
The Journal of Logic and
Algebraic Programming 69 (2006) 1–74

www.elsevier.com/locate/jlap

On testing UML statecharts�

Mieke Massink, Diego Latella∗, Stefania Gnesi
CNR/Istituto di Scienza e Tecnologie dell’Informazione “A Faedo”, via Moruzzi 1, I56124 Pisa, Italy

Received 15 April 2005; received in revised form 8 March 2006; accepted 8 March 2006

Abstract

We present a formal framework for notions related to testing and model based test generation for a
behavioural subset of UML Statecharts (UMLSCs). This framework builds, on one hand, upon formal
testing and conformance theory that has originally been developed in the context of process algebras
and Labeled Transition Systems (LTSs), and, on the other hand, upon our previous work on formal
semantics for UMLSCs. The paper covers the development of proper extensional testing preorders
and equivalence for UMLSCs. We present an algorithm for testing equivalence verification which is
based on an intensional characterization of the testing relations. Testing equivalence verification is
reduced to bisimulation equivalence verification. We also address the issue of conformance testing and
present a formal conformance relation together with a test case generation algorithm which is proved
sound and exhaustive w.r.t. the conformance relation. We show results on the formal relationship of
the testing relations with the conformance one. The comprehensive and uniform approach presented
in this paper sets the theoretical basis for UMLSCs testing frameworks and makes them available for
practitioners in industry where the UML has become a de facto standard, in particular there where it
is used for the development of complex concurrent systems.
© 2006 Elsevier Inc. All rights reserved.

Keywords: UML statecharts; Formal testing theories; Testing equivalence; Mechanical verification;
Formal conformace testing; Test case mechanical generation; Formal semantics

1. Introduction

Modern societies strongly depend, for their functioning as well as for the protection
of their citizens, on systems of highly interconnected and interdependent infrastructures,

� The work presented in the present paper has been partially funded by project EU-IST-3-016004-IP-09 (SEN-
SORIA).
∗ Corresponding author. Tel.: +39 0503152982.

E-mail addresses: mieke.massink@isti.cnr.it (M. Massink), diego.latella@isti.cnr.it (D. Latella), stefa-
nia.gnesi@isti.cnr.it (S. Gnesi).

1567-8326/$ - see front matter (2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jlap.2006.03.001

www.elsevier.com/locate/jlap
mailto:mieke.massink@isti.cnr.it
mailto:diego.latella@isti.cnr.it
mailid:stefania.gnesi@isti.cnr.it
mailid:nia.gnesi@isti.cnr.it

2 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

which are increasingly based on computer systems and software. The complexity of such
systems, and those of the near future, will be higher than that of any artifact which has
been built so far. In recent years, the Unified Modeling Language (UML) [34] has been
introduced as a notation for modeling and reasoning about large and complex systems, and
their design, across a wide range of application domains. Moreover system modeling and
analysis techniques, especially those based on formal methods, are more and more used
for enhancing traditional System Engineering techniques for improving system quality. In
particular this holds for testing and model-based formal test case derivation using formal
conformance testing.

Testing and conformance relations in the context of labeled transition systems (LTSs)
have been thoroughly investigated in the literature. Broadly speaking, conformance testing
refers to a field of theory, methodology and applications for testing that a given imple-
mentation of a system conforms to its abstract specification, where a proper conformance
relation is defined using the formal semantics of the notation(s) at hand. An account of the
major results in the area of testing and conformance relations can be found in [9,17,40–42].
The theory has been developed mainly in the context of process algebras and input/output
transition systems.

In this paper we present a uniform, formal, approach to a testing theory and equivalence
as well as conformance testing and test case generation for UML Statecharts1 (UMLSCs,
for short), based on our previous work presented in [25,26,16].

The UML consists of a number of diagrammatic specification languages, among which
UMLSCs, that are intended for the specification of behavioral aspects of software sys-
tems. This diagrammatic notation differs considerably from process algebraic notations.
In UMLSCs, transitions are labeled by input/output-pairs (i/o-pairs), where the relation
between input and output is maintained at the level of the single transitions. This is neither
the case in traditional testing theories, like [17], where no distinction is made between input
and output, nor for the input/output transition systems used in standard conformance testing
theory [42]. In our approach we use transition systems labeled over i/o-pairs where a generic
transition models a step of the associated statechart (step-transition), thus preserving the
atomicity of input acquisition and output generation in a single step. The advantages of such
a semantic model choice are discussed in [16], where the interested reader is referred to.

In [25] a general testing theory for UMLSCs has been defined using a framework similar
to that proposed in [30], which was in turn inspired by the work of Hennessy for traditional
LTSs [17]. The general approach of the above-mentioned theories is based on the well known
notions of MAY and MUST preorders and related equivalences. Intuitively, for systems A

and B, A �∼MAY
B means that if a generic experimenter (i.e. test case) E has a successful

test run while testing A, then E has also a successful test run when testing B. On the other
hand, A �∼MUST

B means that if all test runs of a generic experimenter E are successful when
testing A, then it must be the case that all test runs of E are successful when testing B. It can
be shown that �∼MAY

coincides with trace inclusion and thatA �∼MUST
B impliesB �∼MAY

A.
Thus, the testing preorders focus essentially on the observable behavior of systems and are
strongly related to their internal non-determinism and deadlock capabilities; intuitively, if
both A �∼MAY

B and A �∼MUST
B hold, then A is “more non-deterministic” than B and can

generate more deadlocks than B can, when tested by an experimenter. Finally, if also the
reverse preorders hold, i.e. B �∼MAY

A and B �∼MUST
A as well, then A and B are testing

1 Although we refer to UML 1.5, the main features of the notation of interest for our work have not changed in
later versions.

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 3

equivalent since no experimenter can distinguish them. The main semantic assumptions
in [17] are that (i) system interaction is modeled by action-synchronization rather than
input/output exchanges, and (ii) absence of reaction from a system to a stimulus presented
by an experimenter results in a deadlock affecting both the system and the experimenter.
In [30], and later in [25] specifically for UMLSCs, assumption (i) has been replaced by
modeling system interaction as input/output exchanges, but assumption (ii) remained un-
changed. In particular, in [25], absence of reaction of a given state s on a given input i is
represented by the absence of any transition with such an input i from s, in a way which
is typical of the process-algebraic approach. We refer to the resulting semantic model as
the “non-stuttering” one. The testing equivalence verification algorithm has originally been
developed on the non-stuttering semantics and exploits an intensional characterization of
testing preorders/equivalence. More specifically, Functional Acceptance Automata (FAAs),
a compact representation of the LTSs associated to UMLSCs by their semantics, is defined
using the intensional characterization of testing relations. It is shown that testing equivalence
of UMLSCs coincides with bisimulation equivalence of (a variant of) their associated FAAs.
The algorithm translates the LTSs associated to the UMLSCs into FAAs and checks their
bisimulation equivalence after proper manipulation of their labels. It is partially based on
results proposed in [4].

In [16] we proposed a formal conformance testing relation and a test case generation
algorithm for input enabled labeled transition systems over i/o-pairs, i.e. LTSs where each
state has (at least) one outgoing transition for each element of the input alphabet of the
transition system. Intuitively, such transition systems cannot refuse any of the specified
input events, in the sense that they cannot deadlock when such events are offered to them by
the external environment. Whenever a machine, in a given state, does not react on a given
input, its modeling LTS has a specific loop-transition from the corresponding state to itself,
labeled by that input and a special “stuttering” output-label.

Input enabled LTSs over i/o-pairs have been used as semantic model, which we call the
“stuttering semantics”, for a behavioral subset of UMLSCs [14], which can be seen as system
specifications. Moreover, input enabled LTSs over i/o-pairs are also suitable for modeling
implementations of systems specified by such diagrams. Modeling implementations as input
enabled LTSs is common practice in the context of formal conformance testing—see e.g.
[42]. The conformance relation we defined in [14] is similar to the one of Tretmans [42],
with adaptations which take care of our semantic framework for UMLSCs.

The test case generation algorithm we present is both exhaustive and sound with respect
to the conformance relation. Exhaustiveness ensures that if an implementation passes all
test cases generated by the algorithm from a given specification, then it conforms to the
specification. Conversely, soundness ensures that if an implementation conforms to a spec-
ification, then it passes all test cases generated by the algorithm from such a specification.
The testing equivalence verification algorithm naturally extends to the case of stuttering
semantics.

The two different ways of dealing with absence of reaction, and in particular, the ability
for experimenters to explicitly detect absence of reaction turns out to be of major importance
for determining the relative expressive power of the various semantics. More specifically,
we define MAY and MUST preorders also for the stuttering semantics and we provide a
formal comparison between the Hennessy-like, non-stuttering semantics [25,17], and the
stuttering semantics w.r.t. testing and conformance ordering relations; we show that if two
UMLSCs, say A and B, are in conformance relation (i.e. A conforms to B) in the stuttering
semantics, then they are also in MAY and in the reverse-MUST relations (i.e. A �∼MAY

B

4 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

and B �∼MUST
A) in the non-stuttering semantics, but not vice-versa. This shows that the

Hennessy-like, non-stuttering, semantics [25,17] is not adequate for reasoning about issues
of conformance, since the detection of absence of reaction, explicitly modeled only in the
stuttering semantics, plays a major role when dealing with conformance. Accordingly,
the following results are proved: in the stuttering semantics, the conformance relation
essentially coincides with the MAY preorder, and is strictly weaker than the testing preorder.
Moreover, in the stuttering semantics, nice substitutivity properties hold; for instance, testing
equivalent implementations conform to the same specifications and implementations con-
form to testing equivalent specifications. The above results have been originally presented
in [26] and in the present paper we include all related proofs.

As an additional result of our work, we also defined a specific test case language which we
use uniformly in the present paper both for what concerns the testing preorders/equivalence
and for automatic test case generation as well as what concerns conformance.

The present paper is organized as follows. Section 2 discusses the relationship of the
work presented in the present paper with the literature. In Section 3 the major background
notions, necessary for the development of the testing and conformance theories are re-
called. Section 4 addresses the testing preorders and the equivalence verification algorithm.
Section 5 addresses conformance testing and the test case generation algorithm. Section 6
studies the relationships between the two views at the semantics of UMLSCs presented and
used in Sections 4 and 5—namely the “non-stuttering” and the “stuttering” semantics—and
compares the testing and the conformance relations. Technical details and results on the
dynamic semantics of UMLSCs on which our work is based, and in particular their “core
semantics” are given in Appendix A. Appendix B contains the detailed formal proofs of all
results presented in this paper.

2. Related work

As briefly mentioned in Section 1, the basic work on formal theories for testing, mainly
in the context of Process Algebra and LTSs, has been proposed by De Nicola and Hennessy
(see e.g. [9,17]). Tretmans addressed more the issues related to conformance testing in a
formal, LTS-based, framework [40–42].

The results addressed in the present paper have been originally proposed in [25,26,16],
although in isolation, while in the present paper they are dealt with in a uniform framework
and notation. Moreover all proofs, some of which were omitted in the above-mentioned
papers, are provided in the present paper.

Our LTSs labeled over i/o-pairs are very similar to Finite State Machines (FSMs),
in particular Mealy Machines. A considerable number of studies in the field of testing
FSMs are available in the literature. An excellent survey can be found in [28]. Many
such proposals deal with test case generation but mainly in the context of deterministic
machines, as, e.g., in the seminal work of Chow [38], or in [11], where practical appli-
cability of model-based test case generation is addressed. In some proposals, like the one
in [5], further restrictions on the machines are introduced, requiring e.g. that they must
be strongly connected. Non-determinism in the context of conformance testing FSMs is
addressed in [35], where specifications may be non-deterministic, while implementations
are required to be deterministic. Specifications and implementations are required to share
the same input alphabet. Moreover, only so called observable non-deterministic FSMs are
considered. Observable non-deterministic FSMs are FSMs which cannot produce the same

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 5

output on the same input while moving to different next states, i.e. if they move from the
current state to different next states they must also produce different outputs. Specification
FSMs are not required to be completely specified, i.e. there can be states which have
no outgoing transition for some input event (the notion of complete specification is the
FSMs analogous of input-enabledness in the context of LTSs). A conformance relation
on FSMs, called reduction, is given which is very similar to the conformance relation
we use in the present paper, and a finite test suites generation algorithm is proposed
which is complete in the class of all implementations with a given upper bound on the
number of states (completeness in the context of FSMs corresponds to eshaustiveness
in the context of LTSs). In [18] the methods are extended in such a way that adaptive
testing is possible, i.e. information is gathered from the output of an implementation
under test that can be used for guiding future testing. Neither [35] nor [18] addresses
the issue of linking the testing methodology and algorithms they propose to a general
framework where the very notion of testing computing devices, its formalization and
the equivalence it induces are addressed, as e.g. in [9,17]. Moreover, we think that the
restriction to observable FSMs is a rather strong one, if non-deterministic behaviour is
to be addressed. In fact, although for each (completely specified) non-observable FSM
there exists an equivalent observable one [18], such an equivalence takes into account
only the language defined by the machine and not its deadlock properties, which can be
of major interest in specific contexts, possibly different from conformance testing (e.g.
non-stuttering semantics of UMLSCs). Furthermore UMLSCs can easily violate the ob-
servability constraint. Restricting testing theories to deterministic implementations seems
also a rather strong limitation, especially in the context of distributed or concurrent im-
plementations. In such a context, non-determinism arising from concurrency cannot be
avoided and, in fact, non-determinism is a key notion in the area of formal approaches to
system modeling and verification and it is a central notion in traditional concurrency and
testing theories for LTSs [19,33,9,17]. Consequently we use generic LTSs over i/o-pairs
without any limitation on the form of non-determinism they may exhibit. The restriction
to input-enabled LTSs, when we address conformance, adequately models the UMLSCs
stuttering phenomenon. Furthermore, the link we provide to testing equivalence, rather
than language equivalence, and in particular its definition in terms of experimenters, in
the sense of [9,17], brings in—without renouncing to a solid mathematical framework—
a strong intuitive support which is sometimes missing in the above-mentioned works on
FSMs testing.

In [21] algorithms for test case generation from UML statecharts are presented which
cover both control flow issues and data flow ones. As far as flow control is concerned,
statecharts are mapped to (extended) FSMs. The semantic framework on which the presented
work is based is a flat one, i.e. the hierarchical structure of UMLSCs is not exploited in
the definition of the operational semantics. Moreover, the model presented does not take
transition priorities into consideration. The relationship with general testing theories for
state/transition structures is not addressed.

Further related work on automatic test generation based on UMLSCs has been developed
in the context of the Agedis project [39,8]. In that approach a system model, composed of
class, object and statechart diagrams is translated into a model expressed in an intermediate
format suitable as input for model checking and test generation tools. It follows a pragmatic,
industrial approach with a clear focus on the test selection problem, but with less emphasis
on UML formal semantics. In contrast, we follow a ‘Semantics-first’ approach (also) with
respect to conformance testing.

6 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

Similarly, in [36] emphasis is put primarily on support tool implementation. The seman-
tics of UMLSCs is defined by means of the tool umlout—which generates LTSs with input
and output events, in the style of [42]. In particular, no formal definition of such semantics
is given in [36]. We already addressed the issues related to the use of LTSs with separate
input and output events as a model for UMLSCs semantics.

Other approaches to automatic test generation include [37] that describes the use of the
CASE tool AutoFocus. The authors emphasize the need for a formally defined semantics
and use state transition diagrams that resemble a subset of the UML-RT, but it seems there
is no formal relation between their diagrams and the subset of the UML-RT. Automated test
generation has been developed also for classical Harel statechart diagrams, e.g. [3], which
semantically differ considerably from UMLSCs (e.g., a different priority schema as well as
a different semantics for the input queues are used).

3. Basic notions

In this section we summarize the definitions concerning LTSs, with particular ref-
erence to LTSs over input/output-pairs (i/o-pairs, for short), hierarchical automata, ex-
perimenters, experimental systems and their computations, which form the basis for the
formal semantics of UMLSCs and related testing and conformance notions as presented
in [15,25,26,16].

The definition of a sound “basic” kernel of a notation, to be extended only after its
main features have been investigated, has already proved to be a valuable and fruitful
methodology and is often standard practice in many fields of concurrency theory, like
process-algebra. We refer to e.g. [23] for a deeper discussion on such “basic-notation-
first” and “semantics-first” versus “full-notation-first” issue. In line with this approach, in
the present paper, we consider a subset of UMLSCs, which includes all the interesting
conceptual issues related to concurrency in dynamic behavior—like sequentialization, non-
determinism and parallelism—as well as UMLSCs specific issues—like state refinement,
transition priorities, interlevel/join/fork transitions. We do not consider history, action
and activity states; we restrict events to signals without parameters (actually we do not
interpret events at all); time and change events, object creation and destruction events,
and deferred events are not considered neither are branch transitions; also variables and
data are not allowed so that actions are required to be just (sequences of) events. We also
abstract from entry and exit actions of states. We refer to [27] for object-based exten-
sions of our basic model which include, among others, object management, e.g. object
creation/destruction.

In Section 3.1 basic notions related to Labeled Transition Systems are briefly recalled;
Hierarchical Automata are shortly described in Section 3.2 while Section 3.3 recalls the
major notions related to testing theories.

3.1. Labeled transition systems

The notion of labeled transition system (LTS) is central in the present paper:

Definition 1 (LTS). A labeled transition system (LTS) M is a tuple (S, sin, L,→) where S

is the set of states with sin ∈ S being the initial state, L is the set of (transition) labels and
→ ⊆ S × L× S is the transition relation of the LTS.

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 7

For (s, l, s′) ∈→ we write s
l−→ s′. The notation s

l−→will be a shorthand for ∃s′. s
l−→

s′. Some standard definitions are given below.2

Definition 2 (Auxiliary definitions for LTSs). For LTS M = (S, sin, L,→), s, s′, s′′ ∈ S,
l ∈ L, γ ∈ L∗, ω ∈ L∞

• The transition relation
γ−→ over finite sequences is defined in the obvious way, i.e. it

is the smallest relation over S × L∗ × S such that: (a) s
ε−→ s and (b) if s

γ−→ s′ and

s′ l−→ s′′, then s
γ l−→ s′′; in a similar way as for single labels we let s

γ−→ stand for

∃s′. s
γ−→ s′;

• By s
ω−→ we mean that there exists an infinite sequence s0s1s2 . . . of states in S, with

s = s0, ω = l0l1 . . ., such that for all n ≥ 0 we have sn
ln−→ sn+1;

• The language of M is the set lan M =df {γ ∈ L∗ | sin
γ−→} of all finite traces of M;

• The labels of M after γ is the set S M γ =df {l ∈ L | sin
γ l−→};

• The acceptance sets of M after γ is the set AS M γ =df {S s ε | sin
γ−→ s};

•M is finite if sets S and→ are finite;

•M is deterministic if for all s, s′, s′′ ∈ S and l ∈ L, whenever s
l−→ s′ and s

l−→ s′′ we
have s′ = s′′. Notice that if M is deterministic, each γ ∈ (lan M) uniquely identifies a
state s ∈ S.

In the definition of acceptance sets we have treated state s ∈ S of LTS M as a LTS in
turn. The set Ss of states of such LTS contains all and only those elements of S which are

reachable from s via−→ (i.e. Ss =df {s′ ∈ S | ∃γ. s
γ−→ s′}), the initial state being s; the

transition relation of the LTS is−→ ∩(Ss × Ss). We will often treat states of LTSs as LTSs
in turn, as above. In the rest of this paper we will use LTSs where the labels in L are i/o-pairs,
i.e. L = LI × LU , for some input set LI and output set LU ; we will refer to such LTSs
as LTSs over LI × LU . Finally, notice that, as we will see, for the purposes of the present
paper, in particular with reference to the results of Section 4, Section 5, and Section 6, it is
sufficient to consider finite LTSs over finite label sets.

3.2. Hierarchical automata

As briefly mentioned in Section 1 we use hierarchical automata (HAs) [32] as an abstract
syntax for UMLSCs. HAs for UMLSCs have been introduced in [24,15]. The relevant
definitions concerning HAs, like their dynamic semantics, are recalled in Appendix A.
In this section we recall, informally, only the main notions which are necessary for the
understanding of the paper.

2 In this paper we will freely use a functional programming like notation where currying will be used in
function application, i.e. f a1 a2 . . . an will be used instead of f (a1, a2, . . . , an) and function application will
be considered left-associative. By ∃1x. . . . we mean ∃x. . . . and such an x is unique. For indexed family of sets
Xy , with y in index set Y (resp. y satisfying predicate p), we let

⋃
y∈Y Xy (resp.

⋃
y:(p y) Xy) denote the union

over all the sets of the family and we let
⋃

y∈∅ Xy = ∅ (resp.
⋃

y:FALSE Xy = ∅). Moreover, for set X, the set
of finite (resp. infinite) sequences over X will be denoted by X∗ (resp. X∞); ε denotes the empty sequence; for
x ∈ X we let x denote also the sequence in X∗ consisting of the single element x, while for γ, γ ′ ∈ X∗ we let the
juxtaposition γ γ ′ of γ with γ ′ denote their concatenation. Concatenation is extended to infinite sequences with
γ γ ′ = γ when γ is infinite, and γ γ ′ defined in the usual way otherwise.

8 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

s5

e2/e2

e2/e2
e1/−

a1/r2

r2/a2
f2/

e2/e1

f1/r1

e1/f1

r1/a1

a2/e1

s0

s7
s4
s1

s6 s10 s11 s2

s3s9s8

Fig. 1. A sample UMLSC.

Let us consider, as a small example, the UMLSC3 of Fig. 1 and its corresponding HA
in Fig. 2. Roughly speaking, each OR-state of the UMLSC is mapped into a sequential
automaton of the HA while basic states and AND-states are mapped into states of the se-
quential automaton corresponding to the OR-state immediately containing them. Moreover,
a refinement function maps each state in the HA corresponding to an AND-state into the set
of the sequential automata corresponding to its component OR-states. In the example OR-
states s0, s4, s5 and s7 are mapped to sequential automata A0, A1, A2 and A3, while state
s1 of A0, corresponding to AND-state s1 of the UMLSC, is refined into {A1, A2}. Non-
interlevel transitions are represented in the obvious way: for instance transition t8 of the HA
represents the transition from state s8 to state s9 of the UMLSC. The labels of transitions
are collected in Table 1; for example the trigger event of t8, namely EV t8, is e2 while
its associated output event, namely AC t8 is e1. An interlevel transition is represented as a
transition t departing from (the HA state corresponding to) its highest source and pointing
to (the HA state corresponding to) its highest target. The set of the other sources (resp.
targets) are recorded in the source restriction—SR t (resp. target determinator) T D t , of t .
So, for instance, SR t1 = {s6}means that a necessary condition for t1 to be enabled is that
the current state configuration contains not only s1 (the source of t1), but also s6. Similarly,
when firing t2 the new state configuration will contain s6 and s8, besides s1. Finally, each
transition has a guard G t , not shown in this example.

Summarizing, basically a HA H = (F, E, ρ) is composed of a finite (non-empty) col-
lection F of sequential automata related by a refinement function ρ which imposes on
H the hierarchical state nesting-structure of the associated statechart: ρ maps every state
s of each automaton in F into a (possibly empty) set of elements of F which refine s.
The automata in F are finite, i.e. they have a finite set of states and a finite number of
transitions. E is the finite set of events labeling the transitions of the elements of F . For our

3 In the sequel, we will often omit the names of states in statecharts, when this will not cause confusion. Similarly,
we will often refrain from naming the states of automata or LTSs in their graphical representations. Automata
(resp. LTSs) states will be drawn as square (resp. circles or ellipses), where initial states will be represented by
double square (resp. circles or ellipses). Any information related to a transition, e.g. a label, will usually be placed
close to its source.

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 9

A0

t2 t5

t3 t11

t1 t4

t8

t9t7

t10

t6A1 A2

A3

s2 s1 s3

s6 s7 s8 s9

s10 s11

Fig. 2. The HA representing the sample UMLSC of Fig. 1.

Table 1
Transition labels for the HA of Fig. 2

t t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

SR t {s6} ∅ ∅ {s8} ∅ ∅ ∅ ∅ ∅ ∅ {s10}
EV t r1 a1 e1 r2 a2 e1 f 1 e2 f 2 e2 e2
AC t a1 r2 ε a2 e1 f 1 r1 e1 ε e2 e2
T D t ∅ {s6, s8} ∅ ∅ {s6, s9} {s10} ∅ ∅ ∅ ∅ ∅

running example, we have F = {A0, A1, A2, A3}, E = {a1, a2, e1, e2, f 1, f 2, r1, r2},
(ρ s1) = {A1, A2}, (ρ s7) = {A3}, and (ρ s) = ∅ otherwise. Inter-level transitions are en-
coded by means of proper annotations in transition labels. Global states of H , called state
configurations, are sets of states of the automata in F which respect the tree-like structure
imposed by ρ. We let ConfH denote the set of all configurations of H and Cin its initial
configuration, i.e. the configuration composed only of initial states of automata in F .

An issue which deserves to be briefly addressed here is the way in which we deal with
the so called input-queue of UMLSCs, i.e. their “external environment”. In the standard
definition of UML statecharts semantics [34], a scheduler is in charge of selecting an event
from the input-queue of an object, feeding it into the associated state-machine, and letting
such a machine produce a step transition. Such a step transition corresponds to the firing of a
maximal set of enabled non-conflicting transitions of the statechart associated to the object,
provided that certain transition priority constraints are not violated. After such transitions
are fired and when the execution of all the actions labeling them is completed, the step itself
is completed and the scheduler can choose another event from a queue and start the next
cycle. While in classical statecharts the external environment is modeled by a set, in the
definition of UML statecharts, the nature of the input-queue of a statechart is not specified;
in particular, the management policy of such a queue is not defined. In our overall approach
to UMLSCs semantics definition, we choose not to fix any particular semantics, such as
set, or multi-set or FIFO-queue etc., but to model the input queue in a policy-independent
way, freely using a notion of abstract data types. In the following we assume that for set D,

10 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

�D denotes the class of all structures of a certain kind (like FIFO queues, or multi-sets, or
sets) over D and we assume to have basic operations for manipulating such structures. In
particular, in the present paper, we let Add d D denote the structure obtained by inserting
element d in structure D and the predicate (Sel D d D′) states that D′ is the structure
resulting from selecting d from D; of course, the selection policy depends on the choice for
the particular semantics. Similarly, (Join D D′) denotes the structure obtained by merging
D with D′. We assume that if D is the empty structure, denoted by 〈〉, then (Sel D d D′)
yields FALSE for all d and D′. We shall often speak of the input queue, or simply queue,
by that meaning a structure in �D , abstracting from the particular choice for the semantics
of �D .

The operational semantics of HA H characterizes the relation (C, E)
L−→ (C′, E ′) be-

tween statuses and transitions fired during a step. A status is a pair (C, E) where C is the
current configuration and E is the current input queue.

(C, E)
L−→ (C′, E ′) means that a step-transition of H can be performed in the current

status (C, E) by firing the transitions belonging to set L and reaching the new status (C′, E ′).
The new configuration (resp. input-queue) of H after the step will be C′ (resp. E ′). The
definition of the step-transition relation is given below:

Definition 3 (Transition rule).

(Sel E e E ′′)
H ↑ ∅ :: (C, {e}) L−−→ (C′, E ′)
(C, E)

L−→ (C′, (Join E ′′E ′))

The above definition makes use of the so called Core Semantics, i.e. the relation

A ↑ P :: (C, E) L−−→ (C′, E ′).

The role of the Core Semantics is the characterization of the set L of transitions to
be fired, their related output-events, E ′ and the resulting configuration C′, when HA A is
in status (C, E), under specific constraints P related to transition priorities. All issues of
(event) ordering, concurrency, and non-determinism within single statecharts are dealt with
by the Core Semantics. Although essential for the definition of the formal semantics, all the
above issues are concerned with an intensional view of the statechart behavior, thus they
are technically quite orthogonal to the testing and conformance issues which we address in
the present paper and which are intrinsically extensional, and, therefore, the details of the
Core Semantics are given in Appendix A.

3.3. Definitions related to testing

In order to model how test cases are performed over systems represented by LTSs over
LI × LU we first of all need to formalize the notion of experimenters. An experimenter is
similar to a transition system where the set of states is partitioned into output states and input
states. Output states may challenge the system which the experimenter is experimenting
with—by sending it values in LI for input—or simply perform internal actions τ , or declare
the experiment successful by generating the special action W. Input states are instead those
in which the experimenter is supposed to get some output generated by the system under

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 11

test. They are always able to accept any value in LU and, for each of such values, they
proceed to the next output state.

As it clearly appears from the above description, an experimenter can be non-deterministic.
The formal definition of experimenters follows:

Definition 4 (Experimenter). An Experimenter T over LI × LU is a tuple (TU , υin, TI ,

LI , LU ,→ , ↪→) where TU is the set of output states, υin is the initial state, TI is the set of
input states,→ ⊆ (TU × LI × TI) ∪ (TU × {τ, W} × TU) is the output transition relation,
and ↪→⊆ TI × LU × TU is the input transition relation. The following three conditions
must be satisfied: (i) υin is an output state, i.e. υin ∈ TU ; (ii) TU ∩ TI = ∅ and (LI ∪ LU) ∩
{τ, W} = ∅; (iii) ↪→ is total, i.e. ∀ι ∈ TI , u ∈ LU . ∃υ ∈ TU . (ι, u, υ) ∈↪→.

We use similar shorthands as for LTSs, like υ
i−→ ι for (υ, i, ι) ∈→ , ι

u
↪→ υ for (ι, u, υ)

∈↪→, etc. The Success set of the experimenter is the following set:

{υ ∈ TU | ∃υ ′ ∈ TU . υ
W−→ υ ′}.

We say that an experimenter T is finite whenever TU , TI , →, and ↪→ are finite sets.
Similar considerations concerning finiteness as those for LTSs apply to experimenters as
well.

Experimentation of a LTS over LI × LU against an experimenter T is modeled by the
Experimental System they characterize:

Definition 5 (Experimental system). For LTS M = (S, sin, LI × LU,→) and experimenter
T = (TU , υin, TI , LI , LU ,→, ↪→), the experimental system 〈T , M〉 is the transition sys-
tem (TU × S, (υin, sin), �). The transition relation �⊆ (TU × S)× (TU × S) is the small-
est relation satisfying the rules below where s, s′ ∈ S, i ∈ LI , u ∈ LU , υ, υ ′ ∈ TU , ι ∈ TI

and for ((υ, s), (υ ′, s′)) ∈� we write υ || s � υ ′ || s′:

υ
i−→ ι, ι

u
↪→ υ ′, s

(i,u)−→ s′
υ || s � υ ′ || s′

υ
τ−→ υ ′

υ || s � υ ′ || s

Single experiments are modeled by computations:

Definition 6 (Computations). A computation of experimental system 〈T , M〉 is a sequence
of the form:

υ0 || s0 � υ1 || s1 � υ2 || s2 � . . . υk || sk � . . .

which is maximal, i.e. either it is infinite or it is finite with terminal element υn || sn which
has the property that υn || sn � υ ′ || s′ for no pair υ ′, s′. υ0 and s0 are the initial states υin

and sin of T and M respectively.
A computation is successful iff υk ∈ Success for some k ≥ 0, otherwise it is unsuccessful.

We let Comp(T , M) denote the set of all computations of 〈T , M〉. From the definition
of experimental system we know that every computation η ∈ Comp(T , M) gives rise to a

transition sin
γ−→ over finite or infinite sequence γ on the side of the LTS. In this case, we

say that η runs over γ .

12 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

a/b a/b a/b

b/c c/d b/c c/d

Fig. 3. Two Language-equivalent but not Testing equivalent LTSs.

Definition 7 (Testing equivalence). For experimental system 〈T , M〉 we let the set
Result(T , M) ⊆ {�,⊥} be defined as follows:
� ∈ Result(T , M) iff Comp(T , M) contains a successful computation.
⊥ ∈ Result(T , M) iff Comp(T , M) contains an unsuccessful computation.

We say M and M′ are testing equivalent, written M ∼M′ iff for all experimenters T
Result(T , M) = Result(T , M′).

Intuitively, the above definition establishes that we can consider two systems M and
M′ equivalent if and only if no experimenter T can distinguish them on the basis of the
fact that its computations have reported success or not. This notion completely captures the
idea of equivalence based on the externally observable behavior of the two systems. Notice
that testing equivalence for LTSs is strictly stronger than language equivalence for FSMs,
in the sense that, as we shall see in Section 4, testing equivalent LTSs characterize the same
language, while the converse does not hold. This can be easily seen using the example of
Fig. 3. We leave it to the reader to prove that the two LTSs in the figure are not testing
equivalent but they have the same language.

The following definition characterizes an interesting subclass of experimenters:

Definition 8 (Input-deterministic experimenter). Experimenter T = (TU , υin, TI , LI ,

LU ,→, ↪→) is input-deterministic iff its input transition relation is deterministic, i.e. ∀ι ∈
TI , u ∈ LU, υ, υ ′ ∈ TU . ι

u
↪→ υ and ι

u
↪→ υ ′ implies υ = υ ′.

In other words, each input state ι of input-deterministic experimenter T behaves like a
total function from LU to TU . Of course input-deterministic experimenters can still exhibit
non-deterministic behaviour since the output transition relation can be non-deterministic.

In the following we will let DetEx denote the class of all input-deterministic experi-
menters.

For set T of experimenters, we let M ∼T M′ be the equivalence relativized to set T , i.e.
M ∼T M′ if and only if for all experimenters T ∈ T , Result(T , M) = Result(T , M′).

The following proposition shows that for the purposes of reasoning about testing equiv-
alence it is sufficient to consider input-deterministic experimenters.

Proposition 9. For all LTSs M and M′, M ∼M′ iff M ∼DetEx M′.

In the sequel we will assume all experimenters be input-deterministic.
We close this section with the definition of a language for the specification of (input-

deterministic) experimenters, which will be useful in the rest of the paper. Let IE and OS

be countable sets such that (IE ∪OS) ∩ {τ, W} = ∅—we call IE the set of events and

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 13

OS the set of possible outputs. The syntax of output experimenter expressions U—resp.
input experimenter expressions I—of the language is given below, where e ∈ IE is an
event, α ∈ {τ, W}, P (resp. x) is an experimenter (resp. input) variable, X is a parameter
of type �D, g is a boolean expression of the form “ x = u” or “x �= u”, for u ∈ OS, or
“x �∈ X” for X ⊆ OS. The notion of free (input) variable is the same as in lambda-calculus.
The operators +,⇒, ; and . have increasing binding strength. We let U, U ′, . . . range over
output expressions, defined according to the following grammar:

U ::= δ | e; I | α;U | g ⇒ U | U + U | P(X)

Input expressions, ranged over by I, I ′, . . . are defined according to the following grammar:

I ::= λ x.U
An experimenter specification consists of a pair (U, U) where U is an output experimenter
expression and U ⊆ OS. We will require that no input variable occurs free in U and that a

unique experimenter definition P(X)
�= U ′ is associated with any experimenter variable P

occurring in U in the context where the experimenter specification is used. The operational
semantics of the language is given in a similar way as for process algebraic languages, by
means of a set of transition rules. The rules are shown in Fig. 4, with reference to exper-
imenter specification (U, U) and a given set of process variable definitions. In the figure,
µ is an element of IE ∪ {τ, W} and O stands both for output and for input experimenter
expressions.

We briefly discuss the informal meaning of the rules. The experimenter δ performs no
action. Prefix expression e; I offers event e and then behaves like I, which is an input
experimenter expression, i.e. an expression of the form λ x.U . The latter will receive the
output produced by the system under test in an experimental system (see Definition 5).
The specific (output) state resulting from receiving the value is obtained according to the
semantics of input experimenter expressions, as given by the last rule in Fig. 4 where
U[u/x] denotes U where all free occurrences of x are simultaneously substituted with u.
The second form of prefix expression, α;U , produces α and then behaves like U . Notice that
α can be either τ or the success action W. In order for a conditional output experimenter
g ⇒ U to proceed, it is necessary that the guard g evaluates to true. The choice expression

U1 + U2 behaves as U1 or U2. Finally, if P
�= U is the definition for P , P behaves like U .

If the optional parameter X is used in the definition of P , then P(D) behaves as U[D/X]
where again we use substitution. In the following, we will assume D be an element of
L, or L∗, 2L, or �D , the particular case being clear from the context. Finally, we will
often use an extended form of parametrized experimenter P(X1, . . . , Xk) with the obvious
meaning. We say that an output experimenter expression U is guarded if and only if it is
the body of an input experimenter expression λ x.U , or it is the second argument of a prefix
expression α;U or of a conditional expression g ⇒ U . In the sequel, we will consider only
experimenter specifications where every occurrence of any (output) process instantiation
P(D) is guarded.

In order to formally define the experimenter denoted by an experimenter specification

we first need the following auxiliary definition where by � U µ−→ O (resp. � I u
↪→ U) we

mean that U µ−→ O (resp. I u
↪→ U) can be deduced using the rules of Fig. 4.

Definition 10 (Derivatives). The derivatives of experimenter specification (U, U) is the
smallest set der(U , U) of experimenter expressions which satisfies the following three
conditions: (i) U ∈ der(U , U); (ii) if output experimenter expression U ′ ∈ der(U , U) and

14 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

Fig. 4. Experimenter expressions operational semantics rules.

� U ′ µ−→ O then also O ∈ der(U , U); (iii) if input experimenter expression I ∈ der(U , U)

and � I u
↪→ U ′ for some u ∈ U , then also U ′ ∈ der(U , U).

We can now define the experimenter associated with experimenter specification (U, U):

Definition 11 (Operational semantics of Experimenters). The experimenter associated with
experimenter specification (U, U) is the experimenter (TU , υin, TI , LI , LU ,→, ↪→) where
TU =df {U ′ | U ′ ∈ der(U ,U)}, υin = U , TI =df {I | I ∈ der(U ,U)}, LI ⊆ IE, LU =df U ,
and→, ↪→ are the smallest relations induced by the rules of Fig. 4.

In the sequel we will omit set U in experimenter specification (U, U) when U is clear
from the context. Moreover we will identify (U, U) with the experimenter it denotes. The
following is an example of a very simple experimenter over I × U , where I = {r1} and
U = {{a1}, {e1}, {r2}} which starts by sending r1 to the system under test and then, if the
latter responds with {a1} it reports success, otherwise it stops without reporting success:

r1; λx. (x = {a1} ⇒ τ ;W; δ
+
x �∈ {{a1}} ⇒ δ

)

4. Testing relations

In this section we develop a general testing theory for UMLSCs, originally proposed
in [25], using a framework similar to that proposed in [30], which was in turn inspired by
the work of Hennessy for traditional LTSs [17]. The general approach is based on the well
known notions of MAY and MUST preorders and related equivalences. The main semantic
assumptions in [17] are that (i) system interaction is modeled by action-synchronization
rather than input/output exchanges, and (ii) absence of reaction from a system to a stim-
ulus presented by an experimenter results in a deadlock affecting both the system and the

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 15

experimenter. In [30], and later in [25] specifically for UMLSCs, assumption (i) has been
replaced by modeling system interaction as input/output exchanges, but assumption (ii)
remains unchanged. In the following we shall first recall the semantic interpretation of HAs
as proposed in [25], which we call the non-stuttering semantics for HAs, for reasons which
will be clear in the sequel, and we show its formal relation with the original semantics for
HAs recalled in Section 3.2. In the rest of this section we will develop the above-mentioned
testing theory based on the non-stuttering semantics.

The non-stuttering semantics is recalled in Section 4.1 while its relationship with the
original semantics of UMLSCs proposed in [15] is addressed in Section 4.2. In Section 4.3
relevant testing preorders are given which brings us to the notion of testing equivalence.
In Section 4.4 an alternative, intensional, characterization of such preorders/equivalence
is addressed which serves as a link to a finite representation for (the LTSs denoted by)
UMLSCs used for automatic verification in Section 4.6.

4.1. Non-stuttering semantics

The non-stuttering semantics associates a LTS to each HA.

Definition 12 (Non-stuttering semantics). The non-stuttering semantics of an HA H =
(F, E, ρ) is the LTS over E ×�E LTS(H) =df (ConfH , Cin,−→) where (i) ConfH is
the set of configurations, (ii) Cin ∈ ConfH is the initial configuration, (iii) −→⊆ ConfH ×
(E ×�E)× ConfH is the step-transition relation defined below.

We write C e/E−→ C′ for (C, (e, E), C′) ∈−→. Any such transition denotes the result of
firing a maximal set of non-conflicting transitions of the sequential automata of H which
respect priorities when the state machine associated to H is given event e as an input. E is
the collection of output events generated by the transitions which have been fired. Relation
−→ is the smallest relation which satisfies the rule below:

Definition 13 (Non-stuttering semantics transition rule).

e ∈ E, L �= ∅, H ↑ ∅ :: (C, {e}) L−−→ (C′, E)

C e/E−→ C′

Also in the above rule, as in Definition 3, we make use of the Core Semantics. It is worth
pointing out that the LTS associated by non-stuttering semantics to a generic HA is finite.
This nice property can be easily understood by considering that each HA has a finite set
of events, a finite set of configurations and that the total set of transitions is finite, so that
there is a finite number of subsets of transitions, i.e. there is a finite number of possible
step-transitions. For HA H as in Fig. 2, the corresponding LTS(H) is shown in Fig. 5.4

4 For the sake of simplicity, in the examples in the present paper, the events generated as outputs are collected
as sets, i.e. �E is chosen to be 2E ; moreover, a singleton set {e} is denoted by the element e it contains, when this
cannot cause confusion.

16 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

e1/{} r1/{a1}

e1/{f1}

a2/{e1}

e2/{e1,e2}
e2/{e2}

r2/{a2}
f1/{r1}

r2/{a2}

e2/{e1}e1/{f1}
r1/{a1}

a1/{r2} f2/{}

f1/{r1}

f2/{}

e2/{e1}

e1/{}

r2/{a2}

e1/{}
f1/{r1}

e2/{e2}
e2/{e2}

f1/{r1}
f2/{}

e1/{}

2 4

8

6 7

3 5

1

Fig. 5. LTS(H), for H of Fig. 2.

4.2. Correctness

The original operational semantics proposed in [24] was proved correct w.r.t. the official
UML Statechart Diagrams semantics, although the latter are defined only informally. The
correctness theorem in [24] essentially states that the set of transitions fired during an
arbitrary step is a maximal set L such that (a) all transitions in L are enabled, (b) they are
non-conflicting and (c) there is no transition outside L which is enabled in the current status
and which has higher priority than a transition in L.

In this section we shall provide a correctness result for the non-stuttering semantics,
showing its formal relation with the original semantics, in the form presented in [15] and
recalled in Section 3.2 (Definition 3), which differs from that presented in [24] only in that
each step-transition is explicitly labeled by set L, which is omitted in [24].

In order to present the correctness result it is convenient to model the UML input-queue
as a specific experimenter, namely the experimenter which simulates the data structure used
for the queue. The experimenter we are interested in is specified by (Queue(E0), �E) where
E0 is the initial content of the input-queue and Queue is recursively defined, as shown in
Fig. 6.

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 17

Fig. 6. Definition of Queue(F).

Intuitively, for structure E in �E , Queue(E) will produce a transition if and only if there
exist event e and structure E ′ such that (Sel E e E ′) holds, i.e. E is not empty. Moreover,
f is bound to e and F ′ is bound to E ′. The expression (f ; λF ′′.Queue(join F ′ F ′′)) is
an action prefix which performs the event (action) currently bound to f , say e, and then
behaves like λF ′′.Queue(join F ′ F ′′). The latter, when receiving a structure, say E ′′, will
behave again like a queue but with a different argument, i.e. Queue(join E ′ E ′′).

The following proposition, proved in Appendix B, establishes the correctness of the new
semantics definition. The transition relation in the operational semantics given in [15] is

denoted by
L−→.

Proposition 14. For HA H = (F, E, ρ), C, C′ ∈ ConfH , E, E ′, E ′′ ∈ �E, the following

holds: ∃L. L �= ∅ ∧ (C, E)
L−→ (C′, (join E ′′ E ′)) if and only if (Queue(E) || C) �

(Queue(join E ′′ E ′) || C′).

So the two semantic models generate the same step-transitions, except for stuttering.
We remind here that a HA H stutters on input event e when there is no transition of any
sequential automaton of H enabled by e in the current status. In other words, stuttering
happens when the machine does not accept e in the current state. This refusal is modeled
in the new semantics by not generating a step-transition at all. This last behavior is in line
with traditional testing theories as developed e.g. in [17].

4.3. Testing preorders

Below we define preorders which will allow us to “order” non-deterministic i/o-pair-
LTSs, like HAs, according to their “amount of non-determinism” and to recollect testing
equivalence as the equivalence induced by such preorders.

Definition 15 (Testing preorders). For M, M′ i/o-pair LTSs we let
(i) M �∼MAY

M′ iff for every T : if � ∈ Result(T , M) then also � ∈ Result(T , M′);
(ii) M �∼MUST

M′ iff for every T : if ⊥ �∈ Result(T , M) then also ⊥ �∈ Result(T , M′);
(iii) M �∼M′ iff (M �∼MAY

M′) ∧ (M �∼MUST
M′).

So M �∼MAY
M′ means that if a generic experimenter T may report success when ex-

perimenting with M it must be the case that T may report success also when experimenting
with M′. Symmetrically, M �∼MUST

M′means that if a generic experimenter T must report
success when experimenting with M it must be the case that T must report success also
when experimenting with M′. In other words if we know that M may pass a generic test
T and M �∼MAY

M′ then we know also that M′ may pass the test, where “may pass the
test” is the informal equivalent of� ∈ Result(T , M), with the intuitive meaning that there
may be a successful computation starting from the initial state of the experimental system

18 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

〈T , M〉. Similarly if we know that M must pass a generic test T and M �∼MUST
M′ then we

know also that M′ must pass the test, where “must pass the test” is the informal equivalent
of ⊥ �∈ Result(T , M), with the intuitive meaning that all computations starting from the
initial state of the experimental system 〈T , M〉 must be successful.

We let �denote the equivalence induced by the testing preorders, i.e. M �M′ iff
M �∼M′ and M′ �∼M. The proposition below allows to identify ∼ with �.

Proposition 16. M ∼M′ iff M �M′.

Finally, we let �∼ℵMAY
, �∼ℵMUST

, �∼ℵ denote the relativized preorders. For example

M �∼ℵMUST
M′ iff for every T ∈ ℵ, ⊥ �∈ Result(T , M)⇒ ⊥ �∈ Result(T , M′).

4.4. Alternative characterization of testing preorders

The characterization of testing preorders by means of the concepts of MAY and MUST is
intuitively appealing, but is problematic when it comes to automatic verification of testing
equivalence of LTSs. Such an automatic verification can be performed based on so called
Acceptance Automata, which are a variant of Acceptance Trees originally proposed by
Hennessy. In order to be able to show the correspondence between testing equivalence
defined in terms of the MAY and MUST preorders and the Acceptance Automata—which
will be introduced in the next section—we give an intermediate alternative characterization
of testing preorders in this section. First we introduce two auxiliary notions; set closure and
maximal functional subsets.

Definition 17 (Set closure). For X a finite set of finite subsets of L, the closure of X, c X

is the smallest set such that the following three conditions are satisfied:
(i) X ⊆ c X;

(ii) if x1, x2 ∈ c X then also x1 ∪ x2 ∈ c X;
(iii) if x1, x2 ∈ c X and x1 ⊆ x ⊆ x2 then also x ∈ c X.

The following definition is necessary for identifying the functional subsets of subsets of
L whenever L is a set of i/o-pairs. Functional sets, which are in fact (finite) functions, are
used for modeling single steps of input/output behavior.

Definition 18 (mfs). For X a finite set of finite subsets of L we let

mf s X =df

⋃
x∈X

(mf x)

where mf x =df {y ∈ (f unc x) |� ∃y′ ∈ (f unc x). y ⊂ y′} and f unc x =df {y ⊆ x|
∀(i1, u1), (i2, u2) ∈ y.i1 = i2 ⇒ u1 = u2}.

For finite set X of finite subsets of L, mf s X generates the maximal functional subsets of
the elements of X, by applying function mf to each of them. Function mf splits each set into
its maximal functional subsets. Each functional set is indeed a function from input-events to
output-events. As we will see, intuitively, every such a set represents an instance of external
non-determinism relative to a single step of the machine. Similarly, but in a complementary
way, internal non-determinism relative to a single step of the machine is coded by means

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 19

of having different functional sets as elements of the same set associated to such a step.
Notice that f unc ∅ = {∅} = mf ∅ and mf s {∅} = {∅}. The following definitions introduce
a preorder on finite LTSs which will be used for defining the intermediate equivalence ≈
and which will be proved to coincide with the testing preorder.

Definition 19 (Alternative preorders). For finite LTSs M, M′ over L = LI × LU

(i) M <<MAY M′ iff (lan M) ⊆ (lan M′);
(ii) M <<MUST M′ iff ∀γ ∈ L∗. mf s(c (AS M′ γ)) ⊂⊂ mf s(c (AS M γ));

(iii) M << M′ iff M <<MAY M′ ∧M <<MUST M′;
where X ⊂⊂ Y iff ∀x ∈ X. ∃y ∈ Y. y ⊆ x.

It is easy to show that << is indeed a preorder so that it induces the following
equivalence:

Definition 20 (Alternative equivalence). For finite LTSs M, M′ over L M ≈ M′ iff
M << M′ ∧M′ << M.

The following theorem establishes the first correspondence result, namely the corre-
spondence between the testing preorders (Definition 15) and the preorders defined in
Definition 19:

Theorem 21. For all finite LTSs M = (S, sin, L,→), M′ = (S′, s′in, L,→) over L =
LI × LU the following holds:

(a) M �∼MAY
M′ iff M <<MAY M′;

(b) M �∼MUST
M′ iff M <<MUST M′;

(c) M �∼M′ iff M << M′.

As a corollary we have the link between testing equivalence and the relation ≈ defined on
LTSs.

Corollary 22. For finite LTSs M, M′ over L = LI × LU, M �M′ iff M ≈ M′.

At this point we can already say something about the exact nature of this notion of testing
LTSs over L. Essentially it has to do with internal non-determinism, as it can be detected by
means of “black-box” testing. Intuitively M �∼M′ if they have the same set of traces but
in some sense M is “more non-deterministic”, or equivalently, “more chaotic” then M′.
In other words, although the sequences of input/output interactions of both systems are the
same, an experimenter T may experience failures with M “more often” than with M′. In
this sense, M has a “higher degree of non-determinism” than M′.

4.5. Finite acceptance automata

In this section we introduce the model of finite acceptance automata (FAAs), equipped
with a preorder ≤FAA and the equivalence relation ≡FAA it induces. FAAs are a natural
extension of Finite Acceptance Trees to the case of i/o-pairs LTS. Finite Acceptance Trees
have been originally introduced by Hennessy [17]; they have been adapted to the case of
systems with explicit input/output behavior in [30]. Both in [17,30] Acceptance Trees form a
semantic domain within a denotational approach. So, Acceptance Trees modeling systems

20 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

with traces of unlimited length—even finite state systems—are characterized by infinite
fixpoints. In this paper, instead, we are using an operational—rather than denotational—
approach and we shall use FAAs for modeling the behavior of finite state systems with
i/o-labels, including those with traces of unlimited length. In other words, our acceptance
structures are generic finite graphs and not simply finite trees or directed acyclic graphs.

The reason why we introduce FAAs is fairly simple: they can easily be mapped into
finite deterministic LTSs on which strong bisimulation equivalence can be automatically
checked, and such a mapping preserves the equivalence ≡FAA on FAAs. On the other hand,
we can map finite LTSs over i/o-pairs into FAAs in such a way that testing equivalence is
preserved, i.e. two finite LTSs over i/o-pairs are testing equivalent if and only if their images
via such a mapping are equivalent according to ≡FAA . In conclusion, FAAs represent an
effective model for performing automatic verification of testing equivalence over UMLSCs.
Before defining the FAA model, we need to define the notion of saturated sets.

Definition 23 (Saturated sets). For finite subset S of L, an S-set A is a finite, non-empty set of
subsets of L which satisfies the following conditions: (i)∀X ∈ A. X ⊆ S; (ii)∀x ∈ S. ∃X ∈
A. x ∈ X; (iii) ∀X1, X2 ∈ A. X1 ∪X2 ∈ A; and (iv) ∀X1, X2 ∈ A, X. X1 ⊆ X ⊆ X2 ⇒
X ∈ A. A finite set A of finite subsets of L is saturated if it is an S-set for some S.

Finite acceptance automata (FAAs) are defined below:

Definition 24 (FAA). A finite acceptance automaton α over L is a deterministic finite LTS
over L, where also nodes are labeled.5 The node of α identified by sequence γ ∈ lan α is
labeled by (mf s A) for some (S α γ)-set A. Such a label will be denoted by ASFAA α γ ,
and is assumed equal to ∅ whenever γ �∈ lan α.

It is easy to see that the relation on FAA defined below is a preorder (but not a partial
order).

Definition 25 (≤FAA and ≡FAA). For FAAs α, α′ over L, α ≤FAA α′ iff the following
conditions are satisfied: (i) lan α = lan α′, and (ii) ∀γ ∈ lan α. ASFAA α′ γ ⊆ ASFAA α γ .
The equivalence induced by ≤FAA is denoted by ≡FAA.

Intuitively, α ≤FAA α′ if they have the same set of traces but α represents “more non-
deterministic” systems. Such non-determinism is coded in the acceptance sets. In order
to compute the FAA (TFAA M) associated to any M, finite LTS over L, we proceed in a
similar way as in [4]. The algorithm is defined in Fig. 7.

Proposition 26. For finite LTS M over L = LI × LU, TFAA M is a FAA over L.

Fig. 9(a) shows the result of applying mapping TFAA to the LTS of Fig. 8(b) which is the
semantics of the UMLSC of Fig. 8(a). The states of the UMLSC have been numbered for
notational convenience; the relevant sets of such numbers are used as names of the states
of of the LTS and and the FAA.

5 All definitions for LTS are thus valid also for FAAs.

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 21

Fig. 7. The algorithm for mapping TFAA .

b/y b/z b/y b/z

a/x a/x a/x a/x

1 4

2 3 5 6

7 8 9 10
d/v

c/t

(a)

a/x a/x

a/x a/x

b/y b/yb/z b/z

c/t d/v

(b)

2,5 3,5 2,6 3,6

7 8 9 10

1,4

Fig. 8. A simple UMLSC (a) and its LTS (b).

We are now ready for giving the second correspondence theorem.

Theorem 27. For all finite LTSs M, M′ over L = LI × LU the following holds:M <<

M′ iff (TFAA M) ≤FAA (TFAA M′).

As a corollary of Theorem 27 we have the link between the relation ≈ on LTSs and the
equivalence of FAAs.

Corollary 28. For finite LTSsM, M′ overL,M ≈ M′ iff (TFAA M) ≡FAA (TFAA M′).

22 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

(,{{(a,x)}})

((a,x),{{(b,y)},{(b,z)}})

((b,y),{{(c,t)}{}}) ((b,z),{{(d,v)},{}})

((c,t),{{(d,v)}})

{1,4}

{10}

{{(b,y)},{(b,z)}}

{{(c,t)},{}}

{{(d,v)},{}}

{{(d,v)}}

a/x

b/y b/z

c/t

d/v

d/v

(a)

{{(a,x)}}

{2,5},{3,5},{2,6},{3,6}

{7},{9} {8},{10}

((d,v),{{(a,x)}})

((d,v),{{(a,x)}})

(b)

Fig. 9. FAA (a) and related deterministic LTS (b) associated to the LTS of Fig. 8.

4.6. Testing equivalence verification

In this section we show how the results given in the previous section can be used for
effective verification of testing equivalence over UMLSCs. We start by stating the final
correspondence result, which easily follows from Corollaries 22 and 28.

Corollary 29. For all finite LTSsM,M′ overL,M �M′ iff (TFAA M) ≡FAA (TFAA M′).

The above result allows us to reduce the problem of checking whether two UMLSCs S

and S′ are testing equivalent to the problem of checking whether (TFAA (LTS(H))) ≡FAA

(TFAA (LTS(H ′))) where H (resp. H ′) is the HA representing S (resp. S′). In the remainder
of the paper we show that checking α ≡FAA α′, for FAAs α, α′, can be reduced in turn to
checking (strong) bisimulation equivalence. Below we recall the definition of bisimulation
equivalence [33].

Definition 30 (Bisimulation equivalence). A binary relation R on states of LTSs over label
set L is a (strong) bisimulation iff for all l ∈ L and s1, s2 with s1 R s2

• whenever s1
l−→ s′1 for some s′1 also s2

l−→ s′2 for some s′2 such that s′1 R s′2, and

• whenever s2
l−→ s′2 for some s′2 also s1

l−→ s′1 for some s′1 such that s′1 R s′2.
We say that s1 and s2 are (strong) bisimulation equivalent, written s1 ≈bis s2 in this

paper, iff there exists a bisimulation R such that s1 R s2.

Two LTSs M and M′ are bisimulation equivalent, written M ≈bis M′, if and only if
their initial states are so. It is important to point out that there are tools available nowadays
for automatic verification of bisimulation equivalence for finite LTSs (see, e.g. [13]). In
order to reduce our problem to bisimulation equivalence checking we first build the LTS
(Up α) for FAA α according to the algorithm shown in Fig. 10. The algorithm simply
moves node labels up to the transitions pointing to such nodes, introducing a new node and

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 23

Fig. 10. The algorithm for mapping Up.

a new transition for the label of the initial node. Fig. 9(b) shows the result of applying the
algorithm to the FAA of Fig. 9(a). It is easy to see that the two lemmas below directly follow
from the definitions of Up and ≡FAA.

Lemma 31. For FAA α over L, (Up α) is a deterministic, finite LTS.

Lemma 32. For FAAs α and α′ over L the following holds: α ≡FAA α′ iff lan (Up α) =
lan (Up α′).

But then, since strong bisimulation equivalence coincides with trace equivalence for
deterministic LTSs (see e.g. [22]), from the above two lemmas we can easily prove the
following:

Theorem 33. For all finite LTSs M,M′ over L = LI × LU the following holds:M �M′
if and only if Up(TFAA M)≈bis Up(TFAA M′).

We leave it to the reader to verify that the UMLSC of Fig. 11 is testing equivalent6 to
that of Fig. 8(a).

5. Conformance testing

Broadly speaking, conformance testing refers to a field of theory, methodology and
applications for testing that a given implementation of a system conforms to its abstract
specification, where a proper conformance relation is defined using the formal semantics of
the notation(s) at hand. An account of the major results in the area of conformance relations
and conformance testing can be found in [42]. The theory has been developed mainly in
the context of process algebras and input/output LTSs. Input/output LTSs7 [29] are LTSs
where the set of labels is partitioned into two separate sets, i.e. input labels and output
ones. Moreover, in the context of conformance testing theories, such LTSs are required to
be input enabled, i.e. for each label of the input set, in each state of the LTS there must be
at least one outgoing transition labeled by such a label. Finally, the situation in which, in a

6 Actually, the associated deterministic LTSs turn out to be not only bisimulation equivalent, but also isomorphic.
Obviously this does not need to be the case in general.

7 Strictly speaking "Automata".

24 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

a/x

b/y b/z

b/z b/y

c/t d/v

Fig. 11. A UMLSC testing-equivalent to that of Fig. 8.

given state, an LTS does not generate any output at all is modeled by an outgoing transition
labeled by a special label denoting “quiescence”. Both specifications and implementations
are modeled by input enabled LTSs with quiescence.

Under the above modeling assumptions, one of the most successful formal conformance
relations is the ioco relation proposed by Tretmans in the above-mentioned work [42].
Informally, for specification M and implementation M′, M′ ioco M means that M′ can
never produce an output which could not be produced by M “in the same situation”, i.e.
after the same sequence of steps.

In the previous section we have developed a model of system behavior based on the
assumption that absence of reaction by a system to a stimulus presented by an experimenter
results in a deadlock affecting both the system and the experimenter. In this section, instead,
we define a slightly richer semantics for HAs, which we call the stuttering semantics, where
absence of reaction is represented explicitly in the associated LTSs, in a way which is
similar to quiescence and which naturally represents the notion of stuttering in the context
of UMLSCs. A HA H (or equivalently the UMLSC it represents) experiences a stuttering
step on input event e whenever, in the current configuration C no transition is enabled on
such input e. The input event e is consumed anyway but no state change occurs in H .8 As
we will see, in the stuttering semantics when stuttering occurs, the output component of
the label of the involved step-transition is the special symbol �. Thus, in the remainder of
this paper we will focus on input enabled LTSs over LI × LU where �, with � �∈ LI , may
belong to LU . Moreover we will let ��E denote �E ∪ {�}.

In Section 5.1 the stuttering semantics is given and its relation with the original semantics
of UMLSCs proposed in [15] is addressed in Section 5.2. In Section 5.3, the Conformance
Relation is introduced, on which the test case generation algorithm (Section 5.4) is based.
Before proceeding with the definition of the stuttering semantics we need some further
auxiliary definitions related to the Conformance Relation and to test case generation:

8 In fact in UML the notion of deferred events is introduced in order not to loose events as a consequence of
stuttering. In our work we do not take deferred events into consideration.

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 25

Definition 34 (More auxiliary definitions for LTSs). For LTS M = (S, sin, L,→), with
L = LI × LU , L′ = L′I × L′U , s ∈ S, Z ⊆ S, i ∈ L′I , and γ ∈ L′∗ :
• The states of s after γ is the set defined below:

(s after γ) =df

{
{s′ | s γ−→ s′} if γ ∈ L∗,
∅ otherwise.

• The output of Z on i is the set defined below:

(out Z i) =df

{⋃
s∈Z{u ∈ LU | s (i,u)−→} if i ∈ LI ,

∅ otherwise.

we let (OUT s γ i) be the set (out (s after γ) i); moreover, we will often denote
(OUT sin γ i) by (OUT M γ i);

•M is input enabled iff ∀s ∈ S, i ∈ LI . ∃u ∈ LU . s
(i,u)−→.

Moreover, for L = LI × LU , L′ = L′I × L′U , F ⊆ L∗, i ∈ L′I , and γ ∈ L′∗
• The traces of F after γ is the set defined below:

(F after∗ γ) =df

{{γ ′ | γ γ ′ ∈ F} if γ ∈ L∗,
∅ otherwise.

• The output of F on i is the set defined below:

(out∗ F i) =df

{{u ∈ LU | ∃γ. (i, u)γ ∈ F} if i ∈ LI ,

∅ otherwise.

we let (OUT∗ F γ i) be the set (out∗ (F after∗ γ) i).

5.1. Stuttering semantics

Definition 35 (Stuttering semantics). The stuttering semantics of an HA H = (F, E, ρ)

is the LTS over E × ��E , �LTS(H) =df (ConfH , Cin,→�) where (i) ConfH is the set
of configurations, (ii) Cin ∈ ConfH is the initial configuration, (iii)→�⊆ ConfH × (E ×
��E)× ConfH is the step-transition relation defined below, where, as usual, we write

C e/E−→� C′ for (C, (e, E), C′) ∈→� .

Definition 36 (Stuttering semantics transition rules).

e ∈ E, L �= ∅, H ↑ ∅ :: (C, {e}) L−−→�(C′, E)

C e/E−→� C′
(1)

e ∈ E, ;H ↑ ∅ :: (C, {e}) ∅−→�(C′, E)

C e/E−→� C′
(2)

Fig. 12 shows �LTS(H), for H as in Fig. 2. For simplicity, several stuttering loops
from/to the same state, labeled by i1/�, . . . , ik/� have been collapsed to a single loop
labeled by i1, . . . , ik/�.

26 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

e1/{} r1/{a1}

e1/{f1}

a2/{e1}

e2/{e1,e2}
e2/{e2}

r2/{a2}
f1/{r1}

r2/{a2}

e2/{e1}e1/{f1}
r1/{a1}

a1/{r2}

f1/{r1}
e2/{e1}

e1/{}

e1/{}
f1/{r1}

e2/{e2}
e2/{e2}

f1/{r1}
f2/{}

e1/{}

a1,a2,f2,r1/

a1,a2,f1,f2/

f2/{}

a2,e1,e2,f1,f2,r1,r2/

a1,a2,e2,f1,r2/

a1,e1,e2,f1,f2,r1,r2/

f2/{}

a1,a2,e2,r1,r2/

a1,a2,r1,r2/

r2/{a2}

a1,a2,f2,r1/

2 4

8

6 7

3 5

1

Σ

Σ Σ

Σ

Σ

Σ

Σ

Σ

Fig. 12. �LTS(H), for H of Fig. 2.

The following lemma shows some interesting features of the stuttering semantics:

Lemma 37. For HA H = (F, E, ρ), all C ∈ ConfH , and e ∈ E the following holds:
(i) ∃u ∈ ��E, C′ ∈ ConfH . C e/u−→� C′, i.e. �LTS(H) is input enabled over E × ��E;

(ii) C e/�−→� C′ for some C′ ∈ ConfH implies C = C′;
(iii) C e/�−→� C implies � ∃E ∈ �E, C′ ∈ ConfH . C e/E−→� C′.

Finally, it is easy to see that also the stuttering semantics associates a finite LTS to each
HA.

5.2. Correctness

As in the case of the non-stuttering semantics, also for the stuttering semantics we show
the formal link to the original semantics, presented in [15], and recalled in Section 3.2.

We recursively define a specific experimenter, (�Queue(E0),
��E), which behaves like

a queue and is the same as that used in Section 4.2, except that it has to deal also with �.
In particular, when receiving � from the HA, it disregards it, as it can be seen in Fig. 13.

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 27

Fig. 13. Definition of �Queue(F).

The following proposition establishes the correctness of the stuttering semantics def-
inition. The transition relation in the operational semantics given in [15] is denoted by

L−→.

Proposition 38. For hierarchical automatonH = (F, E, ρ), C, C′ ∈ ConfH , E, E ′, E ′′ ∈
�E, the following holds: (�Queue(E) || C) � (�Queue(Join E ′′ E ′) || C′) if and only if

∃L. (C, E)
L−→ (C′, (Join E ′′ E ′)).

5.3. Conformance relation

In the context of the present work, we assume that a specification of system behavior is
given in the form of a UMLSC H (in practice we use its HAs representation) and we make
reference mainly to the LTS associated to H by the stuttering semantics, i.e. �LTS(H),
over L = LI × LU . An implementation for H will be modeled by an input-enabled LTS
over L′ = L′I × L′U (with L′I not necessarily equal to LI). Under the above assumptions,
for simplicity, we often speak of specifications over L and implementations over L′. We
remind the reader that � �∈ LI ∪ L′I is assumed while � ∈ LU (resp. � ∈ L′U) represents
stuttering of the specification (resp. implementation). Notice that we do not require that
input-enabled LTSs modeling implementations are necessarily generated from UMLSCs.
Any such a model can be obtained by any means, obviously including, but not limited to
the case in which the implementation is itself a UMLSC. The above assumptions are quite
standard in the context of formal conformance theory and its application [41].

In the approach to conformance testing introduced by Tretmans, [42], inputs and outputs
are “irregularly” scattered throughout the LTS, and a “quiescence” transition from a state
means that in this particular state no output is produced by the system. We remark that, in
such an approach, input is not (always) required in order to produce some output. In our
setting, there is a clear causal relation between input and related output. They both appear
in the same transition. A stuttering transition in a given state—actually a stuttering loop—is
labeled by (i, �), which means that in that state the system produces no output, or better,
does not react at all, on input i.

On the basis of the above considerations, with particular reference to the role played by
the input events of transitions, we give the following definition of our conformance relation.
We define it for generic LTSs over i/o-pairs, although we will use it only for input-enabled
ones. Finally, we point out that we actually define a class of conformance relations, in
a similar way as in [41]. The class is indexed by a set F of traces which determines the
discriminatory power of the relation. Such a parametric definition turns out to be of technical

28 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

help in the definition of the test case generation algorithm in the next section and in the
proof of its properties. The definition of the Conformance Relation �F

co follows:

Definition 39 (Conformance relations). For LTSs M = (S, sin, L,−→), with L = LI ×
LU , M′ = (S′, s′in, L′,−→′), with L′ = L′I × L′U , and F ⊆ (LI × LU)∗: M′ �F

co M
iff ∀γ ∈ F, i ∈ LI . OUT M′ γ i ⊆ OUT M γ i.

In the following we will let�co (i.e. “conforms to”) denote�(lan M)
co and we will mainly

focus on �co. Intuitively, M′ �co M means that M′ can never produce an output which
could not be produced by M in the same situation, i.e. after the same i/o sequence and
the same input. In general, it is not required that LI = L′I : for partial specifications we
have that LI ⊆ L′I , while for incomplete implementations we have that L′I ⊆ LI ; The
case that LI ∩ L′I = ∅ does not make so much sense. Notice that when � ∈ LU the
above definition implies that M′ may produce no output at all due to stuttering only
if M can do so. This is also the case in [41,42] but its technical definition has been
adapted here for UMLSCs. The following lemmas relate the conformance relation with
LTS languages.

Lemma 40. For M′ finite LTS over L′I × L′U , M finite LTS over LI × LU, the following
holds: (lan M′) ⊆ (lan M) implies M′ �co M.

Lemma 41. For M′ finite LTS over L′I × L′U , M finite LTS over LI × LU, with L′I ⊆ LI ,

the following holds:M′ �co M implies (lan M′) ⊆ (lan M).

The notion of verdict is central in conformance testing. A verdict is the result of testing
a system M against a test case T , the latter being an experimenter as defined in Section 3.
The test is passed if all computations are successful:

Definition 42 (Verdict). The verdict V of T on M is defined as follows:

V T M =df

{
pass if ⊥ �∈ Result(T , M),

fail otherwise.

A test suite is a set of test cases. The verdict function is extended to test suites in the obvious
way; for test suite ℵ

V ℵM =df

{
pass if ∀T ∈ ℵ. V T M = pass,
fail otherwise.

The following definition relates test suites to specifications using conformance relations
and introduces the notions of sound and exhaustive test suites.

Definition 43 (Completeness). Given specification M and test suite ℵ
• ℵ is sound w.r.t. M and�F

co iff M′ �F
co M implies V ℵM′ = pass, for all implemen-

tations M′;
• ℵ is exhaustive w.r.t. M and �F

co iff V ℵM′ = pass implies M′ �F
co M, for all

implementations M′.
We say that a test suite is complete if it is both exhaustive and sound.

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 29

5.4. The test case generation algorithm

Once a formal specification of a system has been developed, it is possible to mechanically
generate test cases for that specification. The test case generation algorithm TD proposed
in this paper is a non-deterministic algorithm which given L = LI × LU and L′ = L′I ×
L′U and F ⊆ L∗, after a finite number of recursive calls, returns a test case specification
(U, L′U) in the test case language introduced in Section 3.3. The definition of the test
case generation algorithm TD is given in Fig. 14, where the second component L′U of
experimenter specifications is omitted for notational simplicity. The intuitive behavior of
the algorithm is rather simple; at each call, the algorithm generates a single test case. In
particular, at each call, it may (non-deterministically) either generate the test which always
reports success (τ ;W; δ), after which it terminates, or generate a test case as follows.
An event e is (non-deterministically) chosen which belongs both to the input alphabet
of the specification (LI) and to that of the implementation (L′I) and such that the set
out∗ F e = {u1, . . . , uk} is non-empty (notice that such an e exists when dealing with
input enabled LTS over i/o-pairs associated to UMLSCs). Intuitively, u1, . . . , uk are the
expected correct values for the output of the implementation under test as reaction to input
e. Consequently, a test case is generated which first sends e to the implementation and then,
if the output of the implementation does not match any of the expected values u1, . . . , uk , it
stops without reporting success, otherwise, assuming that the output of the implementation
is uj , it continues as Uj . Notice that test case Uj is generated by a recursive call of the
algorithm. Different test cases can be generated from F , L and L′ by repeating the procedure
defined in Fig. 14. This way, the set of all test cases from F , L and L′ can be generated.
Notice that, by construction, test cases generated by TD have a tree-like structure; there is
no looping possibility in their execution. The following proposition establishes finiteness
of test cases generated by the algorithm on the stuttering semantics of HAs.

Proposition 44. For every HA H with �LTS(H) over i/o-pair set L, and i/o-pair set L′,
every test case U ∈ TDL,L′ (lan(�LTS(H))) is finite.

Typically lan(�LTS(H)) is an infinite set. This does not affect the effectiveness of TD
since, at each recursive step, it uses only the first elements of the traces in the set, postponing
the use of their tails to the next recursive calls. Thus, proper lazy techniques can be used
for the evaluation of lan(�LTS(H)). Notice also that the set of all test cases generated
using TDL,L′ on lan(�LTS(H)) is infinite. Each individual test case is however finite. As
an immediate consequence of the above lemma and the fact that the test cases generated by
the algorithm do not contain loops, we have that all computations involving test cases in
TDL,L′ (lan(�LTS(H))) are finite.

The following theorem establishes completeness of the test case generation algorithm,
when applied to (the language of) a specification �LTS(H):

Theorem 45. For every HA H with �LTS(H) over L = LI × LU, and set L′ = L′I × L′U ,

the test suite TDL,L′ (lan(�LTS(H))) is complete w.r.t. �LTS(H) and �co.

The above important result means that if a test case generated by the algorithm for a
certain specification H reports a failure when running against an implementation, then
we can be sure that the latter does not conform to the specification H ; moreover, if an

30 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

implementation does not conform to specification H , then a test case can be generated by
the algorithm which will report failure when executed against such an implementation.

Fig. 14. The test case generation algorithm.

a1,e1,r1,r2/

e2/{e1}

a1,e1,e2,r2/

r1/{a1}
e1,e2,r1,r2/

a1/{r2}

Σ

Σ

Σ

Fig. 15. An implementation of the HA of Fig. 2.

Fig. 16. A test case generated from the running example.

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 31

Fig. 17. Another test case generated from the running example.

We close this section with an application of the test case derivation algorithm to our
running example. Let us consider again the specification M of Fig. 2 and the (obviously
incomplete) implementation M′ over L′I × L′U with L′I = {a1, e1, e2, r1, r2} and L′U ={�, {a1}, {e1}, {r2}} given in Fig. 15.

We can apply the algorithm in order to obtain, among others, the test case U1 shown in
Fig. 16. It is easy to see that V U1 M′ = pass. On the other hand, M′ ��co M, and this
can be checked using the test case U5 shown in Fig. 17, which is also derived using the
algorithm. Clearly V U5M′ = fail.

6. Relating testing and conformance relations

In this section we report the major results concerning the relationship between the stut-
tering and the non-stuttering semantics and the relationship between the Testing Preorders
(and Equivalence) and the Conformance Relation. We shall make explicit reference to HAs
representing UMLSCs. In particular, in the following we shall assume that for each (HA
representing a specific) UMLSC H the set of events E on which H is defined, i.e. its
alphabet, is given explicitly. Set E will include all the events occurring in H . Under the
above conditions, we will speak of UMLSC H on E. Moreover, in the case of specifications
where the behavior of the system is only partially specified, there might be elements of E

which do not occur in H .
It is worth reminding the reader here that both LTS(H) and �LTS(H) have a finite

number of states and a finite number of step-transitions. Furthermore, they are defined on
the same set of states, namely the set ConfH of configurations of H . In the remainder of
this paper we will use the notation �C for configuration C when we want to emphasize it
being a state of �LTS(H), thus avoiding confusion about which LTS we are dealing with.

6.1. Relating the stuttering and the non-stuttering semantics

In this section we take a closer look at the formal relationship between the stuttering
semantics and the non-stuttering one.

Theorem 46. For all HAs H = (F, E, ρ), e ∈ E and C ∈ ConfH the following holds:
(i) ∀C′ ∈ ConfH , E ∈ �E. (C e/E−→ C′ iff C e/E−→� C′);

(ii) (� ∃C′ ∈ ConfH , E ∈ �E. C e/E−→ C′) iff C e/�−→� C.

Thus the two semantics generate the same step-transitions, except for stuttering, i.e.
when the machine does not accept the current event e in the current state. This refusal is
modeled (a) implicitly in the non-stuttering semantics by not generating a step-transition at
all and (b) explicitly in the stuttering semantics by producing � as output action in the step-
transition. The original semantics, whose step-relation is recalled in Definition 3, simply

32 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

generates step-transitions with the empty set as a label when stuttering. It is important
to point out that in the stuttering semantics, the absence of reaction on a given input e

generates stuttering—and is represented by �—only if e ∈ E. If e �∈ E then no transition
at all is generated, in a similar way as in the non-stuttering semantics. For this reason, in
this paper, the definition of a HA always includes the explicit specification of the input set
E, specially when we compare different HAs on the basis of testing/conformance relations,
as in the following sections. The following is a useful corollary to Theorem 46:

Corollary 47. For all HAs H = (F, E, ρ), C, C′ ∈ ConfH , γ ∈ (E ×�E)∗ : C γ−→ C′

iff �C γ−→�
�C′.

We close this section with a lemma relating the languages of LTS(H) and �LTS(H),
where we use the following operator (_ _), where γ \� is equal to γ where all occurrences
of � are removed.

Definition 48 (γ \�). For γ ∈ (E × ��E) we define γ \� as follows:

γ \� =df




ε if γ = ε,

γ ′ \� if γ = (e, �)γ ′,
for some e ∈ E, γ ′ ∈ (E × ��E)∗,

(e, E)(γ ′ \�) if γ = (e, E)γ ′,
for some e ∈ E, E ∈ �E, γ ′ ∈ (E × ��E)∗.

Lemma 49. For HA H = (F, E, ρ), all C, C′ ∈ ConfH , γ ∈ (E × ��E), the following
holds:

(i) �C γ−→�
�C′ implies C γ \�−→ C′;

(ii) γ ∈ lan �LTS(H) implies γ \� ∈ (lan LTS(H));
(iii) (lan LTS(H)) ⊆ (lan �LTS(H)).

6.2. Testing preorders and the conformance relation

The following two lemmas show that, under proper conditions, the Conformance Relation
is stronger than the MAY and MUST preorders.

Lemma 50. For all HAs H on E and H ′ on E′ ⊆ E the following holds: �LTS(H ′) �co
�LTS(H) implies LTS(H ′) �∼MAY

LTS(H).

Lemma 51. For all HAs H and H ′ on E the following holds:
�LTS(H ′) �co

�LTS(H) implies LTS(H) �∼MUST
LTS(H ′).

Notice that Lemma 50 holds also for incomplete implementations (E′ ⊂ E), but it
requires the specification not to be partial w.r.t. the implementation, which would imply
E ⊂ E′. The condition E′ ⊆ E is indeed essential, as shown by the following example.

Example 52. Let E = {a} ⊆ {a, b} = E′, with H (resp. H ′) as in Fig. 18(a) (resp. (a′)),
LTS(H) (resp. LTS(H ′)) as in Fig. 18(b) (resp. (b′)) and �LTS(H) (resp. �LTS(H ′)) as

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 33

E={a}

a/a

a/a b/b
E’={a,b}

a/a b/b

a/a

Σa/

b/Σ a/Σ a,b/Σ

(a) (c)

(a’) (b’) (c’)

(b)

a/a

a/a b/b

Fig. 18. Example 52.

a/a

b/b

a/a

a/a

a/a b/b
E’={a,b}

a/a b/b

Σb/

a,b/Σ

a,b/Σ

a,b/Σ

b/Σ a/Σ a,b/Σ

a/a

a/a

a/a

b/b

E={a,b}

(a) (c)

(a′) (b′) (c′)

(b)

a/a

b/b

a/a

a/a

a/a b/b

Fig. 19. Example 53.

in Fig. 18(c) (resp. (c′)). Clearly �LTS(H ′) �co
�LTS(H), but LTS(H ′) �∼MAY

LTS(H)

does not hold. In fact, from Theorem 21(a), we know that (a, a)(b, b) ∈ lan LTS(H ′) \
lan LTS(H).

Notice furthermore that in Lemma 50 the implication is strictly one way as shown by
the following example.

Example 53. Let E = E′ = {a, b} with H (resp. H ′) as in Fig. 19(a) (resp. (a′)), LTS(H)

(resp. LTS(H ′)) as in Fig. 19(b) (resp. (b′)) and �LTS(H) (resp. �LTS(H ′)) as in Fig. 19(c)
(resp. (c′)). We have LTS(H ′) �∼MAY

LTS(H) but �LTS(H ′) ��co
�LTS(H) since

OUT �LTS(H ′) (a, a)(a, �) b = {b} �⊆ {�} = OUT �LTS(H) (a, a)(a, �) b.

34 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

a/a

b/b

E={a,b}

a/a
E’={a}

a/a

b/b

a/a

a/ Σ

a,b/Σ

a,b/Σ

(a)

(a’)

(b) (c)

(b’) (c’)

a/a

a/a

b/b

Fig. 20. Example 55.

Notice that in Lemma 51 we require that both H and H ′ have the same input set E. The
following examples show that for H on E and H ′ on E′ neither E ⊆ E′ alone nor E′ ⊆ E

alone is enough:

Example 54. Let H and H ′ as in Example 52. It is easy to see that it is not the case that
LTS(H) �∼MUST

LTS(H ′). In fact (a, a)(b, b) ∈ lan LTS(H ′) \ lan LTS(H) (see Corol-
lary 83).

Example 55. Let E = {a, b} ⊇ {a} = E′ with H (resp. H ′) as in Fig. 20(a) (resp. (a′)),
LTS(H) (resp. LTS(H ′)) as in Fig. 20(b) (resp. (b′)) and �LTS(H) (resp. �LTS(H ′)) as in
Fig. 20(c) (resp. (c′)). Clearly �LTS(H ′) �co

�LTS(H), but LTS(H) �∼MUST
LTS(H ′) does

not hold since AS LTS(H ′) ε = {{(a, a)}} and AS LTS(H) ε = {{(a, a), (b, b)}} which
implies mf s(c (AS LTS(H ′) ε)) �⊂⊂ mf s(c (AS LTS(H) ε)).

Notice furthermore that in Lemma 51 the implication is strictly one way as shown by
the following:

Example 56. Let H and H ′ as in Example 53. LTS(H) �∼MUST
LTS(H ′), but we have seen

that �LTS(H ′) ��co
�LTS(H).

The following examples show that there is no containment relation between the testing
preorder �∼ and (the reverse of) the �co relation:

Example 57. Let E = E′ = {a, b} with H (resp. H ′) as in Fig. 21(a) (resp. (a′)), LTS(H)

(resp. LTS(H ′)) as in Fig. 21(b) (resp. (b′)) and �LTS(H) (resp. �LTS(H ′)) as in Fig. 21(c)
(resp. (c′)). We have LTS(H) �∼ LTS(H ′) since LTS(H) �∼MAY

LTS(H ′) (actually lan
LTS(H) = lan LTS(H ′)) and LTS(H) �∼MUST

LTS(H ′)but �LTS(H ′) ��co
�LTS(H) since

the following holds: OUT �LTS(H ′) (a, a)(a, �) b = {b} �⊆ {�} = OUT �LTS(H)

(a, a)(a, �) b.

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 35

a/a

a/a

a/a

b/b

E={a,b}

a/a

b/b

a/a

a/a

a/a

a/a

b/b

a/a

a/a

a/a

b/b

a/a

Σb/

a,b/Σ

a,b/Σ

a,b/Σ

Σb/

Σa/

Σb/

a,b/Σ

a,b/Σ

(a) (c)(b)

a/a

a/a

E’={a,b}
b/b

a/a

a/a

b/b

a/a

a/a

(a’) (b’) (c’)

Fig. 21. Example 57.

a/a

a/a
b/b

a/a

a/a

E={a,b}

b/b

a/a

E’={a,b}

a/a

Σb/ a,b/Σ

a/a

Σb/

a,b/Σ

a,b/ΣΣa/

(a) (c)(b)

(a’) (b’) (c’)

a/a

a/a
b/b

Fig. 22. Example 58.

Example 58. Let E = E′ = {a, b} with H (resp. H ′) as in Fig. 22(a) (resp. (a′)), LTS(H)

(resp. LTS(H ′)) as in Fig. 22(b) (resp. (b′)) and �LTS(H) (resp. �LTS(H ′)) as in Fig. 22(c)
(resp. (c′)). We have �LTS(H ′) �co

�LTS(H) but LTS(H) �∼ LTS(H ′) does not hold since
LTS(H) �∼MAY

LTS(H ′) does not hold: (a, a)(b, b) ∈ lan LTS(H) \ lan LTS(H ′).

Finally, the following two examples show that testing equivalence over the non-stuttering
semantics is not strong enough for detecting LTS’s capability of refusing to react and,

36 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

a/a

a/a
b/b

a/a

a/a b/b

a,b/Σ

a,b/Σ

Σa/ a,b/Σ

Σb/

Σb/

a/a

a/a
b/b

a/a

a/a b/b

E={a,b}

a/a

a/a

a/a

b/b

a/a b/b

b/b

a,b/b/Σ

b/

a,b/Σa/

a,b/

(a) (c)(b)

E’={a,b}

a/a

a/a

a/a

b/b

a/a

(a’) (c’)(b’)

a/a

a/a
b/b

a/a

a/a

b/b

a/a

a/a
b/b

a/a

a/a

b/b

Σ

Σ

ΣΣ

Fig. 23. Example 59.

consequently, for discriminating among them on such basis (Example 59). This in turn
implies that testing equivalence does not enjoy substitutivity properties with respect to�co
(Example 60).

Example 59. Let E = E′ = {a, b} with H (resp. H ′) as in Fig. 23(a) (resp. (a′)), LTS(H)

(resp. LTS(H ′)) as in Fig. 23(b) (resp. (b′)) and �LTS(H) (resp. �LTS(H ′)) as in
Fig. 23(c) (resp. (c′)). We have LTS(H) �LTS(H ′) but (a, a)(b, �)(a, a)(b, b) is an
element of lan �LTS(H) \ lan �LTS(H ′) and (a, a)(b, �)(a, a)(b, �) is an element of
lan �LTS(H ′) \ lan �LTS(H).

Example 60. Take H and H ′ as in Example 59 and let H ′′ = H . From Example 59 we
know that LTS(H ′′) �LTS(H ′) and trivially �LTS(H ′′) �co

�LTS(H). On the other hand,
�LTS(H ′) ��co

�LTS(H); in fact we have that OUT �LTS(H ′) (a, a)(b, �)(a, a) b =
{�} �⊆ OUT �LTS(H) (a, a)(b, �)(a, a) b because the latter is equal to {b}. Similarly, we
have that clearly �LTS(H) �co

�LTS(H ′′); but �LTS(H) ��co
�LTS(H ′) since

OUT �LTS(H) (a, a)(b, �)(a, a) b is the set {b} which is not a subset of OUT �LTS(H ′)
(a, a)(b, �)(a, a) b, since the latter is the set {�}.

The above examples show that (testing equivalence based on) the non-stuttering seman-
tics is not adequate for conformance testing in the sense that one cannot replace (testing)
equivalent LTSs still preserving conformance. More specifically, equivalent implementa-
tions are not conformant with the same specification. Similarly, the same implementation
turns out not to be conformant to equivalent specifications. Such inadequacy comes from the
fact that (the experimenters testing those LTSs generated according to) the non-stuttering
semantics are unable to detect absence of reaction and to take proper actions when this

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 37

a,b/Σ

b/Σ a/Σ

a,b/Σ

a,b/Σ
a/a

E’={a,b}

b/b

b/a

(a′)

a/a b/b

E={a,b}

(a) (b)

a/a
b/a

b/b

a/a b/b

(b′)

b/Σ a/Σ

Fig. 24. Example 64.

happens. Due to the non-stuttering semantics, experimental systems can only deadlock in
such situations.

In order to be adequate, the semantics must explicitly deal with stuttering, so that experi-
menters can detect absence of reaction and behave accordingly. This intuitive consideration
is supported by Lemmas 61 and 62 below:

Lemma 61. For all HAs H on E and H ′ on E′ the following holds:
(i) �LTS(H) �∼MAY

�LTS(H ′) implies �LTS(H) �co
�LTS(H ′);

(ii) �LTS(H) �co
�LTS(H ′) and E ⊆ E′ implies �LTS(H) �∼MAY

�LTS(H ′).

Lemma 62. For all HAs H on E and H ′ on E′ the following holds:
�LTS(H) �∼MUST

�LTS(H ′) implies �LTS(H ′) �co
�LTS(H).

Notice that in Lemma 62 the implication is strictly one way as shown by the following:

Example 63. Let H and H ′ as in Example 52. We know from that example that
�LTS(H ′) �co

�LTS(H). On the other hand it is easy to see that �LTS(H) �∼MUST

�LTS(H ′)
does not hold, since (lan �LTS(H ′)) �⊆ (lan �LTS(H)) and this would violate Corollary 83.

Finally notice that in general �LTS(H) �co
�LTS(H ′) does not imply that �LTS(H)

�∼MUST

�LTS(H ′), as shown by the following:

Example 64. Let E = E′ = {a, b}, with H (resp. H ′) as in Fig. 24(a) (resp. (a′)) and
�LTS(H) (resp. �LTS(H ′)) as in Fig. 24(b) (resp. (b′)). Clearly �LTS(H) �co

�LTS(H ′),
but it is easy to see that �LTS(H) �∼MUST

�LTS(H ′) does not hold, since (lan �LTS(H ′)) �⊆
(lan �LTS(H)) and this would violate Corollary 83.

This last remark shows that in the stuttering semantics, the testing preorder is strictly stronger
than the conformance relation.

38 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

The following theorem establishes the adequacy of the testing relations based on the stut-
tering semantics for the conformance relation. On an intuitive level, it is worth pointing
out that point (iii) of the theorem essentially states that if an implementation is “less
non-deterministic” than one conforming to a specification, then it also conforms to the
specification. Similarly, point (vi) says that if a specification is “more non-deterministic”
than one to which an implementation conforms, than the implementation will also conform
to this specification.

Theorem 65. For all HAs H on E, H ′ on E′ and H ′′ on E′′, with E′ ⊆ E, the following
holds:

(i) �LTS(H ′′) �∼MAY

�LTS(H ′) ∧ �LTS(H ′) �co
�LTS(H) implies

�LTS(H ′′) �co
�LTS(H);

(ii) �LTS(H ′) �∼MUST

�LTS(H ′′) ∧ �LTS(H ′) �co
�LTS(H) implies

�LTS(H ′′) �co
�LTS(H);

(iii) �LTS(H ′) �∼ �LTS(H ′′) ∧ �LTS(H ′) �co
�LTS(H) implies

�LTS(H ′′) �co
�LTS(H);

(iv) �LTS(H ′) �co
�LTS(H) ∧ �LTS(H) �∼MAY

�LTS(H ′′) implies
�LTS(H ′) �co

�LTS(H ′′);
(v) �LTS(H ′) �co

�LTS(H) ∧ �LTS(H ′′) �∼MUST

�LTS(H) implies
�LTS(H ′) �co

�LTS(H ′′);
(vi) �LTS(H ′) �co

�LTS(H) ∧ �LTS(H ′′) �∼ �LTS(H) implies
�LTS(H ′) �co

�LTS(H ′′).

A useful corollary of the above theorem states the substitutivity properties of �with
respect to �co.

Corollary 66. For all HAs H on E, H ′ on E′ and H ′′ on E′′, with E′ ⊆ E the following
holds:

(i) �LTS(H ′) ��LTS(H ′′) ∧ �LTS(H ′) �co
�LTS(H) implies

�LTS(H ′′) �co
�LTS(H);

(ii) �LTS(H ′) �co
�LTS(H) ∧ �LTS(H ′′) ��LTS(H) implies

�LTS(H ′) �co
�LTS(H ′′).

We close this section with the following three propositions relating the non-stuttering
semantics and the stuttering one via the testing relations in the way one would expect:

Proposition 67. For all HAs H on E and H ′ on E′ the following holds:
�LTS(H) �∼MAY

�LTS(H ′) implies LTS(H) �∼MAY
LTS(H ′).

Proposition 68. For all HAs H , H ′ on E the following holds:
�LTS(H) �∼MUST

�LTS(H ′) implies LTS(H) �∼MUST
LTS(H ′).

Proposition 69. For all HAs H , H ′ on E the following holds:
�LTS(H) �∼ �LTS(H ′) implies LTS(H) �∼ LTS(H ′).

Notice again that the above implications are strictly one way, as can be seen from
Example 59, using Theorem 21(a) and Corollary 83.

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 39

7. Conclusions

The main contribution of the present paper is a theoretical framework for testing theory
and verification as well as test case generation in a conformance testing setting. We pre-
sented a testing theory for UML Statecharts (UMLSCs) with an algorithm for automatic
verification of testing equivalence—based on a formal “non-stuttering” semantics—and
a conformance relation for UMLSCs as well as an algorithm for test case generation—
based on a formal “stuttering” semantics. The automatic verification algorithm has been
proved correct and the test case generation algorithm was proved complete. Both proofs
are presented in this paper. The formal relationships between the stuttering and non-
stuttering semantics were investigated and all related proofs provided. In particular, we
proved that the non-stuttering semantics for the testing preorders is not a good choice
when also conformance is an issue. In fact we showed that the conformance relation
for UMLSCs is strictly stronger than the reverse of the MUST preorder based on the
non-stuttering semantics, and then also stronger than the associated MAY preorder. More-
over, the testing preorder and the conformance relation are incomparable; neither one
is stronger than the other nor vice-versa. Furthermore, no substitutivity property holds:
replacing an implementation conforming to a specification with a testing equivalent im-
plementation may break conformance; symmetrically, an implementation conforming to a
specification is not guaranteed to conform also to another, testing equivalent, specification.
On the basis of the above negative results, we adopted a stuttering semantics also for
the general testing theory. This amounts to giving experimenters the power of recog-
nizing absence of system reaction, i.e. stuttering and behaving accordingly. We showed
that, in this case, the MAY (resp. MUST) preorder is stronger than �co (resp. inverse
of �co). As a consequence, one can replace testing equivalent specifications and im-
plementations still preserving their conformance relation. More specifically, if an imple-
mentation is “less non-deterministic” than one conforming to a specification, then it also
conforms to the specification. Similarly, if a specification is “more non-deterministic” than
one to which an implementation conforms, then the implementation will also conform
to this specification. This is an important result in the framework of a system devel-
opment approach in which e.g. implementations are replaced with equivalent or “less
non-deterministic” ones in a stepwise manner, still maintaining the conformance relation
with their specifications.

Our work represents also a contribution to the investigation on the relationship be-
tween notions developed in the area of state-based, object-oriented, programming, like sub-
typing/sub-classes, and behavioural relations. In [6] it is argued that behavioral relations,
and in particular testing preorders, may form the basis for studying the above-mentioned
notions. Our results open the way to the extension to UML of the approach presented
in [6].

With respect to the testing equivalence verification algorithm, the determinization phase
of the testing equivalence verification algorithm may take exponential time, but this should
not surprise the reader because it has been proved that the verification of testing equivalence
is a PSPACE-complete problem [4]. Other equivalences are easier to verify but they may
be too strong, like e.g. bisimulation equivalence itself which distinguishes machines also
on the basis of their internal structure and not only on the basis of their interaction with
the external environment. Anyway, the fact that the semantics generate finite LTSs over
i/o-pairs allows us to perform bisimulation equivalence verification directly on such LTSs,
should this turn up useful.

40 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

In order to use the test generation algorithm in practice proper test selection strategies
are needed which will be subject of future work. Some work on test selection in a formal
test derivation framework is already present in the literature (see, e.g. [7,2,12]), and in
particular random test case selection seems to be a promising option. In fact it nicely
fits with the structure of our algorithm; what is needed is to replace non-deterministic
choices with random, coin-flipping, ones. Moreover, random test selection is receiving
more and more attention due to the high coverage that it can provide, using efficient
automated tools. Another promising line of research is the use of model-checking tech-
niques for enhancing automatic test case generation, which we are currently investigat-
ing [10]. Closely related to the above research lines is the area of efficient implementation
of test generation and selection algorithms. There are already tools available to that pur-
pose, e.g. AutoFocus [37] and TGV/AGEDIS [39], and one of the next steps will be an
investigation on the possibility of providing a connection between our work and such
tools.

In the present paper we made no assumption on how test cases are “implemented”,
i.e. on their actual presentation. They might be represented again as UMLSCs or as UML
Sequence Diagrams or just as code in a proper programming language. This last possibility
could allow for the implementation of test runs using proper automatic tools, to be integrated
with the test case generation tools, which is our ultimate goal.

Another line of future research deals with the extension of the results presented in the
present paper to UML specifications consisting of collections of UMLSCs interacting via
queues [15], which brings to distributed testing. The use of a test language like the one pro-
posed in the present paper, which is easy to extend in order to allow control communication
between the experimenters to take place, greatly facilitates the task of specifying complex
distributed test cases and developing a suitable extension of testing theory to the distributed
case.

A further useful extension is the introduction of data values and variables in UMLSCs.
We have already a semantics definition for such an extension, fully developed in the context
of the the PRIDE project [20]. Of course (infinite) data sets pose further problems in the
test selection procedures.

The results addressed in the present paper have been originally proposed in [25,26,16],
although in isolation, while in the present paper they have been dealt with in a uniform
framework and notation. Moreover all proofs, which were omitted in the above-mentioned
papers, are provided in the present paper.

Acknowledgments

The authors wish to thank the anonymous reviewers for the detailed and precious
comments they provided in order to improve the paper.

Appendix A. Hierarchical automata

The first step of our approach is a purely syntactical one and consists in translating
UMLSCs into what are usually called Hierarchical Automata (HAs). HAs can be seen

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 41

as an abstract syntax for UMLSCs in the sense that they abstract from the purely syn-
tactical/graphical details and describe only the essential aspects of the statechart. They are
composed of simple sequential automata related by a refinement function. A state is mapped
via the refinement function into the set of (parallel) automata which refine it. The translation
from UMLSCs to HAs has been dealt with in [24]. In this appendix we recall the notion of
HAs as defined in [32,24].

A.1. Basic definitions and semantics

The first notion is that of a (sequential) automaton.

Definition 70 (Sequential Automata). A sequential automatonA is a 4-tuple (σA, s0
A, λA, δA)

where σA is a finite set of states with s0
A ∈ σA the initial state, λA is a finite set of transition

labels, with λA ∩ σA = ∅ and δA ⊆ σA × λA × σA is the transition relation.

In the context of HAs, the labels in λA have a particular structure. For transition t we
require its label to be a 5-tuple (sr, ev, g, ac, td), where sr is the source restriction, ev is
the trigger event, g is the guard, ac is the actions list and td is the target determinator. In
the sequel we use the following functions SRC, T GT , SR, EV , G, AC, T D, defined
in the obvious way; for transition t = (s, (sr, ev, g, ac, td), s′), SRC t = s, T GT t =
s′, SR t = sr, EV t = ev, G t = g, AC t = ac, T D t = td . Their meaning is described
in [24]. Hierarchical Automata are defined as follows:

Definition 71 (Hierarchical Automata). A HA H is a tuple (F, E, ρ), where F is a finite set
of sequential automata with mutually disjoint sets of states, i.e. ∀A1, A2 ∈ F. σA1 ∩ σA2 =∅ and E is a finite set of events; the refinement function ρ :⋃A∈F σA �→ 2F imposes a tree
structure to F , i.e. (i) there exists a unique root automaton Aroot ∈ F such that Aroot �∈⋃

X∈rng ρ X, (ii) every non-root automaton has exactly one ancestor state:
⋃

X∈rng ρ X =
F \ {Aroot } and ∀A ∈ F \ {Aroot }. ∃1s ∈⋃

A′∈F\{A} σA′ . A ∈ (ρ s) and (iii) there are no
cycles: ∀S ⊆⋃

A∈F σA. ∃s ∈ S. S ∩⋃
A∈ρs σA = ∅.

We say that a state s for which ρ s = ∅ holds is a basic state.
The notion of conflict between transitions needs to be extended in order to deal with

state hierarchy. When transitions t and t ′ are in conflict we write t#t ′. The complete formal
definition of conflict for HAs can be found in [24,15] where also the notion of priority for
(conflicting) transitions is defined. Intuitively transitions coming from deeper states have
higher priority. For the purposes of the present paper it is sufficient to say that priorities
form a partial order. We let π t denote the priority of transition t and π t � π t ′ mean that
t has lower priority than (the same priority as) t ′. In the sequel we will be concerned only
with HAs.

In the sequel we implicitly make reference to a generic HA H = (F, E, ρ). Moreover,
we also assume implicitly that each transition of each sequential automaton in F is uniquely
identified by its label. This can always be obtained by adding unique identifiers to labels
whenever necessary. Every sequential automaton A ∈ F characterizes a HA in its turn:
intuitively, such a HA is composed by all those sequential automata which lay below A,
including A itself, and has a refinement function ρA which is a proper restriction of ρ. A is
the root automaton.

42 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

The following definition characterizes a couple of useful functions:

Definition 72. For A ∈ F the automata, states, and transitions under A are defined re-
spectively as

(i) Au A =df {A} ∪
(⋃

A′∈
(⋃

s∈σA
(ρAs)

)(Au A′)
)

;

(ii) St A =df

⋃
A′∈Au A

σA′ ;

(iii) Tr A =df

⋃
A′∈Au A

δA′ .

The definition of sub-HA follows:

Definition 73 (Sub Hierarchical Automata). For A ∈ F , the HA characterized by A is the
triple (FA, E, ρA), where FA =df (Au A), and ρA =df ρ|(St A)

.

In the sequel for A ∈ F we shall refer to A both as a sequential automaton and as the
sub-HA of H it characterizes, the role being clear from the context. H will be identified with
Aroot . Sequential Automata will be considered a degenerate case of HAs. In the remainder
of this section we will deal with the UML semantics of HAs.

A configuration denotes a global state of a HA, composed of local states of component
sequential automata:

Definition 74 (Configurations). A configuration of H is a set C ⊆⋃
A∈F σA such that (i)

∃1s ∈ σAroot . s ∈ C and (ii) ∀s, A. s ∈ C ∧ A ∈ ρ s ⇒ ∃1s
′ ∈ A. s′ ∈ C.

The set of all configurations of H is denoted by ConfH , while Cin denotes its initial
configuration, namely the configuration composed only by initial states.

The operational semantics of a HA is defined as a LTS, where the states are the config-
uration/ input-queue pairs of the associated UMLSC and the transitions are characterized
by the step-relation. Each transition of the LTS is labeled by the set of (unique identifiers
of the) transitions of the associated UMLSC which have been fired in the step.

While in classical statecharts the external environment is modeled by a set, in the
definition of UML statecharts, the nature of the input-queue of a statechart is not speci-
fied; in particular, the management policy of such a queue is not defined. In our overall
approach to UMLSCs semantics definition, we choose not to fix any particular seman-
tics, such as set, or multi-set or FIFO-queue etc., but to model the input queue in a
policy-independent way, freely using a notion of abstract data types, as briefly described
in Section 3. In addition to the operations described in that section, here we use also
predicate is_joinn

j=1Dj I, which states that I is a possible join of D1 . . . Dn and it is a
way for expressing non-deterministic merge of D1 . . . Dn. Finally, given sequence r ∈ D∗,
(new r) is the structure containing the elements of r (again, the existence and nature of
any relation among the elements of (new r) depends on the semantics of the particular
structure).

Definition 75 (Operational semantics). The operational semantics of an HA H = (F, E, ρ)

is the LTS over 2Tr H (ConfH ×�E, (Cin, E0), 2Tr H ,−→) where (i) ConfH ×�E is the
set of statuses, (ii) (Cin, E0) ∈ ConfH ×�E is the initial status, with Cin the configuration
composed only of initial states of automata in F and E0 the given initial input queue,

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 43

Fig. A.1. Core semantics of UML hierarchical automata.

(iii) −→⊆ (ConfH ×�E)× 2Tr H × (ConfH ×�E), the step-transition relation, is the
smallest relation which satisfies the rule given in Definition 3.

As usual, we write (C, E)
L−→ (C′, E ′) for ((C, E), L, (C′, E ′)) ∈−→. Any such tran-

sition denotes the result of firing a maximal set L of non-conflicting transitions of the
sequential automata of H which respect priorities. In the above-mentioned rule we make

use of an auxiliary relation, namely A ↑ P :: (C, E) L−−→ (C′, E ′). Such a relation, which is
defined by the deduction system proposed in [24] and recalled in Fig. A.1, models labeled
transitions of the semantics of HA A under specific constraints P related to transition
priority. L is the set containing the transitions of the sequential automata of A which are
selected to fire when the current configuration (resp. input) is C (resp. E) and the firing of
which brings to configuration (resp. output events) C′ (resp. E ′).

44 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

The following lemma, proved in [31], gives some insights on the core semantics and will
be used later in Appendix B.

Lemma 76. For all HA H = (F, E, ρ), A ∈ F, P ⊆ (Tr H), E ∈ �E, C ∈ ConfH , s.t.
σA ∩ C �= ∅ the following holds:

(i) ∃L ⊆ (Tr H), C′ ∈ ConfH , E ′ ∈ �E. A ↑ P :: (C, E) L−−→ (C′, E ′);
(ii) A ↑ P :: (C, E) ∅−→ (C′, E ′) and C ∈ ConfA implies C′ = C and E ′ = 〈〉;

(iii) A ↑ P :: (C, E) ∅−→ (C, 〈〉) implies � ∃L �= ∅, C′ ∈ ConfH , E ′ ∈ �E.

A ↑ P :: (C, E) L−−→ (C′, E ′).

Appendix B. Detailed proofs

B.1. Proofs related to Section 3

Proof of Proposition 9. The direct implication holds trivially. So we prove thatM ∼DetEx

M′ implies M ∼M′. Suppose M ∼M′ does not hold. By definition of testing equiv-
alence this means that there is an experimenter T = (TU , υin, TI , LI , LU ,→, ↪→) such
that Result(T , M) �= Result(T , M′) and suppose T is not input-deterministic. We know

that there exists input-deterministic experimenter T ′ = (T ′U , υ ′in, T ′I , LI , LU ,→ ′, ↪→′)
and bijection hU : T ′U �→ TU as in Lemma 80 below. Let us assume w.l.g. there exists
r ∈ Result(T , M) \ Result(T , M′). There are two possibilities:

Case 1: r = �

In this case, 〈T , M〉 has a successful computation

υ0 || s0 � υ1 || s1 � . . .

while < T , M′ > has no successful computation. From Lemma 80 we know that <

T ′, M > has a successful computation, namely

(h−1
U υ0) || s0 � (h−1

U υ1) || s1 � . . .

Since M ∼DetEx M′ by hypothesis, also < T ′, M′ > must have a successful computa-
tion

υ ′0 || s′0 � υ ′1 || s′1 � . . .

But then, again from Lemma 80 below,

(hU υ ′0) || s0 � (hU υ ′1) || s1 � . . .

is a successful computation of < T , M′ >, which is a contradiction since � �∈
Result(T , M′).

Case 2: r = ⊥
In this case, 〈T , M〉 has an unsuccessful computation

υ0 || s0 � υ1 || s1 � . . .

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 45

while< T , M′ >has no unsuccessful computation. From Lemma 80 we know that 〈T ′, M〉
has an unsuccessful computation, namely

(h−1
U υ0) || s0 � (h−1

U υ1) || s1 � . . .

Since M ∼DetEx M′ by hypothesis, also 〈T ′, M′〉must have an unsuccessful computa-
tion

υ ′0 || s′0 � υ ′1 || s′1 � . . .

But then, again from Lemma 80 below,

(hU υ ′0) || s0 � (hU υ ′1) || s1 � . . .

is an unsuccessful computation of 〈T , M′〉, which is a contradiction since ⊥ �∈
Result(T , M′). �

In order to prove Lemma 80, we first need some auxiliary notation.

Definition 77. For experimenter (TU , υin, TI , LI , LU ,→, ↪→) and all ι ∈ TI , let Qι, Dι,

MDι, and MD be the following sets:

Qι =df {(ι, u, υ) | ι u
↪→ υ}

Dι =df {q ⊆ Qι | ∀u, υ1, υ2. ((ι, u, υ1) ∈ q ∧ (ι, u, υ2) ∈ q)⇒ υ1 = υ2}
MDι =df {d ∈ Dι |� ∃d ′ ∈ Dι. d ⊂ d ′}

MD =df

⋃
ι∈TI

MDι

We illustrate the above definition by the following example.

Example 78. Let us consider the experimenter shown graphically in Fig. B.1, where LI is
the set {i1, i2}, LU is the set {u1, u2, u3}, and, for the sake of readability, input states are
shown as triangles and output states are shown as circles. We get

Qι1 = {(ι1, u1, υ5), (ι1, u1, υ6), (ι1, u2, υ4), (ι1, u2, υ5), (ι1, u2, υ6), (ι1, u3, υ4)}
and

Qι2{(ι2, u1, υ6), (ι2, u2, υ5), (ι2, u3, υ4)}
i.e. Qι is the subset of ↪→ obtained by selection over the first element, which is required

to be ι.

MDι1 = {d1a, d1b, d1c, d1d , d1e, d1f }
where

d1a = {(ι1, u1, υ5), (ι1, u2, υ4), (ι1, u3, υ4)}
d1b = {(ι1, u1, υ6), (ι1, u2, υ4), (ι1, u3, υ4)}
d1c = {(ι1, u1, υ5), (ι1, u2, υ5), (ι1, u3, υ4)}
d1d = {(ι1, u1, υ6), (ι1, u2, υ5), (ι1, u3, υ4)}
d1e = {(ι1, u1, υ5), (ι1, u2, υ6), (ι1, u3, υ4)}
d1f = {(ι1, u1, υ6), (ι1, u2, υ6), (ι1, u3, υ4)}

46 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

i2υ

υ

υ υ

0

2

3

1

ττ

W

i1

u3

u2

u1
2υ

υ

υ4

5

6

1

u1

u1

u2

u2

u2
u3

ι ι

Fig. B.1. A sample experimenter.

and

MDι2 = {d2a}
where

d2a = {(ι2, u1, υ6), (ι2, u2, υ5), (ι2, u3, υ4)}
i.e. MDι is the set of all deterministic subsets of Qι which are maximal.9

In Fig. B.2 a procedure is shown which, given experimenter T can be used for building
another experimenter T ′, which is input-deterministic and such that there is a precise
correspondence between the computations which the two experimenters give rise to when
experimenting with any LTS, as established by Lemma 80 below. Notice that T ′ is defined
only up to isomorphisms.

Example 79. Fig. B.3 shows an input-deterministic experimenter obtained by the appli-
cation of the procedure of Fig B.2 to the experimenter of Fig. B.1. Bijection hU maps

9 Conceptually, Dι and MDι are essentially the extension of functions mf and f unc—defined in Section 4—to
ternary relations.

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 47

Fig. B.2. Procedure for building input-deterministic experimenter.

each output state υja to υj , for j = 0, . . . , 6 while hI maps input state ι1x to d1x , for
x ∈ {a, b, c, d, e, f } and input state ι2a to d2a . The transition relations are built according
to rules (4) and (5) of the procedure of Fig B.2. The basic idea behind the procedure
of Fig B.2 is to ‘push’ the non-determinism arising from the input transitions outgoing
from an input state ι ‘backwards’ to the output transitions incoming to ι, making as many
‘copies’ of this state and related incoming transitions as the number of distinct maximal
deterministic sets which the input transitions give rise to. An intuitive justification of the
correctness of the procedure can be found by keeping in mind the standard result of testing
equivalence according to which the LTSs of Fig. B.4(a) and (b) have the same deadlock
capabilities—indeed they are testing equivalent LTSs—and the LTS of Fig. B.4(b) can be
seen as obtained from that of Fig. B.4(a) by means of ‘pushing’ non-determinism from
the transitions outgoing from s1 ‘backwards’ to those incoming to s1, while making two
‘copies’, s′1 and s′′1 , of that state.

Lemma 80. For each experimenter T = (TU , υin, TI , LI , LU ,→, ↪→) there exists an
input-deterministic experimenter T ′ = (T ′U , υ ′in, T ′I , LI , LU ,→ ′, ↪→′) and bijection hU :
T ′U �→ TU such that, for each LTS M = (S, sin, LI × LU,→)

η = υ0 || s0 � υ1 || s1 � . . .

is a computation of 〈T , M〉 if and only if

η′ = (h−1
U υ0) || s0 � (h−1

U υ1) || s1 � . . .

is a computation of < T ′, M >, and η is successful iff η′ is successful.

Proof. LetT ′ be an experimenter built from T according to the procedure shown in Fig. B.2.
We note that, for all ι′ ∈ T ′I , maximality of (hI ι′)—which follows from the definition of

MD—implies in turn that for all u ∈ LU there exists υ ′ ∈ T ′U such that ι′
u

↪→′ υ ′. Thus

↪→′ is total. Moreover, ↪→′ is deterministic by construction since every element of MD is

48 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

i2υ

υ

υ υ

0a

2a

3a

1a

ττ

W

u3
u2

u1
2aυ

υ

υ4a

5a

6a

u2
u1

u3
u2
u1

u3
u2
u1

u3
u2
u1

u3

u3
u2
u1

u2
u1

u3

1a

1b

1c

1d

1e

1f

i1

i1

i1

i1

i1

i1

ι

ι

ι

ι

ι

ι

ι

Fig. B.3. Input-deterministic experimenter T ′ for T of Fig. B.1.

deterministic by definition and (hI ι′) ∈ MD. We can then conclude that T ′ is an input-
deterministic experimenter.

Now we show that for all υ1, υ2 ∈ TU and s1, s2 ∈ S, if υ1 || s1 � υ2 || s2 in the exper-
imental system 〈T , M〉, then (h−1

U υ1) || s1 � (h−1
U υ2) || s2 in the experimental system

< T ′, M >. According to Definition 5 there are two possibilities:
Case 1: υ1

τ−→ υ2 and s1 = s2.

By point (4.i) of the definition of T ′ we get that also (h−1
U υ1)

τ−→′ (h−1
U υ2), and by

Definition 5 we get (h−1
U υ1) || s1 � (h−1

U υ2) || s1.

Case 2: there exist i ∈ LI , u ∈ LU, ι ∈ TI such that υ1
i−→ ι, ι

u
↪→ υ2 and s1

(i,u)−→ s2.

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 49

s0 s1

s2

s3

s4

s5

s0’

s1′

s1′′

s2′

s3′ s5′

s4′
b

b d

a

a b d

a
c b c

(b)(a)

Fig. B.4. Two testing equivalent LTSs.

Since ι
u

↪→ υ2, we know, by definition of MDι, that there exists d ∈ MDι such that
(ι, u, υ2) ∈ d . By points (1) and (3) of the definition of T ′ we know that (h−1

U υ1) ∈ T ′U and

(h−1
I d) ∈ T ′I . So, by point (4.ii) we get (h−1

U υ1)
i′−→ (h−1

I d). Moreover, by point (5) of

the definition of T ′ we also get (h−1
I d)

u

↪→′ (h−1
U υ2) since (ι, u, υ2) ∈ d ∈ MDι. Finally,

we get (h−1
U υ1) || s1 � (h−1

U υ2) || s2 by Definition 5.
Similarly, we show the converse, i.e. that for all υ ′1, υ ′2 ∈ T ′U and s1, s2 ∈ S, if υ ′1 || s1 �

υ ′2 || s2 in the experimental system < T ′, M >, then (hU υ ′1) || s1 � (hU υ ′2) || s2 in the
experimental system 〈T , M〉.

Again there are two cases according to Definition 5:

Case 1: υ ′1
τ−→′ υ ′2 and s1 = s2.

By point (4.i) of the definition of T ′ we get that also (hU υ ′1)
τ−→ (hU υ ′2), and by

Definition 5 we get (hU υ ′1) || s1 � (hU υ ′2) || s1.

Case 2: there exist i ∈ LI , u ∈ LU, ι′ ∈ T ′I such that υ ′1
i′−→ ι′, ι′

u

↪→′ υ ′2 and s1
(i,u)−→ s2.

By point (4.ii) of the definition of T ′ there exists ι ∈ TI such that (hU υ ′1)
i−→ ι and

(hI ι′) ∈ MDι. Moreover, by point (5) of the definition of T ′, there exists ῑ ∈ TI such
that (ῑ, u, (hU υ ′2)) ∈ (hI ι′). But (hI ι′) ∈ MDι and (ῑ, u, (hU υ ′2) ∈ (hI ι′) imply ῑ = ι and

(ι, u, (hU υ ′2)) ∈ Qι. Thus we have also ι
u

↪→ (hU υ ′2), and by Definition 5 we get (hU υ ′1) || s1 � (hU υ ′2) || s2.
The correspondence between the computations of 〈T , M〉 and 〈T ′, M〉,

i.e.
η = υ0 || s0 � υ1 || s1 � . . .

is a computation of 〈T , M〉 if and only if

η′ = (h−1
U υ0) || s0 � (h−1

U υ1) || s1 � . . .

is a computation of 〈T ′, M〉 is a direct consequence of the above property of T ′; moreover,
the fact that η is successful if and only if η′ is successful follows directly from the definition
of successful computation and from point (4.i) of the definition of T ′. �

B.2. Proofs related to Section 4

Proof of Proposition 14

∃L. L �= ∅ ∧ (C, E)
L−→ (C′, (join E ′′ E ′))

⇔ {Def. of
L−→ (see Def. 3)}

50 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

∃e ∈ E, L �= ∅. H ↑ ∅ :: (C, {e}) L−−→ (C′, E ′) ∧ (Sel E e E ′′)

⇔ {Def. 13, Def. of Queue(F)}

∃e ∈ E. C (e,E ′)−→ C′ ∧Queue(E)
e−→ λX.Queue(join E ′′ X)

⇔ {Def. 5, Queue(F) does not perform silent moves}
(Queue(E) || C) � (Queue(join E ′′ E ′) || C′) �

Proof of Proposition 16. We first prove that M ∼M′ implies M �M′. By contradic-
tion, suppose M ∼M′ and that M �M′ does not hold. W.l.g. suppose M �∼M′ does
not hold; this can only happen if one of the two statements does not hold: M �∼MAY

M′ or
M �∼MUST

M′. In the first case, there would exist a test T for which � ∈ Result(T , M) \
Result(T , M′), which would contradict M ∼M′. In the second case, there would exist a
test T for which ⊥ ∈ Result(T , M′) \ Result(T , M), also contradicting M ∼M′.

We now prove that M �M′ implies M ∼M′. Again by contradiction, suppose
M �M′ and that M ∼M′ does not hold. If M �∼M′, then there exists a test T such
that Result(T , M) �= Result(T , M′). Suppose, w.l.g., that there exists r ∈ Result(T , M′) \
Result(T , M). Again there are two cases. If � ∈ Result(T , M′) \ Result(T , M),
then M′ �∼MAY

M would be violated, contradicting M �M′. If instead ⊥ ∈
Result(T , M′) \ Result(T , M), then M �∼MUST

M′ would be violated, again contradict-
ing M �M′. �

Proof of Theorem 21. In order to prove Theorem 21, we first need some auxiliary notions
and results. First of all, we use the experimenter W which always experiences success,

i.e. W �=W; δ. We now define a particular class of experimenters. The first kind of such
experimenters is that of those which can fail only if the LTS they are experimenting with,
after having performed the input/output sequence γ = (i1, u1)(i2, u2) . . . (in, un), will react
with output u on input i. The definition of such an experimenter (Ex(γ, (i, u)), LU) is given
in Fig. B.5. The second kind of experimenters of interest is that of those which can fail only
if the LTS under test, after having performed the input/output sequence γ as before cannot
accept any input from finite set I = {i′1, . . . i′k}. The definition of such an experimenter
(Ex(γ, I), LU) is given in Fig. B.6. We let EX denote the set of all the experimenters
of the kind Ex(γ, (i, u)) or Ex(γ, I). Moreover, in the sequel, for A ⊆ L we let (IN A)

denote the set {i | (i, u) ∈ A}.
Finally, a third kind of experimenters is used, (Ex(γ), LU), which succeeds only if the

system under test can perform γ , for γ = (i1, u1) . . . (in, un). The definition for Ex(γ)

shown in Fig. B.7.
The proof of Theorem 21 follows:

Part (a)
We first show that if M �∼MAY

M′ then M <<MAY M′. Suppose M <<MAY M′
does not hold; then we can set up the following derivation,

M <<MAY M′ ≡ FALSE

⇒ {Def. of <<MAY}
lan M �⊆ lan M′

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 51

Fig. B.5. Definition of Ex((i1, u1) . . . (in, un), (i, u)).

⇒ {Set theory}
∃γ ∈ lan M. γ �∈ lan M′

⇒ {Def. of Ex(γ), Def. 7}
� ∈ Result(Ex(γ), M) ∧ � �∈ Result(Ex(γ), M′)

thus concluding that M �∼MAY
M′ does not hold.

Now we show that if M <<MAY M′ then M �∼MAY
M′. Suppose� ∈ Result(T , M)

for some experimenter T , so that there must be a computation starting from υin || sin leading
to success and there must be a finite prefix of the computation, say

υin || sin � . . . υk || s

which leads to success. Such a prefix gives rise to a derivation sin
γ−→ s, on the side of

M, for γ = (i1, u1) . . . (in, un), and to a sequence of output transitions υj

µj−→ Oj , for

j = 0 . . . k − 1 such that either µj = ii and Oj

ui
↪→ υj+1, for some i with 1 ≤ i ≤ n, or

52 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

Fig. B.6. Definition of Ex((i1, u1) . . . (in, un), {i′1, . . . i′
k
}).

µj = τ and υj+1 = Oj . Notice that the derivation on the side of the experimenter involves
a sequence γ ′ which is equal to γ up to τ moves. We know that lan M ⊆ lan M′ since

M <<MAY M′; so also M′ can perform s′in
γ−→ s′ for some s′, and thus can be composed

with the derivation we had for T . And since this experimenter reported success somewhere
in such a derivation, also this time it will do so. If the sequence we built is not maximal,
we can extend it with further derivations starting from υk || s′. In any case we found a
successful computation for T ||M′. This proves M �∼MAY

M′.

Part (b)
The implication M �∼MUST

M′ ⇒M <<MUST M′ follows from Lemma 82 below.
The converse can be proved as follows. Suppose M <<MUST M′ and⊥ �∈ Result(T , M).
Let us consider an arbitrary computation starting from T ||M′:

υin || s′in � . . . υk || s′ . . . (B.1)

There are two possibilities: either the above sequence is finite, or it is infinite. Let us
first consider the case in which it is finite and stops at υk || s′. We must show that for

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 53

Fig. B.7. Definition of Ex((i1, u1) . . . (in, un)).

some i, 0 ≤ i ≤ k, υi ∈ Success. This computation gives rise to two derivations: one on

the side of M′, s′in
γ−→ s′, for some γ ∈ L∗, and one on the side of the experimenter,

starting with υin, ending with υk , and involving γ ′ which is equal to γ up to occurrences
of τ . Now, (S s′ ε) ∈ (AS M′ γ) and then there exists T ∈ mf s(c (AS M′ γ)) with T ⊆
(S s′ ε). Moreover, since mf s(c (AS M′ γ)) ⊂⊂ mf s(c (AS M γ)) we can find Z′ ∈
mf s(c (AS M γ)) such that Z′ ⊆ T . Thus we get Z′ ⊆ (S s′ε). Now there are three cases
for Z′:

(i) Z′ ∈ AS M γ . In this case there exists a s such that sin
γ−→ s and Z′ = (S s ε) ⊆

(S s′ ε). So υk || s cannot be extended and therefore the derivation sin
γ−→ s can be

combined with the above-mentioned derivation for T involving γ ′, in order to give a
computation υin || sin � . . . υk || s for T ||M. Since⊥ �∈ Result(T , M), there must
be i, 0 ≤ i ≤ k, such that υi ∈ Success.

(ii) Z′ ∈ c (AS M γ) \ AS M γ . In this case there exists s such that sin
γ−→ s and

(S s ε) ∈ AS M γ with (S s ε) ⊆ Z′. Thus we have that (S s ε) ⊆ (S s′ ε). Then
a similar reasoning as in case i) can be applied.

(iii) Z′ ∈ (mf s (c (AS M γ))) \ c (AS M γ). In this case, there exists a set K in

c (AS M γ) such that Z′ ∈ mf s{K}. Moreover there exists a s such that sin
γ−→ s

and S s ε ∈ AS M γ , such that S s ε ⊆ K . We know that Z′ ⊆ S s′ ε. We know
also that υk || s′ cannot be extended, and that IN (S s ε) ⊆ INZ′ because of the
definition of mf s. All this together brings to the fact that υk || s cannot be extended.
Then a similar reasoning as in case i) can be applied.

Let us now consider the case in which the computation is infinite. Also in this case
the computation gives rise to two derivations, which may be infinite: one on the side

of M′, s′in
γ−→, for some γ , and one on the side of the experimenter, starting with υin,

involving γ ′ which is equal to γ up to occurrences of τ . Both γ and γ ′ may be infinite
sequences. Suppose now that for every natural number n there exists m > n such that the
m-th element of γ ′ is different from τ . This means that for each finite prefix γ̄ of γ there

54 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

exists s′ such that (S s′ ε) ∈ AS M′ γ̄ and so there exists T ∈ mf s(c (AS M′ γ̄)) with
T ⊆ (S M′ ε). But then, since mf s(c (AS M′ γ̄)) ⊂⊂ mf s(c (AS M γ̄)), we can find
Y ∈ mf s(c (AS M γ̄)) with Y ⊆ T .This means that AS M γ̄ is non-empty and then there

exists s such that sin
γ̄−→ s. But then, since the above holds for every finite prefix of γ , we

get also sin
γ−→ and we can build an infinite computation by composing the derivation with

the above derivation on the side of the experimenter involving γ ′. Since⊥ �∈ Result(T , M),
there will be a υi ∈ Success for some i. So the computation (B.1) above is successful. A
similar reasoning applies also to the case in which there exists n such that the m-th element
of γ ′ is τ for all m ≥ n. Both in the case the successful state υi occurs in the silent suffix
of γ ′ and in the case in which it occurs before such a suffix we can build a successful
computation proceeding as above. Thus we conclude that in all cases ⊥ �∈ Result(T , M′),
and so M �∼MUST

M′.

Part (c)
Obviously follows from parts (a) and (b). �

The above proof used Lemma 82 below, which in turn uses the the following lemma,
which shows the relationship between �∼EX

MUST
and the languages of the relevant LTSs.

Lemma 82 shows that EX is sufficiently expressive for the MUST preorders.

Lemma 81. For all finite LTSs M, M′ over L = LI × LU the following holds:
M �∼EX

MUST
M′ implies lan M′ ⊆ lan M.

Proof. If γ = ε, then trivially γ ∈ lan M. Suppose γ = γ ′x ∈ lan M′ \ lan M; then we
can produce the following derivation:

γ ′x �∈ lan M

⇒ {Def. of experimenter Ex(γ ′, x)}
⊥ �∈ Result(Ex(γ ′, x), M)

⇒ {M �∼EX

MUST
M′}

⊥ �∈ Result(Ex(γ ′, x), M′)

⇒ {Def. of experimenter Ex(γ ′, x)}
γ ′x �∈ lan M′

which is a contradiction, since we assumed γ ∈ lan M′. �

Lemma 82. For all finite LTSs M, M′ over L = LI × LU if M �∼EX

MUST
M′ then

M <<MUST M′.

Proof. Let us assume M = (S, sin, L,→) and M = (S′, s′in, L,→) for L = LI × LU .
We must show that mf s(c (AS M′ γ)) ⊂⊂ mf s(c (AS M γ)). Note that we only need
to consider sequences γ which are in lan M′, because if γ �∈ lan M′ then AS M′ γ =
∅, and thus mf s(c (AS M′ γ)) = ∅, and then the relation ⊂⊂ trivially holds. So, con-
sider γ ∈ lan M′. From Lemma 81 we know that γ ∈ lan M and thus AS M γ �= ∅ and

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 55

also mf s(c (AS M γ)) �= ∅. Now we can continue the proof by deriving a contradic-
tion if we assume that mf s(c (AS M′ γ)) ⊂⊂ mf s(c (AS M γ)) does not hold. Under
this assumption, by the definition of ⊂⊂ and considering that both mf s(c (AS M γ))

and mf s(c (AS M′ γ)) are non-empty, we can assume that there exists a set R ∈ mf s

(c (AS M′ γ)) such that Z �⊆ R for all Z ∈ mf s(c (AS M γ)). Now we first show that
in each set Z ∈ mf s(c (AS M γ)) we can choose an element (i, u) in such a way that
it is not only different from all elements in the set R, but also such that the input part i

is different from all input parts of elements in R. We show this by contradiction: for any
Z ∈ mf s(c (AS M γ))we assume that it is impossible to choose such an element and we
reach a contradiction. For ease of notation, let mf s(c (AS M s)) be the set {Z1, . . . , Zk}.
So, now suppose that Zi differs from R only by elements that differ only in their output part,
that is IN Zi ⊆ IN R ∧ ∃(i, u) ∈ Zi. (i, u) �∈ R. Because of the definitions of mf s and
c , for each Zi one of the following cases applies:

(i) Zi ∈ AS M γ ;
(ii) Zi ∈ c (AS M γ) \ AS M γ ;

(iii) Zi ∈ mf s (c (AS M γ)) \ c (AS M γ).

Case (i). Suppose Zi ∈ AS M γ .
We first show that

⋃
K ′∈AS M′ γ K ′ ⊆⋃

K∈AS M γ
K . For AS M′ γ = ∅ or

if AS M′ γ = {∅} this is trivial. For AS M′ γ containing a non-empty set we can
derive:

x ∈⋃
K ′∈AS M′ γ K ′

⇒ {Set theory}
∃K ′ ∈ AS M′ γ. x ∈ K ′

⇒ {Def. of lan and of AS}
γ x ∈ lan M′

⇒ {M �∼EX

MUST
M′, Lemma 81}

γ x ∈ lan M

⇒ {Def. of AS}
∃K ∈ AS M γ. x ∈ K

⇒ {Set theory}
x ∈⋃

K∈AS M γ
K

Now we can show that we can find in c (AS M γ) a set T that extends Zi with exactly
those elements in R which have the same input part as those in Zi . We can do this be-
cause T is an intermediate set between Zi—which is in AS M γ —and

⋃
K∈AS M γ

K—
which is an element of c (AS M γ)—and which contains all elements that are in R since
we showed

⋃
K ′∈AS M′ γ K ′ ⊆⋃

K∈AS M γ
K . Formally, T =Zi ∪{(i, u) | i ∈ INZi ∧

(i, u) ∈ R}.
It is now easy to see that the set Z = {(i, u) | i ∈ INZi ∧ (i, u) ∈ R} is an element

of mf s(c (AS M γ)). In fact Z ⊆ T ∈ c (AS M γ); moreover Z is functional, since
Z ⊆ R, and it is maximal. This last fact can be proved by contradiction: suppose there

56 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

exists an element (i, u) ∈ T \ Z; then by definition of Z, since IN T = IN Z, there exists
u′ such that (i, u′) ∈ Z and since Z is functional we get u = u′. So, in the end we found
Z ∈ mf s(c (AS M γ)) with Z ⊆ R. This contradicts our original assumption that there
exists R ∈ mf s(c (AS M′ γ)) such that Z �⊆ R for all Z ∈ mf s(c (AS M γ)).

Case (ii). Suppose Zi ∈ c (AS M γ) \ AS M γ and such that IN Zi ⊆ IN R.
In this case the reasoning is the same as in case (i).
Case (iii). Suppose Zi ∈ mf s (c (AS M γ)) \ c (AS M γ).
In that case, by definition of mf s, we know that there exists a set K ∈ c (AS M γ)

such that IN Zi = IN K and then IN K ⊆ IN R. For K we can setup a reasoning like
in case (ii) leading to the fact that there will exist a set in mf s (c (AS M γ)) which is a
subset of R which is in contradiction with the assumptions, and thus such an Zi cannot
exist.

This ends the proof for each of the cases for Zi and shows that in all sets Z ∈ mf s

(c (AS M γ)) we can choose an element, with an input part different from all those of
elements of R. And because we can find such an element in every such Z we can also find
it in each set A ∈ AS M γ . In fact, let A′ be a set in c (AS M γ). If it is functional then
A′ = Z for some Z as above. If it is not functional then it includes some functional set Z

as above. In particular this holds for all A ∈ AS M γ .
Now let us choose in each Zi ∈ mf s (c (AS M γ)) one element xi such that the input

part of xi is not in INR. Let us call X the set of input parts of all this elements xi ,
that is X = {i | (i, u) ∈ {x1, . . . , xk}} = {i1, . . . , ik}. Clearly, ⊥ �∈ Result(Ex(γ, X), M)

because for each A ∈ AS M γ there exists an element (i, u) with i ∈ X as shown before.
On the other hand, as we will show below, ⊥ ∈ Result(Ex(γ, X), M′) which contradicts
the hypothesis M �∼EX

MUST
M′.

What we have to show is that there exists a state s′ of M′ which can be reached by s′in
by performing γ such that the following computation, where Ex(X) is shown in Fig. B.8,
is unsuccessful:

Ex(γ, X) || s′in � . . . � Ex(X) || s′
Recall that γ ∈ lan M′. So, the fact that the above computation is unsuccessful means

that there exists s′ such that IN(S s′ ε) ∩X = ∅.
There are three possibilities:
(i) R ∈ AS M′ γ which means that there exists an s′ such that (S s′ ε) = R ∈ AS M′ γ .

And we know that (IN R) ∩X = ∅.
(ii) R ∈ c (AS M′ γ) \ AS M′ γ . By definition of closure, this implies that there exists

an s′ such that (S s′ ε) ∈ AS M′ γ and (S s′ ε) ⊆ R. So, IN(S s′ ε) ⊆ IN R, but
again we know that (IN R) ∩X = ∅.

(iii) R ∈ mf s(c (AS M′ γ)) \ (c (AS M′ γ) ∪ AS M′ γ). This means that there exists
a set K ∈ c (AS M′ γ) such that R ∈ mf s{K}. By definition of closure, this im-
plies that there exists an s′ such that (S s′ ε) ∈ AS M′ γ and (S s′ε) ⊆ K . So,
IN(S s′ ε) ⊆ IN K . Since R is a maximal functional subset of K we know that
IN K = IN R, so again (S s′ ε) ⊆ R with IN R ∩X = ∅.

This proves the lemma. �

Fig. B.8. Definition of Ex(X).

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 57

The following is an obvious corollary of Lemma 81:

Corollary 83. For all finite LTSs M, M′ over L = LI × LU the following holds:
M �∼MUST

M′ implies lan M′ ⊆ lan M.

Proof of Proposition 26. We have to prove that TFAA M is finite and deterministic and
that for all γ ∈ lan (TFAA M), the node of TFAA M identified by γ is labeled by (mf s A)

for some (S (TFAA M) γ)-set A.
Finiteness of TFAA M is guaranteed by the fact that M is finite by hypothesis, by

the fact that the “Subset Construction” algorithm for finite automata determinization, ap-
plied at step 1 of the algorithm of Fig. 7, returns a finite automaton (see [1]), and by
items (a), (b), and (c) of step 2 of the algorithm of Fig. 7. In particular, item (c) also
guarantees that lan (TFAA M) = lan M ⊆ L∗. Moreover, by item (d) of step 2 of the
algorithm, for each γ ∈ L∗ \ (lan (TFAA M)), we have ASFAA (TFAA M) γ = ∅, while,
for γ ∈ (lan (TFAA M)), we have ASFAA (TFAA M) γ = mf s (c (AS M γ)). It is easy
to see that (c (AS M γ)) is an (S (TFAA M) γ)-set. In fact, the “Subset Construction”
algorithm guarantees that, for all γ ∈ lan M (S (TFAA M) γ) = (S M γ); moreover, by
definition, (AS M γ) is a set of subsets of (S M γ); (AS M γ) is finite because M is
finite and it is non-empty, by definition, for γ ∈ (lan M). It is finally easy to see that point
(i) of Definition 23 is guaranteed by the definition of c since (c (AS M γ)) contains only
the elements of (AS M γ) (point (i) of Definition 17), which are subsets of (S M γ) by
definition of (AS M γ), and their union and sub-/super-set closures (points (ii) and (iii)
of Definition 17). Similarly, point (ii) of Definition 23 is satisfied, as it can be seen by
observing that each element of (S M γ) is also an element of some set in (AS M γ) by
definition of the above sets. Finally, points (iii) and (iv) of Definition 23 are clearly satisfied
due to points (ii) and (iii) of Definition 17. �

Proof of Theorem 27
TFAA M ≤FAA TFAAM′

⇔ {Def. of ≤FAA}
lan (TFAA M) = lan (TFAA M′) ∧ ∀γ ∈ lan(TFAA M). ASFAA (TFAA M′) γ ⊆

ASFAA (TFAA M) γ

⇔ {Def. of TFAA}
lan M = lan M′ ∧ ∀γ ∈ lan M. mf s(c (AS M′ γ)) ⊆ mf s(c (AS M γ))

⇔ {Lemma 84 below ; Notice that lan M = lan M′ implies
⋃

x∈(AS M′ γ)
x

=⋃
x∈(AS M γ)

x}
lan M = lan M′ ∧ ∀γ ∈ lan M. mf s(c (AS M′ γ)) ⊂⊂ mf s(c (AS M γ))

⇔ {γ �∈ lan M = lan M′ iff AS M γ = AS M′ γ = ∅ from the def. of AS}
lan M = lan M′ ∧ ∀γ ∈ L∗. mf s(c (AS M′ γ)) ⊂⊂ mf s(c (AS M γ))

⇔ {Def. of <<MUST ; Theo. 21 (b) and Corollary 83}
lan M ⊆ lan M′ ∧ ∀γ ∈ L∗. mf s(c (AS M′ γ)) ⊂⊂ mf s(c (AS M γ))

58 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

⇔ {Def. of <<MAY , <<MUST , <<}
M << M′. �

In the proof above the following lemma have been used.

Lemma 84. For X, Y finite sets of finite subsets of L such that
⋃

x∈X x =⋃
y∈Y y the

following holds: mf s(c X) ⊂⊂ mf s(c Y) iff mf s(c X) ⊆ mf s(c Y).

Proof. The proof consists of two parts, one for each implication.
(i)⇐-part: trivial.
(ii)⇒-part uses Lemma 85 below

x ∈ mf s(c X)

⇒ {Def. of ⊂⊂}
∃y ∈ mf s(c Y). y ⊆ x

⇒ {Def. of mf s}
∃z ∈ c Y. y ∈ mf s{z} ∧ y ⊆ x

⇒ {Lemma 85 below}
(x ∪ z) ∈ c Y ∧ x ∈ mf s{x ∪ z}

⇒ {Def. of mf s}
x ∈ mf s(c Y). �

Lemma 85. For X, Y finite sets of finite sets over L such that
⋃

x∈X x =⋃
y∈Y y the

following holds: z ∈ c Y ∧ y ∈ mf s{z} ∧ y ⊆ x ⇒ x ∪ z ∈ c Y ∧ x ∈ mf s{x ∪ z}.

Proof. First we prove that x ∪ z ∈ c Y . We know that z ∈ c Y and obviously z ⊆ x ∪ z.
Moreover, from the definition of closure we know that (

⋃
y∈Y y) ∈ c Y . So:

x ⊆⋃
v∈X v

⇒ {By hypothesis
⋃

v∈X v =⋃
w∈Y w}

x ⊆⋃
w∈Y w

⇒ {z ∈ c Y }
x ⊆⋃

w∈Y w ∧ z ∈ c Y

⇒ {z ∈ c Y ⇒ z ⊆⋃
w∈Y w by def. of closure}

x ∪ z ⊆⋃
w∈Y w

⇒ {z ⊆ x ∪ z}
z ⊆ (x ∪ z) ∧ (x ∪ z) ⊆⋃

w∈Y w

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 59

⇒ {Def. of c }
x ∪ z ∈ c Y

Now we prove that x ∈ mf s{x ∪ z}. The proof is by derivation of a contradiction. For
finite set w over L, we let f unc w denote the predicate ∀(i1, u1), (i2, u2) ∈ w. i1 = i2 ⇒
u1 = u2. Suppose x �∈ mf s{x ∪ z}:

x �∈ mf s{x ∪ z}
⇒ {Def. of mf s; x is functional}
∃k ⊆ x ∪ z. x ⊂ k ∧ f unc k

⇒ {Set theory}
∃a ∈ z \ x. a ∈ k

⇒ {y ∈ mf s{z} ∧ x ∩ z = y see note below; Set theory}
y ⊂ k ∩ z

⇒ {k ∩ z is functional since k is functional; k ∩ z ⊆ z}
y �∈ mf s{z}
The fact that we derive that y is not in mf s{z} is in contradiction with the assumptions.

So we proved x ∈ mf s{x ∪ z}. Note that in the one but last step in the proof above we used
y = x ∩ z. The reason is that y ⊆ x and y ∈ mf s{z} by hypothesis and this last fact implies
y ⊆ z. Thus y ⊆ x ∩ z. Moreover, x is functional so also x ∩ z must be functional and of
course x ∩ z ⊆ z. But y ∈ mf s{z} so it cannot be y ⊂ (x ∩ z). �

B.3. Proofs related to Section 5

Proof of Lemma 37
Part i: Follows directly from Lemma 76 (i).

Part ii: C e/�−→� C′

⇒ {Second rule of Def. 36}
H ↑ ∅ :: (C, {e}) ∅−→ (C′, E)

⇒ {Lemma 76 (ii)}
C = C′

Part iii: By contradiction. Suppose there exist C′ ∈ ConfH and E ∈ �E such that C e/E−→�

C′ while also C e/�−→� C. By the first rule of Def. 36, C e/E−→� C′ would imply H ↑ ∅ ::
(C, {e}) L−−→ (C′, E) for some L �= ∅. But from C e/�−→� C, by the second rule of Def. 36,
we would also have H ↑ ∅ :: (C, {e}) ∅−→ (C′′, E ′), which, using Lemma 76 (ii) and (iii),

would lead to � ∃L �= ∅. H ↑ ∅ :: (C, {e}) L−→, which is a contradiction. �

60 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

Proof of Proposition 37. We first consider the direct implication.

(C, E)
L−→ (C′, (Join E ′′ E ′))

⇒ {Def. of
L−→ (see Def. 3)}

∃e ∈ E. H ↑ ∅ :: (C, {e}) L−−→ (C′, E ′) ∧ (Sel E e E ′′)

There are two cases:
L �= ∅ and L = ∅.
Case 1: L �= ∅

⇒ {First rule of Def. 36, Def. of �Queue(F)}
∃e ∈ E. C e/E ′−−−→�C′ ∧
�Queue(E)

e−→ λX.(X �= � ⇒ �Queue(Join E ′′ X)+X = � ⇒ �Queue(E ′′))

⇒ {Def. 5, Def. of �Queue(F), E ′ ∈ �E}
(�Queue(E) || C) � (�Queue(Join E ′′ E ′) || C′)

Case 2: L = ∅

⇒ {Lemma 76 (ii)}
∃e ∈ E. H ↑ ∅ :: (C, {e}) ∅−→ (C′, E ′) ∧ (Sel E e E ′′) ∧ E ′ = 〈〉

⇒ {Second rule of Def. 36, Def. of �Queue(F)}
∃e ∈ E. C e/�−−−→�C′ ∧ E ′ = 〈〉 ∧
�Queue(E)

e−→ λX.(X �= � ⇒ �Queue(Join E ′′ X)+X = � ⇒ �Queue(E ′′))

⇒ {Def. 5, Def. of �Queue(F)}
(�Queue(E) || C) � (�Queue(E ′′) || C′) ∧ E ′ = 〈〉

⇒ {E ′ = 〈〉 ⇒ (Join E ′′ E ′) = E ′′}
(�Queue(E) || C) � (�Queue(Join E ′′ E ′) || C′)
Now we consider the reverse implication.

(�Queue(E) || C) � (�Queue(Join E ′′ E ′) || C′)
⇒ {Def. 5, Def. of �Queue(F)}
∃e ∈ E, u ∈ ��E. C e/u−−−→�C′ ∧ (Sel E e E ′′) ∧
�Queue(E)

e−→ λX.X �= � ⇒ �Queue(Join E ′′ X)+X = � ⇒ �Queue(E ′′)

There are two cases:
X �= � and X = �.

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 61

Case 1: X �= �

⇒ {First rule of Def. 36}
∃e ∈ E, L �= ∅, E ′ ∈ �E. H ↑ ∅ :: (C, {e}) L−−→ (C′, E ′) ∧ (Sel E e E ′′)

⇒ {Def. of
L−→ (see Def. 3)}

∃L. (C, E)
L−→ (C′, (Join E ′′ E ′))

Case 2: X = �

⇒ {Second rule of Def. 36}
∃e ∈ E, E ′ ∈ �E. H ↑ ∅ :: (C, {e}) ∅−→ (C′, E ′) ∧ (Sel E e E ′′)

⇒ {Def. of
L−→ (see Def. 3)}

∃L. (C, E)
L−→ (C′, (Join E ′′ E ′)). �

Proof of Lemma 40. Let γ ∈ (lan M) and i ∈ LI as in the definition of �co. The only
interesting case is when OUT M′ γ i �= ∅, in which case, for all u ∈ OUT M′ γ i, we get
the following derivation:

γ ∈ (lan M) ∧ i ∈ LI ∧ u ∈ OUT M′ γ i

⇒ {Lemma 86}
γ (i, u) ∈ (lan M′)

⇒ {(lan M′) ⊆ (lan M) by hypothesis}
γ (i, u) ∈ (lan M)

⇒ {Lemma 86}
u ∈ OUT M γ i. �

Proof of Lemma 41. By contradiction; suppose that there existsγ ∈ (lan M′) \ (lan M).
Let γ̄ the longest prefix of γ such that γ̄ ∈ (lan M); such a prefix exists since at least
ε ∈ (lan M) by definition. Let us assume γ = γ̄ (i, u)γ ′ for some i ∈ L′I , u ∈ L′U , γ ′ ∈
(L′I × L′U)∗. We can now derive the following:

γ̄ (i, u) ∈ (lan M′)

⇒ {Lemma 86}
u ∈ OUT M′ γ̄ i

⇒ {γ̄ ∈ (lan M) by assumption; i ∈ L′I by assumption; L′I ⊆ LI and M′ �co M
by hypothesis}

62 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

u ∈ OUT M γ̄ i

⇒ {Lemma 86}
γ̄ (i, u) ∈ (lan M)

which is a contradiction since γ̄ (i, u) is a prefix of γ . �

The above proofs used the following lemma:

Lemma 86. For M finite LTS over LI × LU, i ∈ LI , u ∈ LU and γ ∈ (LI × LU)∗ the
following holds: u ∈ (OUT M γ i) iff γ (i, u) ∈ (lan M).

Proof
u ∈ (OUT s γ i)

⇔ {Def. of OUT}
∃s′. (s

γ−→ s′) ∧ s′ (i,u)−→
⇔ {Def. of

γ (i,u)−→}

∃s′. s
γ (i,u)−→ s′

⇔ {Def. of lan}
γ (i, u) ∈ (lan s). �

Proof of Proposition 44. We first of all observe that each experimenter U generated by
the algorithm of Fig. 14 has a tree-like structure, where leaf nodes correspond to δ states
and intermediate nodes with more than one branch correspond to (input) states generated
by option (2) of the algorithm. Since, by definition, the algorithm is forced to terminate
after a finite number of recursive calls, the number of calls in which option (2) is selected
is finite. All this implies that the depth of U , i.e. the max number of transitions from the
root U to any δ-leaf is finite. Consequently, in order for U to be infinite, there must be
some intermediate node corresponding to an input state which is infinitely branching. In the
sequel we show that this cannot be the case when the algorithm is applied to lan �LTS(H)

for HA H . We observe that �LTS(H) is finite. This can be seen with similar arguments
as for proving the finiteness of LTS(H). In fact, H has a finite number of sequential
automata, each of them has a finite number of states and a finite number of transitions.
By definition, a configuration of �LTS(H) coincides with a set of states of the sequential
automata of H . Since the total number of such states is finite, �LTS(H) has a finite number of
configurations. Moreover, from the definition of the Stuttering Semantics (see Section 5.1)
and from that of the Core Semantics (see Fig. A.1) it follows that each step-transition of
�LTS(H) corresponds to firing a set L of transitions of the sequential automata of H ,
and such a set must be a finite set {t1, . . . , tn} since the total number of transitions of
the sequential automata is finite. Furthermore there is a finite number of possibilities for
Join-ing the output E1, . . . , En produced by the transitions in L. In conclusion, �LTS(H)

has a finite set of states and a finite set of step-transitions. This brings to the conclusion
that the set of all possible output values that �LTS(H) can produce is finite and clearly

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 63

also the set of all the output values which can occur in the traces of �LTS(H), i.e. the set
{u | ∃γ, i. γ (i, u) ∈ (lan �LTS(H))}, is finite. Each set {u1, . . . , uk} generated by step 2
of the algorithm of Fig. 14 at each recursion call where step 2 is executed is a subset of
the above set of all the output values of �LTS(H). Consequently, each such set is finite as
well. �

Proof of Theorem 45. Let M = �LTS(H) and L = LI × LU . We proceed separately in
the proof of soundness and exhaustiveness.

Part 1: soundness
Suppose there exists test case U ∈ TDL,L′ (lan M) and implementation M′ over L′ =
L′I × L′U such that M′ �co M and V U M′ = fail. Using Lemma 87 with lan M for F ,
we know that this would imply that there exists γ ∈ (lan M), i ∈ LI and u ∈ L′U such
that u ∈ OUT M′ γ i and u �∈ OUT∗ (lan M) γ i. But then, by Lemma 91, we get also
u �∈ OUT M γ i which contradicts M′ �co M.
Part 2: exhaustiveness
Suppose M′ ��co M, for implementation M′ over L′ = L′I × L′U . This means that there
exist γ ∈ (lan M), i ∈ LI , u ∈ L′U such that u ∈ OUT M′ γ i \OUT M γ i. More-
over, OUT∗ (lan M) γ i �= ∅ because M is input enabled and OUT∗ (lan M) γ i =
OUT M γ i by Lemma 91. Thus we can apply Lemma 88 with lan M for F to get
the assert. �

Lemma 87. LetL = LI × LU andL′ = L′I × L′U .For allF ⊆ L∗, implementationM′ =
(S′, s′in, L′,−→), U ∈ TDL,L′ F, unsuccessful computation η ∈ Comp(U, M′) there exist
γ ∈ F, i ∈ LI , u ∈ L′U such that η runs over γ (i, u) and u ∈ (OUT s′in γ i) \
(OUT∗ F γ i). �

Proof. By induction on the structure of U :
Base case (U = τ ;W; δ):
There is no unsuccessful computation in Comp(τ ;W; δ, M′) so the assert is trivially proved.

Induction step: (U = ī; λx . . .):
We can assume by the Induction Hypothesis that there exists ī such that ī ∈ LI ∩ L′I ,
OUT∗ F ε ī = {u1 . . . uk} �= ∅ and U = ī; Ī with

Ī = λx. (x = u1 ⇒ U1

+
...

+
x = uk ⇒ Uk

+
x �∈ {u1, . . . , uk} ⇒ δ)

where Uj ∈ TDL,L′ (F after∗ (ī, uj)) for j = 1, . . . , k. So every (unsuccessful) computa-
tion η ∈ Comp(U, M′) must have the form

η = U || s′in � Ū || s′ � . . .

64 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

where Ī ū
↪→ Ū for some ū ∈ L′U and s′ such that s′in

(ī,ū)−→ s′. Notice that such ū and s′ exist
since M′ is input enabled over L′ and ī ∈ L′I . We distinguish two cases:

Case 1: ū �∈ OUT∗ F ε ī

For every such ū �∈ OUT∗ F ε ī and s′ such that s′in
(ī,ū)−→ s′ there is only the unsuccessful

computation

η1 = U || s′in � (δ || s′)
since in this case Ū = δ, by definition of U . Thus the assert is proved with γ = ε, i = ī,

u = ū: ū ∈ (OUT M′ ε ī), since s′in
(ī,ū)−→ s′, and ū �∈ OUT∗ F ε ī.

Case 2: ū ∈ OUT∗ F ε ī

For every η as above we know that its continuation

η2 = Ū || s′ � . . .

is an unsuccessful computation in Comp(Ū, s′) where Ū , such that Ī ū
↪→ Ū , is element of

TDL,L′(F after∗(ī, ū)) and s′ input enabled over L′. Thus, for every ū and s′ as above we
can apply the Induction Hypothesis with F after∗ (ī, ū), s′, Ū and find γ̄ ∈ F after∗ (ī, ū),
i ∈ LI and u ∈ L′U such that η2 runs over γ̄ (i, u) and u ∈ OUT s′ γ̄ i but u �∈ OUT∗
(F after∗ (ī, ū)) γ̄ i.

We now observe that
• (ī, ū)γ̄ ∈ F , by def. of after∗, since γ̄ ∈ F after∗ (ī, ū);

• η runs over (ī, ū)γ̄ (i, u), since η = U ||M′ � η2, U ī−→ Ī, s′in
(ī,ū)−→ s′, Ī ū

↪→ Ū and η2
runs over γ̄ (i, u);

• u ∈ OUT M′ (ī, ū)γ̄ i, by Lemma 89, since s′in
(ī,ū)−→ s′ and u ∈ OUT s′ γ̄ i;

• u �∈ OUT∗ F (ī, ū)γ̄ i, by Lemma 93, since u is not an element of the set OUT∗
(F after∗ (ī, ū)) γ̄ i,

which proves the assert with γ = (ī, ū)γ̄ and i and u as above. �

Lemma 88. Let L = LI × LU and L′ = L′I × L′U . For all F ⊆ L∗, i ∈ LI , γ ∈ F such
that OUT∗ F γ i �= ∅, implementation M′ = (S′, s′in, L′,−→), and u ∈ L′U such that u ∈
(OUT M′ γ i) \ (OUT∗ F γ i), there exists U ∈ TDL,L′ F such that V U M′ = fail.

Proof. We proceed by induction on γ .
Base case (γ = ε):
By hypothesis we know that i ∈ LI and OUT∗ F ε i �= ∅; moreover i ∈ L′I by Lemma 86
since (OUT M′ γ i) �= ∅ and M′ is an LTS labeled over L′. Thus the following test case
U belongs to TDL,L′ F : U = i; Ī with

Ī = λx. (x = u1 ⇒ U1
+
...

+
x = uk ⇒ Uk

+
x �∈ {u1, . . . , uk} ⇒ δ)

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 65

where {u1, . . . , uk} = OUT∗ F ε i and Uj is an element of TDL,L′ (F after∗ (i, uj)) for

j = 1, . . . , k. Moreover Ī u
↪→ δ, since by hypothesis u �∈ OUT∗ F ε i, and s′in

(i,u)−→ s′ for
some s′, since u ∈ OUT s′in ε i. Thus we can build the following unsuccessful computation

U || s′in � δ || s′
which makes V U M′ = fail hold.

Induction step (γ = (ī, ū)γ̄):
We know that
• ī ∈ LI , since (ī, ū)γ̄ ∈ F ⊆ L∗ by hypothesis;
• ī ∈ L′I , by Lemma 90, since OUT M′ (ī, ū)γ̄ i �= ∅ by hypothesis;
• OUT∗ F ε ī �= ∅, by Lemma 92, since OUT∗ F (ī, ū)γ̄ i �= ∅, by hypothesis.

Thus the following test case U belongs to TDL,L′ F : U = ī; Ī with

Ī = λx. (x = u1 ⇒ U1
+
...

+
x = uk ⇒ Uk

+
x �∈ {u1, . . . , uk} ⇒ δ)

where {u1, . . . , uk} = OUT∗ F ε ī and Uj is an element of TDL,L′ (F after∗ (ī, uj)) for
j = 1, . . . , k.

We observe now that
• ū ∈ OUT∗ F ε ī, by Lemma 92, since OUT∗ F (ī, ū)γ̄ i �= ∅ by hypothesis;
• γ̄ ∈ F after∗ (ī, ū), by definition of after∗, since (ī, ū)γ̄ ∈ F by hypothesis;
• OUT∗ (F after∗ (ī, ū)) γ̄ i �= ∅, by Lemma 93, since OUT∗ F (ī, ū)γ̄ i �= ∅ by

hypothesis.
Thus, using the Induction Hypothesis, we know that for every s′ such that s′in

(ī,ū)−→
s′ and u element of OUT s′ γ̄ i \OUT∗ (F after∗(ī, ū)) γ̄ i, there exists Ū element of
TDL,L′(F after∗ (ī, ū)) such that V Ū s̄′ = fail, which means that there exists an unsuc-
cessful computation

Ū || s′ � . . .

But this in turn implies that for every such (ī, ū) and every u ∈ OUT M′ (ī, ū)γ̄ i \
OUT∗ F (ī, ū)γ̄ i there is an unsuccessful computation

U || s′in � Ū || s′ � . . .

in Comp(U, M′). This last fact follows from the fact that OUT M′ (ī, ū)γ̄ i =⋃
s′:s′in

(ī,ū)−→s′
OUT s′ γ̄ i, by Lemma 89, and OUT∗ (F after∗ (ī, ū)) γ̄ i = OUT∗

F (ī, ū)γ̄ i, by Lemma 93. So, V U M′ = fail. �

The following lemmas show general properties of operators used in the above proofs
and follow from the relevant definitions. The detailed proofs are provided in [14].

Lemma 89. For all LTS (S, sin, LI × LU,−→), s ∈ S, γ, γ ′ ∈ (L′I × L′U)∗, i ∈ L′I the
following holds: OUT s γ γ ′ i =⋃

s′:s γ−→s′ OUT s′ γ ′ i.

66 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

Lemma 90. For all LTS M = (S, sin, LI × LU,−→), s ∈ S, i, i′ ∈ L′I , u ∈ L′U , γ ∈
(L′I × L′U)∗ the following holds: OUT s (i, u)γ i′ �= ∅ ⇒ i ∈ LI .

Lemma 91. For all LTS M = (S, sin, LI × LU,−→), γ ∈ (lan M), i ∈ LI the following
holds: OUT∗ (lan M) γ i = OUT sin γ i.

Lemma 92. For all F ⊆ (LI × LU)∗ i, i′ ∈ LI , u ∈ LU, γ ∈ (LI × LU)∗ the following
holds: OUT∗ F (i, u)γ i′ �= ∅ ⇒ u ∈ OUT∗ F ε i.

Lemma 93. For all F ⊆ (LI × LU)∗, γ, γ ′ ∈ (LI × LU)∗, i ∈ LI the following holds:
OUT∗ (F after∗ γ) γ ′ i = OUT∗ F γ γ ′ i.

B.4. Proofs related to Section 6

Proof of Theorem 46
Part i:

C e/E−→ C′

⇔ {Def. 13}
∃L �= ∅. H ↑ ∅ :: (C, {e}) L−−→ (C′, E)

⇔ {Rule (1) of Def. 36}

C e/E−→� C′

Part ii:

� ∃C′ ∈ ConfH , E ∈ �E. C e/E−→ C′

⇔ {Def. 13; Logics}
� ∃L ⊆ Tr H, C′ ∈ ConfH , E ∈ �E. H ↑ ∅ :: (C, {e}) L−−→ (C′, E)

∨
∃C′ ∈ ConfH , E ∈ �E. H ↑ ∅ :: (C, {e}) ∅−→ (C′, E)

⇔ {Lemma 76 (i) and (ii)}
H ↑ ∅ :: (C, {e}) ∅−→ (C, 〈〉)

⇒ {Rule (2) of Def. 36}
⇐ {Rule (2) of Def. 36; Lemma 76 (ii)}

C e/�−→� C. �

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 67

Proof of Lemma 49
Part i:
Suppose �C γ−→�

�C′. Without loss of generality assume γ = α0β0α1β1 . . . αnβn with
αi ∈ (E ×�E)∗, βi ∈ (E × {�})∗ for i = 0, . . . , n. In particular, this means that there
exist �C0,

�C1, . . . ,
�Cn+1 such that

�C0 = �C, �Cn+1 = �C′

�C0
α0−→�

�C1
β0−→�

�C1
α1−→� . . .

βn−1−→�
�Cn

αn−→�
�Cn+1

βn−→�
�Cn+1

Notice that �Ci

βi−1−→�
�Ci i.e., the configuration does not change by performing βi−1, due

to Lemma 37(ii). Thus, from the above sequence of transitions we easily get the following
one:

�C0
α0−→�

�C1
α1−→� . . .

αn−1−→�
�Cn

αn−→�
�Cn+1

But then, noting that γ \� = α0α1 . . . αn ∈ (E ×�E)∗ and using Corollary 47, we get

easily C γ \�−→ C′.
Part ii:
Let LTS(H) = (ConfH , Cin, −→) and �LTS(H) = (ConfH , �Cin, −→�)

γ ∈ (lan �LTS(H))

⇒ {Def. of lan}
∃C′. �Cin

γ−→�
�C′

⇒ {Part (i) of this lemma}
∃C′. (Cin

γ \�−→ C′)

⇒ {Def. of lan}
γ \� ∈ (lan LTS(H))

Part iii:
Directly follows from Corollary 47. �

Proof of Lemma 50. We prove lan LTS(H ′) ⊆ lan LTS(H), that is LTS(H ′) <<MAY

LTS(H), which, due to Theorem 21 is equivalent to LTS(H ′) �∼MAY
LTS(H).

γ ∈ lan LTS(H ′)

⇒ {Lemma 49 (iii)}
γ ∈ lan �LTS(H ′)

⇒ {Lemma 41; �LTS(H ′) �co
�LTS(H) and E′ ⊆ E by hypothesis}

γ ∈ lan �LTS(H)

⇒ {Lemma 49 (ii); γ ∈ lan LTS(H ′) implies γ \� = γ }
γ ∈ lan LTS(H). �

68 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

Proof of Lemma 51. We let LTS(H) = (ConfH , Cin,−→), LTS(H ′) = (ConfH ′ , C′in,−→), �LTS(H) = (ConfH , �Cin, −→�), and �LTS(H ′) = (ConfH ′ , �C′in, −→�).
We proceed by contradiction.
Suppose �LTS(H ′) �co

�LTS(H) and that there is an experimenter U such that ⊥ �∈
Result(U, LTS(H)) and ⊥ belongs to Result(U, LTS(H ′)). Let

η = U || C′in � . . .

be an unsuccessful computation in Comp(U, LTS(H ′)). We distinguish two cases according
to η.

Case 1: η is finite
W.l.g. let us assume

η = U || C′in � . . . � Un || C′
and there exist no Un+1 || C′′ such that Un || C′ � Un+1 || C′′. In this case we have a deriva-

tion C′in
γ−→ C′ on the side of LTS(H ′), with γ = (e1, E1) . . . (ek, Ek) ∈ (E ×�E)∗, and

a sequence of output transitions Uj

µj−→ Oj , for j = 1 . . . n− 1, such that either µj = ei

and Oj

Ei
↪→ Uj+1 for some i with 1 ≤ i ≤ k, or µj = τ and Uj+1 = Oj . Notice that the

derivation on the side of the experimenter involves a sequence γ ′ which is equal to γ up to
τ moves.

First of all, notice that it cannot be Un
τ−→ since otherwise η could not be a computation,

not being maximal. There are two other possibilities left:10

Case 1.1: ∀e ∈ E. Un
e−→⇒�∃E ∈ �E. C′ e/E−→

By Lemma 5011 we know that γ ∈ lan LTS(H) since γ ∈ lan LTS(H ′), by definition of
lan LTS(H ′) and �LTS(H ′) �co

�LTS(H) by hypothesis. Moreover, by Lemma 49 (iii),
we also know that γ ∈ lan �LTS(H). Thus, again by �LTS(H ′) �co

�LTS(H), we get

OUT �LTS(H ′) γ e ⊆ OUT �LTS(H) γ e (B.2)

since γ ∈ lan �LTS(H) and e ∈ E12.

Moreover, by hypothesis we know that there is no E such that C′ e/E−→, so, by Theorem 46,

we also know that �C′ e/�−→� . Moreover, �C′in
γ−→�

�C′, by Corollary 47, since C′in
γ−→ C′

and γ ∈ (E ×�E)∗. By definition of OUT, we get � ∈ OUT �LTS(H ′) γ e so, using
relation (B.2) above we can conclude � ∈ OUT �LTS(H) γ e. But then, again by definition

of OUT, we derive that there exists �C such that �Cin
γ−→�

�C and �C e/�−→� , and again by

Theorem 46 and its corollary we get C e/E−→ for no E ∈ �E and Cin
γ−→ C. This means that

we can build the following computation

U || Cin � . . . Un || C
10 Notice that E ⊆ E′ is necessary otherwise considering only cases 1.1 and 1.2. would not be enough. In

particular, it could be the case that Un
e′−→ for some e′ ∈ E \ E′ (notice that in this case U should be over E ∪ E′)

and Un � e−→ for all e ∈ E′. This would mean that η would be maximal but we could not infer �Cin
e′/�−→� and in

fact it could very well be �Cin
e′/E ′−→� for some E ′ ∈ �E and this extra step could bring to success so we would

not reach contradiction.
11 Here we need E′ ⊆ E.
12 Notice that we can say e ∈ E because E = E′. Otherwise the hypothesis would be e ∈ E′ and here we would
need again E′ ⊆ E.

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 69

which is an unsuccessful computation since η above was so. This contradicts ⊥ �∈
Result(U, LTS(H)).

Case 1.2: Un
e−→ for no e ∈ E

By Lemma 50 we know thatγ ∈ lan LTS(H) sinceγ ∈ lan LTS(H ′) and �LTS(H ′) �co
�LTS(H). This means, by definition of lan LTS(H), that Cin

γ−→ C for some C. But then
we can build the following computation:

U || Cin � . . . Un || C
which is an unsuccessful computation since η above was so. This contradicts ⊥ �∈
Result(U, LTS(H)).

Case 2: η is infinite
Also in this case the computation gives rise to one derivation on the side of LTS(H ′),

C′in
γ−→ and to a sequence of output transitions Uj

µj−→ Oj on the side of U , which involves
infinite string γ ′ ∈ (E ×�E)∞, which is equal to γ up to τ moves. We distinguish two
cases:

Case 2.1: ∀n ≥ 0. ∃m ≥ n. the m-th element of γ ′ is not τ

From the operational semantics rules of experimental systems (Definition 5) we get that
also γ is infinite. For each finite prefix γ̄ of γ , by Lemma 50 we get γ̄ ∈ lan LTS(H) since
�LTS(H ′) �co

�LTS(H) by hypothesis. By definition of lan LTS(H) this means Cin
γ̄−→.

Thus we can build infinite computation

U || Cin � . . .

using, in each step j exactly the same Uj appearing in η and the same prefix of γ on which
η is running up to step j . Notice also that there can be more than one successive steps using
the same prefix γ̄ due to the fact that Uj

τ−→ may hold. In conclusion, also in this case we
reach a contradiction since the computation we can build involves the same Uj , for j ≥ 0,
occurring in η, which is unsuccessful.

Case 2.2: ∃n ≥ 0. ∀m ≥ n. the m-th element of γ ′ is τ

In this case γ is finite and by Lemma 50 we get Cin
γ−→. Therefore we can build an

unsuccessful computation

U || Cin � . . .

as in Case 2.1 reaching a contradiction. �

Proof of Lemma 61
�LTS(H) �∼MAY

�LTS(H ′)

⇔ {Theorem 21}
�LTS(H) <<MAY

�LTS(H ′)

⇔ {Def. 19}
lan �LTS(H) ⊆ lan �LTS(H ′)

⇒ {Lemma 40}
⇐ {Lemma 41; E ⊆ E′}

�LTS(H) �co LTS(H ′). �

70 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

Proof of Lemma 62

�LTS(H) �∼MUST

�LTS(H ′)

⇒ {Corollary 83}
lan �LTS(H ′) ⊆ lan �LTS(H)

⇒ {Lemma 40}
�LTS(H ′) �co

�LTS(H). �

Proof of Theorem 65
Part i:

�LTS(H ′′) �∼MAY

�LTS(H ′) ∧ �LTS(H ′) �co
�LTS(H)

⇔ {Theorem 21(a)}
lan �LTS(H ′′) ⊆ lan �LTS(H ′) ∧ �LTS(H ′) �co

�LTS(H)

⇒ {Lemma 41; E′ ⊆ E}
lan �LTS(H ′′) ⊆ lan �LTS(H ′) ∧ lan �LTS(H ′) ⊆ lan �LTS(H)

⇒ {Set Theory}
lan �LTS(H ′′) ⊆ lan �LTS(H)

⇒ {Lemma 40}
�LTS(H ′′) �co

�LTS(H)

Part ii:

�LTS(H ′) �∼MUST

�LTS(H ′′) ∧ �LTS(H ′) �co
�LTS(H)

⇒ {Corollary 83}
lan �LTS(H ′′) ⊆ lan �LTS(H ′) ∧ �LTS(H ′) �co

�LTS(H)

⇒ {Lemma 41; E′ ⊆ E}
lan �LTS(H ′′) ⊆ lan �LTS(H ′) ∧ lan �LTS(H ′) ⊆ lan �LTS(H)

⇒ {Set Theory}
lan �LTS(H ′′) ⊆ lan �LTS(H)

⇒ {Lemma 40}
�LTS(H ′′) �co

�LTS(H)

Part iii:
Directly follows from Part (ii) and the fact that �∼ is stronger than �∼MUST

by Definition
15.

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 71

Part iv:
�LTS(H ′) �co

�LTS(H) ∧ �LTS(H) �∼MAY

�LTS(H ′′)

⇒ {Lemma 41, E′ ⊆ E}
lan �LTS(H ′) ⊆ lan �LTS(H) ∧ �LTS(H) �∼MAY

�LTS(H ′′)

⇒ {Theorem 21(a)}
lan �LTS(H ′) ⊆ lan �LTS(H) ∧ lan �LTS(H) ⊆ lan �LTS(H ′′)

⇒ {Set Theory}
lan �LTS(H ′) ⊆ lan �LTS(H ′′)

⇒ {Lemma 40}
�LTS(H ′) �co

�LTS(H ′′)

Part v: �LTS(H ′) �co
�LTS(H) ∧ �LTS(H ′′) �∼MUST

�LTS(H)

⇒ {Lemma 41; E′ ⊆ E}
lan �LTS(H ′) ⊆ lan �LTS(H) ∧ �LTS(H ′′) �∼MUST

�LTS(H)

⇒ {Corollary 83}
lan �LTS(H ′) ⊆ lan �LTS(H) ∧ lan �LTS(H) ⊆ lan �LTS(H ′′)

⇒ {Set Theory}
lan �LTS(H ′) ⊆ lan �LTS(H ′′)

⇒ {Lemma 40}
�LTS(H ′) �co

�LTS(H ′′)

Part vi:
Directly follows from Part (v) and the fact that �∼ is stronger than �∼MUST

by Definition
15. �

Proof of Proposition 67

�LTS(H) �∼MAY

�LTS(H ′)

⇔ {Theorem 21}
�LTS(H) <<MAY

�LTS(H ′)

⇔ {Def. 19}
lan �LTS(H) ⊆ lan �LTS(H ′)

⇒ {lan LTS(H) ⊆ lan �LTS(H) by Lemma 49(iii)}
lan LTS(H) ⊆ lan �LTS(H ′)

⇒ {(lan LTS(H)) \� = lan LTS(H); Lemma 49(ii)}

72 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

lan LTS(H) ⊆ lan LTS(H ′)

⇔ {Def. 19}
LTS(H) <<MAY LTS(H ′)

⇔ {Theorem 21}
LTS(H) �∼MAY

LTS(H ′). �

Proof of Proposition 68

�LTS(H) �∼MUST

�LTS(H ′)

⇒ {Corollary 83}
lan �LTS(H ′) ⊆ lan �LTS(H)

⇒ {Lemma 40}
�LTS(H ′) �co

�LTS(H)

⇒ {Lemma 5113}
LTS(H) �∼MUST

LTS(H ′). �

Proof of Proposition 69. The proposition directly follows from Propositions 67 and 68. �

References

[1] A. Aho, J. Ullman, Principles of Compiler Design, Addison-Wesley, 1979.
[2] J. Alilovic-Curgus, S. Vuong, A metric based theory of test selection and coverage, in: A. Danthine, G.

Leduc, P. Wolper (Eds.), Protocol Specification, Testing, and Verification, XII, IFIP WG 6.1, North-Holland
Publishing Company, 1993, pp. 289–304.

[3] K. Bogdanov, M. Holcombe, H. Singh, Automated test set generation for Statecharts, in: D. Hutter, W.
Stephan, P. Traverso, M. Ullmann (Eds.), Applied Formal Methods, LNCS, vol. 1641, Springer-Verlag,
1998, pp. 107–121.

[4] T. Bolognesi, M. Caneve, Squiggles—a tool for the analysis of LOTOS specifications, in: K. Turner (Ed.),
Forte ’88, North-Holland Publishing Company, 1989, pp. 201–216.

[5] B. Bosik, M. Ümit Uyar, Finite state machines based formal methods in protocol conformance testing: from
theory to implementation, Computer Networks and ISDN Systems, North-Holland, 1991, pp. 7–33.

[6] H. Bowman, J. Derrick, A junction between state based and behavioural based specifications, in: P. Cian-
carini, A. Fantechi, R. Gorrieri (Eds.), IFIP TC6/WG6.1 Third International Conference on Formal Methods
for Open Object-Oriented Distributed Systems, Kluwer Academic Publishers, 1999, pp. 213–239., ISBN
0-7923-8429-6.

[7] E. Brinksma, J. Tretmans, L. Verhaard, A framework for test selection, in: B. Jonsson, J. Parrow, B. Pehrson
(Eds.), Protocol Specification, Testing, and Verification, XI, IFIP WG 6.1, vol. 22, North-Holland Publishing
Company, 1991, pp. 289–304.

13 The use of Lemma 51 requires E = E′.

M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74 73

[8] A. Cavarra, C. Crichton, J. Davies, A. Hartman, T. Jeron, L. Mounier, Using UML automatic test generation,
in: J.P. Katoen, P. Stevens (Eds.), Tools and Algorithms for the Construction and Analysis of Systems, LNCS,
vol. 2280, Springer-Verlag, 2002.

[9] R. De Nicola, Extensional equivalences for transition systems, Acta Inform. (24) (1987) 211–237.
[10] A. Fantechi, S. Gnesi, A. Maggiore, Enhancing test coverage by back-tracing model-checker counterexam-

ples, in: M. Pezzé (Ed.), Proceedings of TACoS 2004, Electronic Notes in Theoretical Computer Science,
vol. 116, Elsevier Science Publishers B.V., 2004, pp. 199–211.

[11] E. Farchi, A. Hartman, S. Pinter, Using a model-based test generator to test for standard conformance, IBM
Syst. J. 41 (1) (2002) 89–109.

[12] L. Feijs, N. Goga, S. Mauw, J. Tretmans, Test selection, trace distance and heuristics, in: IFIP 14th
International Conference on Testing of Communicating Systems, 2002.

[13] J. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, M. Sighireanu, CADP: A protocol validation
and verification toolbox, Conference on Computer-Aided Verification, LNCS, vol. 1102, Springer-Verlag,
1996, pp. 436–440.

[14] S. Gnesi, D. Latella, and M. Massink, Formal conformance testing UML Statechart Diagrams Behaviours:
From theory to automatic test generation. Technical Report CNUCE-B04-2001-16, Consiglio Nazionale
delle Ricerche, Istituto CNUCE, 2001 (Full version).

[15] S. Gnesi, D. Latella, M. Massink, Modular semantics for a UML Statechart Diagrams kernel and its extension
to Multicharts and Branching Time Model Checking, J. Logic Algebr. Program. 51 (1) (2002) 43–75.

[16] S. Gnesi, D. Latella, M. Massink, Formal Test-case Generation for UML Statecharts, in: P. Bellini, S. Bohner,
B. Steffen (Eds.), 9th IEEE International Conference on Engineering of Complex Computer Systems, IEEE,
IEEE Computer Society Press, 2004, pp. 75–84., ISBN 0-7695-2109-6.

[17] M. Hennessy, Algebraic Theory of Processes, MIT Press, 1988.
[18] R. Hierons, Adaptive testing of a deterministic implemenatation against a nondeterministic finite state

machine, Comput. J. 41 (5) (1998) 349–355.
[19] C.A.R. Hoare, Communicating Sequential Processes, Series in Computer Science, Prentice-Hall, 1989.
[20] Intecs and CNR-CNUCE, PRIDE Definition of Changes in UML Notation, Technical Report PRIDE

Deliverable 1.2, PRIDE, 02.
[21] Y. Kim, H. Hong, D. Bae, S. Cha, Test cases generation from UML state diagrams, IEE Proc. Softw. IEE

146 (4) (1999) 187–192.
[22] R. Langerak, Transformations and semantics for LOTOS, Ph.D. thesis, University of Twente, 1992.
[23] D. Latella, I. Majzik, M. Massink, Automatic verification of a behavioural subset of UML statechart diagrams

using the SPIN model-checker, Formal Aspects of Computing. Int. J. Formal Methods 11 (6) (1999) 637–664.
[24] D. Latella, I. Majzik, M. Massink, Towards a formal operational semantics of UML statechart diagrams, in:

P. Ciancarini, A. Fantechi, R. Gorrieri (Eds.), IFIP TC6/WG6.1 Third International Conference on Formal
Methods for Open Object-Oriented Distributed Systems, Kluwer Academic Publishers, 1999, pp. 331–347,
ISBN 0-7923-8429-6.

[25] D. Latella, M. Massink, A formal testing framework for UML Statechart Diagrams behaviours: From theory
to automatic verification, in: A. Jacobs (Ed.), Sixth IEEE International High-Assurance Systems Engineering
Symposium, IEEE Computer Society Press, 2001, pp. 11–22., ISBN 0-7695-1275-5.

[26] D. Latella, M. Massink, On testing and conformance relations of UML Statechart Diagrams Behaviours, in:
P.G. Frankl (Ed.), Proceedings of the ACM SIGSOFT 2002 International Symposium on Software Testing
and Analysis, Association for Computing Machinery—ACM, 2002, ACM Software Engineering Notes, vol.
27(4), pp. 144–153. ISBN 1-58113-562-9.

[27] D. Latella, M. Massink, H. Baumeister, M. Wirsing, Mobile UML statecharts with localities, in: C. Priami,
P. Quaglia (Eds.), LNCS, vol. 3267, Springer-Verlag, 2005, pp. 34–58.

[28] D. Lee, M. Yannakakis, Principles and methods of testing finite state machines—a survey, Proceedings of
the IEEE 84 (8) (1996) 1090–1123.

[29] N. Lynch, M. Tuttle, An introduction to input/output automata, CWI Quart. 2 (3) (1989) 219–246.
[30] M. Massink, Functional techniques in concurrency, Ph.D. thesis, University of Nijmegen, February 1996.

ISBN 90-9008940-3.
[31] M. Massink, D. Latella, S. Gnesi, Testing UML Statecharts. Technical Report 2005-TR-30, Consiglio

Nazionale delle Ricerche, Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, 2005.
[32] E. Mikk, Y. Lakhnech, M. Siegel, Hierarchical automata as model for statecharts, in: R. Shyamasundar, K.

Euda (Eds.), Third Asian Computing Science Conference. Advances in Computing Science—ASIAN’97,
LNCS, vol. 1345, Springer-Verlag, 1997, pp. 181–196.

[33] R. Milner, Communication and Concurrency, Series in Computer Science, Prentice-Hall, 1989.

74 M. Massink et al. / Journal of Logic and Algebraic Programming 69 (2006) 1–74

[34] Object Management Group, Inc. OMG Unified Modeling Language Specification—version 1.5, 2003.
Available from: <http://www.omg.org/cgi-bin/doc?formal/03-03-01>.

[35] A. Petrenko, N. Yevtushenko, G. von Bochmann, Testing deterministic implementations from nondetermin-
istic FSM specifications, in: B. Baumgarten, H. Burkhardt, A. Giessler (Eds.), Testing of Communication
Systems, Chapman & Hall, 1996, pp. 125–140.

[36] S. Pickin, C. Jard, Y. Le Traon, T. Jeron, J. Jezequel, A. Le Guennec, System test synthesis from UML models
of distributed software, in: D. Peled, M. Vardi (Eds.), Formal Techniques for Networked and Distributed
Systems—FORTE 2002, LNCS, vol. 2529, Springer-Verlag, 2002.

[37] A. Pretschner, O. Slotosh, H. Lötzbeyer, E. Aiglstorfer, Model based testing for real: The Inhouse Card study,
in: 6th International ERCIM Workshop on Formal Methods for Industrial Critical Systems, Paris, 2001, pp.
79–94.

[38] T. Chow, Testing software design modeled by finite-state machines, IEEE Trans. Software Eng. SE-4 (3)
(1978) 178–187.

[39] The Agedis Project, The Agedis Home Page, 2003. Available from: <http://www.agedis.
de/index.shtml>.

[40] J. Tretmans, A Formal Approach to Conformance Testing, Ph.D. thesis, University of Twente, 1992.
[41] J. Tretmans, Test generation with inputs, outputs and repetitive quiescence, Software—Concepts and Tools

17 (3) (1996) 103–120.
[42] J. Tretmans, Testing concurrent systems: a formal approach, in: J. Baeten, S. Mauw (Eds.), Concur ’99,

LNCS, vol. 1664, Springer-Verlag, 1999, pp. 46–65.

http://www.omg.org/cgi-bin/doc?formal/03-03-01
http://www.agedis.de/index.shtml
http://www.agedis.de/index.shtml

	On testing UML statecharts
	Introduction
	Related work
	Basic notions
	Labeled transition systems
	Hierarchical automata
	Definitions related to testing

	Testing relations
	Non-stuttering semantics
	Correctness
	Testing preorders
	Alternative characterization of testing preorders
	Finite acceptance automata
	Testing equivalence verification

	Conformance testing
	Stuttering semantics
	Correctness
	Conformance relation
	The test case generation algorithm

	Relating testing and conformance relations
	Relating the stuttering and the non-stuttering semantics
	Testing preorders and the conformance relation

	Conclusions
	Hierarchical automata
	Basic definitions and semantics

	Detailed proofs
	Proofs related to Section 3

	References

