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Abstract

We present the operational semantics of Carmel, a language that models the
Java Card Virtual Machine Language. We use the instruction set and the program
structures proposed in [1]. We define a small-step relation between program con-
figurations, including rules for exception handling, arrays and subroutines. We also
include the basic structures needed to model object ownership and the Java Card
firewall.
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1 Introduction

Java Card was first introduced in 1996 as a new technology that enables
Java applets to be loaded and executed in new generation smart cards and
other devices with limited memory. Java Card is a simplified version of Java
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- it does not include threads, floating point numbers and multi-dimensional
arrays - and has a relatively small size API. Java Card applications are also
small due to the memory limitations of the Smart Card processor. All these
factors combined with the the security-critical nature of its applications have
made it an ideal case-study for the application of formal methods.

The Java Card platform [2] is defined by three (natural language) specifica-
tions: The Java Card Virtual Machine (JCVM) Specification (3], the Java Card
Application Programming Interface (API) [4], and the Java Card Runtime
Environment (JCRE) Specification[5]. The specifications of other important
components of the Java Card system - such as the bytecode verifier, applet
installer and CAP converter - can either be found scattered in the specification
of the main components or deduced from their counterparts in the Java system
(e.g. bytecode verification [6]). These specifications are sometimes ambiguous
and contradictory, and lack mathematical rigour. This works tackles the first
problem: to provide a formal specification of the JCVM.

We present the operational semantics of Carmel, a language that models the
Java Card Virtual Machine Language. We use the instruction set and the
program structures proposed in [1]. We define a small-step relation between
program configurations, including rules for exception handling and subrou-
tines. We also include the basic structures needed to model object ownership
and the Java Card firewall.

One of the goals of the operational semantics is to provide an adequate frame-
work for the formalisation of program (e.g. flow) analyses for the JCVM]7].
Further refinements to the semantics [8] will be directed - among other things
- towards this goal.

1.1 Notation

A Domain is defined as a set equipped with functions. For convenience, in
some cases we define new domains as records. A record defined by

Dom = (fy : Dom;) X ... X (f, : Domy,)

is equivalent to the domain Dom equipped with the interface f; € Dom —
Dom;, for 0 < 7 < n. Given e € Dom, access to element f; is written as e.f;
and element update is performed by e[f; — v], where v € Dom;. To simplify
notation, we will usually write o.f(args) instead of f(o,args).

We write [X| to denote the set of finite arrays of elements of domain X. The
length of an array can be known using length : [X] — int. The indices of an



array z range from 0 to z.length — 1. Elements of the array x can be accessed
using the standard z[i] notation. The i-th element of an array is updated by
x[i = v].

2 Carmel Syntax and Program Structure

2.1 Program Structures

Java Card programs, unlike Java, are not represented as class files. Instead,
Java Card CAP - converted applet - files are used. A Java Card CAP file
is the binary representation of a package of classes that can be installed on
a device and used to execute the package’s classes on a Java Card virtual
machine[3]. In our framework, the information contained in the loaded CAP
files is represented by a program structure. A program P contains a set of
packages and each package a set of classes and interfaces. A package is uniquely
identified by an AID (application identifier). We define the following domains:

P € Program p € Package aid € AID cl € Class ¢ face € Interface

Classes and packages can be extracted from a program using the interface
defined in [1]. Similarly, methods and fields can be obtained from classes and
interfaces. We will only point out the elements relevant to this presentation and
that require some explanation. Classes and interfaces hold information about
direct fields and methods, inherited elements have to be looked up in the super-
class. A set of auxiliary functions is defined to help extract information from
the class hierarchy. The functions superClasses(cl) and superInterfaces(iface)
return the set of all the superclasses and superinterfaces of class ¢l and in-
terface iface, respectively. We write ¢l € implements(iface) if ¢l implements
interface 7 face.

Names are dropped from CAP files. All references to classes, interfaces, meth-
ods and fields have been resolved to their respective representation structure.
However, in order to make the presentation more readable, names - concrete
syntax - are introduced when necessary. Thus, when we write Object we are
actually referring to the structure associated to the java.lang.0Object! class
in the program.

A method structure m contains information about a method’s ID (m.id),used
for virtual method invocation (section 6.5), its type (m.type) and the class or

1 By default we’ll assume that classes without prefix belong to the java.lang
package



interface (m.classI) where it was declared. We write |m/| to denote the method’s
arity. A non-abstract method has additional information concerning its body.
The sequence of instructions that make up a method’s body is accessed via
addresses (Address). We use m.instructionAt(addr) to access the instruction
at address addr in method m. The first instruction of a method is located at
address 0 and the instruction following the instruction at address addr can be
found at addr + 1.

A field is uniquely identified by a field id. A field structure f contains infor-
mation about the field id (f.id) and type (f.type).

A JCVML program deals with two kinds of data types: primitive types and ref-
erennces (Figure 1). The primitive types supported by Java Card are boolean,
byte and short. Some implementations may also support the int type. Ref-
erences are either class instances or one-dimensional arrays. A method type
Tm is made of two components: the sequence of types that represent the types
of the parameters (it could be €), and the type of the result. The notation
(13)7 — 7rm is used to extract the two components. For clarity, we will use
this syntactic representation of types instead of the structures defined in [1].
The subtype relation 7 < 7' (Figure 1)is defined following the “can be assigned
to” criteria as indicated by the description of checkcast and instanceof in

[5].

The Carmel instruction set can be divided into six groups, each dealing with a
different aspect of the language: imperative core (C), objects (O), method in-
vocation (M), arrays (A), exceptions (E) and subroutines (S). The instruction
set? is defined in Figure 1. As JCVM instructions, most Carmel instructions
are typed and operate on values that have an expected runtime type - the
operand type. One of the main differences between the JCVM language and
Carmel resides in the way the operand type information is encoded. In Carmel,
instead of having a specialised instruction for each operand type (e.g. astore,
istore), instructions take the operand type as an argument (e.g. store a 2).
This simplification reduces the number of instructions.

As mentioned above, references to methods, fields and classes have already
been resolved and, therefore, can be accessed directly from wherever they
are referenced. Thus, the field structure f can be extracted directly from the
getstatic f instruction. Constants c are introduced by the push instruction
and can be either integers or the special constant null. Numeric operators
(add, sub,etc.) and relational operators (eq,ne) are denoted by op and cmp.
Number of words and array indexes are denoted by n and d, and ¢, respectively,
while addr is used to denote an instruction address.

2 For this presentation, we have removed the keyswitch, indexswitch instructions,
and those that take the this keyword as argument



7 € Type ::= ReferenceType | Primitive Type
PrimitiveType ::= boolean | byte | short | int
7r € ReferenceType ::= ArrayType | SimpleRef
SimpleRef ::= ClassName | InterfaceName
CompType ::= SimpleRef | PrimType
ArrayType ::= CompTypel[ ]
Trm € ResultType ::= Type | void
MethodType ::= Type® — ResultType

7 € ComponentType cl' € superClasses(cl) iface € implements(cl)

TT c <l cl < iface

iface' € superlnterfaces(iface)

iface < Object iface < iface
=7 iface € implements(Array)
7[ ] < Object L1171 [ 1 X iface
I € Instruction ::= nop | push ¢ ¢ | pop n | swap n; no |dup n d ()

numop ¢ op t | goto addr | if t cmp goto addr

load t ¢ |store ¢t i|inc t i ¢

new |checkcast 7 | instanceof 7 (0)

getstatic f | putstatic f |getfield f |putfield f

invokevirtual m | invokedefinite m (M)

invokeinterface m | return ¢ | return

arraylength | arrayload t | arraystore ¢ (A)

throw | jsr addr | ret i (E) & (S)
t € OpType = {b,s,i,r}

Fig. 1. Carmel Types, Subtyping Rules and Instruction Set



3 Runtime Structures and Values
3.1 Objects and the Heap

Objects are stored in the heap. The heap is defined as a mapping from locations
to objects, which can be class instances or arrays.

H € Heap = Location — Object

Object = Classlnst U ArrayObject

A class instance is defined by:

o € Classlnst = (class : Class) x (owner : Owner) X
(entryPoint : EntryPoint) x (fieldValue : FieldID — Value)
Owner = (context : AIDU{JCRE}) x (aid: AIDU {JCRE})

EntryPoint = {perm, temp,no}

The class element stores the object’s class. fieldValue is a map from field
ids to runtime values. owner contains information about the owning context
(owner’s package AID) and applet, while entryPoint indicates if the object is
a permanent or temporary JCRE entry point.

New objects are created and allocated by the function newObject :

newObject(own, T,ep, H) = (H',loc) &
loc ¢ dom(H) AN H' = Hlloc — o] A o € Classlnst
o.class = T A\ o.owner = own A o.entryPoint = ep

o.fieldValue = {(f.id, def (7)) | f € instanceFields(t)}

where instanceFields is the set of non-static fields of a class, including the
fields defined in its superclasses, and def(7) returns the default value for a
particular type 7 (numeric types map to 0 and reference types to null). For
this presentation we assume that fields and array values are initialised to the
default values indicated by their types.

For security reasons, sometimes it is not desirable to preserve data stored in
objects across sessions. An object is transient if the data stored in its fields
is cleared whenever the card is reset or the applet is deselected. Currently



only arrays with primitive components or references to Object can be desig-
nated as transient objects. There are two types of transient objects, namely,
CLEAR_ON_RESET and CLEAR_ON_DESELECT. The interaction between transient
objects and the applet firewall is explained in section 5. An array object is
defined by:

a € ArrayObject = (eleType : Type) x (length : integer) x
(owner : Owner) x (global : boolean) x
(transient : Transient) x (values : [Value])

Transient = {CLEAR_ON_RESET, CLEAR_ON_DESELECT, NOT_TRANSIENT}

New arrays are created and allocated with the newArray function:

newArray (own, T,n,g,t, H) = (H',loc) <
loc ¢ dom(H) AN H' = Hlloc — a] A a € ArrayObject
a.eleType = 7 A a.length = n A a.owner = own (2)
a.global = g A a.transient =t A a.values.length = n

Vi. 0 < i < n. a.values[i]| = def (1)

3.1.1 Heap Update

Class instances and array objects are identified by their location in the heap.
Similarly an element location, defined by

eloc € ElementLocation = (Location X FieldID) + (Location + ShortValue),

is used to identify instance fields and array entries of class instances and array
objects, respectively. Thus, we define a more succinct definition of field and
array update with the updateElement function:

updateFEle : Heap x ElemetLocation x Value — Heap
updateEle(H, (loc, id),v) = Hlloc — o],
o' = H(loc).fieldValues[id — v] (3)
updateEle(H, (loc,1),v) = H[loc — a'],

a' = H(loc).values|i — v]

Given array a, we will sometimes write a[i] instead of a.valuesli].



3.2  Values and Runtime Data Types

The JCVM supports two kind of values: primitive values and reference val-
ues. Primitive values consist on numeric values (byte, short and int) and
return addresses. Reference values consist of references to class instances and
arrays (locations, section 3.1) and the special constant null. Java Card virtual
machine values can be:

v € Value = PrimitiveValue U ReferenceValue
PrimitiveValue = NumericValue U ReturnAddressValue
NumericValue = ByteValue U ShortValue U IntegerValue

ReferenceValue = Location U {null}

ReturnAddressValue values are runtime representations of Address elements.
Storage is managed by the JCVM in terms of an abstract storage unit called
word. A word is large enough to hold reference and numeric values, with the
exception of integers. Two words are large enough to hold a value of type i.
The function nbWords returns the number of words of a value or a sequence
of values while nbBytes returns the number of bytes of a value or element
location:

Therefore, the Java types byte and short - and in some implementations,
the int type - are supported by the JCVM. Values of the Java type bool are
implemented as byte values, where 1 represents true and 0 false.

Operations between numeric values are performed using the functions apply Unary
and applyBinary:

applyUnary : UnaryNumericOperator x Value x OpType x OpType
applyBinary : BinaryNumericOperator x Value x Value x OpType

The applyUnary function requires as arguments the operand and result types.
The result type is needed by the type conversion operator to. Binary opera-
tions do not perform type conversions and, therefore, operand and result types
are the same.

bool and byte values have to be sign-extended before they are pushed to
the operand stack. Similarly, short values placed on the stack have to be
truncated before they are stored in to a field or array element of type bool
or byte. Value conversions from byte to short, and from short to byte are
performed by the toShort and toByte functions, respectively.



H(loc) € ArrayObject  H(loc) € Classlnst
T = H(loc).eleType T.class = H(loc).class
Htloc : 7[ ] HFloc : 7

T € ReferenceType (HFwv : 7)A (T <X 7)

HFnull < 7 HFloc X 7

Fig. 2. Runtime Typing

Figure 2 details the rules for the runtime typing judgements H - v : 7 and
HFwv =< 7. The judgement H v : 7 assigns the Java reference type 7 to
the location loc. The judgement H - v :=< 7 is used to indicate that runtime
value v can by assigned to a Java type 7. In the general case, H - v : <X 7is
true if the runtime type of v is a subtype of 7. In the case that v is a short
runtime value the relation is more flexible and allows 7 to be any one-word
numeric type or boolean. This is in response to the fact that one-word numeric
values are sign-extended to values of type short whenever they are pushed on
to the stack. The special null reference can be assigned to any reference type.

3.8 Frames

A frame contains information about the state of execution of a method. It is
defined as follows:

F € Frame = Owner x Method x Address x LocalVar x OperandStack
StackValue = Value — ByteValue
S =w; ..., € OperandStack = StackValue*
V€ LocalVariable = [StackeValue]

A frame F' = {own, m, pc, V, S} contains the following components:

The owning context and applet, own.context and own.aid, respectively.
The current method structure m € Method.

The program counter register pc € Address, which contains the address of
the instruction currently being executed in method m.

The array of local variables V.

The operand stack S.



JCVM instructions take their dynamic operands from the operand stack and,
in some cases, the array of local variables. The operand stack is defined as a
sequence of values S = v;::...::...v, where values on top of the stack appear
on the right-hand side of the sequence i.e. v, is on top of the stack above. The
empty stack is represented with the symbol e. An element can be added to a
stack with the :: operator (S::v) and two stacks can be concatenated with the
: operator (S:S). For clarity we will write v;::vo instead of e::vq::vs.

The operand stack stores values of all types except those of type byte (and
boolean). As it was mentioned in section 3.2, some operations may require
values to be truncated (or sign-extended) after they are popped from (or
before they are pushed to) the stack. For such cases, the fromStack(v, ) and
toStack(v, ) functions are used to determine if - by inspecting the type 7
- type conversion is required and, if so, call the appropriate type conversion
function i.e. toShort and toByte.

Stack operations do not carry type information, they only require that the
integrity of the values is maintained i.e. multiword values must not be split
apart.

A local variable is not referenced by name but by the position it occupies
in the array of local variables. Unitialised local variables are denoted by L.
The array of local variables can store values of any of the stack types. Local
variable slots are not statically typed so values of different types can be stored
in the same slot at different times during the execution of a method. Special
care must be taken when using multiword values. An integer value stored in
V[i] takes two slots and access to V[i+ 1] is prohibited. We can model this by
making V[i 4+ 1] = L if position 7 holds an integer value.

We write V' = vy::...::v, when local variable array V is initialised with the
sequence of values (usually from the operand stack) wy::...:v,. Note that
V[0] = vo but v; does not necessarily correspond to V[i] due to multi-word
values.

3.4 Configurations
A runtime configuration describes the state of execution of the JCVM. We
define three kinds of configurations:
C € Config = RConfig U EConfig U HConfig
A running configuration - RConfig - keeps track of the chain of invoked meth-

ods by using a stack of call frames. An exception configuration - EConfig -
represents the state of uncaught exceptions or machine errors. The halt con-
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figuration is the result of returning from the method that started the execution
of the current applet.

A running configuration C = ((jcre, K, H), SF) contains the following
components:

The JCRE component jere € JCRE used to model the interaction between
the JCVM and the JCRE via the API.

The heap H, a mapping from locations to runtime objects (class and array
instances).

Static fields memory K, a mapping FieldID — Value.

The call stack SF, where SF € Frame®.

The frame of the method currently being executed - the current method -
sits on top of the call stack. Given SF = SF'::{own, m,pc,V,S), the cur-
rent instruction I can be extracted with I = m.instructionAt(pc). The next
instruction can be found at address pc + 1 (m.nextAddress(pc)).

Exception and halt configurations represent terminal configurations. They are
defined by:

{(jcre, H, K),loc) € EConfig = Heap x StaticMem x Location
((jcre, H, K),halt) € HConfig = Heap x StaticMem x {halt}

where the location loc in the exception configuration is a reference to the
uncaught exception object.

4 Exceptions

An exception is thrown whenever a program violates the semantic constraints
of JCVMLe or any other constraint specified by the programmer. All excep-
tions are extensions of the Throwable class and can be thrown explicitly by
the programmer using the throw instruction.

An exception is said to be caught if an appropriate exception handler is
found in the current stack of call frames. If an exception is caught, control is
transfered to the start address indicated by the exception handler and execu-
tion is resumed at that point. An uncaught exception will cause the virtual
machine to halt. The process of throwing and catching an exception is defined

11



by the catchException function. Let loc be a reference to an exception object:

catchException : Frame® x Heap x Location — Frame® U Location
catchException(e, H, loc) = loc
catchException(SF::{own, m,pc,V,S), H,loc) =
catchException(SF, H,loc) if pcd = L
SF::{own, m, pc, V, loc) if pd # L
where H F loc : T A pc = findHandler(m, pc, H, loc)

The catchException function searches the stack of call frames until the first ap-
propriate exception handler is found [3, Chapter 7]. The findHandler(m, pc, )
function searches for the first exception handler in method m that can han-
dle an exception of class 7 at address pc. Information about exception han-
dlers is kept by the m.exceptionHandlers structure. The detailed semantics of
findHandler is described in [9].

4.1 Runtime FExceptions

Runtime exceptions may be raised by the JCVM during the execution of a
program. Being memory usage an important concern, the creation of unique
runtime exception objects per class is enforced. These are JCRE owned, pre-
allocated exceptions objects designated as temporary JCRE entry points. The
JCRE keeps a reference to each instance of the Java runtime exception objects
in the table elnst. We define the following:

Exceptionlnstances = RTException — Location
elnst € JCRE x RTException

getException € JCRE x RTException — Location

elnst gives us access to a function that maps Java Card runtime exception
classes to the locations of the respective (unique) exception object.

A mapping elnst is well-formed with respect to heap H - we write H = elnst

-if each runtime exception class kept in elnst maps to the location of a JCRE
owned instance of the same class stored in H. All instances must also be JCRE

12



temporary entry points:

getException(jcre, cl) = jere.elnst(cl)
H = elnst < Vcl € RTException : (¢l € dom(elnst))A
(eInst(cl) € dom(H)) A (o.class = ¢l)
(0.owner = JCRE) A (o.entryPoint = tEP)
where 0o = H (elnst(cl))

5 The JCVM Firewall

The Java Card platform partitions the object system into separate protected
object spaces called contexts. An applet’s (owning) context is determined by
the AID of the package where the applet was defined and the owning context
of an object is determined by the owning context of the applet that created
it. The JCVM firewall provides a security mechanism that prevents an object
from being accessed by code running in a different context i.e. by an object
with a different owning context. Object and field access among different in-
stances of the same applet or instances of applets declared in the same package
(group context) is allowed since they share the same context.

Prior to performing an access operation on an object, the JCVM performs a
runtime check that depends on the instruction, the currently active context
(ctxt), and the type and owner of the referenced object (o) [5, Chapter 6].
Additionally, store operations check the new value (H,v) being stored (H,v).
The runtime checks are defined in Figure 3. The JCVM will throw an instance
of the class SecurityException when a firewall violation has been detected.
In general, access to an object is disallowed if the current context - the context
of the current frame - is different from the owning context of the object that is
being accessed (eq. 5). In addition the JCRE mantains its own context. This
context has special system privileges and can access any object (eq. 4). Thus,
in the simplest case, access of object o from context ctzt is allowed if any of
the following conditions are met:

isJCRE(ctxt) = (ctzt = jere) (4)
sameContext(ctxt, 0) = (ctxt = o.owner.context) (5)

This is the case of the checkGetField predicate: an instance field of an object
(0) can only be accessed if the currently active context (ctwzt) is either the
JCRE or the owning applet of the object. These conditions alone would make
the firewall system too restrictive. The JCRE provides several mechanisms
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checkGetField(ctxt, 0) = isJCRE(ctxt) V sameContext(ctzt, o)
checkPutStatic(ctxt, H,v) = isJCRE(ctxt) V canStore(H,v)
checkPutField(ctxt, 0, H,v) = isJCRE(ctxt) V (sameContext(ctxt, 0) A
canStore(H, v))
checkThrow = checkInvokeDefinite = objectAccess
checkArrayStore(ctxt, app, a, H,v) = objectAccess(ctxt, app, a) A
(misJCRE(ctxt) = canStore(H,v))
checkArraylLoad = checkInvokeVirtual = objectAccess
checkInvokelface(ctxt, app, o,iface) =
objectAccess(ctxt, app, o) V transAccess(ctat, app; o)
A isShareable(o, i face)
objectAccess(ctxt, app, o) V (T € Interface

checkCast(ctxzt, app,0,7) =
A transAccess(ctxt, app, o) A isShareable(o, 7))

Fig. 3. JCVM Firewall Checks

to allow object access across contexts: global arrays, JCRE entry points and
shareable interfaces. JCRE entry point objects - temporary and permanenet -
and global arrays are objects owned by the JCRE that can be accessed from
any context. We say that an object o has global access if the conditions defined
in equation 6 are true. Objects with global access have a special restriction.
References to objects designated as temporary JCRE entry points and global
arrays cannot be stored in class fields, instance fields or array components, as
defined by the canStore predicate in (7.

globalAccess(0) = (o € ClassInst A o.entryPoint # no) V (6)

(
(o € ArrayObject A o.global)

canStore(H,v) = (v € ReferenceValue) = canStoreObject(H (v)) (7)
canStoreObject(o) = (o € ArrayObject A —o.global) V
(

o € Classlnst A o.entryPoint # temp)

The objectAccess predicate (equation 8) spells out the general conditions
under which access to object o is allowed. The predicate includes an addi-
tional check for CLEAR_ON_DESELECT transient objects (transAccess, equation
9). Transient objects of CLEAR_ON_DESELECT type can only be accessed when
the currently active context (ctxt) is the context of the currently selected apple

14



(app) ® . We have:

objectAccess(ctxt, app, o) = isJCRE(ctxt) V

sameContext(ctxt, o) (8)
(transAccess(ctxt, app, o) A

V globalAccess(0))

transAccess(ctxt, app,0) = (o € ArrayObject) =

(9)

[(o.transient = CLEAR_ON_DESELECT) = (ctzt = app)]

Currently, only arrays with primitive type components and arrays with refer-
ences to Object can be transient objects. It may seem an abuse of notation
to include transAccess as part of the firewall checks of instructions that do
not deal with arrays but, by doing so, we provide a general criteria for most
firewall checks. Later versions of the Java Card platform may allow transient
class instances. In the worse case, the transAccess condition is trivially true.
Still, we would like to point out that it is possible to invoke methods of the
Object class on an array.

Another mechanism that allows object access among contexts is the use of
shareable interfaces. Methods of shareable interfaces can be invoked from one
context even if the object implementing them is owned by an applet in another
context. An interface (iface) method can be invoked on object o if:

. . Shareable € implements(o.class) A
isShareable(o, iface) =
Shareable € superInterfaces(iface)

that is, if the object’s class implements a Shareable interface i.e. 0 is a Share-
able Interface Object, and if the interface in question extends the Shareable
interface. The same conditions are used when the checkcast or instanceof
instructions are applied to an interface type.

3 The currently selected applet can be obtained from the JCRE element by calling
the getAppletContext function
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6 The Operational Semantics of the JCVM Language

6.1 The Evaluation Relation

The operational semantics of the JCVML (Carmel) is defined as a relation =
between program configurations. We say that the judgement C' = C' is true
if configuration C’ is the result of executing the current instruction (section
3.4) in configuration C.

We give the evaluation rules of Carmel in section 6.3. The evaluation rules
detail the set of conditions under which the assertion C = C’ is true. The
first condition in all the rules determines the instruction that is being executed:
the current instruction. We show the process of reading and executing an
instruction by presenting the evaluation rule for nop:

I = m.instructionAt(pc) A I =nop
(G, SF::{own,m,pc,V,S)) = (G, SF:{own,m,pc+1,V,S))

The current instruction is obtained with m.instructionAt(pc), where m and
pc are the method and program counter kept by the current frame. The nop
does not modify the state of the program except for the program counter. The
program counter is incremented to point to the next instruction (pc+ 1)where
execution should resume. Since the process of reading the instruction is the
same for all rules, from now on we will consider I = m.instructionAt(pc) as the
default. In the example shown above, the first condition should be I = nop.

The semantics presented in this section correspond to the semantics of the
offensive virtual machine defined in [3]. Therefore, we only show the condi-
tions and changes to the program state that result when the current execution
succeeds. Successful execution of the instructions is ensured by the static con-
ditions checked by the bytecode verified. Runtime violations of the semantics
of the language - that can not be detected by the verifier - are reported by
the JCVM by throwing an exception. The process of throwing an exception is
explained in the next section.

6.2 Throwing Ezxceptions

The JCVM performs a series of runtime checks that preserve the semantic
constraints of the language. These runtime checks appear in the evaluation
rules as predicates prefixed with the word check. We have already defined the
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predicates that enforce the firewall conditions in section 5. The violation of
a firewall predicate will result in a SecurityException. In this section, we
define the rest of the predicates that determine the conditions for throwing a
runtime exception. These are:

checkNull(loc)
checkArithmetic(op, v1,ve) = op & {div,rem} V vy # 0

(loc # null)

checkNegative(n) = (n >0)
checkCanCast(H,loc,7) = HkFloc :X T
checkArrayBounds(a,i) = (0 < i < a.length)

We bound the runtime checks defined above to the the null pointer, arithmetic,
negative array, class cast and array index out of bounds exceptions*, respec-
tively. The violation of any of these runtime checks will trigger the JCVM
to throw the runtime exception associated with them. For example, if the
checkNull(loc) condition is not true in a particular rule then the null pointer
exception is thrown by the JCVM. If more than one runtime check is violated,
then the exception associated to the runtime check that appears first in the

rule will be thrown.

Let’s have a look at the rule for getfield of Figure 5. The corresponding rule
that describes the process of throwing a runtime exception is shown below.
Once the runtime violation is found, the JCVM throws the JVRE owned ex-
ception object by first calling the get Exception function. Execution is resumed
from the frame returned by catchException.

I =getfield f A S = S":loc
| NullPointerException if -checkNull(loc)
T SecurityException  if -checkGetField(own.context, H(loc))
(jere', H', loc') = getException(jcre, H, €)
SF' = catchException(SF::{own, m,pc, V, S}, H',loc')

((jere, K, H), SF::{own, m,pc,V,S)) = ((jcre, K, H'),SF")

4 NullPointer, ArithmeticException, NegativeArraySizeException,
ClassCastException and ArrayIndexOutOfBoundsException.
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6.3 FEvaluation Rules

6.3.1 The Core Language

The core language supports instructions for stack manipulation, local variable
access, numerical operation and branching. Stack instructions deal explicitly
with the operand stack. They do not carry type information - with the sole
exception of push that uses the operand type to put the right kind of value on
top of the stack - and operate ignoring the type of data on the stack. Instead,
stack instructions operate at the word level and their operands denote the
number of words to be manipulated. For example, the execution of the pop n
instruction results on the the top n words being popped from the operand
stack. A more elaborate rule is shown below:

I=dupndANS=5;:5:95
n = nbWords(S1) A d = nbWords(Sz : S1) A S'=S53:51:852: 51
(G, SF::{own,m,pc,V,S)) = (G,SF:{own,m,pc+1,V,S"))

Execution of the dup instruction results on a new configuration where the
top n words on the operand stack have been duplicated and inserted d words
down from the top. When d equals 0, the top n words are copied and placed on
top of the stack. The rules respect the restriction that preserve the integrity
of two-word values by making sure that only whole values are moved. This
is also true for the instructions that manipulate the array of local variables
V' where, as we pointed out in section 3.3, the special symbol L is used to
“block” the index that corresponds to the second word of an integer. The 1oad
instruction places the value of local variable ¢ on top of the stack and store
updates local variable 7 with the value found on top of the stack. The success
of the rules is ensured by the bytecode verification process which we assume
have taken place.

The numop instruction uses the top two elements of the stack - after removing
them - as arguments to the numeric operation op and places the result back
on the stack. The goto instruction jumps to the instruction found in address
addr. The if instruction - shown below - jumps to addr only if the result of
performing the comparison operation cmp between the top two elements of
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I =push t c
(G, SF::{own,m,pc,V,S)) = (G,SF:{own,m,pc+1,V,S::c"))

I =pop n A n=nbWords(S")
(G, SF::{own,m,pc,V,S : 5")) = (G,SF:{own,m,pc+1,V,S))

I =swap ny ng AN S=53:5:5]
ny; = nbWords(S1) A ng = nbWords(Sz) A S'=S3:51: S,
(G, SF::{own,m,pc,V,S)) = (G,SF:{own,m,pc+1,V,S"))

I = numop ¢ op
checkArithmetic(op,v1,v9) A r = applyBinary(op, vy, v, t)
(G, SF::{own,m,pc,V, S:vi::v9)) = (G, SF::{own,m,pc+ 1,V,S:r))

I=1oad t 1
(G, SF::{own,m,pc,V,S)) = (G, SF:{own,m,pc+1,V,S:V][i]))

I =store t 1

(G, SF::{own,m,pc,V,S:w)) = (G,SF:{own,m,pc+1,V[i — v],S))

I=inc ticANr=V[]+ec
(G, SF::{own,m,pc,V,S)) = (G,SF:{own,m,pc+1,V[i — r],S))

I =goto addr
(G, SF::{own,m,pc,V,S)) = (G,SF::{own,m,addr,V,S))

Fig. 4. The Core Language Semantics
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the stack is true, otherwise it continues to the next instruction.

I =if t cmp goto addr
addr if applyComparison(cmp, vy, vo)

pc =
pc + 1 otherwise

(G, SF::{own,m,pc,V, S:v::09)) = (G, SF:{own,m,pc,V,S))

The rest of evaluation rules for the instructions of the core language are shown
in figure 4. We have not included the evaluation rules of the if and op in-
structions that handle null comparisons and unary operations. We have also
excluded the keyswitch and indexswitch instructions. The complete formal-
isation of these instructions can be found in [9].

6.4 The Object Language

The instructions described in this section deal with the creation and ma-
nipulation of class instances. The evaluation rules for the instructions of the
object language are shown in figure 5. The new ¢l instruction creates a new
instance object of class ¢l by calling the newObecjt function defined in (1).
The owner of the current frame is designated as the owner of the new object.
The getstatic and putstatic instruction use the field id f.id to access the
static field f in K. The rest of the instruction take the location of the object
to be read, modified or inspected is taken from the stack. For example, in the
case of the putfield instruction shown below,

I = putfield f A o' = fromStack(v, f.type)
checkNull(loc) A checkPutField(own.context, o, H, v)
H' = updateElement(H, (loc, f.id),v")
(G, SF::(own,m,pc,V, S":loc::v)) = (G, SF::{own,m,pc+1,V,S"))

the location of the object to be modified and the new value of field f are
taken from the operand stack. A type conversion is performed, if needed, by
the fromStack function (section 3.3). The new value is stored in field f of the
resolved object o using the updateElement function (eq. 3). The putfield
this and getfield this instructions (not included here) take the location
of the object from V[0], the location of the current object.

The semantics of checkcast and instanceof are given by the definition of
H I loc :< 7t (Figure 2). The difference between checkcast and instanceof
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Let app = jcre.getAppletContext
I =new cl Acl € Class
(H',loc) = newObject(own, cl,no, H)
(G, SF::(own,m,pc,V,S)) = (G',SF::{own,m,pc+ 1,V,S::loc))

I = getstatic f Av = toStack(K(f.id), f.type)
(G, SF::{own,m,pc,V,S)) = (G,SF:{own,m,pc+1,V,S::v))

I = putstatic f A checkPutStatic(own.context, H,v)
v' = fromStack(v, f.type) A K' = K[f.id +— /|
(G, SF::{own,m,pc,V,S:w)) = (G, SF::{own,m,pc+ 1,V,S))

I = getfield f A checkNull(loc) Ao = H(loc)
checkGetField(own.context, o) A v = toStack(o.fieldValue(f.id), f.type)
(G, SF::{own,m,pc,V,S":loc)) = (G,SF:{own,m,pc+ 1,V,S"::v))

I = checkcast 7 A checkCanCast(H, loc, r)
loc # null = checkCast(own.context, app, v, H(loc))
(G, SF::{own,m,pc,V, S:loc))y = (G,SF::{own,m,pc+ 1,V,S:loc))

1loc#null A HF loc (= 7
I = instanceof 7 Av =

0 otherwise
loc # null = checkCast(own.context, app, v, H(loc))

(G, SF::{own,m,pc,V, S::loc))y = (G,SF::{own,m,pc+ 1,V,S:v))

Fig. 5. The Object Language Semantics

is that the former throws a ClassCastException when the operation is not
valid. Firewall security checks take as arguments the current context, the
current applet context, the object being accessed and, in the case of putstatic
and putfield, the value being stored.
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6.5 Method Language

The evaluation rules for the instructions of the method language are shown in
figure 6. The invokedefinite instruction is used for static methods and for
non-static methods that have been resolved statically. The invokedefinite
instruction contains a resolved method as argument. No method search through
the class hierarchy is needed, even if the original call was made to an inherited
method. The method has been resolved statically i.e. before execution when
loaded and linked.

The invokevirtual and invokeinterface instructions perform a method
lookup based on the class of the object where the method is being invoked
(target object). This search is performed the methodIDLookup function. All
methods sharing the same signature are assigned the same method id. Given a
method id and a class ¢l, the function methodLookup(id, cl) returns the first
method structure with the same method id found in the superclass hierarchy
of class cl. The search is defined by:

methodLookup : MethodID x Class; — Method

methodIDLookup(id, L) = L

methodIDLookup(id, cl) = m < m € cl.methods A m.id = id

methodIDLookup(id, cl) = methodIDLookup(id, cl.superclass) <
Vm € cl.methods, m.id # id

An array may the target of an invokevirtual instruction. If that’s the case
then the search must be performed on the Object class structure. This check
is performed by the methodLookup function which, given a method m and an
object o, returns the correct method:

methodLookup(m, o) =
methodIDLookup(m'.id,0bject) o € ArrayObject

methodIDLookup(m'.id, o.class) otherwise

We describe the execution of the invokevirtual instruction (see rule below).
The top n + 1 values - corresponding to the n method arguments and object
location (this) - are popped from the operand stack of the current frame and
placed in the local variables array of the new frame F’. The owner of the
target object o is set as owner of the new frame. The new operand stack is
set to empty and, if both runtime checks succeed, the new frame is pushed
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I = invokedefinite m' A m'.isStatic A n = |m/|
So =Sz i AV = ug A F = {own, m! 0,V €)
(G, SF::{own,m,pc,V,S)) = (G,SF::{own,m,pc,V,S)::F")

I = invokedefinite m' A —m'.isStatic
n=|m'| A Sy = S:loc:vi::... v, A checkNull(loc)
o= H(loc) N checkInvokeDefinite(own.context, o)
V' =locivy:: ... vy A F' = {0.owner,m’, 0,V €)

(G, SF::{own,m,pc,V,Sy)) = (G, SF::{own,m,pc,V,S):F")

I = invokeinterface m' A n=|m/| A Sy = S:locivy:... v,
checkNull(loc) A o = H(loc) A m, = methodLookup(m/', o)
checkInvokelface (own.context, jere.get Applet Context, m'.classl, o)
V' =loc:vy::. ..oy A F' = {o0.owner,m,,, 0, V", €)

(G, SF::{own,m,pc,V,Sy)) = (G,SF::{own,m,pc,V,S)::F")

I =return A F' = {own',m/,pc', V', S")
(G,SF::F"::{own,m,pc,V,S)) = (G,SF:{own',m',pc + 1,V S"))

I = return

(G, {own,m,pc,V,S)) = ((G),halt)

Fig. 6. The Method Language Semantics

onto the call frame stack. The current method is now m, and execution will
continue at the first instruction of the method (pc = 0). A context switch
occurs when a method of an object owned by a different context is invoked
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i.e. two consecutive frames have different contexts.

I = invokevirtual m' A n=|m/|
F = {own,m,pc,V, S::loc:vy:: .. . iivy,)
checkNull(loc) A o= H(loc) N m, = methodLookup(m/, o)
checkInvokeVirtual (own.context, jcre.get AppletContext, o)
V' =locivy::...iivy A F' = {0.owner, m,,0, V', €)

(G,SF:F) = (G,SF:{own,m,pc,V,S)::F")

Method return is handled by the return instruction. We have identified three
cases. The first case,

I =return ¢
F = {own,m,pc,V,S:v) N F' = {own',m',pd, V', 5"} ,
(G,SF:F'::F) = (G,SF:{own',m' pc +1,V' 5":v))

corresponds to the return from a method with return type different from null.
The value v is popped from the operand stack of the current frame and pushed
onto the operand stack of the frame of the invoker. The virtual machine then
removes the current frame and returns control to the invoker. The other two
cases - shown in figure 6 - correspond to void returns. The last rule handles
handles a return from the last frame which, in turn, generates the special halt
configuration.

6.6 The Array, Exception and Subroutine Language

The evaluation rules of the instructions that deal with the creation and ma-
nipulation of arrays, the explicit throwing of exceptions by the programmer
and the call of (and return from) subroutines, are listed in Figure 7. A new
array is created by the new 7 instruction when the parameter 7 denotes an
array type. New arrays are initialised as non-global, non-transient objects by
the newArray function (eq. 2). The owner of the current frame is set as the
owner of the new array. The location of the new array is placed on top of the
operand stack of the current frame. The other array instructions take their
arguments - array location and index - from the operand stack, as shown by
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Let app = jcre.getAppletContext :
I =new 7[ 1 A checkNegative(n)
(H',loc) = newArray (own, T,n,false, NOT_TRANSIENT, H)
(G, SF::{own,m,pc,V,S:n)) = (G,SF:(own,m,pc+ 1,V, S:loc))

I = arraylength A checkNull(loc)
checkArrayLoad(own.context, app, H(loc)) A v = H(loc).length
(G, SF::{own,m,pc,V,S:loc)) = (G,SF:{own,m,pc+ 1,V,S:v))

I = arraystore t A checkNull(loc) A a = H(loc)
checkArrayBounds(a,i) A checkArrayStore(own.context, app,a, H,v)
v' = fromStack(v,t) A H' = updateElement(H, (loc,i),v")

(G, SF::{own,m,pc,V, S:loc:izv)) = (G, SF:{own,m,pc+ 1,V,S))

I = throw
checkNull(loc) A check Throw (own.context, H (loc))
SF' = catchException(SF::{own, m,pc,V, S), H, loc)
(G, SF::{own, m,pc,V, S::loc)) = (G,SF')

I = jsr addr
(G, SF::{own,m,pc,V,S)) = (G,SF:{own,m,addr,V,S:pc+ 1))

I =ret i A pd =V]i]
(G, SF::{own,m,pc,V,S)) = (G,SF:{own,m,pc,V,S))

Fig. 7. The Array, Exception and Subroutine Language Semantics
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the rule of arrayload below.

I = arrayload t A checkNull(loc) N a = H(loc)
checkArrayBounds(a,i) A v = toStack(a[il,t)

checkArrayLoad(own.context, jere.get AppletContext, a)
(G, SF::{own,m,pc,V, S:loc::i)) = (G,SF:{own,m,pc+ 1,V, S:v))

It is worth pointing out that the toStack and fromStack functions are required
to transfer data from the stack to an array, an vice-versa.

The rest of the rules deal with the Exception and Subroutine language. The
throw instruction is used by the programmer to throw the exception ob-
ject placed on top of the stack. The location loc on top of the stack must
be a reference to an object that is an instance of class Throwable or of a
subclass of Throwable. The process of catching the exception referenced by
loc is performed by catchException(SF::{own, m,pc,V,S), H,loc), where loc
has been popped from the operand stack of the top frame. The semantics of
catchException is described in section 4. The jsr instruction jumps to the
subroutine address indicated by its operand and places the address of the
next instruction on top of the stack. The ret instruction jumps to the address
stored in local variable i.

7 Related Work

Since its official release, the Java language has attracted considerable interest
from the research community. Hartel and Moreau [10] provide a comprehensive
review of the substantial amount of work dedicated to the study of each of the
main components of Java: the Java Language[11-13], the Java Virtual Machine
(JVM)[14-16] and Java to JVM compiler [17,18]; and most of its interesting
features: object-orientation, dynamic class loading, garbage collection, multi-
threading, its type system and bytecode verification. However, as pointed out
in [10], no single attempt has been made at specifying full Java, the full JVM,
or the full compiler. The type system used in this paper is influenced by the
work of Freund and Mitchell [19].

The smaller size and complexity of the Java Card platform simplifies the
task of formalising the whole system or some of its parts. Most research of
the semantics of Java Card has been produced by - or is related to - the
formal methods and program verification community. Formal specifications
of the semantics of Java Card can be traced back to [20] (virtual machine)
and [21] (source code). Hartel et al.provide a complete specification of the
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Java Secure Procesor (JSP) [20], a precursor of the JCVM. JSP is a virtual
machine designed to fit on a smart card and, as such, does not support multi-
threading, garbage collection and exception handling. The specifications are
defined and validated using the LETOS tool [22]. Attali et al.adapt their work
with Java and the Centuar tool[11] to Java Card and provide a programming
environment for Java Card applications [21]. The research group at Gemplus
has produced some work related to the application of the B-method [23] to
the formalisation of the semantics of Java Card [24-26] .

CertiCartes[27-29] constitutes one of the most in-depth machine-checked ac-
counts of the Java Card platform up to date. It contains formal executable
specifications written in Coq of a defensive JCVM, an offensive JCVM and
an abstract JCVM together with the specification of a Java Card Bytecode
Verifier (BCV) presented as a data-flow analyser based on the abstract virtual
machine

The LOOP project [30] project is involved in the application of formal meth-
ods to object oriented languages. The aim is to specify and verify properties
of classes in object-oriented languages, using proof tools like PVS [31] and Is-
abelle/HOL [32].Its main contribution to the formalisation of the semantics of
Java Card has been the formal specification of the Java Card API [33,34]. The
complete specification of the Java Card API (framework and security classes)
in JML and ESC/Java can be found in [35].

8 Conclusions and Future Work

The work presented in this paper has been developed in the context of the
Secsafe project. The Secsafe project is concerned with the application of static
analysis technology to the validation of security and safety aspects of realistic
languages and applications. The project has focused a substantial part of its
efforts on the development of methods that can be applied to the domain
of smart cards and, in particular, Java Card and its applications (applets).
In this context, a formalisation of the semantics of Java Card provides the
framework where we can specify security properties, derive control and data
flow analyses that safely approximate such properties, and prove the analyses
correct.

Our first step have been to formalise the JCVM by defining the semantics of
Carmel, a complete representation of the JCVML. The results of this work
are presented in this paper. A more in-depth account of this specification can
be found at our technical report [9].

We have seen that the specification presented in this paper relies on elements
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of the JCRE. Other important features of the JC platform are implemented
by the API. In order for this specification to be useful, we need to placed it in
context with the runtime environment and formalise its interaction with the
off-card applications. The next step has been to provide a formal specification
of the JCRE and the API. This is work in progress and can be found in [8].

Most work on formalising the semantics of Java card - as seen in the previous
section - has relied on automated tools for mathematical specification and
program verification. We intend to translate our specification to the PVS [31]
system and use it as a base to prove the correctness of some of the analyses
developed in the project.
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