t by r instantiated accordingly, if the condition holds. Conditions of the third
type are named rewriting conditions, and they are satisfied if the instance of each wk can
be rewritten by the rules in zero or more steps to match w′

k. Unlike equations, which are
required to be confluent and terminating to make the evaluation of equality decidable
and efficient, rules can yield nonterminating and diverging computations.

Given a set of labels A and an assignment R → A of a label to each rule in the logic,
a rewriting system can be seen as a labeled transition system (TΣ/E , A,→1

R) whose steps
→1

R are the single application of a rule to any term in the class and whose actions A are
the labels of the rules.3 Strategies can be considered in this LTS.

Maude [24] is a specification and programming language, where equational and rewrite
theories are described compositionally using a notation that does not differ much of the
previous mathematical language. These specifications can be executed and analyzed with
different commands included in the Maude interpreter and other tools. Further details are
available in the Maude manual [24] and examples are included in the following sections.

2.3. The Maude strategy language

The Maude strategy language [24, §10] is used to control the application of rules by
expressing rewriting strategies. Strategy expressions, whose syntax is specified by the α
symbol in the grammar below, combine explicit application of rules with a small set of

2Funtional composition f ◦ g is understood in the order (f ◦ g)(x) = f(g(x)).
3The transitions of a rewriting system can also be labeled by proof terms including all the details of

the particular rule application, like its context and substitution [57]. However, rule labels are enough
for our purposes.
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programming constructs.

α ::= β | top(β) | idle | fail | match P s.t. C | α;α | (α|α) | α * | α ?α :α

| matchrew P s.t C by x using α, . . . , x using α | slabel | slabel(t⃗)
| α + | α ! | α or-else α | test(α) | try(α) | not(α)

β ::= rlabel | rlabel[ρ] | rlabel{α⃗} | rlabel[ρ]{α⃗} | all

The first two rows are the essential part of the strategy language, including the rule
application strategies under the β symbol, since the combinators in the third row can be
defined in terms of those of the first two. The meaning of a strategy expression is usually
described by the set of terms that its nondeterministic application on a given initial term
produces. However, we are also interested in the intermediate states of the strategy-
controlled rewriting and in the infinite rewriting sequences allowed by the strategy, which
are crucial for model checking. Consequently, we have described the meaning of strategy
expressions using a nondeterministic small-step operational semantics [71]. Its steps are
defined on execution states q ∈ XS whose most basic form are pairs t@α1 · · ·αn where t
is the term being rewritten and α1, . . . , αn are the pending strategies to be executed, in
that order. However, additional structure will be added to these sets as required by some
specific combinators. In any case, the subject term being rewritten can be identified from
an execution state with the projection cterm : XS → TΣ(X), whose definition on the
simpler states is cterm(t@ z) = t. States t@ ε with an empty stack are called solutions,
since no more work is pending and t can be seen as a result of the strategic computation.
Substitutions θ : X → TΣ(X) may also be pushed to this execution stack, and they
determine the value of the variables in the strategy expressions to their left. In the
following, θ will always refer to the leftmost substitution of the current stack z, or to the
identity function if there is none. The following are the core combinators of the language:

• The rule application strategy rlabel[x1 <- t1, . . . ,xn <- tn]{α1, . . . , αm} executes a
single rewrite on the subject term using any rule with label rlabel under some
optional restrictions, and produce all possible such rewrites as a result. For rules
without rewriting conditions, its semantics is straighforward

t@ rlabel[x1 <- t1, . . . ,xn <- tn] z →s t
′
@ z

The mapping from xi to ti between brackets is an optional substitution that is
applied to both sides of the rule and its condition before matching, and whose
values ti are previously instantiated with the leftmost substitution θ in the stack
z. For a rule with m rewriting conditions, exactly m strategies must be provided
between curly brackets to control their evaluation. An additional execution state is
introduced to hold a nested state for the rewriting fragment and other information
like the matching substitution σ, the remaining rule condition C ′ and the remaining
strategies, the right-hand side of the rule r, the context c where it is applied, and
the original term t.

t@ rl[x1 <- t1, . . . , xn <- tn]{α1, . . . , αk} z
→c rewc(p1 : σ(l1)@α1θ, σ, C

′, α2 · · ·αk, θ, r, c; t)@ z

Notice that we have written →s in the previous rule but →c in the current one,
because we want to distinguish which steps are system steps that apply rewrite
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rules to the terms and which are control steps that only advance the execution
of the strategy. In this case, the term is not actually rewritten until the last
rewriting fragment has been solved and the remaining condition C0 is empty or
purely equational.

rewc(p : t′ @ ε, σ, C0, ε, r, c; t)@ z →s c(σ
′(r))@ z

Meanwhile, the substitution σ is extended with the values yielded by matching the
free variables of the target of each rewriting fragment with their solutions. The
next rewriting fragment is then executed after evaluating the equational condition
between them.

rewc(p : t′ @ ε, σ, C0 ∧ l => p′ ∧ C,αα⃗, θ, r, c; t)@ z

→c rewc(p
′ : σ′(l)@α θ, σ′, C, α⃗, θ, r, c; t)@ z

The subsearch is advanced by applying the semantics recursively. However, both
control and system steps in the subsearch are seen as control steps of the whole
state, since no rewrite is applied to the subject term. In effect, we define cterm(rewc(p :
q, σ, C, α⃗, θ, r, c; t)) = t.

q →• q′

rewc(p : q, σ, C, α⃗, θ, r, c; t)@ z →c rewc(p : q′, σ, C, α⃗, θ, r, c; t)@ z

Rules are applied anywhere by default, but matching can be limited to the topmost
position by surrounding the strategy with top.

• Tests check whether the subject term matches the pattern P satisfying the equa-
tional condition C.

t@match P s.t. C z →c t@ z if t matches θ(P ) and satisfies θ(C)

The execution only advances if the test succeeds, and the term is not changed. The
initial keyword can be changed to amatch to match anywhere, or to xmatch to
match with extension for structural axioms (see [24, § 4.8]).

• Strategies can be combined with a series of operators like concatenation α;β that
applies β on every result of α,

t@(α;β) z →c t@αβ z,

the union α|β that nondeterministically chooses between α and β,

t@(α|β) z →c t@α z t@(α|β) z →c t@β z,

and the iteration α* that repeatedly executes α a nondeterministic number of times,

t@(α*) z →c t@α (α*) z t@(α*) z →c t@ z.

Together with the constants idle and fail, whose results are always the initial or no
term at all respectively,

t@ idle z →c t@ z and no rule for fail,

this family of combinators resembles those of regular expressions.
7



• The conditional operator α ?β : γ that behaves like α;β if the condition α produces
any result,

t@(α ?β : γ) z →c t@αβ z,

but evaluates to the results of the negative branch γ if α does not produce any,

t@(α ?β : γ) z →c t@ γ z.

This latter rule is only applied if the successors of t@α θ are finitely many and
none is a solution. In general, we say that a strategy fails if it does not produce
any result.

• The combinatormatchrew P s.t. C by x1 using α1, . . ., xn using αn allows rewrit-
ing selected subterms of the subject term. The subterms matching the distinct vari-
ables xk in the pattern P are rewritten according to the corresponding strategies
αk in parallel, using the rules

t@matchrewP s.t.C byx1 usingα1, . . . , xn usingαn z

→c subterm(x1 : σ(x1)@α1 σ, . . . , xn : σ(xn)@αn σ;σ−{x1,...,xn}(P ))@ z

for any matching substitution σ for t in θ(P ) satisfying θ(C), and

qi →• q′i
subterm(. . . , xi : qi, . . . ; t)@ z →• subterm(. . . , xi : q

′
i, . . . ; t)@ z

where • can be either s or c, so that system (control) steps in a substate are system
(control) steps on the whole state. Since the substates of subterm rewrite subterms
of the subject term, it is natural that their system steps are system steps of the
whole state, like rewrites in a subterm are rewrites in the whole term. In fact, the
current term of a subterm state is defined recursively as

cterm(subterm(x1 : q1, . . . , xn : qn; t)@ z) = t[x1/cterm(q1), . . . , xn/cterm(qn)]

Finally, the results of a matchrew are the reassembled combinations of their solu-
tions,

subterm(x1 : t1 @ ε, . . . , xn : tn @ ε; t)@ z →c t[x1/t1, . . . , xn/tn] @ z

There are amatchrew and xmatchrew variants like for tests.

• Finally, it is possible to give names to strategy expressions and define them in
strategy modules. They should be declared with the signature of the arguments
they receive, and with the sort s where they are intended to be applied.

s t r a t sname : s1 . . . sn @ s .

Strategies are defined using conditional or unconditional strategy definitions that
assign strategy expressions to those names.

sd sname(p1, . . ., pn) := α .

csd sname(p1, . . ., pn) := α i f C .

8



Conditions C in strategy definitions share their syntax with equational conditions
as explained in Section 2.2. These named strategies are called by writing their
names followed by a comma-separated list of arguments between parentheses, if
any,

t@ slabel (t1, . . . , tn) z →c t@ δ σ z,

and the righthand side δ of any definition whose lefthand side matches that call
will be executed with the matching substitution σ giving value to its variables.
Recursive and mutually recursive definitions are allowed, increasing the expressive
power of the language.

There are more combinators that can be derived from the previous, for example, the
α or-elseβ combinator, defined as α ? idle :β, that executes β only if α fails.

In order to identify the rewriting paths that are allowed by a strategy, we define the
relation ↠ := →s ◦→c

∗ that executes a single system step preceded by as many control
steps as required. Clearly, q ↠ q′ implies cterm(q) →1

R cterm(q′), so the projections of
the executions of this relation are actual rewriting paths. Consider the sets of complete
finite and infinite executions of a strategy α from an initial term t, where ↠a is a ↠ step
whose final system transition →s applies a rule with label a,

Ex∗(α, t) := {q0a1q1 · · · anqn : q0 = t@α, qk ↠ak+1 qk+1, qn →∗
c t′ @ ε, t′ ∈ TΣ(X)}

Exω(α, t) := {q0(akqk)∞k=1 : q0 = t@α, qk ↠ak+1 qk+1}

Only those finite executions ending in a state where a solution can be reached by control
steps are included. The extensional strategy denoted by α is then by definition

E(α) :=
⋃

t∈TΣ(∅)

E(α, t) where E(α, t) := cterm(Ex∗(α, t)) ∪ cterm(Exω(α, t))

where the projection cterm is naturally extended to words (leaving actions untouched)
and languages. This strategy is intensional by definition.

In the Maude interpreter, a command srewrite t using α is available for rewriting
using a strategy. It shows the results of the strategic rewriting, i.e. the last terms of its
finite executions Ex∗(α, t).

2.4. Model checking

Model checking [23] is an automated verification technique based on an exhaustive
examination of the executions of a model to prove or refute properties of its dynamic
behavior. Models are usually represented as transition systems whose states are anno-
tated with atomic propositions, in terms of which the desired properties are expressed.
Such construct receives the name of Kripke structure K = (S,→, I, AP, ℓ) where (S,→)
is a labeled or unlabeled transition system, I ⊆ S is a set of initial states, AP is the set
of atomic propositions, and ℓ : S → P(AP ) is the labeling function that declares which
atomic properties are satisfied in each state. For simplicity, it is usually assumed that
the transition relation → is total, i.e. that every state has a successor, and only infinite
executions are considered. If it were not, we could apply the typical stuttering extension
that repeats the last state of finite executions forever.

Properties are expressed using temporal logics with temporal operators to describe
how atomic propositions must occur in time, which are usually separated into two
classes [48]:
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• Linear-time properties are universal properties satisfied by every possible execu-
tion of the system. In other words, time is seen as a line where the next step is
already determined. The main example is Linear Temporal Logic [68] (LTL) and
its multiple extensions.

• Branching-time properties reason about the whole execution tree, where multiple
futures can be available at any moment. Well-known examples are the Computa-
tional Tree Logic [22] (CTL), and the more general CTL* [34] that includes both
LTL and CTL.

Another classification distinguishes state-based and action-based properties [29], depend-
ing on whether formulae refer to propositions of the states or the actions of the models.
However, both kinds of properties can be considered together, like in µ-calculus [47] and
the Temporal Logic of Rewriting [59].

The semantics of temporal logics is usually defined by means of satisfaction relations
K, s ⊨ φ. In the case of linear-time properties, the satisfaction of a formula φ is reduced
to its satisfaction K, π ⊨ φ for all the executions π ∈ Γω

K,s of the system. We could say
that a linear-time property accepts or rejects words, while a branching-time one does
so with trees. The model-checking problem consists of deciding whether this satisfaction
relation holds for a given model and property.

We conclude this section by recalling the notion of bisimulation between Kripke struc-
tures [23, § 26.3.1]. Many logics, including the ones implemented in this paper, CTL*
and µ-calculus, satisfy the same properties in structures related by bisimulation.

Definition 1. Given two (labeled) Kripke structures K1 = (S1, A,R1, I1, AP, ℓ1) and
K2 = (S2, A,R2, I2, AP, ℓ2), a bisimulation is a relation B ⊆ S1×S2 such that if (s1, s2) ∈
B then

• ℓ1(s1) = ℓ2(s2),

• for every action a and state s′1 such that (s1, a, s
′
1) ∈ R1, there is some s′2 ∈ S2

such that (s2, a, s
′
2) ∈ R2 and (s′1, s

′
2) ∈ B.

• the symmetric condition, with s2 in the role of s1 and so on.

If the Kripke structures are not labeled, the same definition is valid by the usual
embedding. Two states s1 ∈ S1 and s2 ∈ S2 are bisimilar if there is a bisimulation
relation B such that (s1, s2) ∈ B. Two Kripke structures K1 and K2 as above are
bisimilar if for every initial state s1 ∈ I1 there is a bisimilar initial state s2 ∈ I2 and vice
versa.

3. Model checking strategy-controlled systems

Given a (labeled) transition system or Kripke structure K = (S,A,R, I, AP, ℓ) and
a strategy E ⊆ ΓK, we say that (K, E) is a strategy-controlled system. In a previous
work [71], we have already discussed what should be understood for the satisfaction of a
linear-time property by a strategy-controlled system. Looking at strategies as subsets of
the executions of the original model, the notion for linear-time properties is natural and
inexorable, properties should only be checked on those allowed executions.

10



Definition 2 ([71, Definition 2]). Let φ be a linear-time formula, (K, E) ⊨ φ if K, π ⊨ φ
for all π ∈ E.

A similar definition could be proposed for branching-time properties, since these are
checked on trees and strategies can be seen as subtrees of the execution tree of the original
Kripke structure, as explained in Section 2.1.2. However, the definitions of branching-
time logics do not usually mention trees explicitly, so we resort to an auxiliary Kripke
structure to obtain a clear definition.

Definition 3 (unwinding). Given a Kripke structure K and a strategy λ, the unwinding
U(K, λ) of K according to λ is the Kripke structure ((S ∪A)+, A, U, I, AP, ℓ ◦ last) where
(w, a,was) ∈ U if (a, s) ∈ λ(w) and last(ws) = s for all w ∈ (S ∪A)∗.

The unwinding of a transition system is a well-known concept [77], but in this case
only the executions allowed by the strategy are included. As a graph, it is no other than
the execution subtree corresponding to the strategy λ. In case the underlying transition
system is unlabeled, the action labels can be removed from the previous definition. We
define the satisfaction of a branching-time property by a strategy-controlled system as
the satisfaction in the unwinding:

Definition 4. Let φ be a branching-time formula, (K, E(λ)) ⊨ φ if U(K, λ) ⊨ φ.

This definition coincides with the previous one on linear-time properties, because the
executions of the unwinding projected by last are exactly those of the strategy. However,
it does not have direct practical application since the Kripke structure U(K, λ) is not
finite. Fortunately, many logics are invariant by bisimulation, and we can try to find a
bisimilar Kripke structure where the standard model-checking algorithms can be applied
to decide the satisfaction of φ. The following theorem claims that this is always possible
if the language E(λ) is ω-regular, which is a quite general requirement in the context of
model checking.

Theorem 1. Given an intensional strategy λ, there is a finite Kripke structure K′ bisim-
ilar to U(K, λ) if E(λ) is ω-regular. The converse does not hold, but in that case ℓ(E(λ))
is ω-regular.

This is the program we will adopt regarding the Maude strategy language: finding
a finite (so that model checking is decidable) Kripke structure bisimilar (so that the
satisfaction of temporal properties is preserved) to the unwinding (to match Definition
4). In any case, the denotation of strategy expressions in Section 2.3 via the small-
step operational semantics gives all the ingredients for Definition 4, so we have already
unambiguously established whether a branching-time property is satisfied in a Maude
specification with strategies. Whenever this denotation is ω-regular, Theorem 1 tells
that the plan depicted at the beginning of the paragraph is a reasonable enterprise.
How to find a finite Kripke structure and check properties in practice is discussed in the
following sections.

3.1. Generalization of two logics for strategy-controlled systems

Now, we provide straightforward generalizations to systems controlled by strategies
of the textbook semantics of two temporal logics, CTL* and µ-calculus. These defini-
tions agree and confirm the soundness of Definition 4, since applying them to a system
(K, E(λ)) will be proven equivalent to applying the classical definitions to U(K, λ).

11



3.1.1. CTL*

CTL* [34] is a branching-time temporal logic that extends both LTL and CTL, written
using the following grammar:

Φ ::= ⊥ | ⊤ | p | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | Aϕ | Eϕ

ϕ ::= Φ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ⃝ϕ | ♢ϕ | □ϕ | ϕUϕ

Terms built from ϕ, called path formulae, describe properties of fixed execution paths:
⃝ϕ tells that the property ϕ is satisfied in the next state of the path, ♢ϕ and □ϕ say
that ϕ holds in some or all states of the path respectively, and ϕ1 Uϕ2 claims that ϕ2 is
satisfied in some state and ϕ1 holds until then. Terms under the Φ symbol are called state
formulae and refer to a state of the transition system, to the atomic properties p ∈ AP it
satisfies, and the paths leaving from it, quantified either universally Aϕ or existentially
Eϕ. LTL is the subset with formulae of the form Aϕ where ϕ does not contain path
quantifiers, and the initial A is left implicit. CTL is the subset in which every path
operator is preceded by a quantifier. For example, the CTL formula A□ (p → E♢ p)
tells that it is possible to reach a state where q holds whenever p holds.

The semantics of CTL* is usually expressed by a satisfaction relation on states K, s ⊨
Φ and on paths K, π ⊨ ϕ. However, when K is controlled by a strategy, a state formula
like Eϕ should not quantify over all paths, but only over those allowed by the strategy.
Moreover, this subset of paths may depend not only on the last state but on the whole
history of the execution. Consequently, the satisfaction relation for strategy-controlled
systems replaces the state s by a (partially consumed) extensional strategy K, E ⊨ Φ,
and path formulae also carry a strategy in addition to the chosen path K, E, π ⊨ ϕ where
π ∈ E.4 To maintain this information in the following recursive definition, we introduce
the operation E ↾ ws := {sπ : wsπ ∈ E} that gives the execution paths allowed by a
strategy E ⊆ S∞ to continue from ws. Given π = (πk)

∞
k=0, we denote the suffix from k

by πk = (πk+n)
∞
n=0, and the prefix of length n + 1 by π≤n = π0 · · ·πn. For readability,

the initial K is omitted.

1. E ⊨ p iff ∀π ∈ E p ∈ ℓ(π0)

2. E ⊨ ¬Φ iff E ̸⊨ Φ

3. E ⊨ Φ1 ∧ Φ2 iff E ⊨ Φ1 and E ⊨ Φ2

4. E ⊨ Eϕ iff ∃π ∈ E (E ↾ π0), π ⊨ ϕ

5. E, π ⊨ Φ iff E ⊨ Φ

6. E, π ⊨ ¬ϕ iff E, π ̸⊨ ϕ

7. E, π ⊨ ϕ1 ∧ ϕ2 iff E, π ⊨ ϕ1 and E, π ⊨ ϕ2

8. E, π ⊨ ⃝φ iff (E ↾ π0π1), π
1 ⊨ φ

9. E, π ⊨ ϕ1 Uϕ2 iff ∃n ≥ 0 E ↾ π≤n, πn ⊨ ϕ2 ∧ ∀ 0 ≤ k < n E ↾ π≤ k, πk ⊨ ϕ1

By the usual equivalences, other operators are indirectly defined. This is a direct gen-
eralization of the classical semantic definition [34], and similar variations have appeared
in the literature when studying CTL* in the context of tree languages [79] and other

4The definition of the satisfaction relation K, E, π ⊨ ϕ maintains the invariant that π′
0 = π0 for all

π′ ∈ E. The fourth item in the definition includes E ↾ π0 so that the invariant holds initially regardless
of the input E.
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extensions of this logic. The only substantial changes are in (4), where only executions
in E are considered, and in (8) and (9), where the strategy argument is updated to the
allowed executions from the time point where the recursive relation is evaluated. In fact,
this definition coincides with the classical relation if we take E = Γω

K,s.

Proposition 1. Given a CTL* formula Φ, K, s ⊨ Φ iff Γω
K,s ⊨ Φ.

As promised in the first lines of this section, we finally claim that checking a CTL*
property according to this generalized definition in K is the same as doing so with the
standard definition on the unwinding or a bisimilar structure, because CTL* is invariant
by bisimulation.

Proposition 2. Given (K, E(λ)) and a CTL* formula φ, U(K, λ) ⊨ φ iff K, E(λ) ⊨ φ.

Proposition 3 ([8, Theorem 7.20]). Two states, s1 of K1 and s2 of K2, are bisimilar iff
K1, s1 ⊨ φ ⇐⇒ K2, s2 ⊨ φ for all CTL* (or for all CTL) formulae φ.

3.1.2. µ-calculus

Modal µ-calculus [47] is an extension of the Hennessy-Milner logic [41] with least µ
and great ν fixed-point operators. It can be used to express edge-aware properties on
labeled transition systems using two modalities, [a]φ that asserts that all states reachable
by an a action satisfy φ, and ⟨a⟩φ which claims the existence of a successor by a that
satisfies φ. Formulae may contain variables Z bound by fixed-point operators.

φ ::= ⊥ | ⊤ | p | Z | ¬φ | φ ∧ φ | φ ∨ φ | [a]φ | ⟨a⟩φ | µZ.φ | νZ.φ

The classical value of a µ-calculus formulae is the set of states in which it holds, written
JϕKη, where η : Var → P(S) is an assignment of values to the free variables that may
appear in nested formulae. This logic is more expressive,5 but less intuitive and popular
than CTL* and its sublogics. However, model checkers for µ-calculus are available like
muCRL2 [17] and LTSmin [45]. As well as the previous logics, µ-calculus is invariant by
bisimulation.

Proposition 4 ([23, Theorem 6:10]). If a state s1 of K1 is bisimilar to a state s2 of K2

then for every closed µ-calculus formula φ: s1 ∈ JφKK1,η1
iff s2 ∈ JφKK2,η2

.

The following generalization mimics the original definition [23, §6], but the denotation
of a formula is a set of trees or strategies ⟨⟨φ⟩⟩ξ ⊆ P(ΓK) instead of a set of states. The
idea is that a system controlled by strategies (K, E) satisfies a µ-calculus formula φ iff
E ∈ ⟨⟨φ⟩⟩ξ. A valuation is now ξ : Var → P(P(ΓK)) and ξ[Z/U ] is the function ξ with its
value for the variable Z replaced by U .

1. ⟨⟨p⟩⟩ξ = {T ⊆ ΓK : ∀π ∈ T p ∈ ℓ(π0)}
2. ⟨⟨¬φ⟩⟩ξ = P(ΓK) \ ⟨⟨φ⟩⟩ξ
3. ⟨⟨φ1 ∧ φ2⟩⟩ξ = ⟨⟨φ1⟩⟩ξ ∩ ⟨⟨φ2⟩⟩ξ

5CTL* formulae can be translated into µ-calculus, but not all µ-calculus can be expressed in CTL*.
For example, A♢ p is µZ.(p∨ [τ ]Z) and E□ p is νZ.(p∧ ⟨τ⟩Z), being τ the only label. However, CTL*
cannot express that p is satisfied at all even states µZ.p ∧ [τ ] [τ ]Z.

13



4. ⟨⟨Z⟩⟩ξ = ξ(Z)

5. ⟨⟨⟨a⟩φ⟩⟩ξ = {T ⊆ ΓK : ∃ saπ ∈ T T ↾ saπ0 ∈ ⟨⟨φ⟩⟩ξ}
6. ⟨⟨[a]φ⟩⟩ξ = {T ⊆ ΓK : ∀ saπ ∈ T T ↾ saπ0 ∈ ⟨⟨φ⟩⟩ξ}
7. ⟨⟨νZ.φ⟩⟩ξ =

⋃
{F ⊆ P(ΓK) : F ⊆ ⟨⟨φ⟩⟩ξ[Z/F ]}

8. ⟨⟨µZ.φ⟩⟩ξ =
⋂

{F ⊆ P(ΓK) : ⟨⟨φ⟩⟩ξ[Z/F ] ⊆ F}

For instance, the denotation of an atomic proposition p takes all strategies whose paths
satisfy p in their initial terms, instead of all states that satisfy p in the classical definition.
Similarly, the modality ⟨a⟩φ takes all strategies with a path that satisfy φ after an a
transition. As usual, for the fixpoint in (6) to be well-defined, φ must be monotone, so
every variable must be under an even number of negations. The semantic definition in
(6) and (8) are a consequence of the usual equivalences, for example [a]φ ≡ ¬⟨a⟩ ¬φ.

The following two results are the counterparts of Propositions 1 and 2 for CTL*,
and say that the definition is actually a generalization of the classical one, and that it is
coherent with the procedure proposed for model checking strategy-controlled systems.

Proposition 5. Given (K, E) and a closed µ-calculus formula φ, s ∈ JφKK,η iff ΓK,s ∈
⟨⟨φ⟩⟩K,ξ for any η and ξ.

Proposition 6. Given (K, E(λ)) and a closed µ-calculus formula φ, s ∈ JφKU(K,λ),η for
sπ ∈ E iff E ∈ ⟨⟨φ⟩⟩K,ξ for any η and ξ.

4. Specification and model checking in Maude by an example

In this section and through an example, we explain how strategy-controlled systems
can be specified and model checked in Maude. The example is the simple and classical
river-crossing puzzle, where a shepherd needs to cross a river carrying a wolf, a goat, and
a cabbage. The only means is using a boat that only the shepherd can drive and with
room for only one more passenger. Shipping the companions of the shepherd one by one
would be a solution, but the wolf would eat the goat and the goat would eat the cabbage
as soon as the shepherd leaves them alone. First of all, we should specify the signature
of the problem as a functional module.

fmod RIVER-DATA i s
s o r t s Being Side Group River .

sub so r t s Being Side < Group .

ops shepherd wolf goat cabbage : -> Being [ctor] .

ops left right : -> Side [ctor] .

op __ : Group Group -> Group [ctor assoc comm] .

op _|_ : Group Group -> River [ctor comm prec 50] .

va r s G1 G2 : Group .

op initial : -> River .

eq initial = left shepherd wolf goat cabbage | right .

op risky : River -> Bool .

eq risky(shepherd G1 | G2 wolf goat ) = true .
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shepherd

goat

wolf

shepherd

cabbage goat

goat-eats

shepherd

Figure 1: Partial rewriting tree for the river-crossing puzzle.

eq risky(shepherd G1 | G2 goat cabbage) = true .

eq risky(G1 | G2) = false [owise] .

endfm

The characters of the puzzle are declared as constants of sort Being with a multiple
operator declaration (ops), and two other constants left and right of sort Side identify
both sides of the river. A single being or side tag is a group, since their sorts are subsorts
of Group, and more interesting groups can be built with the juxtaposition operator .
Two groups configure a river, one for each border, with the operator | . Associativity
and commutativity are indicated by the assoc and comm attributes of their operator
declarations. Groups are associative and commutative because they are sets, and the river
is commutative because this will simplify the specification of rules. Finally, the initial
position of the puzzle is defined by an equation to the term in which all characters are
on the left border. The predicate risky identifies the states in which some being is at
risk of being eaten, and it is defined with three equations.6

On top of this functional module, the possible moves of the game are specified using
rules. The system module RIVER imports the functional module RIVER-DATA and defines a
rule to cross the river with each character, and two more rules wolf-eats and goat-eats

that make the mentioned animal eat its colleague one trophic level below.

mod RIVER i s
p r o t e c t i ng RIVER-DATA .

va r s L R : Group .

6Equations annotated with the otherwise or owise attribute are executed only after all other equa-
tions have failed.
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r l [alone] : shepherd L | R => L | R shepherd .

r l [wolf] : shepherd wolf L | R => L | R shepherd wolf .

r l [goat] : shepherd goat L | R => L | R shepherd goat .

r l [cabbage] : shepherd cabbage L | R

=> L | R shepherd cabbage

r l [wolf-eats] : wolf goat L | R shepherd

=> wolf L | R shepherd .

r l [goat-eats] : goat cabbage L | R shepherd

=> goat L | R shepherd .

endm

The execution of these rules does not guarantee that the rules of the game are respected,
since escaping from a risky state without applying wolf-eats or goat-eats is possible,
as shown in Figure 1. This suggests that the eating rules must be applied eagerly before
any movement rule is executed again, for which strategies will be helpful.7

This specification can already be executed within Maude. For instance, the search

command finds terms matching a given pattern on the rewriting tree. We can use it to
find out whether the goal position of the game can be reached.

Maude > search initial =>* left | right shepherd wolf goat cabbage .

Solution 1 (state 32)

states: 33 rewrites: 64

empty substitution

No more solutions.

states: 36

The answer is affirmative, but we cannot be sure whether this state has been reached
according to the rules of the game. In fact, the path that the search algorithm has
followed to reach the goal position visits risky states, as can be seen using the show path

command with the state number that appears next to the solution.

Maude > show path 32 .

state 0, River: right | left shepherd wolf goat cabbage

===[ rl ... [label wolf] . ]===>

state 2, River: left goat cabbage | right shepherd wolf

===[ rl ... [label alone] . ]===>

state 8, River: right wolf | left shepherd goat cabbage

...

state 32, River: left | right shepherd wolf goat cabbage

7In a previous Maude specification of the river-crossing puzzle [65], eating actions are written as
equations so that they are applied eagerly by the Maude engine before the moving rules. However, this
yields a rewrite theory where rules and equations are not coherent. A rewrite theory is coherent if for
any term t rewritten by a rule to a term t′, its canonical form u modulo equations and axioms can be
rewritten to a term u′ that is equationally equivalent to t′, see [24, §5.3]. Coherence is assumed by
Maude, which reduces terms to their canonical forms before applying a rule, not to miss any rewrite.
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The second state in the path is a dangerous position where the goat can eat the cabbage,
but this is not actually done in the third one. However, there may be other legitimate
paths to the goal.

4.1. Controlling the system with strategies

In order to avoid that situation and enforce the game rules, various strategies will be
defined in a strategy module RIVER-STRAT including RIVER.

smod RIVER-STRAT i s
p r o t e c t i ng RIVER .

var G : Group .

s t r a t s oneCrossing eating cross&eat @ River .

sd oneCrossing := alone | wolf | goat | cabbage .

sd eating := wolf-eats | goat-eats .

sd cross&eat := eating or−e l se oneCrossing .

s t r a t s eagerEating safe @ River .

sd eagerEating := (match left | right shepherd wolf

cabbage goat) ? i d l e : (cross&eat ; eagerEating) .

sd safe := (match left | G) ? i d l e
: (oneCrossing ; not(eating) ; safe) .

endsm

The auxiliary strategies oneCrossing and eating apply any of the four movement rules
and any of the two eating rules, respectively, and cross&eat applies either one according
to the rules of the game, crossing only if eating is not possible. eagerEating is a recursive
strategy that repeats this step forever or until the goal is found. safe is more restrictive
and avoids visiting risky states by discarding all paths where eating is possible with
not(α) ≡ α ? fail : idle. For example, the bottom branch of Figure 1 will be allowed by
eagerEating but not by safe. Executing safe still requires visiting the risky state at
the bottom to find out whether it is actually risky, but this execution path is discarded
as if the state were never visited.

Now, we can ask whether the goal can be properly reached by evaluating eagerEating
from the initial state with the srewrite command. The answer is positive.

Maude > srew initial using eagerEating .

Solution 1

rewrites: 74

result River: left | right shepherd wolf goat cabbage

No more solutions.

rewrites: 74
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Figure 2: Structure of the strategy model-checker modules.

4.2. Preparing the specification for model checking

The last step for checking the model we have just specified, either with the pre-
vious model checkers or with those proposed in this paper, is the declaration of its
atomic propositions on which temporal properties will be based. The Maude manual [24,
§12] describes the required steps for strategy-free specifications, and the procedure does
not hardly change for strategy-aware ones. It involves a few modules included in the
model-checker.maude file shipped with the official and with our extended distribution
of Maude, as shown in Figure 2.

Following with the example, the river-crossing puzzle is specified in the RIVER and
RIVER-STRAT modules. First, we have to extend the system module RIVER by declaring
some atomic propositions as Maude symbols and defining when they are satisfied.8

mod RIVER-PREDS i s
p r o t e c t i ng RIVER .

i n c l u d i n g SATISFACTION .

subso r t River < State .

ops goal risky death : -> Prop [ctor] .

var R : River .

var B : Being .

va r s G G’ : Group .

eq left | right shepherd wolf goat cabbage |= goal = true .

eq R |= goal = false [owise] .

eq G cabbage | G’ goat |= death = false .

eq G cabbage goat | G’ |= death = false .

eq R |= death = true [owise] .

eq R |= risky = risky(R) .

endm

8The declaration of the atomic propositions could have also been done in an extension of RIVER-STRAT.
However, as a general principle, it is recommended not to include other content in strategy modules than
strategy declarations and definitions, to emphasize their distinct concerns.
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Atomic propositions must be declared within the sort Prop introduced by the SATISFACTION
module of the model checkers’ infrastructure. This module also declares a satisfaction
symbol |= : State Prop -> Bool that should be defined with equations for every
state and atomic proposition. The states of the specified system must belong to the sort
State appearing in the signature of |= , for what we have declared River as a subsort
of State. Three propositions have been defined: goal that holds on the goal position,
death that is only false when all eatable characters are in the scene, and risky that
labels the risky states.

Finally, the STRATEGY-MODEL-CHECKERmodule, which gives access to the model checker,
should be included in a new strategy module incorporating the property specification in
RIVER-PREDS and the strategy specification in RIVER-STRAT.

smod RIVER-CHECK i s
p r o t e c t i ng RIVER-STRAT .

p ro t e c t i ng RIVER-PREDS .

i n c l u d i n g STRATEGY-MODEL-CHECKER .

i n c l u d i n g MODEL-CHECKER .

endsm

At this point, given an initial term t and a strategy expression α, the Kripke structures
that represent the strategy-free model and the strategy-aware model in RIVER-CHECK are
completely specified. In the standard case, the model is the rewrite graph reachable from
the initial term t where atomic propositions are evaluated using the |= symbol, i.e.

M := (TΣ/E , A, (→1
R)•, {t}, APΠ, LΠ)

where the actions A are the labels assigned to the rules, the atomic propositions APΠ

are the ground instances of Prop symbols, and LΠ maps a state to the set of those terms
that are reduced to the term true by the equations. The relation (→1

R)• is the one-
step rule application →1

R where deadlock states are added a self loop to implement the
stutter extension and work with infinite executions only. In the strategy-aware case, the
model used by the LTL model checker guarantees that properties φ are only checked on
the executions allowed by the strategy E(α, t), i.e. M, π ⊨ φ for all π ∈ E(α, t). This
Kripke structure is given by the graph of the small-step operational semantics described
in Section 2.3,

Mα := (XS, A,↠, {t@α}, APΠ, LΠ ◦ cterm)

The relation ↠ is also extended, but only on complete finite executions, i.e. only those
leading to a solution by control transitions are added the self loop.9

These are the models internally used by the Maude LTL model checker and by our pre-
vious extension for strategy-controlled systems. For using the latter, the STRATEGY-MODEL-
CHECKER module declares a symbol modelCheck(s, φ, ’name) whose equational reduc-
tion invokes the verification of the LTL property φ from the initial state s controlled by
the strategy whose name is name. The property φ is expressed as a Maude term whose
syntax is specified in the LTL module in model-checker.maude. For instance, we can
check the LTL properties □ (risky → ⃝ death) with eagerEating and ♢ goal with safe.

9An execution state of the semantics may at the same time lead to a solution and to a new rewrite,
so adding a loop is not always safe and these states must be duplicated.
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   |   @ not(eating) ; safe

   |   @ not(eating) ; safe
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   |  @ fail safe    |  @ fail safe

  |   @ fail safe
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 |     @ not(eating) ; safe

  |   @ fail safe

   |   @ not(eating) ; safe

   |  @ fail safe

Figure 3: Model graph for the safe strategy.

The first one is satisfied, because eating rules are applied eagerly, but the second is not
and a counterexample is shown.

Maude > red modelCheck(initial , [] (bad -> O death), ’eagerEating) .

rewrites: 123

result Bool: true

Maude > red modelCheck(initial , <> goal , ’safe) .

reduce in RIVER -CROSSING -SCHECK : modelCheck(initial , <> goal , ’safe) .

rewrites: 36

result ModelCheckResult: counterexample(

{right | left shepherd wolf goat cabbage ,’goat}

{left wolf cabbage | right shepherd goat ,’alone}

{right goat | left shepherd wolf cabbage ,’wolf}

{left cabbage | right shepherd wolf goat ,’goat}

{right wolf | left shepherd goat cabbage ,’cabbage},

{left goat | right shepherd wolf cabbage ,’alone}

{left shepherd goat | right wolf cabbage ,’alone})

This counterexample, not being as short as possible, shows that it is always possible
to repeat movements in a loop. The complete graph for the safe strategy is shown
in Figure 3, although the C++ implementation does not explicitly retain the strategy
continuation of the semantics. The standard model checker can be used at the same
time and it has a similar interface, where the strategy name is obviously omitted. For
example, even in the uncontrolled system, the property □ (death → □¬ goal) is satisfied.

Maude > red modelCheck(initial , [] (death -> [] ~ goal)) .

rewrites: 156

result Bool: true
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In principle, using these Kripke structures, we will be able to check properties in no
matter which logic. Without strategies, the Kripke structure directly represents the gen-
uine rewrite graph, so there is no problem on applying other model-checking algorithms.
However, our transformed strategy-aware structure only guarantees that its nontermi-
nating executions coincide with the denotation of the strategy, but this is not enough.
Looking at Figure 3, we see that some states marked in blue do not lead to any solution or
infinite execution. They are the states where not(eating) has failed and where eating

has been applied to figure it out on the fly. The depth-first search of the automata-
theoretic approach used in the Maude LTL model checker ignores them automatically,
since no cycle can be found through them, but algorithms for branching-time properties
and tableau-based methods for LTL do not enjoy this property. These failed states can be
safely removed when backtracking on the model generation or using an additional search,
but there is another more serious problem that we explain in the following section.

5. Strategies and branching-time properties in Maude

The transition system yielded by the semantics is not ready for model checking
branching-time properties, as seen in the previous section. However, the main reason
is that states which are logically the same in the underlying system may be seen as dis-
tinct states due to the strategy continuation they hold, changing the tree structure of the
model and making it depend on syntactical aspects of the strategies. We will illustrate
this problem with an example of a simple vending machine:

mod VENDING-MACHINE i s
s o r t s Soup Thing Machine .

subso r t Thing < Soup .

ops e a c : -> Thing [ctor] .

op _[_] : Soup Soup -> Machine [ctor] .

op empty : -> Soup [ctor] .

op __ : Soup Soup -> Soup [ctor asoc comm id: empty] .

va r s O I : Soup .

r l [put1] : O e [I] => O [I e] .

r l [apple] : O [I e] => O a [I] .

r l [cake] : O [I e e] => O c [I] .

endm

The vending machine is a term O [I] where O represents the belongings of its user and I
the content of its internal coin box. The machine can receive one euro coin e with the rule
put1, and sells apples a and cakes c for one and two euros respectively. Let us consider
α ≡ put1 ; apple | put1 ; put1 ; cake and β ≡ put1 ; (apple | put1 ; cake).
These two different strategy expressions are essentially the same, because their abstract
denotations coincide E(α) = E(β), so the vending machine must satisfy the same prop-
erties whether controlled by α or β according to Definition 4. Intuitively, these strategies
can be identified with the plans of a person using the machine, where α has already
decided which item to buy before inserting any coin, and β delays the choice until the
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€€ [] @ α

€ [€] @ apple

€ [] @ ε

€ [€] @ put1 ; cake

[€€] @ cake

[] @ ε

€€ [] @ β

€ [€] @ apple — put1 ; cake

€ [] @ ε [€€] @ cake

[] @ ε

Figure 4: Strategy rewrite graph for α and β.

first coin is inserted. An external observer looking at the user interaction with the ma-
chine will not be able to distinguish when this choice has been made, it is not part of the
observable behavior, and so it should be irrelevant for any property considered. This prin-
ciple would not be obeyed if we applied standard algorithms on Mα as Figure 4 shows.
There, we can see the execution trees by the ↠ relation from an initial configuration
with two coins e e [empty] using both α (left) and β (right). Disregarding the strategy
continuations after the @ sign, i.e. projecting the nodes by the cterm function, we obtain
rewriting trees where terms are connected by one-step rule rewrites. However, the tree
for α cannot be considered a subtree of the execution tree of (TΣ/E ,→1

R) because it con-
tains repeated children. In any case, the branching structures of the execution trees for α
and β and of their projections are manifestly different, and so they can be distinguished
by branching-time temporal properties, as the CTL property A ⃝ E♢ hasCake attests.

mod VENDING-MACHINE-PREDS i s
p r o t e c t i ng VENDING-MACHINE .

i n c l u d i n g SATISFACTION .

s o r t Machine < State .

op hasCake : -> Prop [ctor] .

va r s I O : Soup .

eq O c [I] |= hasCake = true .

eq O [I] |= hasCake = false [owise] .

endm

In effect, in the immediate successors of the root of the α tree the full path is already
chosen, and in the left one no cake is ever bought. On the contrary, there is only one
immediate successor of the initial state for β, where we can still choose the right branch
to get the cake.

The ambiguity on the satisfaction of the atomic property by the strategy E(α) = E(β)
should be avoided. In this example, the problem would be solved if the two successors of
the root in the execution tree for α were combined into a single state, whose projection
will be well-defined since they share the same term. Merging successors with a common
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base term is a general solution to the problem that can be applied locally, solves the
ambiguity, and produces a Kripke structure bisimilar to the unwinding of the strategy as
desired. The following definition formalizes this construction and the removal of failed
states discussed in the previous section. Remember that a state is valid

valid(q) := ∃ t ∈ TΣ q →∗
s,c t@ ε ∨ ∃ (qn)∞n=1 q ↠ q1 ↠ q2 ↠ · · ·

if a solution or a nonterminating execution can be followed from it.

Definition 5. Given a strategy expression α and t ∈ TΣ, we define the Kripke structure
M′

α := (XS ′, A, [↠]′, {{t@α}},APΠ, LΠ ◦ cterm) where

XS ′ = {Q ⊆ P(XS) : ∃ t ∈ TΣ ∀q ∈ Q cterm(q) = t ∧ ∃ q ∈ Q valid(q)},

and for any Q,Q′ ∈ XS ′

Q [↠]′a Q′ ⇐⇒ ∃ t ∈ TΣ Q′ = {q′ : q ↠a q′, q ∈ Q, cterm(q′) = t}

In summary, the states of M′
α are sets of execution states with a common projection,

and the successors of these sets are the union of the successors of their elements grouped
by their subject terms and by the action.

Theorem 2. M′
α and U(M, λE(α)) are bisimilar Kripke structures.

Theorem 2 tells that M′
α is an effective candidate to check branching-time properties

on Maude specifications with strategies according to the ideas of Section 3. All these
structures and propositions have been stated in terms of labeled transition systems, while
state-based logics like LTL, CTL, and CTL* are defined on unlabeled transition systems.
As we mentioned in Section 2.1, this is without loss of generality, because unlabeled
transition systems can be viewed as labeled ones with a single arbitrary label. However,
it is important that we forget about the labels of a labeled transition system before
checking state-based properties, not only by efficiency reasons, but also by semantic ones.
Otherwise, the labels will change the model semantics as the strategy continuations did
in the previous section. For instance, suppose a strategy r1 ; r2 | r3 ; r4 is applied
to a term t1 with the rules t1 →r1 t2, t1 →r3 t2, t2 →r2 t3, and t2 →r3 t4. The CTL
property A ⃝ E♢ t4 will not be true if edge labels are considered, but it will if they are
not, as it should be for state-based logics. On the contrary, for logics that operate on
labeled transition systems like µ-calculus, the edge labels should be preserved and used
to distinguish successor states when they are merged, because our notion of strategy
λ : (S ∪ A)+ → P(A × S) conditions the next steps on the previous actions too. Using
the same example, ⟨r1⟩ ⟨r4⟩⊤ should only be true if r4 can be applied after r1. With
these precautions, the following corollary claims that we can check CTL, CTL*, and
µ-calculus properties, among others, using M′

α.

Corollary 1. (M, E(α, t)) ⊨ φ ⇐⇒ M′
α ⊨ φ for any bisimilarity-invariant temporal

property φ.

The generated transition system Mα is finite and its transition decidable if the reach-
able states from the initial one are finitely many [71]. Since merged states are the combi-
nations of normal execution states, the number of states can grow exponentially at worst,
although it would usually decrease, like in the vending machine example.

Corollary 2. If the reachable states from t@α by →s,c are finitely many, (M, E(α, t)) ⊨
φ is decidable for LTL, CTL*, and µ-calculus.
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6. Model checking using external model checkers

The extension of the Maude LTL model checker for strategy-controlled specifica-
tions [71] generates as part of its job a labeled transition system, the Mα of Section 4.
With the adaptations described in Section 5, this LTS can be transformed into M′

α,
where branching-time properties can be properly checked. Thanks to the modular de-
sign of the original model checker, adopted by our extension, this model is exposed as
an abstract Kripke structure where the successors and the atomic properties satisfied
by a state can be queried using C++ functions. Hence, model checking properties in
other logics only requires implementing their algorithms and the adaptations on top of
this interface. However, instead of writing our own model-checking algorithms, we have
found convenient to reuse already used and tested implementations for the target logics,
since they are ultimately based on Kripke structures. A good candidate is the language-
independent model checker LTSmin [45], which is able to efficiently interact with our
Kripke-like representation of the model on the fly at the C++ level and supports all
logics we have considered here, CTL* and µ-calculus. In addition, we have established
connections with other model checkers like NuSMV [21], the pyModelChecking [18] li-
brary, and Spot [31], and we have also written our own implementation of a µ-calculus
algorithm. More details about these connections are given at the end of this section.
Additional logics and backends can be added without much effort using this approach.

Aiming at discharging users from learning the particular syntax and mode of operation
of the different backends, a common and simplified interface is provided by the unified
Maude model-checking tool umaudemc [70]. This program has a graphical and a command-
line interface where the model-checking problem data is entered and the results are shown.
The command for checking a property is the following:

umaudemc check ⟨file name ⟩ ⟨ initial term ⟩ ⟨ formula ⟩ [ ⟨ strategy ⟩ ]

The formula can be expressed in a syntax that extends the predefined Maude LTL module
with operators for CTL* and µ-calculus. In the first case, the only new constructors are
the universal A and existential E path quantifiers. For the µ-calculus, the syntax is
extended with the universal modalities [ ] and [.] , the existential modalities < >

and <.> , the fixed-point operators mu . and nu . , and variables.

*** CTL and CTL*

op A_ : Formula -> Formula [ctor prec 53] .

op E_ : Formula -> Formula [ctor prec 53] .

*** mu-calculus

subso r t @MCVariable@ < Formula .

op <.>_ : Formula -> Formula [ctor prec 53 format (c o d)] .

op [.]_ : Formula -> Formula [ctor prec 53 format (c d d os d)] .

op <_>_ : @ActionSpec@ Formula -> Formula [ctor prec 53 ...] .

op [_]_ : @ActionSpec@ Formula -> Formula [ctor prec 53 ...] .

op mu_._ : @MCVariable@ Formula -> Formula [ctor prec 64] .

op nu_._ : @MCVariable@ Formula -> Formula [ctor prec 64] .

*** Action lists

s o r t s @ActionSpec@ @ActionList@ .
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subso r t @ActionList@ < @ActionSpec@ .

op __ : @ActionList@ @ActionList@ -> @ActionList@ [ctor assoc] .

op ~_ : @ActionList@ -> @ActionSpec@ [ctor] .

Modalities are generalized so that they can take one or more rule labels of the module
as actions, separated by space. This follows the widespread notation [C]φ :=

∧
a∈C [a]φ

and ⟨C⟩φ :=
∨

a∈C ⟨a⟩φ. In case C is the complete set of actions, a dot can be written
instead. The complement of the list of actions can be specified by preceding it with
the negation symbol ~. Variables for µ-calculus can be any token that does not conflict
with the other elements in the formula. The sorts @ActionList@ and @MCVariable@ are
populated at the metalevel before parsing, based on the rule labels of the target module
and on a previous scan of the formula. The umaudemc tool parses the input formula
within this Maude signature, deduces the least-general logic this formula belongs to, and
then calls the appropriate backend with the appropriate configuration.

To illustrate its usage, we will check some branching-time properties of the river-
crossing puzzle. The CTL formula A□E♢ goal expresses that every state of the river-
crossing puzzle can be continued to a solution. This formula is satisfied when the system
is controlled by the safe strategy, but not when using the eagerEating strategy or when
the system runs uncontrolled.

$ umaudemc check river.maude initial ’A [] E <> goal ’ safe

The property is satisfied in the initial state

(16 system states , 264 rewrites ).

$ umaudemc check river.maude initial ’A [] E <> goal ’ eagerEating

The property is not satisfied in the initial state

(43 system states , 4012 rewrites ).

$ umaudemc check river.maude initial ’A [] E <> goal ’

The property is not satisfied in the initial state

(36 system states , 3058 rewrites ).

The reason is that no solution can be reached once a character has been eaten, which
may happen in the last two cases. Counterexamples are only shown if the selected
backend supports them, and the -c flag can be used to prefer one of these. The following
counterexample confirms our explanation for the refutation of the last property.10

$ umaudemc check river.maude initial ’A [] E <> goal ’ -c

The property is not satisfied in the initial state

(36 system states , 125 rewrites)

| right | left shepherd wolf goat cabbage

∨ rl G’ | shepherd G => G | shepherd G’ [label alone] .

| right shepherd | left wolf goat cabbage

∨ rl shepherd G’ | wolf goat G => shepherd G’ | wolf G [label wolf-eats] .

O right shepherd | left wolf cabbage

However, the property A□ (risky ∨ death ∨ E♢ goal) holds under the eagerEating

strategy.

10For a branching-time logic, counterexamples can be provided for purely universal formulae and
examples for purely existential formulae. In case both quantifications are mixed, a prefix of the path
until the second quantifier applies can be given.
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$ umaudemc check river.maude initial \

’A [] (risky \/ death \/ E <> goal)’ eagerEating

The property is satisfied in the initial state

(43 system states , 1088 rewrites ).

We can also check µ-calculus properties, like the fact that the only initial movement
not leading to a risky state is goat:

$ umaudemc check river.maude initial \

’[ alone wolf cabbage ] risky /\ < goat > ~ risky ’

The property is satisfied in the initial state

(5 system states , 18 rewrites , 15 game states ).

Then, we wonder if the goal can be reached without moving the goat again: this is the
property [goat] (µZ. goal ∨ ⟨alone wolf cabbage⟩Z) where the fixed-point subformula
describes the states where the goal can be reached using any sequence of moves other
that goat. The answer is no if the rules of the game are respected as in the eagerEating
strategy:

$ umaudemc check river.maude initial \

’[ goat ] (mu Z . goal \/ < ~ goat > Z)’ eagerEating

The property is not satisfied in the initial state

(43 system states , 192 rewrites , 364 game states ).

Notice that we have replaced the list of labels alone wolf cabbage by ~ goat to il-
lustrate the complement notation for actions. These are not exactly the same, because
the complement of goat also includes the rules wolf-eats and goat-eats, but they do
not change the satisfaction of the property. On the contrary, the uncontrolled system
satisfies the formula, since it can pass by forbidden states:

$ umaudemc check river.maude initial \

’[ goat ] (mu Z . goal \/ < ~ goat > Z)’

The property is satisfied in the initial state

(33 system states , 168 rewrites , 362 game states ).

While the umaudemc tool automatically enables the branching-time adaptations of
the model according to the input formula, these defaults can be overwritten with the
--purge-fails and --merge-states options. Coming back to the vending machine
example of Section 5, with the merge-states adaptation disabled, we can see that the
CTL property A ⃝ E♢ hasCake is not satisfied when the system is controlled by the
strategy α, but it is when controlled by the equivalent strategy β:

$ umaudemc check vending.maude initial ’A O E <> hasCake ’ \

’put1 ; apple | put1 ; put1 ; cake ’ --merge -states=no

The property is not satisfied in the initial state

(6 system states , 72 rewrites)

$ umaudemc check vending.maude initial ’A O E <> hasCake ’ \

’put1 ; (apple | put1 ; cake)’ --merge -states=no

The property is satisfied in the initial state

(5 system states , 60 rewrites ).

However, when states are properly merged, the property is satisfied for both strategy
expressions as follows from Corollary 1:
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Figure 5: Architecture of the umaudemc model-checking tool.

$ umaudemc check vending.maude initial ’A O E <> hasCake ’ \

’put1 ; apple | put1 ; put1 ; cake ’

The property is satisfied in the initial state

(6 system states , 52 rewrites ).

The transition systems generated for each model with the different adaptations can be ob-
served with the umaudemc graph command. For instance, umaudemc graph river.maude

initial safe would generate something similar to Figure 3, and its states in blue can
be removed with the --purge-fails=yes option.

6.1. The architecture of umaudemc

As we have seen with the examples of the previous section, the umaudemc tool allows
checking temporal properties on both standard and strategy-controlled Maude specifi-
cations regardless of which model-checking backend is doing the job behind the scenes.
All of them rely on the internal Maude rewrite graph used by the Maude LTL model
checker [33] and by our extension for strategy controlled systems [71], which correspond
to the C++ classes StateTransitionGraph and StrategyTransitionGraph in their im-
plementations. As illustrated in Figure 5, some backends access these graphs directly
while others use a Python library called maude [69] that we have developed for this and
other projects. This library exposes all relevant Maude entities and operations as objects
and methods in Python by directly interacting with the Maude implementation at the
binary level,11 including the strategy-controlled and the standard rewrite graphs. Ex-
ploring these graphs and evaluating atomic propositions on them, models are generated
for the various supported backends.

The maude library is also used directly by the umaudemc tool to process the problem
data, the verification results and the counterexamples, and to produce printable graphs
of the models. The extended language of temporal properties admitted by the tool is
specified in a Maude module, parsed using the library, and translated to the syntax of
the temporal properties supported by the selected backend. Whether the adaptations

11The maude library is a language binding implemented using the SWIG interface generator. More
details are available in its repository [69].
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LTL CTL CTL* µ-calculus Lines

Extended Maude on-the-fly 1200
LTSmin on-the-fly X X X 1140

pyModelChecking tableau X X 147
NuSMV tableau X 199

Spot automata 203
Builtin X X 400

Table 1: Logics supported by the backends in umaudemc.

of Section 5 are applied or not is also decided depending on the problem data, and they
are implemented in C++ inside the LTSmin plugin or in Python for the backends based
on the maude library. The umaudemc tool will detect which backends are installed and call
the most convenient for each supported logic, although the search order can be changed
with the --backend option. In addition to the Maude LTL model checker and LTSmin,
which is described in Section 6.2, the available backends are:

• NuSMV [21], which supports LTL and CTL. The model is communicated by writing
a low-level specification file in the NuSMV format. It calculates counterexamples
for CTL properties too.

• pyModelChecking [18] is a Python library that targets LTL (by the tableau method),
CTL, and CTL* model checking. The Kripke structure is constructed as a Python
object from the Maude model.

• Spot [31] is a C++ framework for LTL and ω-automata manipulation with a Python
library. Models are built as Kripke structures using this library, but it admits more
complex ω-automata. It also admits on-the-fly model checking, but not through
the Python interface.

• Our own implementation in Python of the µ-calculus model-checking algorithm
in [14], using the Zielonka algorithm [82] for parity game solving.

Table 1 summarizes which logics can be checked with each backend. Although LTSmin
supports all logics we have considered, other model checkers are easier to install, pro-
vide more informative output, or exhibit better performance in some cases despite their
less efficient connection, as discussed in Section 7. Adding connections to other model
checkers and logics is relatively simple, as suggested by the number of code lines written
for each backend in Table 1, since the models described in Sections 4 and 5 are easily
accessible and compatible in principle with any logic.

6.2. The LTSmin language plugin

LTSmin [45] is a collection of generic model-checking programs that can operate on
models expressed in different specification languages. These models are exposed as Kripke
structures by some builtin or pluggable language modules using its Partitioned Next State
Interface (PINS). In order to check properties with this toolset, we have implemented
a language module for Maude. The module libmaudemc is a shared C library linked

28



with the implementation of Maude12 that exports the functions required by the PINS
interface. Model checking a temporal property using LTSmin and the Maude plugin
consists of the following steps:

1. The pins2lts-* model-checking tools of LTSmin are called with the problem data
and with a --loader argument indicating the path of the Maude plugin. The
Maude language module is loaded in memory using the POSIX’s dlopen API, so
that its exported functions and global variables required by the PINS interface can
be accessed. One of these functions is called to pass the Maude-specific problem
data to the plugin (the initial term, the strategy, and some other parameters) and
prepare the Kripke structure that will be made available to the model-checking
algorithms.

2. When the model-checking algorithm for the given logic wants to know if an atomic
property p is satisfied in a state, it calls the state label function of the plugin
that evaluates the term cterm(Q) |= p and returns its Boolean result. When the
model checker requires the successors of a state, it calls the next state function
that enumerates them with their corresponding edge labels.

3. The verification result is printed to the terminal. In the µ-calculus case, a parity
game is generated instead, which has to be solved by an external tool from the
mCRL2 project [17].

The Kripke structures presented to LTSmin are M, Mα or M′
α depending on whether

the model is controlled by a strategy or not, and on the arguments --purge-fails and
--merge-states passed to the language plugin. In fact, the next state function called
in the second step is chosen at the beginning from a small set of alternative functions
that implement the adaptations described in Section 5 for state-based or edge-based
branching-time logics. This choice could be inferred from the temporal formulae to be
checked, but this information is never passed to the language plugin. The same happens
with the atomic propositions, which must be supplied directly with the --aprops argu-
ment, since the set of potential atomic proposition can be infinite as they are regular
Maude operators with parameters. These disadvantages and the choice of an appro-
priate LTSmin command for a given property are avoided when using the umaudemc

utility. Among the different programs included in LTSmin, umaudemc invokes its sequen-
tial explicit-state model checker pins2lts-seq for LTL and µ-calculus properties with
action specifications,13 and the symbolic model checker pins2lts-sym for CTL, CTL*,
and µ-calculus properties without action specifications (i.e. using only the <.> and [.]

modalities).
The Maude language module does not take full advantage of LTSmin. Its PINS in-

terface allows representing states as vectors of integer indices and declaring dependencies
between their entries, so that the model-checking algorithms can use them for better effi-
ciency and parallelization. However, our plugin’s states are single indices to the internal
Maude rewrite graph. Automatically partitioning an arbitrary Maude specification and
inferring dependencies between the resulting parts seems to be a very complex task.

12Maude is usually distributed as a single binary, but we have built it as a shared library libmaude to
distribute the interpreter and this plugin together without including twice the same executable code.

13Notice that µ-calculus properties that refer to both edge and state labels cannot be verified with
the last LTSmin version at the moment of writing (3.0.2). We have proposed a change that makes it
possible and the modified version is available for download in [32] in the meantime.
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7. Evaluation

We have tested and compared the performance of the model-checking backends de-
scribed in this article using the collection of strategy-controlled Maude specifications and
temporal properties available at the Maude strategy language website [32]. Most of these
examples are relatively small (classical concurrency problems, games, models translated
from other model-checking tools, etc) and they have been specifically written to test
our model checker, but some others have a greater size and interest on their own. The
results cannot be interpreted as a comparison of the model-checking tools themselves,
since the figures also reflect the efficiency of the connections to our Maude models. The
reader should also keep in mind from Section 6 that they all operate on the same Kripke
structure produced by Maude from a strategy-controlled specification, with some com-
mon adjustements in the case of branching-time properties. In the same website, the
complete listing of the test cases and their results are available for reproducibility, and
they can be executed with the test subcommand of the umaudemc tool.

The plots in Figure 6 compare the time spent by the different backends to execute the
same model-checking problems ordered by their number of states. These problems are
given by a Maude module, an initial term, a strategy expression, and a temporal formula.
For every test case c and backend b, the plot shows a specific marker determined by b in
the coordinates

(nLTSmin
c , (tbc − tbe) / (tLTSmin

c − tLTSmin
e )),

where nb
c and tbc are respectively the number of states and the execution time of the

test case c in the backend b, and e is an empty test case with a single state and a trivial
property. In other words, looking at a fixed vertical rule we can compare the performance
of the different backends for a test case, since the height of the marks indicates the
proportion of time a backend has taken to complete its task respect to LTSmin, so that
higher means worse. LTSmin has been chosen as a common reference since it supports
all considered logics, and so it can run all test cases. Even though the number of states
are referred to a fixed backend, this figure is essentially a property of the test case and it
is usually the same for all tools.14 Moreover, we have subtracted the initialization time
tbe before calculating the coefficients, because small examples are highly influenced by the
quite different initialization times of the backends, with LTSmin being a thousand times
slower on the empty example e than the Maude LTL model checker. In order to compare
the new supported model checkers with the builtin Maude one, the left plot includes tests
against linear-time properties. The results on our smaller collection of branching-time
properties are shown in the right plot.

For LTL properties, the Maude model checker is usually and expectedly the fastest,
since it is directly connected to the rewrite graphs. However, Spot is often and LTSmin
sometimes very close. The peaks in the Maude curve above 103 states are caused by the
different order in which states are explored by the backends. Although all these cases
evaluate properties that are satisfied, in which the whole state space has to be expanded,
some exploration orders may detect the equivalence of two states earlier in some corner

14The number of states may differ in test cases where the temporal property does not hold, since
counterexamples can be found sooner or later by the different on-the-fly implementations, and in some
corner cases explained in the following.
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Figure 6: Compared performance of the model-checking backends.

cases. Surprinsingly, the Python-based algorithms are more efficient than LTSmin, but
only with small examples. NuSMV and pyModelChecking do not behave bad for lower
sizes, even though their algorithms do not operate on the fly, but they do not terminate
in reasonable time and memory limits when the problems are big enough.

Regarding branching-time properties, although the size of the examples is small, we
observe that LTSmin exhibits the worst performance and all other backends check the
same test cases in half of the time. However, for the biggest µ-calculus problem checked,
its performance is better than that of our builtin backend.

8. Related work

Three independent but related topics are addressed in this work, model checking,
strategies and rewriting, which have had fruitful interactions. In this section, we review
on related work the combinations of these topics towards approaches that are close to
what has been presented here.

Strategies and rewriting. Strategies are inherent to rewriting and reduction, and so
their study dates back to the origins of λ-calculus. When specifying the behavior of
algorithms and other systems, the Kowalski’s motto Algorithm = Logic + Control [46]
is translated in this context to the Rule + Strategies approach [67, 51], where strategies
express an additional level of specification that controls the rule rewriting system com-
positionally and without mixing their concerns. In addition to Maude’s, other strategy
languages have appeared like ELAN [11], Stratego [15], TOM [9], and ρLog [54] for term
rewriting, and Porgy [35] for graph rewriting. Strategy-controlled specifications have
been used to describe many examples of systems from different fields [42, 76, 80, 72, 2, 36].
However, the verification techniques used for these tools do not include model checking
as understood here.

Model checking and rewriting. Various model checkers have been proposed for
rewriting systems in the Maude context. The main one is the Maude LTL model
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checker [33] integrated in the Maude interpreter and applied on many real models, among
others [52, 63, 62]. In addition, µ-calculus model checkers have been once implemented
in Maude itself [81, 50], the Real Time Maude [64] framework includes a Timed CTL
model checker for real-time systems, the Maude LTL logical model checker [6] symboli-
cally verifies infinite-state systems using narrowing, and some fragments of the Temporal
Logic of Rewriting (TLR*) [59], whose relation with strategies is discussed below, can
be checked with different implementations [7, 56]. Model checking has also been used in
the CafeOBJ [30, 40] language, despite not including a dedicated model checker.

Model checking and strategies. The relation between model checking and strategies
is a wide and active research topic in the context of games, multiagent and open systems,
where strategies are usually followed by the players or agents to achieve some defined
goal and where many properties can be expressed in terms of strategies. Representative
logics are the Alternating-Time Logics ATL and ATL* [1] that respectively include the
usual CTL and CTL* operators, but whose path quantifiers E and A are replaced by
the strategic modalities ⟨⟨A⟩⟩ and JAK. The meaning of ⟨⟨A⟩⟩φ is that a strategy can
be chosen for each of the agents in the coalition A to make φ hold, regardless of what
the agents not in A do. The more expressive Strategy Logic (SL) [61] of Mogavero,
Murano, Perelli, and Vardi is extended with strategy variables that can be existentially
⟨⟨x⟩⟩φ and universally JxKφ quantified and then assigned (a, x)φ to one or more agents
a. The satisfaction of their formulae is defined recursively, and so they have a concept
of strategy-controlled checking to evaluate the φ and (a, x)φ subformulae that coincides
with our Definition 4, or more precisely, to the generalized CTL* semantics of Section 3.1.
However, the semantics of these logics is crucially influenced by the type of strategy
considered [44, 16], which in most cases is deterministic and sometimes memoryless,
although the literature on variations of strategy logics is extensive, and the case of general
intensional strategies are covered in logics like USL [20] and SL≺ [38]. Our model-checking
problem cannot be directly seen as a particular case of the problem for these logics,
because strategies do not appear explicitly and they are always bound by quantifiers.
On the contrary, the associated satisfaction problem for CTL* properties, whether there
is a strategy such that the formula is satisfied under its control, can be expressed as a very
particular case of the last two mentioned logics. In their full generality, model checkers
have not been implemented for these logics as far as we know since their problems are very
hard, but some subsets can be effectively model checked. MCMAS [53] is an extensive
open-source model checker for multi-agent systems that supports ATL as verification
logic, and restrictions of Strategy Logic through extensions [19]. In addition to the
verification result, they can also synthesize strategies for the agents that make the formula
hold. Strategy synthesis is related to the so-called controller synthesis [3] with important
industrial applications. In a similar but different context lies Uppaal Stratego [28]
from the Uppaal [49] modeling environment for real-time systems. This tool allows
synthesizing strategies to make a property hold as in the other mentioned tools, but
these strategies can be later used to execute the constrained system and model check it
against other properties, considering only this restricted strategy-space. Strategies in this
case are memoryless and deterministic, but they follow the same idea of this work.

Strategies have also been applied to reduce the search space for the sole purpose
of model checking, by guiding its search to a counterexample or witness of the desired
property, like search heuristics [66]. For example, this has been done [78] with a language
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of reachability expressions including union, concatenation and iteration operators that
resemble those of Maude and similar strategy languages.

Temporal Logic of Rewriting and other logics. Meseguer’s Temporal Logic of
Rewriting (TLR*) [59] is also connected with strategies and the Maude strategy lan-
guage. This logic extends CTL* with spatial action patterns that symbolically designate
a collection of rule applications. They can be used in path formulae to indicate how the
next transition to be executed should be, and so TLR* is at the same time a state-based
and edge-based temporal logic. For example, the property □ (¬goat → ⃝ risky) says
that any action other than goat would lead to a risky state. Spatial action patterns can
be more complex and include restrictions on the variables and the context where rules
are applied. In fact, they are very similar to a combination of rule applications, the
top modifier, and the matchrew of the Maude strategy language, to which they can be
translated. The relation with strategies comes from the possibility of checking certain
properties on infinite-state systems by a strategy-controlled exploration. Guarantee for-
mulae (those only containing the temporal operators ⃝, □, and U without negations)
can be translated to strategy expressions whose evaluation is a semidecision procedure
for the original formulae. In Sections 6 and 7 of [58], a strategy language similar to that
of Maude is introduced for this particular purpose.

b ::= ⊤ | ⊥ | p | ¬b | b ∧ b | b ∨ b

e ::= idle | δ | any | e ∧ e | (e|e) | e ; e | e+ | eU e | e.b

However, some combinators of this language are neither available nor expressible in
the current Maude strategy language, and so it cannot be used to implement these
procedures. Notice that the strategy-aware model checker is not needed for that, but only
the execution engine of strategies. On the other hand, writing a TLR* model checker for
finite-state systems would be reasonably simple using the tools and connections developed
in this work.

Finally, propositional dynamic logic (PDL) [37], linear dynamic logic (LDL) [39] and
their variations are partially related to the model-checking problem of strategy-controlled
systems. Their formulae ⟨r⟩φ include complex actions r built using edge labels, regular
expression combinators, and tests, which can be seen as a subset of the strategy language
too. Atomic propositions and more complex temporal formulae can be checked at the
end of those sequences of actions or at arbitrary points during them using tests. Unlike in
our approach, properties are not checked in the system restricted by the action patterns
but at some execution points indicated by them.

9. Conclusions and future work

Strategies are a useful resource for elaborating modular rewriting-based specifications,
where simpler rules represent the local transformations of the model, and strategies
describe at a higher level restrictions that capture its global behavior, guide them towards
a goal, apply them more efficiently, etc. The current version of the Maude specification
language [24] includes an LTL model checker for rewriting-based specifications and a
strategy language to control rewriting, but these are independent and properties cannot
be checked on strategy-controlled models. Therefore, in a previous work, we extended the

33



Maude LTL model checker to handle strategy-controlled systems [71]. The fundamental
idea is that properties should only be checked on the executions allowed by the strategy,
and a small-step operational semantics was defined to determine which are those for an
expression in the Maude strategy language. Using this semantics, the original Kripke
structure can be transformed to another one whose executions are exactly those allowed
by the strategy, in which properties can be checked using standard algorithms. In this
paper, we extend the discussion to branching-time properties, realizing that strategies
can also be seen as subtrees of the execution trees of the original model where properties
can be checked. However, the model transformation proposed for linear-time properties
must be adapted to maintain the bisimilarity with the unwinding of the original model,
so that properties are soundly checked.

In order to effectively verify branching-time properties, both on strategy-controlled
and standard Maude specifications, we have implemented connections with external
model checkers, with support for CTL* and µ-calculus. The infrastructure used to con-
nect these model checkers is valuable by itself, and uses a library that allows manipulating
and accessing the Maude entities and models from other programming languages [69].
It can be easily used to connect other visualization or verification tools, and to write
programs that use Maude as a formal engine. All model checkers can be transparently
accessed through a unified umaudemc tool [70] that provides extended information and
graphical representations of the models and counterexamples. The performance of the
connections to the external model checkers is comparable to the builtin Maude model
checker.

This work can be extended with more logics and model-checking backends. Adding
some would be specially affordable with the new tools, like the Property Specification
Logic [43], already supported by some of the current backends, Meseguer’s Temporal
Logic of Rewriting and µ-calculus of rewriting. We can also relax the restriction to
intensional strategies and try an alternative interpretation of the Maude strategy lan-
guage, making the iteration behave as a Kleene star, so that fairness constraints can be
expressed in the strategy itself. Exploring the satisfaction and strategy synthesis problem
mentioned when discussing strategic logics could be another direction of future work.
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Appendix A. Proofs

We do not include all the details in the proofs, which are usually tedious inductive
checks, but only sketch the main ideas and the most problematic steps.

Lemma 1. Every closed ω-language is recognized by a deterministic Büchi automaton
with trivial acceptance conditions.
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Proof. Since the language is ω-regular, there must be a Büchi automaton that recognizes
it. Since the language is closed, the limits of all executions are allowed, so the acceptance
conditions if any are superfluous and can be removed (we have proved this in [71]). The
automaton with trivial acceptance conditions can then be determinized by the powerset
construction used for finite automata, since the obstacle that impedes determinizing
arbitrary Büchi automata are the Büchi conditions.

Lemma 2. If K and K′ are bisimilar,
⋃

s∈I ℓ(ΓK,s) =
⋃

s∈I′ ℓ′(ΓK′,s).

Proof. K and K′ are interchangeable in the lemma, so it is enough to prove G ⊆ G′, if
G and G′ are the unions in the statement, by induction with the property p(ws) = ∃i′ ∈
I ′, w′s′ ∈ ΓK′,i′ ℓ(ws) = ℓ′(w′s′) ∧ (s, s′) ∈ B for all i ∈ I and ws ∈ ΓK,i, where B is
a bisimulation. The infinite executions are the limits of the finite ones, so they coincide
too.

Theorem 1. Given an intensional strategy λ, there is a finite Kripke structure K′ bisim-
ilar to U(K, λ) if E(λ) is ω-regular. The converse is not true, but in that case ℓ(E(λ))
is ω-regular.

Proof. In summary, the Büchi automaton for E(λ) gives the finite Kripke structure K′,
with transition labels somehow clouding the proof. If E(λ) is ω-regular and closed, there
is a deterministic automaton M = (Q,S ∪ A, δ, ι,Q) for it with trivial Büchi conditions
by Lemma 1. Moreover, all words accepted by this language alternate states in S with
actions in A. Let K′ be (Q × S,R′, I ′, AP, ℓ ◦ π2) where I ′ = {(q, s) : q ∈ δ(ι, s), s ∈
I}, π2 is the second projection of the pair, and ((q, s), a, (q′, s′)) ∈ R′ ⇐⇒ ∃ qm ∈
Q qm ∈ δ(q, a) ∧ q′ ∈ δ(qm, s′). U(K, λ) is bisimilar to K′ by the following relation

B = {(ws, (q, s)) : q ∈ δ̂(ι, ws)} where δ̂(q, ε) = {q} and δ̂(q, wx) =
⋃

q′∈δ̂(q,w) δ̂(q
′, x).

First, it is clear that states related by B have the same label. Then, if ws → wsas′ and
(ws, (q, s)) ∈ B, the state (q′, s′) where q′ ∈ δ̂(ι, wsas′) satisfies ((q, s), a, (q′, s′)) ∈ R′

and (wsas′, (q′, s′)) ∈ B (the determinism is M is used here). δ̂(ι, wsas′) is not empty
because wsas′ is a prefix of an execution allowed by the strategy, and so recognized by
M . The other simulation is proven similarly.

The converse is not true. For an unlabeled counterexample, take K = ({a, b}, {a, b}2,
{a}, ∅, ∅), λ(w) = {a, b} if w = an for n prime and {a} otherwise, and K′ = ({c}, {(c, c)},
{c}, ∅, ∅). E(λ) is not ω-regular and K′ is bisimilar to U(K, λ) by the only possible total
relation. Hence, we only prove that ℓ(E(λ)) is ω-regular. Given K′ = (S′, R′, I ′, AP, ℓ′),
we define the ω-automaton M = (Q,P(AP ) ∪ A, δ, ι,Q) where Q = S′ × {0, 1} ∪ {ι}
and δ(ι, P ) = {(s, 1) : ℓ(s) = P, s ∈ I ′}, δ((s, 1), a) = {(s′, 0) : (s, a, s′) ∈ R′} and
δ((s, 0), P ) = {(s, 1)} if P = ℓ(s). It is clear that the runs of M are of the form
ι (s0, 1)(s1, 0)(s1, 1)(s2, 0)(s2, 1) · · · and they accept words s0a1s1a2s2 · · · that coincide
with the executions of K′. By Lemma 2, the projected executions of K′ coincide with
those of U(K, λ) and these are exactly ℓ(E(λ)). Hence, M is a Büchi automaton for
the ω-regular language ℓ(E(λ)). Finally, ℓ(E(λ)) being ω-regular is not enough for the
existence of a bisimilar finite K′. The previous counterexample can be refined to show
this.

Proposition 1. Given a CTL* formula Φ, K, s ⊨ Φ iff Γω
K,s ⊨ Φ.
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Proof. The key fact is that the possible continuations of any finite execution ws for Γω
K

only depend on its final state s, since the executions are unrestricted. Hence, Γω
K,s ↾

(ws′) = Γω
K,s′ for all ws

′ ∈ Γ∗
K,s.Then, K, s ⊨ Φ iff Γω

K,s ⊨ Φ and K, s ⊨ ϕ iff Γω
K,π0

, π ⊨ ϕ
can be easily proven by induction on the formula. Almost syntactically, Γω

K,s can be
replaced by s and the strategy can be removed in the path relation to obtain the classical
definition. The two properties clearly hold in 1 to 7. In 8 and 9, with E = Γω

K,π0
, we

can observe that E ↾ π0π1 = Γω
K,π1

and π1 = (π1)0, and that E ↾ π≤n = Γω
K,πn

with
πn = (πn)0. The induction hypothesis can then be applied.

Lemma 3. For every ws0 ∈ S+ prefix in E(λ), E(λ) ↾ ws0 = {flat(π) : π ∈ ΓU(K,λ),ws0}
where flat((ws0)(ws0s1)(ws0s1s2) · · · ) := s0s1s2 · · · .

Proof. Executions in U(K, λ) are of the form (ws0)(ws0s1)(ws0s1s2) · · · where s0s1 · · · is
an execution in E. For the⊇ inclusion, take ΓU(K,λ),ws0 ∋ π = (ws0)(ws0s1)(ws0s1s2) · · · ,
whose flat(π) = s0s1s2 · · · and ws0s1s2 · · · ∈ E since sn+1 ∈ λ(sn). Hence, flat(π) =
s0s1 · · · ∈ E ↾ ws0 by definition. For the other ⊆ inclusion, s0s1 · · · ∈ E ↾ ws0 implies
ws0s1 · · · ∈ E, so π = (ws0)(ws0s1) · · · ∈ ΓU(K,λ),ws0 and flat(π) = s0s1 · · · is in the
set.

Proposition 2. Given (K, E(λ)) and a CTL* formula φ, U(K, λ) ⊨ φ iff K, E(λ) ⊨ φ.

Proof. We follow an inductive proof on the structure of CTL* formulae with the more
general property U(K, λ), w ⊨ φ iff K, E(λ) ↾ w ⊨ φ for all w ∈ S+. Path formulae need
to be handled simultaneously, so the inductive property also includes U(K, λ), π ⊨ φ iff
K, E(λ) ↾ π0,flat(π) ⊨ φ (in the lefthand side executions are successions of growing S+

words while in the righthand side they are successions of S states). To facilitate reading,
we will omit the U(K, λ) and K prefix when writing the satisfaction relations, and use E
for E(λ).

• (p, atomic propositions) By definition, ⊒s ⊨ p iff p ∈ ℓ(s), and E ↾ ws ⊨ p iff
p ∈ ℓ(s′) for all s′w′ ∈ E ↾ ws = {sw′′ : wsw′′ ∈ E}. Then, s′ can only be s and
both conditions coincide.

• (Φ1 ∧ Φ2) In the standard side, the conjunction is satisfied iff w ⊨ Φi for both
i = 1, 2. In the strategy side, this happens iff E ↾ w ⊨ Φi. By induction hypothesis
on both Φi the equivalence holds.

• (¬Φ) The same inductive argument can be used for negation.

• (Aφ) This formula is satisfied iff π ⊨ φ for all π ∈ Γω
U(K,λ),w in the U(K, λ) side.

In the strategy side, this is E ↾ w, ρ ⊨ φ for all ρ ∈ E ↾ w. Using Lemma 3, all
these ρ are exactly those flat(π), and applying the induction hypothesis on φ, both
statements are equivalent.

Let π be (ws0)(ws0s1) · · · , we then target the path satisfaction cases:

• (⃝φ) We should prove that π ⊨ ⃝φ is equivalent to E ↾ ws0, s0s1 · · · ⊨ ⃝φ.
Their definitions translate these to π1 ⊨ φ and (E ↾ ws0) ↾ s0s1, (s0s1 · · · )1 ⊨ φ.
But they are equivalent by induction hypothesis on φ, since (E ↾ ws0) ↾ s0s1 = E ↾
ws0s1 = E ↾ π1 = E ↾ (π1)0 and (s0s1 · · · )1 = s1s2 · · · = flat(π1).
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• (φ1 Uφ2) The formula holds in the standard sense if there is an n ∈ N such that
πn ⊨ φ2 and for all k such that 0 ≤ k < n then πk ⊨ φ1. In the strategy side, the
formula holds if again there is an n ∈ N such that (E ↾ ws0) ↾ s0 · · · sn, snsn+1 · · · ⊨
φ2 and (E ↾ ws0) ↾ s0 · · · sk, sksk+1 · · · ⊨ φ1 for all 0 ≤ k < n. Since (E ↾ ws0) ↾
s0 · · · sk = E ↾ ws0 · · · sk = E ↾ (πk)0 and sksk+1 · · · = flat(πk) for all k ∈ N,
the induction hypothesis can be applied to φ1 and φ2 to conclude the property for
φ1 Uφ2.

• (Φ) π ⊨ Φ is defined as π0 ⊨ Φ in the standard sense, and E ↾ ws0, s0s1 · · · ⊨ Φ is
E ↾ ws0 ⊨ Φ in the strategy case. Since π0 = ws0, both statements are related as
in the induction property. The hypothesis on Φ itself can be applied, considering
that state satisfaction is below path satisfaction in the induction order (we have
never used this argument in reverse), and then they are equivalent.

A complete subset of CTL* constructors has been handled in the proof, the derived
operators follow from the well-known semantic equivalences.

Proposition 5. Given (K, E) and a closed µ-calculus formula φ, s ∈ JφKK,η iff ΓK,s ∈
⟨⟨φ⟩⟩K,ξ for any η and ξ.

Proof. This property can be proven inductively, adding the variable valuations to the
inductive property and the premise that η(Z) ∋ s iff ΓK,s ∈ ξ(Z) for all variables Z.
For the initial φ, this premise is trivially satisfied since we can take η(Z) = ∅ = ξ(Z)
regardless of the given two, since the formula is closed. We will not detail some trivial
cases:

• (p) By definition, s ∈ JpKη is p ∈ ℓ(s) and Γs ∈ ⟨⟨p⟩⟩ξ is ∀π ∈ Γs p ∈ ℓ(π0). Since Γs

are the executions of K starting at s, π0 = s and both statements are equivalent.

• (⟨a⟩φ) s ∈ J⟨a⟩φKη if there is an s′ ∈ S such that s →a s′ and s′ ∈ JφKη. On the
other side, Γs ∈ ⟨⟨⟨a⟩φ⟩⟩ξ holds iff there is saw ∈ Γs such that Γs ↾ saw0 = Γw0 ∈
⟨⟨φ⟩⟩ξ. The induction hypothesis with s′ = w0 lets us conclude the property.

• (νZ.φ) s ∈ JνZ.φKη iff there is a set V such that s ∈ V and V ⊆ JφKη[Z/V ]. In the
strategy side, Γs ∈ ⟨⟨νZ.φ⟩⟩ξ iff there is an F such that Γs ∈ F and F ⊆ ⟨⟨φ⟩⟩ξ[Z/F ].
Assuming there exists a V with these properties (⇒), consider F = {Γs : s ∈ V }.
In other words, s ∈ V iff Γs ∈ F , so η[Z/V ] and ξ[Z/F ] are properly related. Hence,
by induction hypothesis on φ, Γs ∈ ⟨⟨φ⟩⟩ξ[Z/F ] iff s ∈ JφKη[Z/V ], so F ⊆ ⟨⟨φ⟩⟩ξ[Z/F ]

as we wanted to prove. In the opposite direction (⇐), assuming the existence of
an F with the mentioned properties, consider V = {s ∈ S : Γs ∈ F} and the proof
is the same.

Proposition 6. Given (K, E(λ)) and a closed µ-calculus formula φ, s ∈ JφKU(K,λ),η for
sπ ∈ E iff E ∈ ⟨⟨φ⟩⟩K,ξ for any η and ξ.

Proof. Let us inductively prove the more general property that JφKη ∋ w iff E ↾ w ∈ ⟨⟨φ⟩⟩ξ
provided that η(Z) ∋ w iff E ↾ w ∈ ξ(Z) for all variables Z.
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• (p) By definition, ws ∈ JφKη iff p ∈ ℓ(s), and E ↾ ws ∈ ⟨⟨φ⟩⟩ξ iff p ∈ ℓ(π0) for all
π ∈ E ↾ ws. However, π0 must be s since E ↾ ws = {sw′ : wsw′ ∈ E}, so both
sides are equivalent.

• (Z) The value of Z in both contexts is respectively η(Z) and ξ(Z), so the property
directly follows from the assumption about these two functions.

• (φ1 ∧φ2) The standard definition says Jφ1 ∧φ2Kη = Jφ1Kη ∩ Jφ2Kη and the strategy
one is ⟨⟨φ1 ∧ φ2⟩⟩ξ = ⟨⟨φ1⟩⟩ξ ∩ ⟨⟨φ2⟩⟩ξ. Hence, the property holds by induction
hypothesis on φ1 and φ2.

• (¬φ) By definition, J¬φKη = S+\JφKη and ⟨⟨¬φ⟩⟩ξ = P(ΓK)\⟨⟨φ⟩⟩ξ, so the property
holds by induction hypothesis on φ.

• (⟨a⟩φ) ws ∈ J⟨a⟩φKη iff there is an (a, s′) ∈ λ(ws) such that wsas′ ∈ JφKη according
to the standard definition of µ-calculus and the transition relation on U(K, λ).
On the other side, E ↾ ws ∈ ⟨⟨⟨a⟩φ⟩⟩ξ iff there is a w′ ∈ (S ∪ A)∞ such that
saw′ ∈ E ↾ ws and (E ↾ ws) ↾ saw′

0 = E ↾ wsaw′
0 ∈ ⟨⟨φ⟩⟩ξ.

By definition of E(λ), there is a w′ ∈ (S ∪ A)∞ such that wsaw′ ∈ E iff (a,w′
0) ∈

λ(ws). Hence, by induction hypothesis on φ and taking w′
0 = s′, we conclude that

the property holds.

• (νZ.φ) According to the standard definition, ws ∈ JνZ.φKη iff there is a V ⊆ S+

such that V ⊆ JφKη[Z/V ] and ws ∈ V . According to our definition for strategies,
E ↾ ws ∈ ⟨⟨νZ.φ⟩⟩ξ iff there is an F ⊆ P(ΓK) such that F ⊆ ⟨⟨φ⟩⟩ξ[Z/F ] and
E ↾ ws ∈ F . Both implications can be proven like in the previous proposition, but
taking F = {E ↾ w : w ∈ V } for a given V , and V = {w ∈ (S ∪ A)+ : E ↾ w ∈ F}
for a given F .

Theorem 2. M′
α and U(M, λE(α)) are bisimilar Kripke structures.

Proof. Let f : (TΣ∪A)+ → P(XS) be defined by f(t0a1t1 · · · antn) = {qn ∈ XS : t0 @α =
q0 ↠a1 · · · ↠an qn, cterm(qk) = tk}. For any w ∈ (TΣ ∪ A)+ and Q ̸= ∅, f(w) [↠]Q
holds if and only if ∃ t ∈ TΣ, a ∈ A Q = f(wat), since:

f(w) [↠]Q ⇐⇒ ∃ t ∈ TΣ, a ∈ A Q = {q′ ∈ XS : q ∈ f(w), q ↠a q′, cterm(q′) = t}
⇐⇒ ∃ t ∈ TΣ, a ∈ A Q = {q′ ∈ XS : t0 @α = q0 ↠a1 · · · ↠an qn ↠a q′,

cterm(q′) = t, cterm(qk) = wk} = f(wat)

The relation R = {(t0w, f(t0w)) : w ∈ (TΣ ∪ A)∗, f(t0w) ̸= ∅} is the bisimulation
we are looking for. Clearly, (t0, {t0 @α}) ∈ R and ℓlast(ws) = ℓ(s) = ℓ(cterm(Q)) if
(ws,Q) ∈ R. Given two words v, w ∈ (TΣ ∪A)+, R only relates them to f(v) and f(w),
respectively. (v, w) ∈ U implies w = vat by definition of U , and then f(v) [↠] f(w)
follows from the previous paragraph. Given two non-empty sets Q and Q′ such that
Q [↠]Q′, and a word w with f(w) = Q, we must find a w′ such that (w,w′) ∈ R
and f(w′) = Q′. However, we already have it thanks to the previous paragraph and
f(w) [↠]Q′, since there is some a and t such that f(wat) = Q′. It remains to prove that
(w,wat) ∈ U , i.e. (a, t) ∈ λ(w), but since there are no failed states in M′

α, any step of
the semantics must be allowed by the strategy.
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